C++ 78 (478) A Parallel Skeleton Library in C++ with Optimization
|
|
- Πολύμνια Δασκαλόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 78 (478) C++ BMF C++ Skeletal parallel programming enables programmers to build a parallel program from ready-made components called skeletons (parallel primitives) for which efficient implementations are known to exist, making both the parallel program development and the parallelization process easier. Parallel programs in terms of skeletons are, however, not always efficient, because intermediate data structures which do not appear in the final result may be produced and passed between skeletons. To overcome this problem and make the skeletal parallel programming more practical, this paper proposes a new parallel skeleton library in C++. This system have an optimization mechanism which transforms successive calls of parallel skeletons into a single function call with the help of fusion transformation. This paper describes the implementation of the skeleton library and reports the effects of the optimization. 1 A Parallel Skeleton Library in C++ with Optimization Mechanism. Yoshiki Akashi,, Graduate School of Electro-Communications, The University of Electro-Communications. Kiminori Matsuzaki, Kazuhiko Kakehi,, Graduate School of Information Science and Technology, The University of Tokyo. Hideya Iwasaki,, Department of Computer Science, The University of Electro- Communications. Zhenjiang Hu,, Graduate School of Information Science and Technology, The University of Tokyo. 21, PRESTO 21, Japan Science and Technology Agency., Vol.22, No.4(2005), pp [ ] [6]
2 (479) Vol. 16 No. 5 Sep BMF[3] C++ C++ 2 BMF BMF 2. 1 (f g) x = f (g x) a b = (a ) b = ( b) a = ( ) a b [ ] a [a] [ ] a [a] x ++ y x y [1] ++ [2] ++ [3] [1, 2, 3] [a] ++ x a : x 2. 2 BMF map reduce scan zip 4 map f map f [x 1, x 2,..., x n ] = [f x 1, f x 2,..., f x n ] reduce reduce ( ) [x 1, x 2,..., x n] = x 1 x 2 x n scan reduce e scan ( ) [x 1, x 2,..., x n] = [e, e x 1,, e x 1 x n ] zip 2 1 zip [x 1, x 2,..., x n ] [y 1, y 2,..., y n ] = [(x 1, y 1 ), (x 2, y 2 ),..., (x n, y n )] 4 Hu [7][9] accumulate
3 80 (480) g p q accumulate [ ] e = g e accumulate (a : x) e = p (a, e) accumulate x (e q a) accumulate [g, (p, ), (q, )] 3 C++ MPICH 3. 1 dist_array array dist_array<int> *as = new dist_array<int>(array, size); 1 array dist_array template<typename B> dist_array<b>* map(b (*f)(const A&)) const; template<typename B> void map(void (*f)(b*, const A*), dist_array<b> *bs) const; void map_ow(a (*f)(const A&)); 1 map map A map map_ow map_ow map_ow as f as->map_ow(f); n p O(1) map n/p map O(n/p) reduce
4 (481) Vol. 16 No. 5 Sep O(n/p) O(log p) O(log p) reduce O(n/p + log p) scan O(n/p) O(log p) O(n/p) scan O(n/p + log p) zip 2 C++ pair zip map O(n/p) 3. 3 as = [a 1, a 2,..., a n ] var var = ave = nx (a i ave) 2 /n i=1 nx a i /n i=1 BMF 2 (a) 2 (b) BMF n a a 1 n n dist_array var as = sqsum/n where sum = reduce (+) as ave = sum/n sqsum = reduce (+) (map square (map ( ave) as)) (a) BMF sum = as->reduce(add); ave = sum / n; as->map_ow(sub_ave); as->map_ow(square); sq_sum = as->reduce(add); var = sq_sum / n; (b) 2... for(int i = 0; i < number; i++){ ave_a[i] = a[i].reduce(add) / size; ave += ave_a[i]; }... for(int i = 0; i < number; i++){ a[i].map_ow(sub_ave); a[i].map_ow(square); } for(int i = 0; i < number; i++) st += a[i].reduce(add); number size 4 map f (map g x) map 2 map (f g) x map 1
5 82 (482) 4. 1 Hu [8] accumulate cataj buildj cataj buildj (cataj). cataj accumulate p e cataj [ ] = e cataj (a : x) = p a cataj x cataj ([, p, e]) (buildj). buildj buildj gen = gen ( + ) [ ] [ ] cataj append [ ] e [ ] p : p reduce cataj p buildj 3 buildj buildj cataj buildj e p CataJ-BuildJ accumulate cataj buildj id map f = buildj (λc s e. ([c, s f, e])) reduce ( ) = ([, id, e]) scan ( ) x = buildj (λc s e. [[s, (λ(a, e). s e, c), (id, )]]) x e CataJ-BuildJ : ([c, s, e]) buildj gen = gen c s e map reduce cataj reduce ( ) map f = ([, id, e]) buildj (λc s e. ([c, s f, e])) = ((λc s e. ([c, s f, e])) ( ) id e) = ([, f, e]) map f map g BuildJ(CataJ-BuildJ) : buildj (λc s e. ([φ 1, φ 2, φ 3 ])) buildj gen = buildj (λc s e. gen φ 1 φ 2 φ 3) map f map g map f map g = buildj (λc s e. ([c, s f g, e])) fst BuildJ(Acc-BuildJ) : buildj (λc s e. [[g, (p, ), (q, )]]) (buildj gen x) e = fst (buildj (λc s e. gen ( ) f d) x e) where (u v) e = let (r 1, s 1, t 1 ) = u e (r 2, s 2, t 2) = v (e t 1)
6 (483) Vol. 16 No. 5 Sep in (s 1 r 2, s 1 s 2, t 1 t 2 ) f a e = (p (a, e) g (e q a), p (a, e), q a)) d e = (g e,, ) 4. 2 OpenC++ [5] cataj buildj OpenC++ 2 map f map g map (f g) 3.3 map_ow reduce [[ 1 as -> sum cataj [[add]] nil nil] ;] [[ave = [sum / size]] ;] [[ 3 as -> as buildj cataj nil [[sub_ave]] nil] ;] [[ 3 as -> as buildj cataj nil [[square]] nil] ;] [[ 1 as -> sq_sum cataj [[add]] nil nil] ;] [[var = [sq_sum / size]] ;] BuildJ(CataJ-BuildJ) CataJ-BuildJ [[ 1 as -> sum cataj [[add]] nil nil] ;] [[ave = [sum / size]] ;] [[ 1 as -> sq_sum cataj [[add]] [[sub_ave] [square]] nil] ; ] [[var = [sq_sum / size]] ;] CPU 1 Pentium4 2.4GHz 512MB 1Gbps OS Linux g MPICH mpich sum = as->reduce(add); ave = sum / size; sq_sum = as->cataj(_sym11086_2, add); var = sq_sum / size; _sym11086_2 sub_ave square 2 map reduce 1 cataj 2(n/p) C++ MPI PC % BuildJ(CataJ-BuildJ) 16.0% CataJ-BuildJ 13.7% %
7 84 (484) Execution Time (sec) skeleton optimized skeleton C++ + MPI Execution Time (sec) skeleton optimized skeleton C++ + MPI Number of Processors Number of Processors 4 5 C++ MPI 15% 1 6 P3L [2] map reduce scan pipe P3L C C Skil [4] C Skil C HPC++ [10] map reduce scan 1 5% 7% HPC++ P3L Skil C HPC++ C++ C++ 7 BMF C++ map zip reduce scan 2 5 [12] Tree Contraction [1] [11] zip
8 (485) Vol. 16 No. 5 Sep [ 1 ] Abrahamson, K., Dadoun, N., Kirkpatrik, D., and Przytycka, T.: A Simple Parallel Tree Contraction Algorithm, Journal of Algorithms, Vol. 10, No. 2 (1989), pp [ 2 ] Bacci, B., Danelutto, M., Orlando, S., Pelagatti, S., and Vanneschi, M.: P3L: A Structured High Level Programming Language and its Structured Support, Concurrency: Practice and Experience, Vol. 7, No. 3 (1995), pp [ 3 ] Bird, R.: An Introduction to the Theory of Lists, Proc. NATO Advanced Study Institute on Logic of Programming and Calculi of Discrete Design, Springer-Verlag, 1987, pp [ 4 ] Botorog, G. and Kuchen, H.: Skil: An Imperative Language with Algorithmic Skeletons for Efficient Distributed Programming, Proc. 5th International Symposium on High Performance Distributed Computing (HPDC-5), IEEE Computer Society Press, 1996, pp [ 5 ] Chiba, S.: OpenC++. [ 6 ] Cole, M.: Algorithmic Skeletons: A Structured Approach to the Management of Parallel Computation, Research Monographs in Parallel and Distribute Computing, Pitman, [ 7 ] Hu, Z., Iwasaki, H., and Takeichi, M.: Diffusion: Calculating Efficient Parallel Programs, Proc ACM SIGPLAN International Workshop on Partial Evaluation and Semantics-Based Program Manipulation (PEPM 99), 1999, pp [ 8 ] Hu, Z., Iwasaki, H., and Takeichi, M.: An Accumulative Parallel Skeleton for All, Proc European Symposium on Programming (ESOP 2002), Lecture Notes in Computer Science 2305, Springer- Verlag, 2002, pp [ 9 ] Iwasaki, H. and Hu, Z.: A New Parallel Skeleton for General Accumulative Computations, International Journal of Parallel Programming, Vol. 32, No. 5 (2004), pp [10] Johnson, E. and Gannon, D.: HPC++: Experiments with the Parallel Standard Template Library, Proc. 11th International Conference on Supercomputing, ACM Press, 1997, pp [11] Miller, G. and Reif, J.: Parallel Tree Contraction and its Application, Proc. 26th Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press, 1985, pp [12] Skillicorn, D.: Parallel Implementation of Tree Skeletons, Journal of Parallel and Distributed Computing, Vol. 39, No. 2 (1996), pp
IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He
CS Activity 1,a) 2 2 3 CS Computer Science Activity Activity Actvity Activity Dining Eight-Headed Dragon CS Unplugged Activity for Learning Scheduling Methods Hisao Fukuoka 1,a) Toru Watanabe 2 Makoto
GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU
GPGPU Grover 1, 2 1 3 4 Grover Grover OpenMP GPGPU Grover qubit OpenMP GPGPU, 1.47 qubit On Large Scale Simulation of Grover s Algorithm by Using GPGPU Hiroshi Shibata, 1, 2 Tomoya Suzuki, 1 Seiya Okubo
GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs
GPU 1 1 NP number partitioning problem Pedroso CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA C Pedroso Python 323 Python C 12.2 Parallelizing the Number Partitioning Problem for
Probabilistic Approach to Robust Optimization
Probabilistic Approach to Robust Optimization Akiko Takeda Department of Mathematical & Computing Sciences Graduate School of Information Science and Engineering Tokyo Institute of Technology Tokyo 52-8552,
Study of urban housing development projects: The general planning of Alexandria City
Paper published at Alexandria Engineering Journal, vol, No, July, Study of urban housing development projects: The general planning of Alexandria City Hisham El Shimy Architecture Department, Faculty of
A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks
P2P 1,a) 1 1 1 P2P P2P P2P P2P A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks NARISHIGE Yuki 1,a) ABE Kota 1 ISHIBASHI Hayato 1 MATSUURA Toshio 1
Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016
Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Dynamic types, Lambda calculus machines Apr 21 22, 2016 1 Dynamic types and contracts (a) To make sure you understand the
2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems
2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems Multiple User Interfaces MobileSoft'16, Multi-User Experience (MUX) S1: Insourcing S2: Outsourcing S3: Responsive design
Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]
Re-Pair 1 1 Re-Pair Re-Pair Re-Pair Re-Pair 1. Larsson Moffat [1] Re-Pair Re-Pair (Re-Pair) ( ) (highly repetitive text) [2] Re-Pair [7] Re-Pair Re-Pair n O(n) O(n) 1 Hokkaido University, Graduate School
Orthogonalization Library with a Numerical Computation Policy Interface
Vol. 46 No. SIG 7(ACS 10) May 2005 DGKS PC 10 8 10 14 4.8 Orthogonalization Library with a Numerical Computation Policy Interface Ken Naono, Mitsuyoshi Igai and Hiroyuki Kidachi We propose an orthogonalization
Toward a SPARQL Query Execution Mechanism using Dynamic Mapping Adaptation -A Preliminary Report- Takuya Adachi 1 Naoki Fukuta 2.
SIG-SWO-041-05 SPAIDA: SPARQL Toward a SPARQL Query Execution Mechanism using Dynamic Mapping Adaptation -A Preliminary Report- 1 2 Takuya Adachi 1 Naoki Fukuta 2 1 1 Faculty of Informatics, Shizuoka University
[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1
1,a) Bayesian Approach An Application of Monte-Carlo Tree Search Algorithm for Shogi Player Based on Bayesian Approach Daisaku Yokoyama 1,a) Abstract: Monte-Carlo Tree Search (MCTS) algorithm is quite
Simplex Crossover for Real-coded Genetic Algolithms
Technical Papers GA Simplex Crossover for Real-coded Genetic Algolithms 47 Takahide Higuchi Shigeyoshi Tsutsui Masayuki Yamamura Interdisciplinary Graduate school of Science and Engineering, Tokyo Institute
Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)
( ) 1 ( ) : : (Differential Evolution, DE) (Particle Swarm Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] 2 2.1 (P) (P ) minimize f(x) subject to g j (x) 0, j = 1,..., q h j (x) = 0, j
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb
Ξ 31 Vol 31,No 1 2 0 0 1 2 JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb 2 0 0 1 :025322778 (2001) 0120016205 (, 230026) : Q ( m 1, m 2,, m n ) k = m 1 + m 2 + + m n - n : Q ( m 1, m 2,, m
Assalamu `alaikum wr. wb.
LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump
Maxima SCORM. Algebraic Manipulations and Visualizing Graphs in SCORM contents by Maxima and Mashup Approach. Jia Yunpeng, 1 Takayuki Nagai, 2, 1
Maxima SCORM 1 2, 1 Muhammad Wannous 1 3, 4 2, 4 Maxima Web LMS MathML HTML5 Flot jquery JSONP JavaScript SCORM SCORM Algebraic Manipulations and Visualizing Graphs in SCORM contents by Maxima and Mashup
Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+
Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+ Ερευνητικές,Δραστηριότητες,και, Ενδιαφέροντα,, Τμήμα,Μηχανικών,Η/Υ,&,Πληροφορικής, Τομέας,Λογικού,των,Υπολογιστών, Εργαστήριο,Γραφικών,,Πολυμέσων,και,Γεωγραφικών,
HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332
,**1 The Japanese Society for AIDS Research The Journal of AIDS Research +,, +,, +,, + -. / 0 1 +, -. / 0 1 : :,**- +,**. 1..+ - : +** 22 HIV AIDS HIV HIV AIDS : HIV AIDS HIV :HIV AIDS 3 :.1 /-,**1 HIV
Stabilization of stock price prediction by cross entropy optimization
,,,,,,,, Stabilization of stock prediction by cross entropy optimization Kazuki Miura, Hideitsu Hino and Noboru Murata Prediction of series data is a long standing important problem Especially, prediction
2. 3. OCaml. Scheme[13] do CPS. On optimization for recursive programs without tailcalls.
34 (2017 ) CPS 1 or while 1 1. 2. 3. 2 On optimization or recursive programs without tailcalls. Shutaro Kobayashi, Hideyuki Kawabata, and Tetsuo Hironaka,, Hiroshima City University. 1 2 https://www.quora.com/why-dont-pureunctional-programming-languages-provide-aloop-construct
Quick algorithm f or computing core attribute
24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute
Τοποθέτηση τοπωνυµίων και άλλων στοιχείων ονοµατολογίας στους χάρτες
Τοποθέτηση τοπωνυµίων και άλλων στοιχείων ονοµατολογίας στους χάρτες Miroshnikov & Tchepine 1999 Ahn & Freeman 1984 Ένας σηµαντικός παράγοντας που επηρεάζει την αποτελεσµατικότητα ενός χάρτη ως µέσω επικοινωνίας
SocialDict. A reading support tool with prediction capability and its extension to readability measurement
SocialDict 1 2 2 2 Web SocialDict A reading support tool with prediction capability and its extension to readability measurement Yo Ehara, 1 Takashi Ninomiya, 2 Nobuyuki Shimizu 2 and Hiroshi Nakagawa
Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer
Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer Naomi Morota Newman M Key Words woman diagnosed with breast cancer, rehabilitation nursing care program, the
An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio
C IEEJ Transactions on Electronics, Information and Systems Vol.133 No.5 pp.910 915 DOI: 10.1541/ieejeiss.133.910 a) An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software
Feasible Regions Defined by Stability Constraints Based on the Argument Principle
Feasible Regions Defined by Stability Constraints Based on the Argument Principle Ken KOUNO Masahide ABE Masayuki KAWAMATA Department of Electronic Engineering, Graduate School of Engineering, Tohoku University
ΜΑΡΙΝΑ Ε. ΜΠΙΣΑΚΗ. Τκήκα Δθαξκνζκέλωλ Μαζεκαηηθώλ Παλεπηζηήκην Κξήηεο Τ.Θ. 2208 71306, Ηξάθιεην, Κξήηε
ΜΑΡΙΝΑ Ε. ΜΠΙΣΑΚΗ Τκήκα Δθαξκνζκέλωλ Μαζεκαηηθώλ Παλεπηζηήκην Κξήηεο Τ.Θ. 2208 71306, Ηξάθιεην, Κξήηε Τει: +302810-393724 +306972-003446 E-mail: marina@csd.uoc.gr ΠΟΤΔΕ Διδακηοπικό Δίπλωμα ζηην Επιζηήμη
ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ
ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΤΜ. ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ 2018-2019 Επιβλέπουσα: Μπίμπη Ματίνα Ανάλυση της πλατφόρμας ανοιχτού κώδικα Home Assistant Το Home Assistant είναι μία πλατφόρμα ανοιχτού
Durbin-Levinson recursive method
Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again
ΑΓΓΛΙΚΑ Ι. Ενότητα 7α: Impact of the Internet on Economic Education. Ζωή Κανταρίδου Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 7α: Impact of the Internet on Economic Education Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
Buried Markov Model Pairwise
Buried Markov Model 1 2 2 HMM Buried Markov Model J. Bilmes Buried Markov Model Pairwise 0.6 0.6 1.3 Structuring Model for Speech Recognition using Buried Markov Model Takayuki Yamamoto, 1 Tetsuya Takiguchi
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
GPU DD Double-Double 3 4 BLAS Basic Linear Algebra Subprograms [3] 2
GPU 4 1,a) 2,b) 1 GPU Tesla M2050 Double-Double DD 4 BiCGStab GPU 4 BiCGStab 1 1.0 2.2 4 GPU 4 1. IEEE754-2008[1] 128bit binary128 CG Conjugate Gradient [2] 1 1 2 a) mukunoki@hpcs.cs.tsukuba.ac.jp b) daisuke@cs.tsukuba.ac.jp
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.
Baum-Welch Step by Step the Baum-Welch Algorithm and its Application Jin ichi MURAKAMI EM EM EM Baum-Welch Baum-Welch Baum-Welch Baum-Welch, EM 1. EM 2. HMM EM (Expectationmaximization algorithm) 1 3.
Παράλληλος προγραμματισμός περιστροφικών αλγορίθμων εξωτερικών σημείων τύπου simplex ΠΛΟΣΚΑΣ ΝΙΚΟΛΑΟΣ
Παράλληλος προγραμματισμός περιστροφικών αλγορίθμων εξωτερικών σημείων τύπου simplex ΠΛΟΣΚΑΣ ΝΙΚΟΛΑΟΣ Διπλωματική Εργασία Μεταπτυχιακού Προγράμματος στην Εφαρμοσμένη Πληροφορική Κατεύθυνση: Συστήματα Υπολογιστών
Indexing Methods for Encrypted Vector Databases
Computer Security Symposium 2013 21-23 October 2013 305-0006 1-1-1 junpei.kawamoto@acm.org LSH LSH LSH Indexing Methods for Encrypted Vector Databases Junpei Kawamoto Faculty of Engineering, Information
ER-Tree (Extended R*-Tree)
1-9825/22/13(4)768-6 22 Journal of Software Vol13, No4 1, 1, 2, 1 1, 1 (, 2327) 2 (, 3127) E-mail xhzhou@ustceducn,,,,,,, 1, TP311 A,,,, Elias s Rivest,Cleary Arya Mount [1] O(2 d ) Arya Mount [1] Friedman,Bentley
GPU GPU GPU GPU. GPU (Graphics Processing Unit) GPU GPU GPU AGPU [11] AGPU. GPGPU (general-purpose GPU) GPU GPU AGPU GPU
GPU 1,a) 2,) GPU GPU errill Radix [14] SD Radix Splitter-ased 1. GPU Graphics Processing Unit) GPU GPU GPGPU general-purpose GPU) GPU GPU VIDIA GPGPU CUDA[15] CUDA GPU GPU RARandom Access achine) RA RA
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ Προοπτικές Εναρμόνισης της Ελληνικής Αγοράς Ηλεκτρικής Ενέργειας με τις Προδιαγραφές του Μοντέλου
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Schedulability Analysis Algorithm for Timing Constraint Workflow Models
CIMS Vol.8No.72002pp.527-532 ( 100084) Petri Petri F270.7 A Schedulability Analysis Algorithm for Timing Constraint Workflow Models Li Huifang and Fan Yushun (Department of Automation, Tsinghua University,
Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices
No. 3 + 1,**- Technical Research Report, Earthquake Research Institute, University of Tokyo, No. 3, pp. + 1,,**-. MT * ** *** Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by
Test Data Management in Practice
Problems, Concepts, and the Swisscom Test Data Organizer Do you have issues with your legal and compliance department because test environments contain sensitive data outsourcing partners must not see?
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή Εργασία "Η ΣΗΜΑΝΤΙΚΟΤΗΤΑ ΤΟΥ ΜΗΤΡΙΚΟΥ ΘΗΛΑΣΜΟΥ ΣΤΗ ΠΡΟΛΗΨΗ ΤΗΣ ΠΑΙΔΙΚΗΣ ΠΑΧΥΣΑΡΚΙΑΣ" Ειρήνη Σωτηρίου Λεμεσός 2014 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΠΑΝΔΠΙΣΗΜΙΟ ΜΑΚΔΓΟΝΙΑ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΙΑΚΧΝ ΠΟΤΓΧΝ ΣΜΗΜΑΣΟ ΔΦΑΡΜΟΜΔΝΗ ΠΛΗΡΟΦΟΡΙΚΗ
ΠΑΝΔΠΙΣΗΜΙΟ ΜΑΚΔΓΟΝΙΑ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΙΑΚΧΝ ΠΟΤΓΧΝ ΣΜΗΜΑΣΟ ΔΦΑΡΜΟΜΔΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΑΝΑΠΣΤΞΗ ΓΤΝΑΜΙΚΗ ΙΣΟΔΛΙΓΑ ΓΙΑ ΣΟ ΓΔΝΙΚΟ ΚΑΣΑΣΗΜΑ ΚΡΑΣΗΗ ΓΡΔΒΔΝΧΝ ΜΔ ΣΗ ΒΟΗΘΔΙΑ PHP MYSQL Γηπισκαηηθή Δξγαζία ηνπ Υξήζηνπ
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΠΑΤΗΣΙΩΝ 76 10434 ΑΘΗΝΑ Ε - ΜΑΙL : mkap@aueb.gr ΤΗΛ: 210-8203814, 6947-931643 ΚΑΠΕΤΗΣ ΧΡΥΣΟΣΤΟΜΟΣ. Βιογραφικό Σημείωμα
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΠΑΤΗΣΙΩΝ 76 10434 ΑΘΗΝΑ Ε - ΜΑΙL : mkap@aueb.gr ΤΗΛ: 210-8203814, 6947-931643 ΚΑΠΕΤΗΣ ΧΡΥΣΟΣΤΟΜΟΣ Βιογραφικό Σημείωμα ΠΡΟΣΩΠΙΚΑ ΣΤΟΙΧΕΙΑ Εθνικότητα: Ελληνική Ημερομηνία Γέννησης:
FX10 SIMD SIMD. [3] Dekker [4] IEEE754. a.lo. (SpMV Sparse matrix and vector product) IEEE754 IEEE754 [5] Double-Double Knuth FMA FMA FX10 FMA SIMD
FX,a),b),c) Bailey Double-Double [] FMA FMA [6] FX FMA SIMD Single Instruction Multiple Data 5 4.5. [] Bailey SIMD SIMD 8bit FMA (SpMV Sparse matrix and vector product) FX. DD Bailey Double-Double a) em49@ns.kogakuin.ac.jp
Maude 6. Maude [1] UIUC J. Meseguer. Maude. Maude SRI SRI. Maude. AC (Associative-Commutative) Maude. Maude Meseguer OBJ LTL SPIN
78 Maude 1 Maude [1] UIUC J. Meseguer ( 1 ) ( ) Maude Maude SRI 90 UIUC SRI Maude SRI S. Eker C++ Maude 2 Maude Meseguer OBJ 1983-84 OBJ2[3] OBJ Maude OBJ 1 CafeOBJ 3 Maude 4 Maude CafeOBJ Maude: A Computer
3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o
Sound Source Identification based on Deep Learning with Partially-Shared Architecture 1 2 1 1,3 Takayuki MORITO 1, Osamu SUGIYAMA 2, Ryosuke KOJIMA 1, Kazuhiro NAKADAI 1,3 1 2 ( ) 3 Tokyo Institute of
Ανάκτηση Πληροφορίας
Ανάκτηση Πληροφορίας Αποτίμηση Αποτελεσματικότητας Μέτρα Απόδοσης Precision = # σχετικών κειμένων που επιστρέφονται # κειμένων που επιστρέφονται Recall = # σχετικών κειμένων που επιστρέφονται # συνολικών
Liner Shipping Hub Network Design in a Competitive Environment
Downloaded from orbit.dtu.dk on: Oct 01, 2016 Liner Shipping Hub Network Design in a Competitive Environment Gelareh, Shahin; Nickel, Stefan; Pisinger, David Publication date: 2010 Document Version Publisher's
Network Algorithms and Complexity Παραλληλοποίηση του αλγορίθμου του Prim. Αικατερίνη Κούκιου
Network Algorithms and Complexity Παραλληλοποίηση του αλγορίθμου του Prim Αικατερίνη Κούκιου Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT
1,a) 1,2,b) Continuous wavelet transform, CWT CWT CWT CWT CWT 100 1. Continuous wavelet transform, CWT [1] CWT CWT CWT [2 5] CWT CWT CWT CWT CWT Irino [6] CWT CWT CWT CWT CWT 1, 7-3-1, 113-0033 2 NTT,
Newman Modularity Newman [4], [5] Newman Q Q Q greedy algorithm[6] Newman Newman Q 1 Tabu Search[7] Newman Newman Newman Q Newman 1 2 Newman 3
DEWS2007 D3-6 y yy y y y y yy / DC 7313194 341 E-mail: yfktamura,mori,kuroki,kitakamig@its.hiroshima-cu.ac.jp, yymakoto@db.its.hiroshima-cu.ac.jp Newman Newman Newman Newman Newman A Clustering Algorithm
Molecular evolutionary dynamics of respiratory syncytial virus group A in
Molecular evolutionary dynamics of respiratory syncytial virus group A in recurrent epidemics in coastal Kenya James R. Otieno 1#, Charles N. Agoti 1, 2, Caroline W. Gitahi 1, Ann Bett 1, Mwanajuma Ngama
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation
3 2 3 2 3 undle Adjustment or 3-D Reconstruction: Implementation and Evaluation Yuuki Iwamoto, Yasuyuki Sugaya 2 and Kenichi Kanatani We describe in detail the algorithm o bundle adjustment or 3-D reconstruction
The st Asian Legislative Experts Symposium ALES ALES KOICA ALES. The 1st Asian Forum of Legislative Information Affairs ALES
1 The st Asian Legislative Experts Symposium ALES ALES KOICA ALES ALES IT The 1st Asian Forum of Legislative Information Affairs Ministry of Government Legislation of Korea MOLEG http://www. moleg.go.kr/english/
Study of In-vehicle Sound Field Creation by Simultaneous Equation Method
Study of In-vehicle Sound Field Creation by Simultaneous Equation Method Kensaku FUJII Isao WAKABAYASI Tadashi UJINO Shigeki KATO Abstract FUJITSU TEN Limited has developed "TOYOTA remium Sound System"
Minimum Spanning Tree: Prim's Algorithm
Minimum Spanning Tree: Prim's Algorithm 1. Initialize a tree with a single vertex, chosen arbitrarily from the graph. 2. Grow the tree by one edge: of the edges that connect the tree to vertices not yet
Simulink. 2006 The MathWorks, Inc.
Ενότητα 4η: Μοντελοποίηση συστηµάτων µε το γραφικόπεριβάλλον SIMULINK. Εισαγωγή στο Simulink Παραδείγµατα συστηµάτων και µοντέλων µε το Simulink Ανάπτυξηµοντέλων & προσοµοίωση. Περιβάλλον & βιβλιοθήκες.
Περιβάλλον Παράλληλου Προγραμματισμού
Περιβάλλον Παράλληλου Προγραμματισμού Ελεύθερο Λογισμικό /Λογισμικό Ανοιχτού Κώδικα για την υλοποίηση ενός ολοκλήρωμενου εκπαιδευτικού περιβάλλοντος ανάπτυξης κώδικα Εμπειρίες και προβλήματα Κ. Τ. Δελησταύρου
A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics
A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions
Development of a basic motion analysis system using a sensor KINECT
KINECT 1,a) 2 3,b) KINECT KINECT ( ( Development of a basic motion analysis system using a sensor KINECT Abstract: We developed a basic motion analysis system using a sensor KINECT. Our system estimates
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΣΤΥΛΙΑΝΗΣ Κ. ΣΟΦΙΑΝΟΠΟΥΛΟΥ Αναπληρώτρια Καθηγήτρια. Τµήµα Τεχνολογίας & Συστηµάτων Παραγωγής.
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΣΤΥΛΙΑΝΗΣ Κ. ΣΟΦΙΑΝΟΠΟΥΛΟΥ Αναπληρώτρια Καθηγήτρια Τµήµα Τεχνολογίας & Συστηµάτων Παραγωγής Πανεπιστήµιο Πειραιώς, Καραολή ηµητρίου 80, 18534 Πειραιάς Τηλ. 210 414-2147, e-mail: sofianop@unipi.gr
Partial Trace and Partial Transpose
Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This
FPGA. Fast and Efficient Tsunami Propagation Simulation with FPGA and GPGPU
FPGA GPGPU 1 1 2, 3, 1 2, 3 FPGA(Field Programmable Gate Array) GPGPU(General Purpose computing on Graphics Processing Unit) FPGA GPU FPGA GPU CPU Fast and Efficient Tsunami Propagation Simulation with
Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn
2015 11 Nov 2015 36 6 Journal of Zhengzhou University Engineering Science Vol 36 No 6 1671-6833 2015 06-0056 - 05 C 1 1 2 2 1 450001 2 461000 C FCM FCM MIA MDC MDC MIA I FCM c FCM m FCM C TP18 A doi 10
Research on vehicle routing problem with stochastic demand and PSO2DP algorithm with Inver2over operator
2008 10 10 :100026788 (2008) 1020076206 (, 400074) :, Inver2over,,, : ; ; ; Inver2over ; : F54015 : A Research on vehicle routing problem with stochastic demand and PSO2DP algorithm with Inver2over operator
1) Abstract (To be organized as: background, aim, workpackages, expected results) (300 words max) Το όριο λέξεων θα είναι ελαστικό.
UΓενικές Επισημάνσεις 1. Παρακάτω θα βρείτε απαντήσεις του Υπουργείου, σχετικά με τη συμπλήρωση της ηλεκτρονικής φόρμας. Διευκρινίζεται ότι στα περισσότερα θέματα οι απαντήσεις ήταν προφορικές (τηλεφωνικά),
Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική»
Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική» Μεταπτυχιακή Διατριβή Τίτλος Διατριβής Επίκαιρα Θέματα Ηλεκτρονικής Διακυβέρνησης Ονοματεπώνυμο Φοιτητή Σταμάτιος
entailment Hoare triple Brotherston Brotherston
33 (2016 ) Brotherston We implement a semi-automated prover for implicational formulas (entailments) of the separation logic including inductive predicate definitions, toward automation of program verification
Journal of the Graduate School of the Chinese Academy of Sciences. Application Dependent Software. Standard Application Components.
21 2 2004 4 Journal of the Graduate School of the Chinese Academy of Sciences Vol. 21 April No. 2 2004 :1002 1175 (2004) 0220254205 RTEMS 1 1 1 2 (1, 100084 ; 2, 100039) (2003 1 13 ; 2003 3 6 ) RTEMS,,.
VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)
J. Comput. Chem. Jpn., Vol. 5, No. 1, pp. 29 38 (2006) Microsoft Excel, 184-8588 2-24-16 e-mail: yosimura@cc.tuat.ac.jp (Received: July 28, 2005; Accepted for publication: October 24, 2005; Published on
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
H/Y Ε-07: Κατανεµηµένα Συστήµατα Εαρινό Εξάµηνο Ακ. Έτους 2008-2009 ιδάσκουσα: Παναγιώτα Φατούρου Προγραµµατιστικές Εργασίες
H/Y Ε-07: Κατανεµηµένα Συστήµατα Εαρινό Εξάµηνο Ακ. Έτους 2008-2009 ιδάσκουσα: Παναγιώτα Φατούρου Προγραµµατιστικές Εργασίες Ηµεροµηνία Παράδοσης: Σχόλια: Θα πρέπει να στείλετε µε e-mail την εργασία σας
Information and Communication Technologies in Education
Information and Communication Technologies in Education Instructional Design = Instructional Systems Design (ISD) K. Vassilakis / M. Kalogiannakis Instructional Design Instructional Design (also called
ΣΥΓΧΡΟΝΕΣ ΤΑΣΕΙΣ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΚΑΙ ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΩΝ ΚΙΝΔΥΝΩΝ
ΕΘΝΙΚΗ ΣΧΟΛΗ ΤΟΠΙΚΗΣ ΑΥΤΟΔΙΟΙΚΗΣΗΣ Δ ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΠΡΟΣΤΑΣΙΑΣ ΣΥΓΧΡΟΝΕΣ ΤΑΣΕΙΣ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΚΑΙ ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΩΝ ΚΙΝΔΥΝΩΝ Σπουδάστρια: Διαούρτη Ειρήνη Δήμητρα Επιβλέπων καθηγητής:
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
ΕΘΝΙΚΗ ΥΟΛΗ ΔΗΜΟΙΑ ΔΙΟΙΚΗΗ ΙH ΕΚΠΑΙΔΕΤΣΙΚΗ ΕΙΡΑ ΤΜΗΜΑ ΚΟΙΝΩΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΔΙΟΙΚΗΣΗ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ
Δ ΕΘΝΙΚΗ ΥΟΛΗ ΔΗΜΟΙΑ ΔΙΟΙΚΗΗ ΙH ΕΚΠΑΙΔΕΤΣΙΚΗ ΕΙΡΑ ΤΜΗΜΑ ΚΟΙΝΩΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΔΙΟΙΚΗΣΗ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ Θέμα: «Αποκενηρωμένες δομές ζηο ζύζηημα σγείας ηης Ασζηρίας : Μια ζσζηημαηική θεωρηηική
Automatic extraction of bibliography with machine learning
Automatic extraction of bibliography with machine learning Takeshi ABEKAWA Hidetsugu NANBA Hiroya TAKAMURA Manabu OKUMURA Abstract In this paper, we propose an extraction method of bibliography using support
MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)
1,a) 1,b) 1,c) 1. MIDI [1], [2] U/D/S 3 [3], [4] 1 [5] Song [6] 1 Sony, Minato, Tokyo 108 0075, Japan a) Emiru.Tsunoo@jp.sony.com b) AkiraB.Inoue@jp.sony.com c) Masayuki.Nishiguchi@jp.sony.com MIDI [7]
ΤΕΧΝΙΚΕΣ ΑΥΞΗΣΗΣ ΤΗΣ ΑΠΟΔΟΣΗΣ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ I
ΤΕΧΝΙΚΕΣ ΑΥΞΗΣΗΣ ΤΗΣ ΑΠΟΔΟΣΗΣ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ I MIPS Η MIPS (Microprocessor without Interlocked Pipeline Stages) είναι μία αρχιτεκτονική συνόλου εντολών (ISA) γλώσσας μηχανής που αναπτύχθηκε από την εταιρεία
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Detection and Recognition of Traffic Signal Using Machine Learning
1 1 1 Detection and Recognition of Traffic Signal Using Machine Learning Akihiro Nakano, 1 Hiroshi Koyasu 1 and Hitoshi Maekawa 1 To improve road safety by assisting the driver, traffic signal recognition
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Εκπαίδευση και Πολιτισμός: έρευνα προκαταρκτικής αξιολόγησης μίας εικονικής έκθεσης
Εκπαίδευση και Πολιτισμός: έρευνα προκαταρκτικής αξιολόγησης μίας εικονικής έκθεσης Education and Culture: front-end evaluation of a virtual exhibition Σαπφώ Μορτάκη, Χαροκόπειο Πανεπιστήμιο & Ανοιχτό
Efficient Implementation of Sparse Linear Algebra Operations on InfiniBand Cluster. Akira Nishida,
InfiniBand,,.,, PCI Express InfiniBand,,.,,. Efficient Implementation of Sparse Linear Algebra Operations on InfiniBand Cluster Akira Nishida, Construction of scalable and low cost parallel computing environment
ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ
ΕΘΝΙΚΟ ΜΕΣΟΒΙΟ ΠΟΛΤΣΕΧΝΕΙΟ ΣΜΗΜΑ ΑΓΡΟΝΟΜΩΝ-ΣΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΣΟΜΕΑ ΣΟΠΟΓΡΑΦΙΑ ΕΡΓΑΣΗΡΙΟ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ
Γιπλυμαηική Δπγαζία. «Ανθπυποκενηπικόρ ζσεδιαζμόρ γέθςπαρ πλοίος» Φοςζιάνηρ Αθανάζιορ. Δπιβλέπυν Καθηγηηήρ: Νηθφιανο Π. Βεληίθνο
ΔΘΝΙΚΟ ΜΔΣΟΒΙΟ ΠΟΛΤΣΔΥΝΔΙΟ ΥΟΛΗ ΝΑΤΠΗΓΩΝ ΜΗΥΑΝΟΛΟΓΩΝ ΜΗΥΑΝΙΚΩΝ Γιπλυμαηική Δπγαζία «Ανθπυποκενηπικόρ ζσεδιαζμόρ γέθςπαρ πλοίος» Φοςζιάνηρ Αθανάζιορ Δπιβλέπυν Καθηγηηήρ: Νηθφιανο Π. Βεληίθνο Σπιμελήρ Δξεηαζηική
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 36: Προοπτικές και Εφαρμογές Κβαντικών Αλγορίθμων Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Προοπτικές
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 12: Συνοπτική Παρουσίαση Ανάπτυξης Κώδικα με το Matlab Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Security in the Cloud Era
Security in the Cloud Era Dimitris Gritzalis October 2011 Ασφάλεια στην εποχή του Cloud: Παράδοξο ή απλώς διαφορετικό; Δημήτρης Γκρίτζαλης Καθηγητής Ασφάλειας στις ΤΠΕ Οικονομικό Πανεπιστήμιο Αθηνών Πρόεδρος