ΠΕΡΙΕΧΟΜΕΝΑ. 1. Γενικά Γεωμετρία κάτοψης ορόφων Ορισμός "ελαστικού" άξονα κτιρίου Προσδιορισμός του κυρίου συστήματος...
|
|
- Μαριάμ Κούνδουρος
- 9 χρόνια πριν
- Προβολές:
Transcript
1 ΠΕΡΙΕΧΟΜΕΝΑ 1. Γενικά Γεωμετρία κάτοψης ορόφων Ορισμός "ελαστικού" άξονα κτιρίου Προσδιορισμός του κυρίου συστήματος Στρεπτική ευαισθησία κτιρίου Εκκεντρότητες υπολογισμού Αναλυτική προσέγγιση του Εθνικού Προσαρτήματος στην (8) Σελ
2 Αναλυτική προσέγγιση στην διαδικασία υπολογισμού του Ε.Π. στην παράγραφο (8) του EN Γενικά Το εθνικό προσάρτημα του EN επαναφέρει τον προσδιορισμό των εκκεντροτήτων μάζας 1 σύμφωνα με τις απαιτήσεις που υπήρχαν στον ΕΑΚ 2000 παράγραφος και παράρτημα ΣΤ. Ακολούθως επιχειρείται μια υπολογιστικά λογική σειρά για τον υπολογισμό των μεγεθών, κυρίως ως μνημόνιο για το πώς ακριβώς προσδιορίζονται διάφορα πράγματα 2. Ακολούθως με τον όρο κτίριο νοείται μια "μια ανεξάρτητη δυναμικά μονάδα" κατά την σημείωση της παραγράφου (1)P. 2. Γεωμετρία κάτοψης ορόφων Για κάθε όροφο υπολογίζονται στο σύστημα συντεταγμένων αναφοράς (σύστημα αναφοράς): Στο σύστημα συντεταγμένων αναφοράς υπολογίζονται οι τιμές των ροπών αδρανείας I Χ0, I Υ0 και I ΧΥ0 του σε κάτοψη σχήματος του διαφράγματος. Σκοπός του υπολογισμού είναι ο προσδιορισμός της πολικής ροπής αδρανείας στο κέντρο μάζας (I Pi =I Xi +I Yi ), με μεταφορά κατά Steiner από το σημείο αρχικού ορισμού. Προσδιορίζεται το κέντρο μάζας ορόφου M (X M,Y M ) και η μάζα ορόφου Μ i 3. Ορισμός "ελαστικού" άξονα κτιρίου. Ορίζεται ένας πραγματικός ή πλασματικός άξονας κτιρίου με την ακόλουθη διαδικασία: Βρίσκεται το εγγύτερο διάφραγμα στη στάθμη z =0.8H, όπου Η 3 το ύψος κτιρίου. Το ονομάζουμε στο εξής "διάφραγμα αναφοράς". Φορτίζονται όλα τα διαφράγματα με ομόσημες ροπές Μ zi =cf i όπου, F 4 i η στατική σεισμική δύναμη ορόφου και c 5 αυθαίρετος αριθμός. Υπολογίζονται οι γωνίες στροφής των διαφραγμάτων θ zι και βρίσκεται ο πόλος στροφής του διαφράγματος αναφοράς P (X PO,Y PO ). Θεωρούνται σε όλα τα άλλα διαφράγματα τα σημεία - προβολές του P. 1 Η εισαγόμενη μέθοδος απο το Ε.Π. πρακτικά οδηγεί τον υπολογισμό των κτιρίων με χωρικά προσομοιώματα, αφού προϋποθέτει την δημιουργία ενός τέτοιου για τον υπολογισμό των παραμέτρων αυτών. 2 Τα κείμενα στο υποσέλιδο (μπλε χρώμα) είναι γενικά προσωπικές απόψεις / θέσεις. 3 Το ύψος κτιρίου δεν ορίζεται σαφώς σε ποιό ύψος αναφέρεται (πχ αν ληφθεί υπόψη το δώμα μπορεί να προκύψει άλλο διάφραγμα αναφοράς και έτσι τροποποίηση των εν γένει αποτελεσμάτων). Επίσης δεν ορίζεται τι θα συμβεί αν η στάθμη z 0 βρεθεί στη μέση απόσταση μεταξύ διαφραγμάτων. 4 Η στατική δύναμη F i ορίζεται στην παράγραφο (2)P και (3) του EN με την προϋπόθεση φυσικά της (4)P. 5 Άρα και c=1.0 Αναλυτική προσέγγιση του Εθνικού Προσαρτήματος στην (8) Σελ
3 4. Προσδιορισμός του κυρίου συστήματος. Σύστημα αναφοράς είναι αυτό με βάσει το οποίο έχει περιγραφεί γεωμετρικά το κτίριο. Κύριο σύστημα είναι αυτό για το οποίο ισχύει ότι (Σ [3]) η φόρτιση του προσομοιώματος με οριζόντιες στατικές σεισμικές δυνάμεις, των οποίων το κατακόρυφο επίπεδο έχει διεύθυνση αυτή των αξόνων του x ή y, θα έχει ως αποτέλεσμα την μετάθεση, χωρίς περιστροφή, του διαφράγματος αναφοράς. Φορτίζεται το κτίριο σε όλα τα διαφράγματα με τις σεισμικές δυνάμεις F 6 i κατά την διεύθυνση των κυρίων αξόνων του συστήματος αναφοράς. Προσδιορίζονται οι μετατοπίσεις U XX, U XY (Φόρτιση κατά τον άξονα Χ: μετακίνηση Χ ή Υ) και U ΥX, U ΥY (Φόρτιση κατά τον άξονα Υ: μετακίνηση Χ ή Υ). Είναι U XY = U ΥX. Υπολογίζεται για τις μετακινήσεις του σημείου P 0 του διαφράγματος αναφοράς η γωνία α ως tan2α=2u XY /(U XX -U YY ). Η γωνία α εκφράζει τον προσανατολισμό των αξόνων x, y (με μικρά γράμματα) του κυρίου συστήματος. Εφόσον η γωνία α<10 0 ή U XX ~ U YY τότε θα θεωρείται α=0. Ο αντισεισμικός υπολογισμός θα βασιστεί στο κύριο σύστημα 7, όπως προέκυψε προηγουμένως. 5. Στρεπτική ευαισθησία κτιρίου Η στρεπτική ευαισθησία ορίζεται από τις σχέσεις (4.1α) 8 και (4.1β) της παραγράφου (6) του EN Σύμφωνα με αυτές για να μην είναι στρεπτικά ευαίσθητο ένα κτίριο πρέπει να ισχύουν σε κάθε διάφραγμα (επίπεδο) και οι δύο σχέσεις : , 4,10 όπου: e xi, e yi : η απόσταση μεταξύ του κέντρου δυσκαμψίας και του κέντρου μάζας, που μετράται στη διεύθυνση που υποδεικνύει ο αντίστοιχος δείκτης, κάθετα στην αντίστοιχη διεύθυνση. 6 Η έκφραση του ΕΑΚ στην [3] και η Σ [3] υπονοεί έμμεσα ως σημείο εφαρμογής το κέντρο μάζας 7 Αυτή η διαφοροποίηση δεν υπάρχει στον EN παρ (6) "για κάθε διεύθυνση της ανάλυσης x και y". Παρόλα αυτά όμως δες την ΕΝ (11)P. 8 Η σχέση αυτή δεν υπάρχει στον ΕΑΚ Αναλυτική προσέγγιση του Εθνικού Προσαρτήματος στην (8) Σελ
4 r xi, r yi : Η ακτίνα δυστρεψίας του διαφράγματος (i) η οποία ορίζεται 9 ως (αντίστοιχα για τον y). Το U yi είναι η y μετακίνηση στο κύριο άξονα με την φόρτιση που μόλις περιγράφηκε, τα θ zi και c όπως υπολογίζονται στις προηγούμενες παραγράφους του παρόντος. l s : Η ακτίνα αδρανείας της μάζας του διαφράγματος σε κάτοψη όπου I PMi η πολική ροπή αδρανείας του διαφράγματος στη θέση του κέντρου μάζας και M i η μάζα του διαφράγματος. 6. Εκκεντρότητες υπολογισμού. Ορίζονται σε κάθε διεύθυνση 2 εκκεντρότητες (εκατέρωθεν του κέντρου μάζας), ως προς τον "ελαστικό" άξονα, οι maxe i και mine i : max min, όπου e fi, e ri : Οι ισοδύναμες στατικές εκκεντρότητες 10 για να λάβουν υπόψη στρεπτικές ταλαντώσεις των ασύμμετρων κτιρίων για μεταφορική σεισμική διέγερση της βάσης. Σε κτίρια με άξονα συμμετρίας οι τιμές τους είναι μηδέν κατά την διεύθυνση του άξονα συμμετρίας. Σε φασματικές επιλύσεις οι εκκεντρότητες αυτές αγνοούνται. Σε κτίρια χωρίς στρεπτική ευαισθησία (ορίζεται στην προηγούμενη παράγραφο) επιτρέπεται οι ισοδύναμες στατικές εκκεντρότητες να προσδιορίζονται προσεγγιστικά ως e fi =1.5e i και e ri =0.5e i. e ai : Η τυχηματική εκκεντρότητα 11. Στη γενική περίπτωση (προϋπόθεση η καθ ύψος κανονικότητα - πίνακας 4.1 EN ) όμως ο προσδιορισμός γίνεται σύμφωνα με το παράρτημα ΣΤ του ΕΑΚ 2000 (δίπλα σχήμα), για κάθε διάφραγμα και κάθε κύρια διεύθυνση, ως ακολούθως (παραλείπεται ο δείκτης του διαφράγματος και της διεύθυνση εφαρμογής της σεισμικής φόρτισης): Προσδιορίζονται (στο κύριο σύστημα) οι λόγοι: 9 Με βάσει το εθνικό προσάρτημα προσδιορίζεται η ακτίνα αδρανείας στο κύριο σύστημα και όχι στο σύστημα ανάλυσης και η οποία ισούται για τον x άξονα (ανάλογα για τον y). Ο ορισμός των μεγεθών γίνεται από τον ΕΑΚ παρ [7] ο οποίος ορίζει την ακτίνα αδρανείας με βάσει τις μετακινήσεις και όχι τις δυσκαμψίες που χρησιμοποιεί ο EN παρ (6) (Η δυστρεψία και η δυσκαμψία του ορόφου ορίζονται αλλιώς και έτσι δεν είναι βεβαία η ισοδυναμία τους δες πάντως και την σημείωση της παρ (8)β του EN ). 10 εν ορίζονται στατικές εκκεντρότητες στον EN Η τυχηματική εκκεντρότητα ορίζεται στην (1)P. του EN Στην παράγραφο αυτή η τυχηματική εκκεντρότητα ορίζεται ως το 5% του πλάτους του υπόψη διαφράγματος (δηλ κάθετα στην εξεταζόμενη διεύθυνση). Αναλυτική προσέγγιση του Εθνικού Προσαρτήματος στην (8) Σελ
5 Η εκκεντρότητα e 0 λαμβάνεται πάντοτε με θετικό πρόσημο. Το L r επίσης είναι πάντοτε θετικό και ορίζεται, κατά το σχήμα, από την περίμετρο των κατακόρυφων στοιχείων. Με βάσει την Τ (θεμελιώδης ασύζευκτη ιδιοπερίοδος του κτιρίου κατά την εξεταζόμενη διεύθυνση) ορίζεται το n ως ακολούθως: n=1 για Τ Τ 2 και n=2/3 για T>T 2. Υπολογίζεται η οξεία γωνία 2ω: tan 2 αν ω 0. Αν ω<0 προστίθενται στην προηγούμενη τιμή της αλγεβρικά Υπολογίζονται τα : 1 tan, 1 ct, ct, tan Ακολούθως :, Ακολούθως : Ακολούθως : / 2 / / 2 Οπότε :, 0.5, με ξ η απόσβεση (σε %). Σημείωση 1: Η εκκεντρότητα e r είναι δυνατόν να λάβει τιμές αρνητικές σε στρεπτικά ευαίσθητα συστήματα. Οι περιορισμοί e f e 0 και e r 0.5e 0 αποβλέπουν στην μείωση των ανελαστικών μετακινήσεων της εύκαμπτης πλευράς και των απαιτήσεων πλαστιμότητας της δύσκαμπτης πλευράς του κτιρίου. Σημείωση 2: Οι θετικές τιμές των e f και e r μετρώνται από το P 0 προς τις κατευθύνσεις P 0 M i των προβολών του κέντρου μάζας M i επάνω στους κύριους άξονες x ή y (δες επίσης το προηγούμενο σχήμα). Αναλυτική προσέγγιση του Εθνικού Προσαρτήματος στην (8) Σελ
Μεταπτυχιακή Διπλωματική εργασία. «Στρεπτική ευαισθησία κατασκευών λόγω αλλαγής διατομής υποστυλωμάτων»
ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ Αντισεισμική και Ενεργειακή Αναβάθμιση Κατασκευών και Αειφόρος Ανάπτυξη ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Μεταπτυχιακή Διπλωματική εργασία «Στρεπτική
ΠΑΡΑΡΤΗΜΑ ΙΑΦΡΑΓΜΑΤΙΚΗ ΛΕΙΤΟΥΡΓΙΑ ΠΟΛΥΩΡΟΦΟΥ ΧΩΡΙΚΟΥ ΠΛΑΙΣΙΟΥ ΓΕΝΙΚΗ ΠΕΡΙΠΤΩΣΗ
Στατική και υναµική Ανάλυση ΠΑΡΑΡΤΗΜΑ ΙΑΦΡΑΓΜΑΤΙΚΗ ΛΕΙΤΟΥΡΓΙΑ ΠΟΛΥΩΡΟΦΟΥ ΧΩΡΙΚΟΥ ΠΛΑΙΣΙΟΥ ΓΕΝΙΚΗ ΠΕΡΙΠΤΩΣΗ.1 Περιγραφή του θέµατος Η αξιολόγηση της λειτουργίας των µονώροφων επίπεδων πλαισίων σε οριζόντιες
Εικόνα Δ.7.1-1: Η απλή μελέτη με τις 4 κολόνες C1:400/400, C2:400/400, C3:800/300 φ=30º, C4:300/600 φ=45º, h=3.0 m, δοκοί 250/500
Τόμος B.7 Παραδείγματα Επιλύονται δύο παραδείγματα με τη γενική μέθοδο στον ίδιο απλό φορέα του Παραρτήματος Γ.1. Η επιλογή απλού φορέα είναι χρήσιμη για την άνετη παρακολούθηση των αποτελεσμάτων και την
Αναλυτικές οδηγίες για το θέμα εξαμήνου
Ανώτατη Σχολή Παιδαγωγικής & Τεχνολογικής Εκπαίδευσης (Α.Σ.ΠΑΙ.Τ.Ε.) Τμήμα Εκπαιδευτικών Πολιτικών Δομικών Έργων Μάθημα: Αντισεισμικές Κατασκευές Ακαδ. έτος 2014-2015 Διδάσκοντες: Β. Πλεύρης, Β. Σούλης
ΥΠΟΛΟΓΙΣΜΟΣ ΑΚΤΙΝΩΝ ΔΥΣΤΡΕΨΙΑΣ ΠΟΛΥΩΡΟΦΩΝ ΚΤΙΡΙΩΝ Calculation of Torsional Stiffness Radii of Multistory Buildings
3 o Πανελλήνιο Συνέδριο Αντισεισμικής Μηχανικής & Τεχνικής Σεισμολογίας 5 7 Νοεμβρίου, 008 Άρθρο 1999 ΥΠΟΛΟΓΙΣΜΟΣ ΑΚΤΙΝΩΝ ΔΥΣΤΡΕΨΙΑΣ ΠΟΛΥΩΡΟΦΩΝ ΚΤΙΡΙΩΝ Calculation of Torsional Stiffness Radii of Multistory
ΤΥΠΟΛΟΓΙΟ ΑΝΤΙΣΕΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ 2
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΙΣΕΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΑΝΤΙΣΕΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΣΤΡΟΦΗ ΕΛΑΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εκκεντρότητες: Στατικές: e = Χ ΚΜ Χ o, e = Y ΚΜ Y o όροφος
Στρεπτική απόκριση κτιρίων και ΕΚ8
Στρεπτική απόκριση κτιρίων και ΕΚ8 Α. Αθανατοπούλου-Κυριακού Καθηγήτρια Διευθύντρια του Εργαστηρίου Στατικής και Δυναμικής των Κατασκευών Τμήμα Πολιτικών Μηχανικών, ΑΠΘ, minak@civil.auth.gr 1 Γενικά Τα
Ερευνητικό πρόγραµµα ΟΑΣΠ /02 - Επιστ. Υπεύθ.: καθηγ. Ι.Ε. Αβραµίδης - ΑΠΘ
ΠΑΡΑ ΕΙΓΜΑ Μονώροφος, απλά συµµετρικός φορέας µε µη παράλληλη διάταξη στύλων Περιεχόµενα. εδοµένα Παραδοχές Προσοµοίωµα. Ένταση λόγω στατικών κατακορύφων φορτίων 6. Σεισµική απόκριση.. υναµική φασµατική
Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών Μεταπτυχιακό πρόγραµµα σπουδών «Αντισεισµικός Σχεδιασµός Τεχνικών Έργων» Μάθηµα: «Αντισεισµικός Σχεδιασµός Θεµελιώσεων,
Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών Τοµέας Επιστήµης και Τεχνολογίας των Κατασκευών Μεταπτυχιακό πρόγραµµα σπουδών «Αντισεισµικός Σχεδιασµός Τεχνικών Έργων»
Ερευνητικό πρόγραµµα ΟΑΣΠ /02 - Επιστ. Υπεύθ.: καθηγ. Ι.Ε. Αβραµίδης - ΑΠΘ
Πρότυπα αριθµητικά παραδείγµατα για τον έλεγχο ορθής εφαρµογής των διατάξεων του ΕΑΚ/000 ΠΑΡΑ ΕΙΓΜΑ 0 ΠΑΡΑ ΕΙΓΜΑ 0 Περιεχόµενα Πενταώροφος µικτός φορέας µε απλή διαγώνια συµµετρία - Με περιµετρικά τοιχώµατα
Στατική και Σεισµική Ανάλυση
ΑΠΟΣΤΟΛΟΥ ΚΩΝΣΤΑΝΤΙΝΙ Η ΠΟΛΙΤΙΚΟΥ ΜΗΧΑΝΙΚΟΥ ΑΝΤΙΣΕΙΣΜΙΚΑ ΚΤΙΡΙΑ από οπλισµένο σκυρόδεµα ΤΟΜΟΣ Β Στατική και Σεισµική Ανάλυση ISBN set 978-960-85506-6-7 ISBN τ. Β 978-960-85506-0-5 Copyright: Απόστολος
Ερευνητικό πρόγραµµα ΟΑΣΠ /02 - Επιστ. Υπεύθ.: καθηγ. Ι.Ε. Αβραµίδης - ΑΠΘ
ΠΑΡΑ ΕΙΓΜΑ Περιεχόµενα Πενταώροφος µικτός φορέας µε απλή συµµετρία Στρεπτική ευαισθησία. εδοµένα Παραδοχές Προσοµοίωµα. Ένταση λόγω στατικών κατακορύφων φορτίων 8. Σεισµική απόκριση 0.. υναµική φασµατική
ΤΟ «ΚΕΝΤΡΟ ΣΤΡΟΦΗΣ» ΣΤΗΝ ΑΝΕΛΑΣΤΙΚΗ ΑΝΑΛΥΣΗ
21o ΦΟΙΤΗΤΙΚΟ ΣΥΝΕ ΡΙΟ ΕΠΙΣΚΕΥΕΣ ΚΑΙ ΕΝΙΣΧΥΣΕΙΣ ΚΑΤΑΣΚΕΥΩΝ 2015 ΠΑΤΡΑ ΦΕΒΡΟΥΑΡΙΟΣ 2015 ΤΟ «ΚΕΝΤΡΟ ΣΤΡΟΦΗΣ» ΣΤΗΝ ΑΝΕΛΑΣΤΙΚΗ ΑΝΑΛΥΣΗ Ε. ΒΟΥΓΙΟΥΚΑΣ, ΛΕΚΤΟΡΑΣ ΕΜΠ ΡΙΚΟΜΕΞ (1999) ΤΟ «ΜΟΝΩΡΟΦΟ ΜΕ ΣΤΡΟΦΗ» ΘΕΩΡΗΤΙΚΟ
ΕΓΧΕΙΡΙΔΙΟ ΕΠΙΒΕΒΑΙΩΣΗΣ
ΣΤΑΤΙΚΕΣ ΜΕΛΕΤΕΣ ΚΤΙΡΙΩΝ ΕΓΧΕΙΡΙΔΙΟ ΕΠΙΒΕΒΑΙΩΣΗΣ συγκρίσεις αποτελεσμάτων του ΡΑΦ με το βιβλίο : Αντισεισμικός σχεδιασμός κτιρίων Ο/Σ σύμφωνα με τους Ευρωκώδικες των Ι.Αβραμίδη Α. Αθανατοπούλου Κ.Μορφίδη
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΔΟΜΟΣΤΑΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΑΝΑΛΥΣΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΚΕΝΤΡΟΥ ΣΤΡΟΦΗΣ
Γενικευμένα Mονοβάθμια Συστήματα
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Γενικευμένα Mονοβάθμια Συστήματα Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Δυναμική Ανάλυση Ραβδωτών Φορέων 1 1. Είδη γενικευμένων μονοβαθμίων συστημάτων xu
ΕΠΙΣΚΕΥΕΣ ΕΝΙΣΧΥΣΕΙΣ ΥΦΙΣΤΑΜΕΝΩΝ ΚΤΙΡΙΩΝ. Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών
ΕΠΙΣΚΕΥΕΣ ΕΝΙΣΧΥΣΕΙΣ ΥΦΙΣΤΑΜΕΝΩΝ ΚΤΙΡΙΩΝ Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών H ανελαστική στατική ανάλυση (pushover) στον ΚΑΝ.ΕΠΕ. Επιτρεπόμενες μέθοδοι ανάλυσης στον ΚΑΝ.ΕΠΕ. Ελαστικές μέθοδοι
Αντισεισμικοί κανονισμοί Κεφ.23. Ε.Σώκος Εργαστήριο Σεισμολογίας Παν.Πατρών
Κεφ.23 Ε.Σώκος Εργαστήριο Σεισμολογίας Παν.Πατρών Ο αντισεισμικός σχεδιασμός απαιτεί την εκ των προτέρων εκτίμηση των δυνάμεων που αναμένεται να δράσουν επάνω στην κατασκευή κατά τη διάρκεια της ζωής της
ΙΑπόστολου Κωνσταντινίδη ιαφραγµατική λειτουργία. Τόµος B
Τόµος B 3.1.4 ιαφραγµατική λειτουργία Γενικά, αν υπάρχει εκκεντρότητα της φόρτισης ενός ορόφου, π.χ. από την οριζόντια ώθηση σεισµού, λόγω της ύπαρξης της πλάκας που στο επίπεδό της είναι πρακτικά άκαµπτη,
ΤΥΠΟΛΟΓΙΟ ΑΝΤΙΣΕΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ 1
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΙΣΕΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΑΝΤΙΣΕΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ 1 ΣΕΙΣΜΙΚΗ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑ Περίοδος επανάληψης σεισμού για πιανότητα υπέρβασης p του
Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α
Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1 ο ΜΕΡΟΣ Εισαγωγή στη φιλοσοφία του αντισεισμικού σχεδιασμού και στην κανονιστική της υλοποίηση 1-1 1. H φιλοσοφία του αντισεισμικού σχεδιασμού των κατασκευών Επεξήγηση θεμελιωδών
Κεφάλαιο 14: Στατική μη-γραμμική Ανάλυση (Pushover Analysis) Πολυωρόφων
Κεφάλαιο : Στατική μη-γραμμική Ανάλυση (Pshover Analyss) Πολυωρόφων Επίπεδων Πλαισίων Μαθηματική Διατύπωση Ως προοίμιο για τη μαθηματική διατύπωση της στατικής μη-γραμμικής (υπερωθητικής) ανάλυσης (pshover
Μεθοδολογία Έλλειψης
Μεθοδολογία Έλλειψης Έλλειψη ονομάζεται ο γεωμετρικός τόπος των σημείων, των οποίων το άθροισμα των αποστάσεων από δύο σταθερά σημεία Ε και Ε είναι σταθερό και μεγαλύτερο από την απόσταση (ΕΕ ). Στη Φύση
ΑΠΟΤΙΜΗΣΗ ΚΑΙ ΕΝΙΣΧΥΣΗ ΥΦΙΣΤΑΜΕΝΗΣ ΚΑΤΑΣΚΕΥΗΣ ΜΕ ΑΝΕΛΑΣΤΙΚΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΤΑ ΚΑΝ.ΕΠΕ.
ΑΠΟΤΙΜΗΣΗ ΚΑΙ ΕΝΙΣΧΥΣΗ ΥΦΙΣΤΑΜΕΝΗΣ ΚΑΤΑΣΚΕΥΗΣ ΜΕ ΑΝΕΛΑΣΤΙΚΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΤΑ ΚΑΝ.ΕΠΕ. ΑΝΤΩΝΟΠΟΥΛΟΣ ΧΑΡΑΛΑΜΠΟΣ ΚΑΡΑΧΑΛΙΟΥ ΜΑΡΙΑ Περίληψη Αντικείμενο της παρούσας εργασίας είναι η εκτίμηση της φέρουσας
Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : , 12:00-15:00 ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : --, :-: ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΑΡ. ΜΗΤΡ :.......
ΕΠΙΔΡΑΣΗ ΓΕΙΤΟΝΙΚΟΥ ΚΤΙΡΙΟΥ ΣΤΗΝ ΑΠΟΤΙΜΗΣΗ ΚΑΤΑΣΚΕΥΩΝ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ
Επίδραση Γειτονικού Κτιρίου στην Αποτίμηση Κατασκευών Ο/Σ ΕΠΙΔΡΑΣΗ ΓΕΙΤΟΝΙΚΟΥ ΚΤΙΡΙΟΥ ΣΤΗΝ ΑΠΟΤΙΜΗΣΗ ΚΑΤΑΣΚΕΥΩΝ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΒΑΣΙΛΕΙΑΔΗ ΜΙΧΑΕΛΑ Μεταπτυχιακή Φοιτήτρια Π.Π., mikaelavas@gmail.com
O7 O6 O4 O3 O2 O1 K1 K2 K3 K4 K5 K6. Μέρος 1 ο Επιλογή θέσης και διαστάσεων κατακόρυφων στοιχείων. Βήμα 1 ο Σχεδιασμός καννάβου
Μέρος 1 ο Επιλογή θέσης και διαστάσεων κατακόρυφων στοιχείων Βήμα 1 ο Σχεδιασμός καννάβου Με βάση τις θέσεις των τοιχοπληρώσεων που εμφανίζονται στο αρχιτεκτονικό σχέδιο γίνεται ο κάναβος που φαίνεται
Κεφάλαιο 3: Διαμόρφωση και ανάλυση χαρακτηριστικών στατικών συστημάτων
Κεφάλαιο 3: Διαμόρφωση και ανάλυση χαρακτηριστικών στατικών συστημάτων 3.1 Εισαγωγή 3.1.1 Στόχος Ο στόχος του Κεφαλαίου αυτού είναι η παρουσίαση ολοκληρωμένων παραδειγμάτων προσομοίωσης και ανάλυσης απλών
Ερευνητικό πρόγραµµα ΟΑΣΠ /02 - Επιστ. Υπεύθ.: καθηγ. Ι.Ε. Αβραµίδης - ΑΠΘ
Περιεχόµενα ΠΑΡΑ ΕΙΓΜΑ Πενταώροφος µικτός φορέας µε απλή συµµετρία (µε ένα περιµετρικό τοίχωµα). εδοµένα Παραδοχές Προσοµοίωµα. Ένταση λόγω στατικών κατακορύφων φορτίων 8. Σεισµική απόκριση.. υναµική φασµατική
Ελαστικά με σταθερά ελαστικότητας k, σε πλευρικές φορτίσεις και άκαμπτα σε κάθετες φορτίσεις. Δυναμικό πρόβλημα..
Φάσματα Απόκρισης Κεφ.20 Θ. Σώκος Εργαστήριο Σεισμολογίας Τμήμα Γεωλογίας Δυναμική των κατασκευών Φάσματα Απόκρισης Το πρόβλημα της αλληλεπίδρασης σεισμού με τις κατασκευές είναι δυναμικό πρόβλημα του
ΣΧΕΔΙΑΣΜΟΣ ΚΤΙΡΙΟΥ ΜΕ ΕΑΚ, ΚΑΝΟΝΙΣΜΟ 84 ΚΑΙ ΚΑΝΟΝΙΣΜΟ 59 ΚΑΙ ΑΠΟΤΙΜΗΣΗ ΜΕ ΚΑΝ.ΕΠΕ.
Σχεδιασμός κτιρίου με ΕΑΚ, Κανονισμό 84 και Κανονισμό 59 και αποτίμηση με ΚΑΝ.ΕΠΕ. ΣΧΕΔΙΑΣΜΟΣ ΚΤΙΡΙΟΥ ΜΕ ΕΑΚ, ΚΑΝΟΝΙΣΜΟ 84 ΚΑΙ ΚΑΝΟΝΙΣΜΟ 59 ΚΑΙ ΑΠΟΤΙΜΗΣΗ ΜΕ ΚΑΝ.ΕΠΕ. ΡΑΥΤΟΠΟΥΛΟΥ ΜΑΡΙΝΑ Περίληψη Αντικείμενο
ΑΣΚΗΣΗ 9 - ΧΩΡΙΚΟ ΠΛΑΙΣΙΟ
ΑΣΚΗΣΗ 9 - ΧΩΡΙΚΟ ΠΛΑΙΣΙΟ Να γίνει στατική επίλυση τoυ χωρικού πλαισίου από οπλισμένο σκυρόδεμα κατηγορίας C/, κάτοψη του οποίου φαίνεται στο σχήμα (α). Δίνονται: φορτίο επικάλυψης πλάκας gεπικ. KN/, κινητό
ασύμμετρων κτιριακών φορέων»
ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙ ΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ (Α.Σ.ΠΑΙ.Τ.Ε.) «Αρχιμήδης ΙΙΙ Ενίσχυση Ερευνητικών ομάδων στην Α.Σ.ΠΑΙ.Τ.Ε.» Υποέργο: 8 Τίτλος: «Εκκεντρότητες αντισεισμικού σχεδιασμού ασύμμετρων
Ερευνητικό πρόγραµµα ΟΑΣΠ /02 - Επιστ. Υπεύθ.: καθηγ. Ι.Ε. Αβραµίδης - ΑΠΘ
Πρότυπα αριθµητικά παραδείγµατα για τον έλεγχο ορθής εφαρµογής των διατάξεων του ΕΑΚ/000 ΠΑΡΑ ΕΙΓΜΑ 9 ΠΑΡΑ ΕΙΓΜΑ 9 Περιεχόµενα Πενταώροφος µικτός φορέας µε απλή διαγώνια συµµετρία - Με γωνιαίο τοίχωµα
Δυναμική ανάλυση μονώροφου πλαισίου
Κεφάλαιο 1 Δυναμική ανάλυση μονώροφου πλαισίου 1.1 Γεωμετρία φορέα - Δεδομένα Χρησιμοποιείται ο φορέας του Παραδείγματος 3 από το βιβλίο Προσομοίωση κατασκευών σε προγράμματα Η/Υ (Κίρτας & Παναγόπουλος,
Διδάσκων: Κίρτας Εμμανουήλ 1η εξεταστική περίοδος: 01/07/2009 Διάρκεια εξέτασης: 1 ώρα και 30 λεπτά Ονοματεπώνυμο φοιτητή:... ΑΕΜ:...
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Δομικών Έργων Εαρινό Εξάμηνο 2008-2009 Εξέταση Θεωρίας: Επιλογή Γ ΕΙΔΙΚΑ ΚΕΦΑΛΑΙΑ ΣΤΑΤΙΚΗΣ Διδάσκων: Κίρτας Εμμανουήλ
ΠΡΟΣΟΜΟΙΩΜΑΤΑ ΚΤΙΡΙΩΝ ΑΠΌ ΦΕΡΟΥΣΑ ΤΟΙΧΟΠΟΙΙΑ ΓΙΑ ΣΕΙΣΜΙΚΕΣ ΔΡΑΣΕΙΣ Προσομοίωση κτιρίων από τοιχοποιία με : 1) Πεπερασμένα στοιχεία 2) Γραμμικά στοιχεί
ΠΡΟΣΟΜΟΙΩΜΑΤΑ ΚΤΙΡΙΩΝ ΑΠΌ ΦΕΡΟΥΣΑ ΤΟΙΧΟΠΟΙΙΑ ΓΙΑ ΣΕΙΣΜΙΚΕΣ ΔΡΑΣΕΙΣ Η σεισμική συμπεριφορά κτιρίων από φέρουσα τοιχοποιία εξαρτάται κυρίως από την ύπαρξη ή όχι οριζόντιου διαφράγματος. Σε κτίρια από φέρουσα
Μεθοδολογία Υπερβολής
Μεθοδολογία Υπερβολής Υπερβολή ονομάζεται ο γεωμετρικός τόπος των σημείων, των οποίων η απόλυτη τιμή της διαφοράς των αποστάσεων από δύο σταθερά σημεία Ε και Ε είναι σταθερή και μικρότερη από την απόσταση
6. Δυναμική Ανάλυση Μονοβαθμίων Συστημάτων (ΜΒΣ)
ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ 6. Δυναμική Ανάλυση Μονοβαθμίων Συστημάτων (ΜΒΣ) Χειμερινό εξάμηνο 2018 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,
«ΒΕΛΤΙΣΤΗ ΧΩΡΟΘΕΤΗΣΗ ΕΝΙΣΧΥΣΕΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕ ΒΑΣΗ ΤΗ ΔΥΣΤΡΕΨΙΑ»
ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ Εκπονήτρια: Μαρία Καραναστάση Επιβλέπων καθηγητής: Νικόλαος Λαγαρός, Επικ. Καθηγητής ΕΜΠ «ΒΕΛΤΙΣΤΗ ΧΩΡΟΘΕΤΗΣΗ
Κεφάλαιο 10: Δυναμική Ανάλυση Κτιριακών Κατασκευών
Κεφάλαιο 10: Δυναμική Ανάλυση Κτιριακών Κατασκευών 10.1 Ανάλυση Κτιρίων Πλαισιακού Τύπου Στην παρούσα ενότητα υπολογίζονται τα δυναμικά χαρακτηριστικά ενός εξαώροφου, αμιγώς πλαισιακού τύπου κτιρίου με
9 ΚΕΦΑΛΑΙΟ 9. ΚΑΔΕΤ-ΚΕΦΑΛΑΙΟ 9 ΕΚΔΟΣΗ 2η ΕΛΕΓΧΟΙ ΑΣΦΑΛΕΙΑΣ 9.1 ΣΚΟΠΟΣ
9 ΚΕΦΑΛΑΙΟ 9 ΕΛΕΓΧΟΙ ΑΣΦΑΛΕΙΑΣ 9.1 ΣΚΟΠΟΣ Βλ. Κεφ. 4, Παρ. 4.4, για την λογική των ελέγχων. Το παρόν Κεφάλαιο περιλαμβάνει τα κριτήρια ελέγχου της ανίσωσης ασφαλείας, κατά την αποτίμηση ή τον ανασχεδιασμό,
Ερευνητικό πρόγραµµα ΟΑΣΠ /02 - Επιστ. Υπεύθ.: καθηγ. Ι.Ε. Αβραµίδης - ΑΠΘ
Πρότυπα αριθµητικά παραδείγµατα για τον έλεγχο ορθής εφαρµογής των διατάξεων του ΕΑΚ/000 ΠΑΡΑ ΕΙΓΜΑ ΠΑΡΑ ΕΙΓΜΑ Περιεχόµενα Πενταώροφος πλαισιακός φορέας µε τετραπλή συµµετρία Ανωδοµή και θεµελίωση. εδοµένα
Κεφάλαιο 9: Προσομοίωση Συμβατικών Κτιριακών Κατασκευών
Κεφάλαιο 9: Προσομοίωση Συμβατικών Κτιριακών Κατασκευών 9. Εισαγωγή Το μονώροφο κτίριο τυχαίας κάτοψης είναι ένα δομικό σύστημα που λόγω της σχετικής απλότητάς του βοηθαεί στην κατανόηση της διαδικασίας
Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 2 0 Κεφάλαιο
Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 0 Κεφάλαιο Περιέχει: Αναλυτική Θεωρία Ερωτήσεις Θεωρίας Ερωτήσεις Πολλαπλής Επιλογής Ερωτήσεις Σωστού - λάθους Ασκήσεις ΘΕΩΡΙΑ 4- ΕΙΣΑΓΩΓΗ Στην μέχρι τώρα
Κατακόρυφος αρμός για όλο ή μέρος του τοίχου
ΤΥΠΟΙ ΦΕΡΟΝΤΩΝ ΤΟΙΧΩΝ ΚΑΤΑ EC6 Μονόστρωτος τοίχος : τοίχος χωρίς ενδιάμεσο κενό ή συνεχή κατακόρυφο αρμό στο επίπεδό του. Δίστρωτος τοίχος : αποτελείται από 2 παράλληλες στρώσεις με αρμό μεταξύ τους (πάχους
ΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : 8-9-, :-: ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΟΝΟΜΑ :......
Χ. ΖΕΡΗΣ Απρίλιος
Χ. ΖΕΡΗΣ Απρίλιος 2016 1 Κατά την παραλαβή φορτίων στα υποστυλώματα υπάρχουν πρόσθετες παραμορφώσεις: Μονολιθικότητα Κατασκευαστικές εκκεντρότητες (ανοχές) Στατικές ροπές λόγω κατακορύφων Ηθελημένα έκκεντρα
Στατική και Σεισµική Ανάλυση
ΑΠΟΣΤΟΛΟΥ ΚΩΝΣΤΑΝΤΙΝΙ Η ΠΟΛΙΤΙΚΟΥ ΜΗΧΑΝΙΚΟΥ ΑΝΤΙΣΕΙΣΜΙΚΑ ΚΤΙΡΙΑ από οπλισµένο σκυρόδεµα ΤΟΜΟΣ Β Στατική και Σεισµική Ανάλυση ISBN set 978-960-85506-6-7 ISBN τ. Β 978-960-85506-0-5 Copyright: Απόστολος
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου
A A N A B P Y A 9 5 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου Στερεό σώμα με κυλινδρική συμμετρία (κύλινδρος, σφαίρα, σφαιρικό κέλυφος, κυκλική στεφάνη κλπ) μπορεί να
ή/και με απόσβεση), και να υπολογίσουν αναλυτικά την απόκριση τους σε ελεύθερη ταλάντωση.
Τίτλος μαθήματος: Δυναμική Κατασκευών Ι Κωδικός μαθήματος: CE08_S02 Πιστωτικές μονάδες: 5 Φόρτος εργασίας (ώρες): 153 Επίπεδο μαθήματος: Προπτυχιακό Μεταπτυχιακό Τύπος μαθήματος: Υποχρεωτικό Επιλογής Κατηγορία
ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ ΝΟ.1 (2011)
Τ.Ε. 01 - Προσομοίωση και παραδοχές FESPA SAP 2000 1.1 ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ ΝΟ.1 (2011) Προσομοίωση και παραδοχές FESPA - SAP 2000 Η παρούσα τεχνική έκθεση αναφέρεται στις παραδοχές και απλοποιήσεις που υιοθετούνται
ΜΙΑ ΝΕΑ ΜΕΘΟΔΟΣ ΕΠΕΚΤΑΣΗΣ ΤΩΝ ΑΝΑΛΥΣΕΩΝ ΣΤAΤΙΚΗΣ ΟΡΙΑΚΗΣ ΩΘΗΣΗΣ ΣΕ ΑΣΥΜΜΕΤΡΑ ΚΤΙΡΙΑ ΚΑΙ ΣΥΓΚΡΙΣΕΙΣ ΜΕ ΥΦΙΣΤΑΜΕΝΕΣ ΜΕΘΟΔΟΥΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΜΙΑ ΝΕΑ ΜΕΘΟΔΟΣ ΕΠΕΚΤΑΣΗΣ ΤΩΝ ΑΝΑΛΥΣΕΩΝ ΣΤAΤΙΚΗΣ ΟΡΙΑΚΗΣ ΩΘΗΣΗΣ ΣΕ ΑΣΥΜΜΕΤΡΑ ΚΤΙΡΙΑ ΚΑΙ ΣΥΓΚΡΙΣΕΙΣ ΜΕ ΥΦΙΣΤΑΜΕΝΕΣ ΜΕΘΟΔΟΥΣ
Προσεγγιστική εκτίµηση φορτίων διατοµής κατακορύφων στοιχείων πολυωρόφων κτιρίων από Ο/Σ
Προσεγγιστική εκτίµηση φορτίων διατοµής κατακορύφων στοιχείων πολυωρόφων κτιρίων από Ο/Σ Χ.Ι. Αθανασιάδου ρ. Π.Μ., ΕΕ ΙΠ, Εργαστήριο Σιδηροπαγούς Σκυροδέµατος Α. Π. Θ. Α.Γ. Τσώνος ρ. Π.Μ., Αναπληρωτής
ΠΑΡΑΜΕΤΡΙΚΗ ΑΝΑΛΥΣΗ ΣΥΜΒΑΤΙΚΩΝ ΠΕΝΤΑΩΡΟΦΩΝ ΚΤΙΡΙΩΝ ΜΕ ΦΥΣΙΚΑ ΚΑΙ ΤΕΧΝΗΤΑ ΕΠΙΤΑΧΥΝΣΙΟΓΡΑΦΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΑΝΤΙΣΕΙΣΜΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ Μεταπτυχιακή Διπλωματική Εργασία : ΠΑΡΑΜΕΤΡΙΚΗ
7. Στρέψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών. 7. Στρέψη/ Μηχανική Υλικών
7. Στρέψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 7. Στρέψη/ Μηχανική Υλικών 2015 1 Εισαγωγή Σε προηγούμενα κεφάλαια μελετήσαμε πώς να υπολογίζουμε τις ροπές και τις τάσεις σε δομικά μέλη τα
Μεθοδολογία Παραβολής
Μεθοδολογία Παραβολής Παραβολή είναι ο γεωμετρικός τόπος των σημείων που ισαπέχουν από μια σταθερή ευθεία, την επονομαζόμενη διευθετούσα (δ), και από ένα σταθερό σημείο Ε που λέγεται εστία της παραβολής.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ. ΓΙΑΝΝΗΣ Ν. ΨΥΧΑΡΗΣ Καθηγητής Ε.Μ.Π.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΒΑΣΙΚΕΣ ΔΙΑΤΑΞΕΙΣ ΕΥΡΩΚΩΔΙΚΑ 8 ΓΙΑΝΝΗΣ Ν. ΨΥΧΑΡΗΣ Καθηγητής Ε.Μ.Π. ΑΘΗΝΑ 2014 ΠΕΡΙΕΧΟΜΕΝΑ ΑΡΧΕΣ ΚΑΙ ΚΑΝΟΝΕΣ ΕΦΑΡΜΟΓΗΣ... 1 ΣΥΝΔΥΑΣΜΟΙ
ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής. Διδάσκων: Γιάννης Χουλιάρας
ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής Διδάσκων: Γιάννης Χουλιάρας Ισοστατικά πλαίσια με συνδέσμους (α) (β) Στατική επίλυση ισοστατικών πλαισίων
ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 55
ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 55 ΚΕΦΑΛΑΙΟ 3 ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 3.. Εισαγωγή Αναφέρθηκε ήδη στο ο κεφάλαιο ότι η αναπαράσταση της ταλαντωτικής
Στο παρόν κείμενο αναφέρονται: το κεφάλαιο 4 συνοπτικά και το κεφάλαιο 5 διεξοδικά.
Ευρωκώδικας 8 : Αντισεισμικός Σχεδιασμός Μέρος 1: Γενικοί κανόνες, σεισμικές δράσεις και κανόνες για κτίρια Τα κεφάλαια του EC8-1 είναι: Κεφ. 1 Γενικά Κεφ. 2 Απαιτήσεις συμπεριφοράς και κριτήρια συμμόρφωσης
Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων. Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης
Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης Εισαγωγή Παραμορφώσεις Ισοστατικών Δοκών και Πλαισίων: Δ22-2 Οι κατασκευές, όταν υπόκεινται σε εξωτερική φόρτιση, αναπτύσσουν
ΚΕΦΑΛΑΙΟ. Οι γραμμικοί φορείς. 1.1 Εισαγωγή 1.2 Συστήματα συντεταγμένων
ΚΕΦΑΛΑΙΟ 1 Οι γραμμικοί φορείς 1.1 Εισαγωγή 1.2 Συστήματα συντεταγμένων 2 1. Οι γραμμικοί φορείς 1.1 Εισαγωγή 3 1.1 Εισαγωγή Για να γίνει ο υπολογισμός μιας κατασκευής, θα πρέπει ο μελετητής μηχανικός
ΤΥΠΟΛΟΓΙΟ Ι. Αντισεισμική Τεχνολογία Ι. Συντονιστής: Ι. Ψυχάρης Διδάσκοντες: Χ. Μουζάκης, Μ. Φραγκιαδάκης
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΙΣΕΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Ι Αντισεισμική Τεχνολογία Ι Συντονιστής: Ι. Ψυχάρης Διδάσκοντες: Χ. Μουζάκης, Μ. Φραγκιαδάκης Άδεια Χρήσης Το
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2012
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2012 ΘΕΜΑ Α A 1. Α 2. Α 3. Α 4. γ β γ γ Α 5. α. Σ β. Σ γ. Λ δ. Λ ε. Σ ΘΕΜΑ Β Β 1. Σωστή η απάντηση γ Αιτιολόγηση: Για την αρχική
w w w.k z a c h a r i a d i s.g r
Πως εφαρμόζουμε την αρχή διατήρησης της μηχανικής ενέργειας στα στερεά σώματα Πριν δούμε την μεθοδολογία, ας θυμηθούμε ότι : Για να εφαρμόσουμε την αρχή διατήρησης της μηχανικής ενέργειας (Α.Δ.Μ.Ε.) για
ΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : 7--, 9:-: ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΟΝΟΜΑ :......
Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου
Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών
VERIFYING THE LOCATION OF THE OPTIMUM TORSION AXIS OF MULTI-STORY BUILDINGS USING DYNAMIC ANALYSIS
13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 004 Paper No. 833 VERIFYING THE LOCATION OF THE OPTIMUM TORSION AXIS OF MULTI-STORY BUILDINGS USING DYNAMIC ANALYSIS
Μετάβαση από τον EAK στον ΕΚ8
Μετάβαση από τον EAK στον ΕΚ8 Βασίλειος Γ. Μπαρδάκης Πολιτικός Μηχανικός, ρ Παν. Πατρών Ειδ. ομοστατικός, ΕΜΠ Σχεδιασμός με βάση την Επιτελεστικότητα Ελάχιστες Απαιτήσεις 1. Ο Φορέας να αναλαμβάνει την
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ 0/04/018 ΕΩΣ 14/04/018 ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Πέμπτη 1 Απριλίου 018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Να αποδείξετε ότι η εφαπτομένη ε του κύκλου
ΑΣΚΗΣΗ 2 - ΔΙΚΤΥΩΤH KATAΣΚΕΥΗ
ΑΣΚΗΣΗ - ΔΙΚΤΥΩΤH KAAΣΚΕΥΗ Να επανεπιλυθεί η Ασκηση θεωρώντας και την επίδραση του ιδίου βάρους των ράβδων. Ε- στω ότι το ειδικό βάρος τους είναι γνωστό με τιμή γ, σε ΚΝ/m. Περαιτέρω, να σχεδιασθούν τα
Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1
Σχήμα 1 Η εντατική κατάσταση στην οποία βρίσκεται μία δοκός, που υποβάλλεται σε εγκάρσια φόρτιση, λέγεται κάμψη. Αμφιέριστη δοκός Πρόβολος Κατά την καταπόνηση σε κάμψη αναπτύσσονται καμπτικές ροπές, οι
ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες
Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd
Η συνάρτηση y = αχ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y = αχ με α 0 Μια συνάρτηση της μορφής y = α + β + γ με α 0 ονομάζεται τετραγωνική συνάρτηση.
2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση
2 Η ΠΡΟΟΔΟΣ Ενδεικτικές λύσεις κάποιων προβλημάτων Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση Ένας τροχός εκκινεί από την ηρεμία και επιταχύνει με γωνιακή ταχύτητα που δίνεται από την,
Το ισοδύναμο μη-γραμμικό μονοβάθμιο σύστημα των χωρικών ασύμμετρων πολυώροφων κτιρίων ο/σ.
Το ισοδύναμο μη-γραμμικό μονοβάθμιο σύστημα των χωρικών ασύμμετρων πολυώροφων κτιρίων ο/σ. The equivalent non-linear SDF system of the spatial asymmetric multistorey r/c buildings. Τριαντάφυλλος ΜΑΚΑΡΙΟΣ
Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης
Σφαίρα σε ράγες: Η συνάρτηση Lagrange Ν. Παναγιωτίδης Έστω σύστημα δυο συγκλινόντων ραγών σε σχήμα Χ που πάνω τους κυλίεται σφαίρα ακτίνας. Θεωρούμε σύστημα συντεταγμένων με οριζόντιους τους άξονες και.
ΘΕΜΑ 1 ο (6.00 μον.) ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ. Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : -9-0, :00-:00 ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΟΝΟΜΑ :......
Ευρωκώδικας 8: 1:2004. 4. Σχεδιασµός Κτιρίων
Ευρωκώδικας 8: Κεφάλαιο 4. Σχεδιασµός Κτιρίων Θ. Σαλονικιός, Κύριος Ερευνητής ΙΤΣΑΚ Ινστιτούτο Τεχνικής Σεισµολογίας & Αντισεισµικών Κατασκευών ΟΜΗ ΤΟΥ EN 1998-1:2004 1:2004 1. Γενικά 2. Απαιτήσεις Επιτελεστικότητας
ΑΣΚΗΣΗ 1. συντελεστή συμπεριφοράς q=3. Το κτίριο θεωρείται σπουδαιότητας ΙΙ, και βρίσκεται σε
ΑΣΚΗΣΗ 1 Η κατασκευή του σχήματος 1, βάρους 400 kn, σχεδιάστηκε αντισεισμικά για συντελεστή συμπεριφοράς =. Το κτίριο θεωρείται σπουδαιότητας ΙΙ, και βρίσκεται σε μια περιοχή του Ελλαδικού χώρου με ζώνη
Α. Ροπή δύναµης ως προς άξονα περιστροφής
Μηχανική στερεού σώµατος, Ροπή ΡΟΠΗ ΔΥΝΑΜΗΣ Α. Ροπή δύναµης ως προς άξονα περιστροφής Έστω ένα στερεό που δέχεται στο άκρο F Α δύναµη F όπως στο σχήµα. Στο Ο διέρχεται άξονας περιστροφής κάθετος στο στερεό
Κεφάλαιο 4 ΜΕΤΑΒΟΛΗ ΚΕΝΤΡΟΥ ΑΝΤΩΣΗΣ ΚΑΙ ΜΕΤΑΚΕΝΤΡΟΥ ΛΟΓΩ ΕΓΚΑΡΣΙΑΣ ΚΛΙΣΗΣ
Κεφάλαιο 4 ΜΕΤΑΒΟΛΗ ΚΕΝΤΡΟΥ ΑΝΤΩΣΗΣ ΚΑΙ ΜΕΤΑΚΕΝΤΡΟΥ ΛΟΓΩ ΕΓΚΑΡΣΙΑΣ ΚΛΙΣΗΣ Σύνοψη Αυτό το κεφάλαιο έχει επίσης επαναληπτικό χαρακτήρα. Σε πρώτο στάδιο διερευνάται η μορφή της καμπύλης την οποία γράφει το
ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΚΕΝΤΡΑ ΒΑΡΟΥΣ ΕΠΙΠΕ ΩΝ ΕΠΙΦΑΝΕΙΩΝ ΟΡΙΣΜΟΣ ΚΕΝΤΡΟΥ ΒΑΡΟΥΣ ΕΠΙΠΕ ΗΣ ΕΠΙΦΑΝΕΙΑΣ
ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΚΕΝΤΡΑ ΒΑΡΟΥΣ ΕΠΙΠΕ ΩΝ ΕΠΙΦΑΝΕΙΩΝ ΟΡΙΣΜΟΣ ΚΕΝΤΡΟΥ ΒΑΡΟΥΣ ΕΠΙΠΕ ΗΣ ΕΠΙΦΑΝΕΙΑΣ Για τους βασικούς ορισμούς σχετικά με το κέντρο βάρους θα γίνεται αναφορά στην επόμενη εικόνα, η οποία απεικονίζει
ΣΕΙΡΑ: 3 Κύματα: αρμονικό έως στάσιμο, Στερεό: κινηματική έως διατήρηση στροφορμής
ΜΑΘΗΜΑ /ΤΑΞΗ: Φυσική Κατεύθυνσης Γ Λυκείου ΟΝΟΜΑΤΕΠΩΝΥMΟ: ΗΜΕΡΟΜΗΝΙΑ: 16/03/014 ΣΕΙΡΑ: 3 ΕΞΕΤΑΣΤΕΑ ΥΛΗ: Κύματα: αρμονικό έως στάσιμο, Στερεό: κινηματική έως διατήρηση στροφορμής ΘΕΜΑ Α Να γράψετε στο τετράδιό
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Β MΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α Α1. Αν Α(x 1, y 1 ) και Β(x, y ) είναι σημεία του καρτεσιανού επιπέδου και (x, y) οι συντεταγμένες
ΣΕΙΣΜΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΜΗ ΣΥΜΜΕΤΡΙΚΟΥ ΠΛΑΙΣΙΑΚΟΥ ΦΟΡΕΑ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΕΝΙΣΧΥΜΕΝΟΥ ΜΕ ΜΕΤΑΛΛΙΚΟΥΣ ΔΙΚΤΥΩΤΟΥΣ ΣΥΝΔΕΣΜΟΥΣ.
ΣΚΥΡΟΔΕΜΑΤΟΣ ΕΝΙΣΧΥΜΕΝΟΥ ΜΕ ΜΕΤΑΛΛΙΚΟΥΣ ΔΙΚΤΥΩΤΟΥΣ ΣΥΝΔΕΣΜΟΥΣ. ΣΕΙΣΜΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΜΗ ΣΥΜΜΕΤΡΙΚΟΥ ΠΛΑΙΣΙΑΚΟΥ ΦΟΡΕΑ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΕΝΙΣΧΥΜΕΝΟΥ ΜΕ ΜΕΤΑΛΛΙΚΟΥΣ ΔΙΚΤΥΩΤΟΥΣ ΣΥΝΔΕΣΜΟΥΣ. ΚΟΛΕΤΣΗ ΑΓΑΠΗ
ΚΕΦΑΛΑΙΟ 2. Παραδόσεις Θεωρίας. Μορφολογία φέροντος οργανισμού κτιρίων. ιδάσκων: Κίρτας Εμμανουήλ. Σέρρες, Σεπτέμβριος 2008
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΟΜΙΚΩΝ ΕΡΓΩΝ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΟΜΙΚΩΝ ΕΡΓΩΝ ΕΙ ΙΚΑ
Διδάσκων: Κίρτας Εμμανουήλ
ΑΝΑΛΥΣΗ ΚΑΤΑΣΚΕΥΩΝ ΣΕ ΗΥ Ενότητα 2: Μορφολογία φέροντος οργανισμού κτιρίων Διδάσκων: Κίρτας Εμμανουήλ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΕΙΣΑΓΩΓΗ. Γρηγόριος ΜΑΝΟΥΚΑΣ 1, Ασηµίνα ΑΘΑΝΑΤΟΠΟΥΛΟΥ 2, Ιωάννης ΑΒΡΑΜΙ ΗΣ 3
3 o Πανελλήνιο Συνέδριο Αντισεισµικής Μηχανικής & Τεχνικής Σεισµολογίας 5 7 Νοεµβρίου, 2008 Άρθρο 1794 Στατική Υπερωθητική Ανάλυση σε Χωρικά Συστήµατα - Κανονιστικές ιατάξεις και Προβλήµατα Εφαρµογής Static
ΟΚΑ από Ευστάθεια σε Κατασκευές από Σκυρόδεμα Φαινόμενα 2 ης Τάξης (Λυγισμός) ΟΚΑ από Ευστάθεια. ΟΚΑ από Ευστάθεια 29/5/2013
ΟΚΑ από Ευστάθεια σε Κατασκευές από Σκυρόδεμα Φαινόμενα 2 ης Τάξης (Λυγισμός) ΟΚΑ από Ευστάθεια παρουσιάζεται σε κατασκευές οι οποίες περιλαμβάνουν δομικά στοιχεία μεγάλης λυγηρότητας με σημαντικές θλιπτικές
ΣΕΙΣΜΙΚΗ ΜΗΧΑΝΙΚΗ ΚΑΙ ΑΝΤΙΣΕΙΣΜΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΣΕΙΣΜΙΚΗ ΜΗΧΑΝΙΚΗ ΚΑΙ ΑΝΤΙΣΕΙΣΜΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΣΕΙΣΜΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΜΗ ΚΑΝΟΝΙΚΩΝ ΚΤΙΡΙΩΝ ΜΕ ΜΕΤΑΒΛΗΤΗ
11. Χρήση Λογισμικού Ανάλυσης Κατασκευών
ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 11. Χρήση Λογισμικού Ανάλυσης Κατασκευών Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή Μοντελοποίηση κατασκευής
Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας
Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Η πρώτη οθόνη μετά την εκτέλεση του προγράμματος διαφέρει κάπως από τα προηγούμενα λογισμικά, αν και έχει αρκετά κοινά στοιχεία. Αποτελείται
Π Ε Ρ Ι Λ Η Ψ Η. Ερευνητικό πρόγραμμα - μελέτη :
Π Ε Ρ Ι Λ Η Ψ Η Ερευνητικό πρόγραμμα - μελέτη : Ανάπτυξη προτύπων αριθμητικών παραδειγμάτων για την υποστήριξη της ορθής εφαρμογής του EAK 2000 και τον έλεγχο προγραμμάτων Η/Υ και Νέου κανονιστικού πλαισίου
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ
1 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΘΕΜΑ ο GI_V_ALG 16950 1.1 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β)
Μέθοδος των Δυνάμεων (συνέχεια)
Μέθοδος των Δυνάμεων (συνέχεια) Υποχωρήσεις Στηρίξεων Μέθοδος των Δυνάμεων: Οι υποχωρήσεις στηρίξεων, η θερμοκρασιακή μεταβολή και τα κατασκευαστικά λάθη προκαλούν ένταση στους υπερστατικούς φορείς. Η
4.5 Αµφιέρειστες πλάκες
Τόµος B 4.5 Αµφιέρειστες πλάκες Οι αµφιέρειστες πλάκες στηρίζονται σε δύο απέναντι παρυφές, όπως η s1 στην εικόνα της 4.1. Αν µία αµφιέρειστη πλάκα στηρίζεται επιπρόσθετα σε µία ή δύο ακόµη παρυφές και