Ασκήσεις Κεφαλαίου 2
|
|
- Τιτάνια Παπαγεωργίου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Άνοιξη /3/2010 Ασκήσεις Κεφαλαίου 2 1. Για να κερδίσουμε το ΛΟΤΤΟ πρέπει να διαλέξουμε 6 διαφορετικούς αριθμούς από τους 49 διαθέσιμους. Η σειρά επιλογής των αριθμών δεν παίζει κανέναν ρόλο. Αν θέλουμε να συμπληρώσουμε ένα μόνο δελτίο, τι πιθανότητα έχουμε να κερδίσουμε το ΤΖΑΚ ΠΟΤ; 2. Ένα ζευγάρι έχει δυο παιδιά. Αν σας πουν ότι τουλάχιστο ένα από αυτά είναι αγόρι, αλλά δεν ξέρετε το φύλο του άλλου παιδιού, ποια είναι η πιθανότητα να έχουν 2 αγόρια; Αν έχει τρία παιδιά και σας πουν πάλι ότι τουλάχιστο ένα από αυτά είναι αγόρι, αλλά δεν ξέρετε το φύλο των άλλων παιδιών, ποια είναι η πιθανότητα να είναι όλα αγόρια; Τελικά υποθέστε ότι είχαν Ν παιδιά και κάποιος σας λέει πάλι, ότι τουλάχιστο ένα από αυτά είναι αγόρι, αλλά δεν ξέρετε το φύλο των άλλων παιδιών, ποια είναι η πιθανότητα να είναι όλα αγόρια; (iv) (v) (vi) 3. Με «στρίψιμο» ενός τίμιου (σωστού) νομίσματος ποια είναι η πιθανότητα να πάρουμε κεφάλι (Κ); Ποιος είναι ο μέσος αριθμός κεφαλιών που περιμένετε σε δέκα στριψίματα ενός τίμιου νομίσματος; Ποια είναι η πιθανότητα να πάρετε από αυτά τα δέκα στριψίματα ΚΚΚΚΚΚΚΚΚΚ? Ποια είναι η πιθανότητα να πάρετε σε ένα από αυτά τα δέκα στριψίματα ΚΓΓΚΓΚΚΓΓΚ? Ποια είναι η πιθανότητα να πάρετε ακριβώς 5 κεφάλια με 10 στριψίματα; Ποια είναι η πιθανότητα να πάρετε ακριβώς 3 κεφάλια με 10 στριψίματα; 4. Βίγκα Ελένη Ασκήσεις 1
2 Θεωρούμε ένα παιχνίδι όπου ρίχνουμε πέντε ζάρια. Υποθέτουμε ότι η κάθε πλευρά ενός ζαριού έχει την ίδια πιθανότητα με τις άλλες πλευρές, να εμφανιστεί. Να βρεθεί η πιθανότητα να εμφανιστεί το 6 : Σε ένα μόνο ζάρι Σε ένα τουλάχιστον ζάρι Σε δυο και μόνο ζάρια 5. Θεωρείστε μια ομάδα 7 σπινς που το καθένα από αυτά μπορεί να προσανατολιστεί είτε προς τα πάνω ( ), είτε προς τα κάτω ( ). Ποιος είναι ο ολικός αριθμός των μικροκαταστάσεων για αυτό το σύστημα των 7-spin? Πόσες μικροκαταστάσεις έχουν 3 spins, 4 spins? Ποια είναι η πιθανότητα σε ισορροπία να έχουμε 3 spins, 4 spins? (iv) Πόση είναι η εντροπία για τον σχηματισμό 3 spins, 4 spins? (v) Σχεδιάστε την εντροπία για όλες τις μακροκαταστάσεις. 6. Ένας μεθυσμένος είναι ακουμπισμένος σε ένα φανάρι του δρόμου και αρχίζει να περπατά τρικλίζοντας, κάνοντας σε κάθε χρονικό διάστημα τ, ένα βήμα που το καθένα έχει μήκος l. Η πιθανότητα να κάνει ένα βήμα προς τα δεξιά είναι p και η πιθανότητα να κάνει ένα βήμα προς τα αριστερά είναι q=1-p, Ο άνθρωπος είναι τόσο μεθυσμένος ώστε η συμπεριφορά του σε κάθε βήμα δείχνει ότι δεν υπάρχει κανένα ίχνος μνήμης σχετικά με το τι ακριβώς έκανε στα προηγούμενά του βήματα. Έτσι τα βήματά του είναι στατιστικώς ανεξάρτητα. Υποθέτουμε ότι ο άνθρωπος έχει κάνει Ν βήματa. a) Πόση είναι η πιθανότητα P(n), ώστε n από αυτά τα βήματα να έχουν γίνει προς τα δεξιά και τα υπόλοιπα n =Ν-n προς τα αριστερά; b) Πόση είναι η πιθανότητα P(m), ώστε μετά από ένα χρονικό διάστημα Ντ, ο άνθρωπος αυτός να βρίσκεται σε μια απόσταση ml από το φανάρι (m=n-n ακέραιος θετικός αριθμός); Βίγκα Ελένη Ασκήσεις 2
3 c) Αν υποθέσουμε ότι p=q (οπότε κάθε βήμα είναι εξίσου πιθανόν να γίνει προς τα δεξιά ή προς τα αριστερά), πόση είναι η πιθανότητα να ξαναβρεθεί ο μεθυσμένος στο φανάρι, αφού θα έχει κάνει Ν βήματα; Αν το Ν είναι άρτιος αριθμός; Αν το Ν είναι περιττός αριθμός; 7. Θεωρείστε δυο μαγνητικά συστήματα με 4 σπιν το καθένα, μέσα σε μαγνητικό πεδίο. Τα σπινς στο Σύστημα 1 είναι πλήρως ευθυγραμμισμένα. Τα σπινς στο Σύστημα 2 είναι τελείως τυχαία. Τα δυο συστήματα έρχονται σε επαφή, έτσι ώστε να ανταλλάσουν ενέργεια μεταξύ τους. Η αρχή διατήρησης της ενέργειας απαιτεί όπως η μαγνητική ροπή, και το συνολικό σπιν να είναι αμετάβλητο. Έτσι στην ισορροπία έχουμε ένα σύστημα με οκτώ σπινς με Ν- Ν =6. Ποια είναι η εντροπία του συνολικού συστήματος πριν αυτά έλθουν σε επαφή και μετά από αυτήν? Επιτρέπεται αυτή η διαδικασία από τον δεύτερο νόμο της θερμοδυναμικής? 8. Θεωρήστε ένα σύστημα μορίων που έχει τρείς ενεργειακές στάθμες (ε 0, ε 1 και ε 2, όλες με εκφυλισμό= 1), όπου οι αποστάσεις ανάμεσα στις στάθμες είναι: ε 1 ε 0 = ε και ε 2 ε 1 = 1.20ε. Η ενέργεια της θεμελιώδους κατάστασης είναι ε 0 = 0. Γράψτε μια έκφραση για την συνάρτηση επιμερισμού. Καθορίστε το κλάσμα των μορίων στην θεμελιώδη κατάσταση στους 298K (ποια είναι δηλαδή η πιθανότητα να βρούμε ένα μόριο στην θεμελιώδη κατάστασή του?). Θεωρείστε ότι ε = x J. Οι εντάσεις των κορυφών στο φάσμα εκπομπής ενός μοριακού δείγματος είναι ανάλογες του πληθυσμού (ή τις πιθανότητες) των ενεργειακών σταθμών από τις οποίες γίνονται οι μεταπτώσεις. Πόσες κορυφές εκπομπής θα περιμένατε να δείτε στο απόλυτο μηδέν, στους 298 Κ και στους 1000Κ. Εάν προβλέπονται περισσότερες από μια κορυφές εκπομπής, ποιοι είναι οι λόγοι των κορυφών; Υποθέστε ότι οι μεταβάσεις εκπομπής εμφανίζονται μόνο στη θεμελιώδη κατάσταση. Βίγκα Ελένη Ασκήσεις 3
4 9. Έστω ένα σύστημα Ν σωματιδίων τα οποία κατανέμονται σε δυο ιδιοκαταστάσεις 1 και 2, με ενέργειες Ε 1 και Ε 2 (Ε 1 <Ε 2 ) και πληθυσμούς n 1 και n 2 αντίστοιχα (n 1 >>1 και n 2 >>1). Το σύστημα αυτό είναι σε επαφή με μια δεξαμενή θερμότητας θερμοκρασίας Τ. Αν σε μια μόνο κβαντική εκπομπή προς την δεξαμενή, ένα σωματίδιο μεταβαίνει από την στάθμη 2 στην στάθμη 1, δώστε την έκφραση για την μεταβολή της εντροπίας: στο σύστημα των δυο σταθμών και στη δεξαμενή, Από τα (ι) και (ιι) να βρείτε τον λόγο n 1 / n 2. Συμφωνεί με την σχέση Boltzmann; 10. Οι τρείς χαμηλότερες στάθμες ενός μορίου είναι Ε 1 =0, Ε 2 =ε, Ε 2 =10ε. είξτε ότι σε μια αρκετά χαμηλή θερμοκρασία (πόσο χαμηλή?) μόνο οι στάθμες Ε 1, Ε 2 είναι κατειλημμένες. Βρείτε την μέση ενέργεια Ε του μορίου στην θερμοκρασία Τ. Βρείτε τις συνεισφορές αυτών των σταθμών στην θερμοχωρητικότητα ανά μόριο, C V και σχεδιάστε την C V σαν μια συνάρτηση του Τ. 11. Ένα σύστημα αποτελείται από σωματίδια που υπακούουν στην στατιστική Boltzmann και είναι σε θερμική επαφή με δεξαμενή θερμότητας, θερμοκρασίας Τ. 3.1% του πληθυσμού βρίσκεται στην ενέργεια των eV, το 8.5% στη eV, το 23% στη eV και 63% στη eV. Ποια είναι η θερμοκρασία του συστήματος; Θεωρούμε μεταπτώσεις μόνο στη θεμελιώδη κατάσταση. 12. Θεωρήστε ένα σύστημα Ν σωματιδίων με μόνο 3 δυνατές ενεργειακές καταστάσεις που απέχουν ε (έστω ότι η θεμελιώδης ενέργεια είναι 0). Το σύστημα βρίσκεται μέσα σε ένα όγκο καθορισμένοv και είναι σε θερμική ισορροπία με μια δεξαμενή θερμότητας θερμοκρασίας Τ. Αγνοήστε αλληλεπιδράσεις ανάμεσα στα σωματίδια και θεωρείστε ότι εφαρμόζεται η στατιστική Boltzmann. (a) Ποια είναι συνάρτηση επιμερισμού για ένα σωματίδιο του συστήματος; (b) Ποια είναι η μέση ενέργεια του συστήματος; Βίγκα Ελένη Ασκήσεις 4
5 (c) Ποια είναι η πιθανότητα η τρίτη στάθμη να είναι κατειλημμένη στο όριο των υψηλών θερμοκρασιών kbt >>ε; Εξηγείστε την απάντησή σας με φυσικούς όρους. (d) Ποια είναι η μέση ενέργεια ανά σωματίδιο στο όριο των υψηλών θερμοκρασιών kbt >>ε; (e) Σε ποιά θερμοκρασία η θεμελιώδης κατάσταση είναι κατειλημμένη 1.1 φορές περισσότερο από ότι η τρίτη στάθμη; (f) Βρείτε την θερμοχωρητικότητα CV, του συστήματος, αναλύστε τη συμπεριφορά της στα όρια υψηλών (kbt >> ε) και χαμηλών θερμοκρασιών (kbt<<ε) και σχεδιάστε την σε συνάρτηση με την θερμοκρασία Τ. 13. Οι ενεργειακές στάθμες ενός αρμονικού ταλαντωτή 3-διαστάσεων βρίσκονται σύμφωνα με την σχέση: ε n, n, n = n1 + n2 + n3 + ω 2,όπου τα n 1, n 2, n 3 είναι ακέραιοι αριθμοί n i =0,1,2,.. O ταλαντωτής είναι σε επαφή με δεξαμενή θερμότητας, θερμοκρασίας Τ, με την οποία μπορεί να ανταλλάξει ενέργεια. Σε ποια θερμοκρασία η πιθανότητα να βρεθεί ο ταλαντωτής σε μια κατάσταση με ενέργεια 3 2 ω, εξισώνεται με την πιθανότητα να βρεθεί αυτός σε μια κατάσταση με ενέργεια 5 2 ω Βίγκα Ελένη Ασκήσεις 5
Προβλήματα Κεφαλαίου 2
Άνοιξη 2013 5/3/2013 Προβλήματα Κεφαλαίου 2 Οι λύσεις των προβλημάτων 3, 4, 5 * να παραδοθούν μέχρι τις 22/3/2013 Οι λύσεις των προβλημάτων 8 * και 20 να παραδοθούν μέχρι τις 28/3/2013 1. Για να κερδίσουμε
Προβλήματα Κεφαλαίου 2
Άνοιξη 2018 8/3/2018 Προβλήματα Κεφαλαίου 2 Οι λύσεις των προβλημάτων 23,24 και 25 * να παραδοθούν μέχρι τις 22/3/2018 Οι λύσεις των προβλημάτων 26 και 27 * να παραδοθούν μέχρι τις 29/3/2018 1. Θεωρείστε
Προβλήματα Κεφαλαίου 2
Άνοιξη 2017 8/3/2017 Προβλήματα Κεφαλαίου 2 Οι λύσεις των προβλημάτων 23,24 και 25 * να παραδοθούν μέχρι τις 17/3/2017 Οι λύσεις των προβλημάτων 26 και 27 * να παραδοθούν μέχρι τις 24/3/2017 1. Θεωρείστε
Προβλήματα Κεφαλαίου 2
Άνοιξη 2019 14/3/2019 Προβλήματα Κεφαλαίου 2 Οι λύσεις των προβλημάτων 23,24 και 25 * να παραδοθούν μέχρι τις 22/3/2019 Οι λύσεις των προβλημάτων 27 και 28 * να παραδοθούν μέχρι τις 28/3/2019 1. Θεωρείστε
ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ
ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ 1. Ένα κιλό νερού σε θερμοκρασία 0 C έρχεται σε επαφή με μιά μεγάλη θερμική δεξαμενή θερμοκρασίας 100 C. Όταν το νερό φτάσει στη θερμοκρασία της δεξαμενής,
Μικροκανονική- Kανονική κατανομή (Boltzmann)
Κεφάλαιο 2: Βασικές αρχές της στατιστικής φυσικής- Μικροκανονική- Kανονική κατανομή (Boltzmann) Ανακεφαλαίωση (Με τι ασχοληθήκαμε) ώσαμε τις έννοιες της μακροκατάστασης, της μικροκατάστασης και του στατιστικού
Μικροκανονική- Kανονική κατανομή (Boltzmann)
Κεφάλαιο 2: Βασικές αρχές της στατιστικής φυσικής- Μικροκανονική- Kανονική κατανομή (Boltzmann) Ανακεφαλαίωση (Με τι ασχοληθήκαμε) Δώσαμε τις έννοιες της μακροκατάστασης, της μικροκατάστασης και του στατιστικού
Μικροκανονική- Kανονική κατανομή (Boltzmann)
Κεφάλαιο 2: Βασικές αρχές της στατιστικής φυσικής- Μικροκανονική- Kανονική κατανομή (Boltzmann) Ανακεφαλαίωση (Με τι ασχοληθήκαμε) Δώσαμε τις έννοιες της μακροκατάστασης, της μικροκατάστασης και του στατιστικού
P(n 1, n 2... n k ) = n 1!n 2! n k! pn1 1 pn2 2 pn k. P(N L, N R ) = N! N L!N R! pn L. q N R. n! r!(n r)! pr q n r, n! r 1!r 2! r k!
Ασκήσεις Πιθανοτήτων - Στατιστικής Πρόβλημα 1 (Η Πολυωνυμική Κατανομή). Στο πρόβλημα αυτό θα μελετήσουμε μία γενίκευση της διωνυμικής κατανομής που συναντήσαμε στο μάθημα. Συγκεκριμένα, θα δούμε τί συμβαίνει
Σύστημα με μεταβλητό αριθμό σωματιδίων (Μεγαλοκανονική κατανομή) Ιδανικό κβαντικό αέριο
Κεφάλαιο : Σύστημα με μεταβλητό αριθμό σωματιδίων (Μεγαλοκανονική κατανομή) Ιδανικό κβαντικό αέριο Ανακεφαλαίωση (Με τι ασχοληθήκαμε) Ασχοληθήκαμε με συστήματα με μεταβλητό αριθμό σωματιδίων. Τον τρίτο
Γενικευμένος Ορισμός Εντροπίας
Γενικευμένος Ορισμός Εντροπίας Σε μονωμένα συστήματα θεωρήσαμε ότι «όλες οι μικροκαταστάσεις που είναι συμβιβαστές με την δεδομένη Μακροκατάσταση έχουν ίσες πιθανότητες». Συμβολίσαμε με Ω τον αριθμό των
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΦΥΣΙΚΗ ΛΥΣΕΙΣ 26/10/2011
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΦΥΣΙΚΗ ΛΥΣΕΙΣ 26/10/2011 1) Θεωρούµε ένα σύστηµα που αποτελείται από ένα σωµατίδιο µε σπιν ½ και µε µαγνητική ροπή
κλασσική περιγραφή Κλασσική στατιστική
Η κανονική κατανομή στη κλασσική περιγραφή Κλασσική στατιστική φυσική Βίγκα Ελένη (ttp://users.aut.gr/vinga) Στατιστική Φυσική Διαφάνεια o o Μια πολύ απλή περίπτωση για να ξεκινήσουμε είναι: Na θεωρήσουμε
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
Ακαδημαϊκό έτος 0-3 Στατιστική Θερμοδυναμική ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Επώνυμο: Όνομα: Προσωπικός Αριθμός: Ημερομηνία: Βαθμολογία θεμάτων 3 4 5 6 7 8 9 0 Γενικός Βαθμός η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΗ "ΦΥΣΙΚΟΧΗΜΕΙΑ"
2 ΟΣ ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ
2 ΟΣ ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ ΑΝΤΙΣΤΡΕΠΤΕΣ ΚΑΙ ΜΗ ΑΝΤΙΣΤΡΕΠΤΕΣ ΜΕΤΑΒΟΛΕΣ Ένα ζεστό φλυτζάνι καφέ πάντα κρυώνει καθώς θερμότητα μεταφέρεται προς το περιβάλλον. Πότε δεν παρατηρούμε το αντίθετο παρότι ΔΕΝ παραβιάζεται
ΜΑΘΗΜΑ - VII ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΙΙ (ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ. ΑΣΚΗΣΗ Β8 - Θερµοχωρητικοτήτες µετάλλων
ΜΑΘΗΜΑ - VII ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΙΙ (ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ) ΑΣΚΗΣΗ Β8 - Θερµοχωρητικοτήτες µετάλλων Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας
Κλασική και στατιστική Θερμοδυναμική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική και στατιστική Θερμοδυναμική Κανονική Κατανομή oltzma- Μεγαλοκανονική Κατανομή Διδάσκων: Καθηγητής Ιωάννης Παναγιωτόπουλος Άδειες Χρήσης Το παρόν
ΕΝΤΡΟΠΙΑ-2ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ-ΚΥΚΛΟΣ CARNOT
ΕΝΤΡΟΠΙΑ-ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ-ΚΥΚΛΟΣ CARNO Η εντροπία είναι το φυσικό µέγεθος το οποίο εκφράζει ποσοτικά το βαθµό αταξίας µιας κατάστασης ενός θερµοδυναµικού συστήµατος. ΣΤΑΤΙΣΤΙΚΟΣ ΟΡΙΣΜΟΣ Η εντροπία
ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ. Μονάδες - Τάξεις μεγέθους
ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ Μονάδες - Τάξεις μεγέθους Μονάδες ενέργειας 1 cal = 4,19 J Πυκνότητα νερού 1 g/cm 3 = 1000 Kg/m 3. Ειδική θερμότητα νερού c = 4190 J/Kg.K = 1Kcal/Kg.K = 1 cal/g.k
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΕΝΤΡΟΠΙΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ
ΕΝΤΡΟΠΙΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ Θέμα Απομονωμένο σύστημα περνάει από κατάσταση με εντροπία S σε κατάσταση με εντροπία S. Αποδείξτε και σχολιάστε ότι ισχύει S S. Για οποιαδήποτε μηχανή (σύστημα που εκτελεί
1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου V Άσκηση : Οι θεμελιώδεις σχέσεις μετάθεσης της στροφορμής επιτρέπουν την ύπαρξη ακέραιων και ημιπεριττών ιδιοτιμών Αλλά για την τροχιακή στροφορμή L r p γνωρίζουμε ότι
3 ος ΘΕΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ- ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΥΝΑΜΙΚΑ ΘΕΩΡΙΑ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 3 ος ΘΕΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ- ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΥΝΑΜΙΚΑ ΘΕΩΡΙΑ Περιεχόμενα 1. Ο τρίτος θερμοδυναμικός Νόμος 2. Συστήματα με αρνητικές θερμοκρασίες 3. Θερμοδυναμικά
Διατομικά μόρια- Περιστροφική ενέργεια δονητικά - περιστροφικά φάσματα
Διατομικά μόρια- Περιστροφική ενέργεια δονητικά - περιστροφικά φάσματα Πολυατομικά μόρια περιστροφική ενέργεια περιστροφικά φάσματα Σκέδαση φασματοσκοπία n συνεισφορά του πυρηνικού σπιν Δονητικά περιστροφικά
Στατιστική Περιγραφή Φυσικού Μεγέθους - Πιθανότητες
Στατιστική Περιγραφή Φυσικού Μεγέθους - Πιθανότητες Είπαμε ότι γενικά τα συστηματικά σφάλματα που υπεισέρχονται σε μια μέτρηση ενός φυσικού μεγέθους είναι γενικά δύσκολο να επισημανθούν και να διορθωθούν.
The 38 th International Physics Olympiad Iran Theory Competition Sunday, 15 July 2007
The 38 th International Physics Olympiad Iran Theory Competition Sunday, 15 July 2007 1. Αυτός ο φάκελος περιέχει 3 φύλλα Ερωτήσεων (Q), 3 φύλλα Απαντήσεων (Α) και έναν αριθμό φύλλων Γραψίματος (W) 2.
ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΦΥΣΙΚΟΧΗΜΕΙΑ ΦΥΕ22
Λυμένες ασκήσεις Στατιστική Θερμοδυναμική Οκτώβριος ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΦΥΣΙΚΟΧΗΜΕΙΑ ΦΥΕ Άσκηση.: Το άθροισμα καταστάσεων της δονητικής κίνησης των μορίων του Ι αποτελείται από
ΣΥΝΟΠΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΗΣ 09/2014
ΣΥΝΟΠΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΗΣ 09/2014 ΘΕΜΑ 1 Ι. α) Κύκλος λειτουργίας στο επίπεδο P-V. P 1 2 1-2 και 3-4: ισοβαρείς (υπό σταθερές P 2 και P 1, αντίστοιχα, P 1
ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) Α. ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ
ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής
ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:
ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια (όπως ορίζεται στη μελέτη της μηχανικής τέτοιων σωμάτων): Η ενέργεια που οφείλεται σε αλληλεπιδράσεις και κινήσεις ολόκληρου του μακροσκοπικού σώματος, όπως η μετατόπιση
Διάλεξη 9: Στατιστική Φυσική
Στατιστική Φυσική: Η μελέτη της θερμοδυναμικής συμπεριφοράς ενός συστήματος σωματίων σε σχέση με τις ιδιότητες των επί μέρους σωματίων. Αν και δεν μπορεί να προβλέψει με απόλυτη ακρίβεια την θερμοδυναμική
ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:
ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια (όπως ορίζεται στη μελέτη της μηχανικής τέτοιων σωμάτων): Η ενέργεια που οφείλεται σε αλληλεπιδράσεις και κινήσεις ολόκληρου του μακροσκοπικού σώματος, όπως η μετατόπιση
* Επειδή μόνο η μεταφορά θερμότητας έχει νόημα, είτε συμβολίζεται με dq, είτε με Q, είναι το ίδιο.
ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ Μονάδες - Τάξεις μεγέθους Μονάδες ενέργειας 1 cal = 4,19 J Πυκνότητα νερού 1 g/cm 3 = 1000 Kg/m 3. Ειδική θερμότητα νερού c = 4190 J/Kg.K = 1Kcal/Kg.K = 1 cal/g.k
. Να βρεθεί η Ψ(x,t).
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου II Άσκηση 1: Εάν η κυματοσυνάρτηση Ψ(,0) παριστάνει ένα ελεύθερο σωματίδιο, με μάζα m, στη μία διάσταση την χρονική στιγμή t=0: (,0) N ep( ), όπου N 1/ 4. Να βρεθεί η
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Στατιστική Φυσική Διδάσκων : Επίκ. Καθ. Μ. Μπενής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγxρονη Φυσική II Στατιστική Φυσική Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cretive Commons.
ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ. Θέμα 2. α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει
ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ Θέμα α) Δείξτε ότι οι διακριτές ιδιοτιμές της ενέργειας σε ένα μονοδιάστατο πρόβλημα δεν είναι εκφυλισμένες β) Με βάση το προηγούμενο ερώτημα να δείξετε ότι μπορούμε να διαλέξουμε τις
Ο δεύτερος νόμος Παραδείγματα αυθόρμητων φαινομένων: Παραδείγματα μη αυθόρμητων φαινομένων: συγκεκριμένο χαρακτηριστικό
Ο δεύτερος νόμος Κάποια φαινόμενα στη φύση συμβαίνουν αυθόρμητα, ενώ κάποια άλλα όχι. Παραδείγματα αυθόρμητων φαινομένων: α) ένα αέριο εκτονώνεται για να καταλάβει όλο το διαθέσιμο όγκο, β) ένα θερμό σώμα
ΣΤΑΤΙΣΤΙΚΗ ΦΥΣΙΚΗ. Αμαλία Α. Κώνστα
ΣΤΑΤΙΣΤΙΚΗ ΦΥΣΙΚΗ Αμαλία Α. Κώνστα 1 ΣΤΑΤΙΣΤΙΚΗ ΦΥΣΙΚΗ 1 η Έκδοση Αμαλία Α. Κώνστα Ομότιμη Καθηγήτρια Ε.Μ.Π. Αθήνα 014 ΠΡΟΛΟΓΟΣ Η Στατιστική Μηχανική, μαζί με την Κβαντομηχανική, παρέχουν τα θεμέλια της
2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ - ΕNTΡΟΠΙΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ - ΕNΡΟΠΙΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα. O ος Θερμοδυναμικός Νόμος. Η Εντροπία 3. Εντροπία και αταξία 4. Υπολογισμός Εντροπίας
ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Κεντρικό: Λεωφ. Κηφισίας 56, Αμπελόκηποι, Αθήνα Τηλ.: ,
ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Κεντρικό: Τηλ.: 0 69 97 985, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ.: 0 69 97 985, e-mal: edlag@oteet.gr, www.edlag.gr ΣΜΑΡΑΓΔΑ ΣΑΡΑΝΤΟΠΟΥΛΟΥ, MSC, ΥΠΟΨΗΦΙΑ ΔΙΔΑΚΤΩΡ
Γενική Μεταπτυχιακή Εξέταση - ΕΜΠ & ΕΚΕΦΕ-" ηµόκριτος"
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ NATIONAL TECHNICAL UNIVERSITY ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & DEPARTMENT OF PHYSICS ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ - ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ZOGRAFOU CAMPUS ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 157 80 ATHENS -
Τμήμα Χημείας Πανεπιστήμιο Κρήτης. Εαρινό εξάμηνο 2009
Τμήμα Χημείας Πανεπιστήμιο Κρήτης Εργαστήριο Φυσικοχημείας Ι Στοιχεία Στατιστικής Θερμοδυναμικής Εαρινό εξάμηνο 9 Διδάσκων : Δ. Άγγλος Υπευθ. Εργαστηρίου : Ν. Στρατηγάκης Μεταπτυχιακοί : Ν. Διαμαντοπούλου,
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου Ι Άσκηση 1: Θεωρήστε δύο ορθοκανονικά διανύσματα ψ 1 και ψ και υποθέστε ότι αποτελούν βάση σε ένα χώρο δύο διαστάσεων. Θεωρήστε επίσης ένα τελαστή T που ορίζεται στο χώρο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Μοριακή Δομή ΙΙ Διδάσκων : Επίκ. Καθ. Μ. Μπενής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγxρονη Φυσική Μοριακή Δομή ΙΙ Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Ceative Coons. Για
ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΟΣ «ΣΤΑΤΙΣΤΙΚΗ ΜΗΧΑΝΙΚΗ»
ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΟΣ «ΣΤΑΤΙΣΤΙΚΗ ΜΗΧΑΝΙΚΗ» 1. Βασικές αρχές της θερμοδυναμικής: οι 4 νόμοι της θερμοδυναμικής, η έννοια του θερμοδυναμικού συστήματος, προσδιορισμός και ιδιότητες εντροπίας. 2. Μαθηματικός
Γενική Μεταπτυχιακή Εξέταση - ΕΜΠ & ΕΚΕΦΕ-" ηµόκριτος"
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ NATIONAL TECHNICAL UNIVERSITY ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & DEPARTMENT OF PHYSICS ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ - ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ZOGRAFOU CAMPUS ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 157 80 ATHENS -
Κλασική και στατιστική Θερμοδυναμική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική και στατιστική Θερμοδυναμική Θεμελίωση της στατιστικής θερμοδυναμικής - μικροκανονική κατανομή Διδάσκων: Καθηγητής Ιωάννης Παναγιωτόπουλος Άδειες
ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 6
Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 1/ 25 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 6 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων Ακαδηµαικό έτος
ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-ΙΙΙ ΤΑ ΘΕΡΜΟ ΥΝΑΜΙΚΑ ΑΞΙΩΜΑΤ
ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-ΙΙΙ ΤΑ ΘΕΡΜΟ ΥΝΑΜΙΚΑ ΑΞΙΩΜΑΤΑ Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη http://tccc.iesl.forth.gr/education/local.html
Κεφάλαια (από το βιβλίο Serway-Jewett) και αναρτημένες παρουσιάσεις
Ύλη μαθήματος «Σύγχρονη Φυσική» Κεφάλαια (από το βιβλίο Serway-Jewett) και αναρτημένες παρουσιάσεις Σ2-Σελίδες: 673-705, (όλο το κεφάλαιο από το βιβλίο) και η παρουσίαση Σ2 που έχει αναρτηθεί στο e-class
και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου IV Άσκηση 1: Σωματίδιο μάζας Μ κινείται στην περιφέρεια κύκλου ακτίνας R. Υπολογίστε τις επιτρεπόμενες τιμές της ενέργειας, τις αντίστοιχες κυματοσυναρτήσεις και τον εκφυλισμό.
1 Ασκήσεις Θερμοδυναμικής
1 Ασκήσεις Θερμοδυναμικής 1.1 Βασικές αρχές 1. Οι παρακάτω είναι εκφράσεις για την εντροπία σε διάφορα υδροδυναμικά συστήματα. Εντοπίστε ποιες εκφράσεις δεν είναι φυσικά αποδεκτές και προσδιορίστε ποιες
Enrico Fermi, Thermodynamics, 1937
I. Θερµοδυναµικά συστήµατα Enrico Feri, herodynaics, 97. Ένα σώµα διαστέλλεται από αρχικό όγκο. L σε τελικό όγκο 4. L υπό πίεση.4 at. Να υπολογισθεί το έργο που παράγεται. W - -.4 at 5 a at - (4..) - -
Κινητική Θεωρία πλάσµατος
Κινητική Θεωρία πλάσµατος Λουκάς Βλάχος Τµήµα Φυσικής ΑΠΘ *Οµιλία στο ο ΣΧΟΛΕΙΟ ΦΥΣΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΣΥΝΤΗΞΗΣ, Βόλος- /5/003 1 Θέµατα Τυχαίες διαδικασίες και η κατανοµή Gauss Η συνάρτηση κατανοµής ταχυτήτων
ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αμπελόκηποι, Αθήνα Τηλ.: ,
ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Τηλ.: 69 97 985, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ.: 69 97 985, e-mail: edlag@otenet.gr, www.edlag.gr ΣΜΑΡΑΓΔΑ ΣΑΡΑΝΤΟΠΟΥΛΟΥ, MSC, ΥΠΟΨΗΦΙΑ ΔΙΔΑΚΤΩΡ ΕΜΠ KENTΡΟ
ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ
ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Μη αντιστρεπτά φαινόμενα Η ενέργεια διατηρείται και στη χρονικά αντίστροφη μεταβολή, όμως αυτή ποτέ δεν συμβαίνει π.χ. Δεν μπορούμε να κατασκευάσουμε το αεικίνητο.
Γενική Μεταπτυχιακή Εξέταση - ΕΜΠ & ΕΚΕΦΕ-" ηµόκριτος"
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ NATIONAL TECHNICAL UNIVERSITY ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & DEPARTMENT OF PHYSICS ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ - ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ZOGRAFOU CAMPUS ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 157 80 ATHENS -
ETY-202. Ο γενικός φορμαλισμός Dirac ETY-202 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC. Στέλιος Τζωρτζάκης 21/11/2013
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC Στέλιος Τζωρτζάκης Ο γενικός φορμαλισμός Dirac 1 3 4 Εικόνες και αναπαραστάσεις Επίσης μια πολύ χρήσιμη ιδιότητα
Διάλεξη 5: Ατομική Δομή. Σύζευξη Σπιν-Τροχιάς
Σύζευξη Σπιν-Τροχιάς Θεωρούμε το άτομο του υδρογόνου με το ηλεκτρόνιο να «περιστρέφεται» γύρω από τον πυρήνα. Ισοδύναμα θεωρούμε τον πυρήνα να περιστρέφεται γύρω από το ηλεκτρόνιο. Στο σύστημα αυτό η μαγνητική
β διάσπαση II Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο
β διάσπαση II Δήμος Σαμψωνίδης (28-11- 2018) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 Spin και πάριτυ ενός πυρήνα (J και πάριτυ: J p ) Σπιν πυρήνα, J = ολικό τροχιακό σπίν
Μοριακά φάσματα. Όσον αφορά τα ενεργειακά επίπεδα των ηλεκτρονίων σε ένα μόριο, αυτά μελετήθηκαν σε μια πρώτη προσέγγιση μέσω της μεθόδου LCAO.
Μοριακά φάσματα Η ολική ενέργεια που αποθηκεύει εσωτερικά ένα μόριο δίνεται από το άθροισμα: α) της ενέργειάς του λόγω μεταφορικής κίνησης β) της ενέργειας των ηλεκτρονίων του γ) της περιστροφικής ενέργειας
Μοριακή Φασματοσκοπία I. Παραδόσεις μαθήματος Θ. Λαζαρίδης
Μοριακή Φασματοσκοπία I Παραδόσεις μαθήματος Θ. Λαζαρίδης 2 Τι μελετά η μοριακή φασματοσκοπία; Η μοριακή φασματοσκοπία μελετά την αλληλεπίδραση των μορίων με την ηλεκτρομαγνητική ακτινοβολία Από τη μελέτη
Δx
Ποια είναι η ελάχιστη αβεβαιότητα της ταχύτητας ενός φορτηγού μάζας 2 τόνων που περιμένει σε ένα κόκκινο φανάρι (η η μέγιστη δυνατή ταχύτητά του) όταν η θέση του μετράται με αβεβαιότητα 1 x 10-10 m. Δx
Αγωγιμότητα στα μέταλλα
Η κίνηση των ατόμων σε κρυσταλλικό στερεό Θερμοκρασία 0 Θερμοκρασία 0 Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo
Q 40 th International Physics Olympiad, Merida, Mexico, July 2009
ΘΕΩΡΗΤΙΚΟ ΠΡΟΒΛΗΜΑ No. 2 DOPPLER LASER ΨΥΞΗ ΚΑΙ ΟΠΤΙΚΕΣ ΜΕΛΑΣΣΕΣ Ο σκοπός αυτού του προβλήματος είναι η ανάπτυξη μιας απλής θεωρίας για να κατανοήσουμε δύο φαινόμενα, που ονομάζονται «laser ψύξη» και «οπτικές
Φασματοσκοπίας UV/ορατού Φασματοσκοπίας υπερύθρου Φασματοσκοπίας άπω υπερύθρου / μικροκυμάτων Φασματοσκοπίας φθορισμού Φασματοσκοπίας NMR
Φασματοσκοπία Ερμηνεία & εφαρμογές : Φασματοσκοπίας UV/ορατού Φασματοσκοπίας υπερύθρου Φασματοσκοπίας άπω υπερύθρου / μικροκυμάτων Φασματοσκοπίας φθορισμού Φασματοσκοπίας NMR Ποια φαινόμενα παράγουν τα
Πρόχειρες σημειώσεις Στατιστικής Θερμοδυναμικής. Γεώργιος Φανουργάκης
Πρόχειρες σημειώσεις Στατιστικής Θερμοδυναμικής 1 Γεώργιος Φανουργάκης 2 Κεφάλαιο 1 Εισαγωγή στη Στατιστική Θερμοδυναμική H Στατιστική θερμοδυναμική ή Στατιστική μηχανική είναι η εφαρμογή της θεωρίας πιθανοτήτων,
Αγωγιμότητα στα μέταλλα
Η κίνηση των ατόμων σε κρυσταλλικό στερεό Θερμοκρασία 0 Θερμοκρασία 0 Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo
Κβαντική Μηχανική ΙΙ. Ενότητα 6: Άτομα σε μαγνητικά πεδία Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Μηχανική ΙΙ Ενότητα 6: Άτομα σε μαγνητικά πεδία Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 2/ 25 Περιεχόµενα 6ης ενότητας Φαινόµενο
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις Ενότητα 12 Μοριακά Φάσματα Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Προσδιορισμός μήκους δεσμού Η φασματοσκοπία μικροκυμάτων μπορεί να
x όπου Α και a θετικές σταθερές. cosh ax [Απ. Οι 1, 2, 5] Πρόβλημα 3. Ένα σωματίδιο μάζας m κινείται στο πεδίο δυναμικής ενέργειας ( x) exp
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : ΣΥΓΧΡΟΝΗ ΦΥΣΙΚΗ (Υποχρεωτικό 4 ου Εξαμήνου) Διδάσκων : Δ. Σκαρλάτος Προβλήματα Σειρά # 5 : Η εξίσωση Schrödinger και η επίλυσή της σε απλά κβαντικά συστήματα
ETY-202. Εκπομπή και απορρόφηση ακτινοβολίας ETY-202 ΎΛΗ & ΦΩΣ 12. ΎΛΗ & ΦΩΣ. Στέλιος Τζωρτζάκης 21/12/2012
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 Εκπομπή και απορρόφηση ακτινοβολίας ΎΛΗ & ΦΩΣ 12. ΎΛΗ & ΦΩΣ Στέλιος Τζωρτζάκης 1 3 4 Ηλεκτρομαγνητικά πεδία Απορρόφηση είναι Σε αυτή τη διαδικασία το ηλεκτρόνιο
Αλγόριθμος Metropolis. Γ. Θεοδώρου 1
Αλγόριθμος Metropols Γ. Θεοδώρου Γ. Θεοδώρου 1 Δειγματοληψία Οι δύο βασικές μέθοδοι δειγματοληψίας είναι, Κλασική δειγματοληψία (καλείται και: Monte Carlo), και Δειγματοληψία Metropols. Η βασική διαφορά
ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ
ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Μη αντιστρεπτά φαινόμενα Η ενέργεια διατηρείται και στη χρονικά αντίστροφη μεταβολή, όμως αυτή ποτέ δεν συμβαίνει π.χ. Δεν μπορούμε να κατασκευάσουμε το αεικίνητο.
Μοντέρνα Φυσική. Κβαντική Θεωρία. Ατομική Φυσική. Μοριακή Φυσική. Πυρηνική Φυσική. Φασματοσκοπία
Μοντέρνα Φυσική Κβαντική Θεωρία Ατομική Φυσική Μοριακή Φυσική Πυρηνική Φυσική Φασματοσκοπία ΚΒΑΝΤΙΚΗ ΘΕΩΡΙΑ Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης:
PLANCK 1900 Προκειμένου να εξηγήσει την ακτινοβολία του μέλανος σώματος αναγκάστηκε να υποθέσει ότι η ακτινοβολία εκπέμπεται σε κβάντα ενέργειας που
ΑΤΟΜΙΚΗ ΦΥΣΙΚΗ PLANCK 1900 Προκειμένου να εξηγήσει την ακτινοβολία του μέλανος σώματος αναγκάστηκε να υποθέσει ότι η ακτινοβολία εκπέμπεται σε κβάντα ενέργειας που είναι ανάλογα με τη συχνότητα (f). PLANCK
ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ eclass: MED808 Π. Παπαγιάννης
ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ eclass: MED808 Π. Παπαγιάννης Επικ. Καθηγητής, Εργαστήριο Ιατρικής Φυσικής, Ιατρική Σχολή Αθηνών. Γραφείο 21 210-746 2442 ppapagi@phys.uoa.gr Τις προσεχείς ώρες θα συζητήσουμε τα πέντε πρώτα
Θεωρία Χρονοεξαρτώμενων Διαταραχών
Θεωρία Χρονοεξαρτώμενων Διαταραχών Δομή Διάλεξης Γενική μέθοδος μελέτης συστημάτων με χρονοεξαρτώμενο μέρος Χαμιλτονιανής. Εύρεση πιθανότητας μετάβασης Απλό παράδειγμα με ακριβή λύση: Σύστημα δύο καταστάσεων
4. Παρατηρείστε το ίχνος ενός ηλεκτρονίου (click here to select an electron
Τα ηλεκτρόνια στα Μέταλλα Α. Χωρίς ηλεκτρικό πεδίο: 1. Τι είδους κίνηση κάνουν τα ηλεκτρόνια; Τα ηλεκτρόνια συγκρούονται μεταξύ τους; 2. Πόσα ηλεκτρόνια περνάνε προς τα δεξιά και πόσα προς τας αριστερά
PLANCK 1900 Προκειμένου να εξηγήσει την ακτινοβολία του μέλανος σώματος αναγκάστηκε να υποθέσει ότι η ακτινοβολία εκπέμπεται σε κβάντα ενέργειας που
ΑΤΟΜΙΚΗ ΦΥΣΙΚΗ PLANCK 1900 Προκειμένου να εξηγήσει την ακτινοβολία του μέλανος σώματος αναγκάστηκε να υποθέσει ότι η ακτινοβολία εκπέμπεται σε κβάντα ενέργειας που είναι ανάλογα με τη συχνότητα (f). PLANCK
Κεφάλαιο 38 Κβαντική Μηχανική
Κεφάλαιο 38 Κβαντική Μηχανική Περιεχόμενα Κεφαλαίου 38 Κβαντική Μηχανική Μια καινούργια Θεωρία Η κυματοσυνάρτηση και η εξήγησή της. Το πείραμα της διπλής σχισμής. Η αρχή της αβεβαιότητας του Heisenberg.
ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α.
ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ 003-04 (Α. Χημική Θερμοδυναμική) η Άσκηση Θεωρείστε ως σύστημα ένα δοχείο με αδιαβατικά τοιχώματα, μέσα στο οποίο αναμιγνύουμε λίτρο νερού θερμοκρασίας Τ
Φυσική Κατεύθυνσης Β Λυκείου.
Φυσική Κατεύθυνσης Λυκείου. Διαγώνισμα στην Θερμοδυναμική. Ζήτημα 1 o. ) Να επιλέξτε την σωστή απάντηση. 1) Ορισμένη ποσότητα ιδανικού αερίου μεταβάλλεται από κατάσταση σε κατάσταση. Τότε: α) Η μεταβολή
ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΣΧΕΣΕΙΣ
ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΣΧΕΣΕΙΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΣΤΟ ΠΡΟΗΓΟΥΜΕΝΟ ΜΑΘΗΜΑ ΑΝΑΦΕΡΘΗΚΑΜΕ ΣΤΙΣ ΚΑΤΑΣΤΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΤΗΣ ΜΟΡΦΗΣ f(p,v,t)=0 ΠΟΥ ΧΡΗΣΙΜΟΠΟΙΟΥΝΤΑΙ ΓΙΑ ΝΑ ΣΥΝΔΕΟΥΝ ΤΗΝ ΠΙΕΣΗ,
ΛΥΣΕΙΣ ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ - ΑΣΚΗΣΕΙΣ α.ε Διάρκεια: 3 ώρες και 30 λεπτά ( ) Α. Χημική Θερμοδυναμική
ΛΥΣΕΙΣ ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ - ΑΣΚΗΣΕΙΣ α.ε. 2012-13 Διάρκεια: 3 ώρες και 30 λεπτά (15.15 18.45) ΘΕΜΑ 1 Α. Χημική Θερμοδυναμική Μια πλάκα από χαλκό μάζας 2 kg και θερμοκρασίας 0 ο C
V (β) Αν κατά τη μεταβολή ΓΑ μεταφέρεται θερμότητα 22J από το αέριο στο περιβάλλον, να βρεθεί το έργο W ΓA.
Άσκηση 1 Ιδανικό αέριο εκτελεί διαδοχικά τις αντιστρεπτές μεταβολές ΑΒ, ΒΓ, ΓΑ που παριστάνονται στο διάγραμμα p V του σχήματος. (α) Αν δίνονται Q ΑΒΓ = 30J και W BΓ = 20J, να βρεθεί η μεταβολή της εσωτερικής
S ˆz. Απ. : Αυτό που πρέπει να βρούμε είναι οι συντελεστές στο ανάπτυγμα α. 2αβ
Άσκηση 4. Έστω σωμάτιο με spin /. Να προσδιορίσετε την κατάστασή του αν είναι γνωστές οι S ˆ, S ˆ και μόνο το πρόσημο της S ˆ. Απ. : Αυτό που πρέπει να βρούμε είναι οι συντελεστές στο ανάπτυγμα α ψ = α
ΛΥΣΕΙΣ ΕΦΑΡΜΟΓΩΝ - ΑΣΚΗΣΕΩΝ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ
ΛΥΣΕΙΣ ΕΦΑΡΜΟΓΩΝ - ΑΣΚΗΣΕΩΝ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ 1. α) ΔS νερ 1300 J/K, ΔS δεξ -110 J/K, ΔS ολ 180 J/K β) ΔS νερ 1300 J/K, ΔS δεξ -105 J/K, ΔS ολ 95 J/K γ) Θα έπρεπε να έρθει το νερό σε επαφή
Γενική Μεταπτυχιακή Εξέταση - ΕΜΠ & ΕΚΕΦΕ-" ηµόκριτος"
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ NATIONAL TECHNICAL UNIVERSITY ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & DEPARTMENT OF PHYSICS ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ - ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ZOGRAFOU CAMPUS ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 157 80 ATHENS -
Σχ. 1: Τυπική μορφή μοριακού δυναμικού.
ΤΕΤΥ - Σύγχρονη Φυσική Κεφ. 6-1 Κεφάλαιο 6. Μόρια Εδάφια: 6.a. Μόρια και μοριακοί δεσμοί 6.b. Κβαντομηχανική περιγραφή του χημικού δεσμού 6.c. Περιστροφή και ταλάντωση μορίων 6.d. Μοριακά φάσματα 6.a.
ΦΑΣΜΑΤΑ ΕΚΠΟΜΠΗΣ ΑΠΟΡΡΟΦΗΣΗΣ
ΚΒΑΝΤΙΚΗ ΦΥΣΙΚΗ: Τα άτομα έχουν διακριτές ενεργειακές στάθμες Τα άτομα και μόρια, βρίσκονται σε διακριτές ενεργειακές στάθμες και Υφίστανται μεταβάσεις μεταξύ αυτών των ενεργειακών σταθμών όταν αλληλεπιδρούν
Θεωρία Διαταραχών ΙΙ: Εκφυλισμένες Καταστάσεις
Θεωρία Διαταραχών ΙΙ: Εκφυλισμένες Καταστάσεις Δομή Διάλεξης Εκφυλισμένη Θεωρία Διαταραχών: Γενική Μέθοδος για την αντιμετώπιση των απειρισμών λόγω εκφυλισμού Εφαρμογή σε διεγερμένη κατάσταση υδρογόνου
Θεωρητική Εξέταση. Τρίτη, 15 Ιουλίου /3
Θεωρητική Εξέταση. Τρίτη, 15 Ιουλίου 2014 1/3 Πρόβλημα 2. Καταστατική Εξίσωση Van der Waals (11 ) Σε ένα πολύ γνωστό μοντέλο του ιδανικού αερίου, του οποίου η καταστατική εξίσωση περιγράφεται από το νόμο
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΦΥΣΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΦΥΣΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα 1. Μοντέλο υλικού σώματος 2. Ορισμοί μάζα γραμμομόριο 3. Η κατάσταση ενός υλικού 4. Τα βασικά γνωρίσματα των καταστάσεων 5. Το μοντέλο του ιδανικού
Εξετάσεις Φυσικής για τα τμήματα Βιοτεχνολ. / Ε.Τ.Δ.Α Ιούνιος 2014 (α) Ονοματεπώνυμο...Τμήμα...Α.Μ...
Εξετάσεις Φυσικής για τα τμήματα Βιοτεχνολ. / Ε.Τ.Δ.Α Ιούνιος 2014 (α) Ονοματεπώνυμο...Τμήμα...Α.Μ... Σημείωση: Διάφοροι τύποι και φυσικές σταθερές βρίσκονται στην τελευταία σελίδα. Θέμα 1ο (20 μονάδες)
Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα Κώστας
Υπολογισμός συνάρτησης μεταφοράς σε Υδραυλικά συστήματα. Αντίσταση ροής υγρού. Μανομετρικό Υψος h. Υψος h2. Ροή q
Υπολογισμός συνάρτησης μεταφοράς σε Υδραυλικά συστήματα. Αντίσταση ροής υγρού Υψος h Μανομετρικό Υψος h Υψος h Σχήμα.4 Ροή q Ας υποθέσουμε ότι έχουμε δύο δεξαμενές που επικοινωνούν με ένα σωλήνα όπως ακριβώς
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι (Τµήµα Α. Λαχανά) 1 Φεβρουαρίου 2010
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τµήµα Α Λαχανά) Φεβρουαρίου ΘΕΜΑ : Θεωρήστε τις δύο περιπτώσεις όπου η κυµατική συνάρτηση ψx) που περιγράφει µονοδιάστατη κίνηση σωµατιδίου σε απειρόβαθο πηγάδι δυναµικού µε τα τοιχώµατα
ΗΛΕΚΤΡΟΤΕΧΝΙΚΑ Υλικα 3ο μεροσ. Θεωρητικη αναλυση
ΗΛΕΚΤΡΟΤΕΧΝΙΚΑ Υλικα 3ο μεροσ Θεωρητικη αναλυση μεταλλα Έχουν κοινές φυσικές ιδιότητες που αποδεικνύεται πως είναι αλληλένδετες μεταξύ τους: Υψηλή φυσική αντοχή Υψηλή πυκνότητα Υψηλή ηλεκτρική και θερμική
Το άτομο του Υδρογόνου- Υδρογονοειδή άτομα
Το άτομο του Υδρογόνου- Υδρογονοειδή άτομα Το πιο απλό κβαντομηχανικό ρεαλιστικό σύστημα, το οποίο λύνεται ακριβώς, είναι το άτομο του Υδρογόνου (1 πρωτόνιο και 1 ηλεκτρόνιο) Το δυναμικό στην περίπτωση
Αριθμητικές Προσομοιώσεις του πρότυπου ISING στις Τρεις Διαστάσεις
Αριθμητικές Προσομοιώσεις του πρότυπου ISING στις Τρεις Διαστάσεις Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο ΚΟΡΝΑΡΟΣ ΕΥΑΓΓΕΛΟΣ Εισαγωγή ό ή ί ί μ έ ά μ έ Ising μ