ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΣΧΕΣΕΙΣ
|
|
- Ἀελλώ Αλαβάνος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΣΧΕΣΕΙΣ
2 Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΣΤΟ ΠΡΟΗΓΟΥΜΕΝΟ ΜΑΘΗΜΑ ΑΝΑΦΕΡΘΗΚΑΜΕ ΣΤΙΣ ΚΑΤΑΣΤΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΤΗΣ ΜΟΡΦΗΣ f(p,v,t)=0 ΠΟΥ ΧΡΗΣΙΜΟΠΟΙΟΥΝΤΑΙ ΓΙΑ ΝΑ ΣΥΝΔΕΟΥΝ ΤΗΝ ΠΙΕΣΗ, ΤΟΝ ΕΙΔ. ΟΓΚΟ ΚΑΙ ΤΗΝ ΘΕΡΜΟΚΡΑΣΙΑ ΤΩΝ ΥΛΙΚΩΝ. ΠΕΡΑ, ΟΜΩΣ, ΑΠΟ ΤΙΣ ΠΑΡΑΜΕΤΡΟΥΣ ΠΙΕΣΗς- ΟΓΚΟΥ-ΘΕΡΜΟΚΡΑΣΙΑΣ ΥΠΑΡΧΟΥΝ ΚΑΙ ΑΛΛΕΣ ΠΑΡΑΜΕΤΡΟΙ ΠΟΥ ΠΡΕΠΕΙ ΝΑ ΓΝΩΡΙΖΟΥΜΕ ΓΙΑ ΝΑ ΟΛΟΚΛΗΡΩΣΟΥΜΕ ΤΗΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΜΙΑΣ ΕΝΕΡΓΕΙΑΚΗΣ ΕΓΚΑΤΑΣΤΑΣΗΣ
3 Ο ΥΠΟΛΟΓΙΣΜΟΣ ΤΩΝ ΘΕΡΜΟΦΥΣΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ ΟΙ ΠΡΟΗΓΟΥΜΕΝΕΣ ΣΧΕΣΕΙΣ ΜΑΣ ΕΠΙΤΡΕΠΟΥΝ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΤΩΝ ΘΕΡΜΟΦΥΣΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ ΠΟΥ ΧΡΕΙΑΖΟΜΑΣΤΕ ΓΙΑ ΝΑ ΥΛΟΠΟΙΗΣΟΥΜΕ ΤΗΝ ΑΠΑΡΑΙΤΗΤΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΝΑΛΥΣΗ ΕΝΟΣ ΚΥΚΛΟΥ ή ΜΙΑΣ ΔΙΕΡΓΑΣΙΑΣ ΣΤΗΝ ΠΡΑΞΗ ΕΧΕΙ ΑΠΟΔΕΙΧΘΕΙ ΟΤΙ ΜΠΟΡΟΥΝ ΝΑ ΜΕΤΡΗΘΟΥΝ ΣΧΕΤΙΚΑ ΕΥΚΟΛΑ ΟΙ ΠΑΡΑΚΑΤΩ ΣΥΣΧΕΤΙΣΕΙΣ : (Α) Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΠΙΦΑΝΕΙΑ ΕΝΟΣ ΑΠΛΟΥ ΥΛΙΚΟΥ (ΔΗΛ. Η ΣΧΕΣΗ P=f(T,v) ) ΚΑΙ (Β) ΟΙ ΕΙΔΙΚΕΣ ΘΕΡΜΟΧΩΡΗΤΙΚΟΤΗΤΕΣ Cv ΚΑΙ Cp
4 ΤΟ ΟΛΙΚΟ ΔΙΑΦΟΡΙΚΟ
5 ΕΞΙΣΩΣΕΙΣ ΤΗΣ ΜΟΡΦΗΣ ΣΤΗΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΣΤΗΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΠΑΝΤΩΝΤΑΙ ΤΑΚΤΙΚΑ ΕΞΙΣΩΣΕΙΣ ΤΗΣ ΜΟΡΦΗΣ ΟΠΟΥ Η ΠΑΡΑΜΕΤΡΟΣ Χ ΕΚΦΡΑΖΕΙ ΚΑΠΟΙΑ ΜΟΡΦΗ ΕΝΕΡΓΕΙΑΣ ΤΟΥ ΥΛΙΚΟΥ ΠΟΥ ΕΜΠΕΡΙΕΧΕΙ ΤΟ ΥΠΟΨΗ ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΣΥΣΤΗΜΑ, ΕΝΩ ΟΙ ΠΑΡΑΜΕΤΡΟΙ Y ΚΑΙ Ζ ΕΙΝΑΙ ΕΛΕΥΘΕΡΕΣ ΠΑΡΑΜΕΤΡΟΙ (ΠΙΕΣΗ, ΘΕΡΜΟΚΡΑΣΙΑ, ΕΝΤΡΟΠΙΑ, κλπ.). ΤΕΤΟΙΕΣ ΠΑΡΑΜΕΤΡΟΙ Χ ΕΙΝΑΙ Η ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ (U), Η ΕΝΘΑΛΠΙΑ (H) ΚΑΙ ΟΙ «ΕΛΕΥΘΕΡΕΣ» ΕΝΕΡΓΕΙΕΣ HELMHOLTZ (A) ΚΑΙ GIBBS (G). ΟΙ ΜΕΤΑΒΟΛΕΣ ΤΩΝ ΠΑΡΑΜΕΤΡΩΝ ΑΥΤΩΝ ΣΑΝ ΣΥΝΑΡΤΗΣΕΙΣ ΑΝΤΙΣΤΟΙΧΩΝ ΜΕΤΑΒΟΛΩΝ ΣΤΙΣ ΕΛΕΥΘΕΡΕΣ ΜΕΤΑΒΛΗΤΕΣ ΟΓΚΟΥ, ΠΙΕΣΗΣ ΚΑΙ ΘΕΡΜΟΚΡΑΣΙΑΣ ΔΙΝΟΝΤΑΙ ΑΠΟ ΤΙΣ ΠΑΡΑΚΑΤΩ ΣΧΕΣΕΙΣ : ΑΠΟ ΤΟ ΠΡΩΤΟ ΑΞΙΩΜΑ ΑΠΟ ΤΗΝ ΣΧΕΣΗ ΑΠΟ ΤΗΝ ΣΧΕΣΗ ΑΠΟ ΤΗΝ ΣΧΕΣΗ
6 ...ΣΥΝΕΧΕΙΑ ΣΕ ΕΦΑΡΜΟΓΗ ΤΗΣ ΣΧΕΣΗΣ ΣΤΙΣ ΠΑΡΑΠΑΝΩ ΕΞΙΣΩΣΕΙΣ ΓΙΑ ΤΙΣ ΕΝΕΡΓΕΙΑΚΕΣ ΠΑΡΑΜΕΤΡΟΥΣ ΠΡΟΚΥΠΤΟΥΝ ΟΙ ΣΧΕΣΕΙΣ ΟΙ 4 ΠΑΡΑΠΑΝΩ ΣΧΕΣΕΙΣ ΕΙΝΑΙ ΓΝΩΣΤΕΣ ΣΑΝ ΕΞΙΣΩΣΕΙΣ ΤΟΥ MAXWELL ΓΙΑ ΤΗΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ
7 ΥΠΟΛΟΓΙΣΜΟΣ ΤΗΣ ΕΝΘΑΛΠΙΑΣ Η ΑΠΟ ΤΗΝ ΣΧΕΣΗ ΠΡΟΚΥΠΤΕΙ ΟΤΙ V P S T P H T T ΚΑΙ P P T S T T H ΕΠΟΜΕΝΩΣ ΤΟ ΟΛΙΚΟ ΔΙΑΦΟΡΙΚΟ ΜΕΤΑΣΧΗΜΑΤΙΖΕΤΑΙ ΣΕ ΑΦΟΥ ΑΛΛΑ ΟΠΟΤΕ ΟΛΟΚΛΗΡΩΝΟΝΤΑΣ ΤΗΝ ΤΕΛΕΥΤΑΙΑ ΣΧΕΣΗ ΑΠΟ ΤΟ ΑΡΧΙΚΟ ΣΗΜΕΙΟ (T1, P1) ΜΕΧΡΙ ΤΟ ΤΕΛΙΚΟ ΣΗΜΕΙΟ (Τ,P) ΜΠΟΡΟΥΜΕ ΝΑ ΥΠΟΛΟΓΙΣΟΥΜΕ ΤΗΝ ΑΝΤΙΣΤΟΙΧΗ ΜΕΤΑΒΟΛΗ ΣΤΗΝ ΕΝΘΑΛΠΙΑ.
8 ...ΣΥΝΕΧΕΙΑ (ΓΙΑ ΤΗΝ ΕΝΤΡΟΠΙΑ S) ΑΠΟ ΤΟ ΟΛΙΚΟ ΔΙΑΦΟΡΙΚΟ ΚΑΙ ΑΠΟ ΤΙΣ ΣΧΕΣΕΙΣ ΚΑΙ ΠΡΟΚΥΠΤΕΙ ΟΤΙ Η ΣΧΕΣΗ ΑΥΤΗ ΜΑΣ ΔΙΝΕΙ ΤΗΝ ΜΕΤΑΒΟΛΗ ΤΗΣ ΕΝΤΡΟΠΙΑΣ ΑΠΟ ΤΗΝ ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΚΑΙ ΤΗΝ ΣΧΕΣΗ Cp=f(T)
9 ...ΣΥΝΕΧΕΙΑ ΠΑΡΟΜΟΙΩΣ, ΑΠΟ ΤΗΝ ΣΧΕΣΗ ΠΡΟΚΥΠΤΕΙ ΟΤΙ ΑΛΛΑ ΚΑΙ Η ΣΧΕΣΗ
10 ΕΝΩ ΓΙΑ ΤΗΝ ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ (U) ΑΠΟ ΤΟ ΟΛΙΚΟ ΔΙΑΦΟΡΙΚΟ ΠΟΥ ΜΑΣ ΔΙΝΕΙ ΚΑΙ ΑΛΛΑ ΚΑΙ ΑΦΟΥ ΠΡΟΚΥΠΤΕΙ ΟΤΙ ΠΟΥ ΣΕ ΣΥΝΔΥΑΣΜΟ ΜΕ ΤΗΝ ΣΧΕΣΗ ΤΟΥ MAXWELL ΜΑΣ ΔΙΝΟΥΝ
11 ΚΑΙ ΠΑΛΙ ΓΙΑ ΤΗΝ ΕΝΤΡΟΠΙΑ ΑΠΟ ΤΟ ΟΛΙΚΟ ΔΙΑΦΟΡΙΚΟ ΚΑΙ ΣΕ ΣΥΝΔΥΑΣΜΟ ΜΕ ΤΗΝ ΣΧΕΣΗ ΤΟΥ MAXWELL ΑΛΛΑ ΚΑΙ ΤΟ ΓΕΓΟΝΟΣ ΟΤΙ Η ΣΧΕΣΗ ΜΑΣ ΟΔΗΓΕΙ ΣΤΗΝ ΣΧΕΣΗ ΕΧΟΥΜΕ ΤΕΛΙΚΑ ΤΗ ΕΞΙΣΩΣΗ
12 ΓΙΑ ΤΙΣ ΕΙΔΙΚΕΣ ΘΕΡΜΟΧΩΡΗΤΙΚΟΤΗΤΕΣ ΑΠΟ ΤΗΝ ΣΧΕΣΗ ΠΡΟΚΥΠΤΕΙ ΟΤΙ ΕΝΩ ΑΠΟ ΤΗΝ ΣΧΕΣΗ ΕΧΟΥΜΕ ΑΦΟΥ ΟΙ ΕΞΙΣΩΣΕΙΣ ΓΙΑ ΤΟ ds ΕΙΝΑΙ ΟΛΙΚΑ ΔΙΑΦΟΡΙΚΑ, ΘΑ ΠΡΕΠΕΙ ΝΑ ΙΣΧΥΟΥΝ ΚΑΙ ΟΙ ΣΧΕΣΕΙΣ ΚΑΙ ΓΙΑ ΤΟ ΠΡΩΤΟ ΔΙΑΦΟΡΙΚΟ ΓΙΑ ΤΟ ΔΕΥΤΕΡΟ ΚΑΙ ΟΙ ΔΥΟ ΣΧΕΣΕΙΣ ΕΠΙΤΡΕΠΟΥΝ (ΜΕ ΣΧΕΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ) ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΤΩΝ ΘΕΡΜΟΧΩΡΗΤΙΚΟΤΗΤΩΝ)
13 Η ΔΙΑΦΟΡΑ ΜΕΤΑΞΥ ΤΩΝ CV CP ΑΠΟ ΤΙΣ ΣΧΕΣΕΙΣ ΠΡΟΚΥΠΤΟΥΝ ΣΧΕΣΕΙΣ ΟΠΩΣ ΑΠΟ ΤΑ ΤΕΛΕΙΑ ΑΕΡΙΑ ΔΙΝΕΤΑΙ ΑΠΟ ΤΗΝ ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ Η ΣΧΕΣΗ ΑΥΤΗ ΜΑΣ ΕΠΙΤΡΕΠΕΙ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΤΟΥ Cp ΕΝΟΣ ΥΛΙΚΟΥ ΑΠΟ ΔΕΔΟΜΕΝΑ ΠΟΥ ΕΧΟΥΜΕ ΣΕ ΠΟΛΥ ΧΑΜΗΛΕΣ ΠΙΕΣΕΙΣ (ΟΠΟΥ ΤΟ ΥΛΙΚΟ ΣΥΜΠΕΡΙΦΕΡΕΤΑΙ ΣΑΝ ΤΕΛΕΙΟ ΑΕΡΙΟ) ΚΑΙ ΤΗΝ ΑΝΤΙΣΤΟΙΧΗ ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΟΥ ΥΛΙΚΟΥ Η ΟΠΟΙΑ ΣΥΝΔΕΕΙ ΤΟΝ ΕΙΔ. ΟΓΚΟ (v) ΜΕ ΤΗΝ ΘΕΡΜΟΚΡΑΣΙΑ (Τ) ΓΙΑ ΟΡΙΣΜΕΝΗ ΠΙΕΣΗ (Ρ)
14 ..ΣΥΝΕΧΕΙΑ ΜΕ ΠΑΡΟΜΟΙΟ ΤΡΟΠΟ ΠΑΡΑΓΟΝΤΑΙ ΚΑΙ ΟΙ ΣΧΕΣΕΙΣ ΟΠΟΥ Ο όρος αυτός έχει σχεδόν πάντα αρνητική τιμή Ο όρος αυτός γίνεται ίσος με το μηδέν στους -4 C για το νερό. Σε υγρά-στερεά έχει μέγεθος κοντά στο μηδέν. Συντελεστής Ογκομετρικής Διαστολής Συντελεστής Ισοθερμοκρασιακής Συμπιεστότητας
15 ΕΦΑΡΜΟΓΗ ΣΤΑ ΤΕΛΕΙΑ ΑΕΡΙΑ ΣΕ ΕΝΑ ΤΕΛΕΙΟ ΑΕΡΙΟ, ΟΙ ΠΡΟΗΓΟΥΜΕΝΕΣ ΣΧΕΣΕΙΣ ΜΑΣ ΔΙΝΟΥΝ ΟΠΟΤΕ
16 Τα υπόλοιπα (Residuals) των Παραμέτρων Αποκαλούμε «Υπόλοιπο» μιας παραμέτρου y την ποσότητα όπου ή (και καμμιά φορά) Όπου η ποσότητα y εκφράζει το πραγματικό μέγεθος της παραμέτρου σε κάποια συνθήκη θερμοκρασίας (Τ) και πίεσης (Ρ), ενώ η ποσότητα εκφράζει το μέγεθος της y στην ίδια συνθήκη (Τ,Ρ) αν υποθέσουμε ότι το υλικό είναι τέλειο αέριο (Οπότε το μέγεθος θα μας δοθεί από την καταστατική εξίσωση των τέλειων αερίων) Αφού Σε μια μεταβολή της κατάστασης του υλικού απο το σημειο 1 στο σημείο 2, έχουμε Πραγματική Διαφορά Διαφορά Υπολοίπων Διαφορά Τελ. Αερίων
17 ...συνέχεια Για την μεταβολή στην ειδική ενθαλπία έχουμε Που είναι ίση με την Όρος των Τέλειων αερίων Παρομοίως, για την ειδική εντροπία έχουμε Αλλά για τα τέλεια αέρια έχουμε οπότε
18 ...συνέχεια Αν διαλέξουμε το σημείο 1 να αντιστοιχεί σε μια πολύ μικρή πίεση, έτσι ώστε το υλικό να συμπεριφέρεται σαν τέλειο αέριο (οπότε γνωρίζουμε την ειδική ενθαλπία και την αντίστοιχη εντροπία) μπορούμε να υπολογίσουμε τις αντίστοιχες παραμέτρους σε κάποιο άλλο σημείο 2 μέσω των σχέσεων και Αντί για την μέθοδο των υπολοίπων, μπορούμε να χρησιμοποιήσουμε και τις παραμέτρους απόκλισης (Departure functions) όπου Η τιμή της παραμέτρου για τέλειο αέριο Όχι σε οποιανδήποτε σημείο 1 αλλά σε Ορισμένη συνθήκη «αναφοράς» Η πραγματική τιμή της y
19 ...συνέχεια Σε δύο διαφορετικά σημεία 1 και 2 η απόκλιση στην ειδική ενθαλπία του υλικού μας δίνεται από Ενώ για την εντροπία έχουμε οπότε
20 Η συνάρτηση του Gibbs Από την σχέση προκύπτει ότι Όπου η ειδική τιμή της συνάρτησης του Gibbs (g) αδιαστατοποιείται από το γινόμενο RT (το οποίο έχει διαστάσεις ειδικής ενέργειας (δηλαδή ανά Kg-mole ή Kg) Για υλικό σταθερής σύστασης οπότε αφού Ο δείκτης ig δηλώνει τέλειο αέριο Σε ένα τέλειο αέριο Αφού, όμως, έχουμε Ανακύπτει, λοιπόν, το πρόβλημα του πώς θα συσχετίσουμε την παράμετρο με τις παραμέτρους και Τ
21 ...συνέχεια Αυτό το κάνουμε με την ολοκλήρωση της σχέσης για μια σταθερή θερμοκρασία, οπότε Αφού σε πολύ χαμηλές πιέσεις (τέλεια αέρια) η ποσότητα έχει μέγεθος κοντά στο μηδέν και όπου ΕΑΝ ΓΝΩΡΙΖΟΥΜΕ ΤΗΝ ΤΙΜΗ ΤΗΣ ΠΑΡΑΜΕΤΡΟΥ ΣΕ ΟΛΕΣ ΤΙΣ ΘΕΡΜΟΚΡΑΣΙΕΣ ΚΑΙ ΠΙΕΣΕΙΣ, ΤΟΤΕ ΜΠΟΡΟΥΜΕ ΝΑ ΥΠΟΛΟΓΙΣΟΥΜΕ ΚΑΙ ΟΛΕΣ ΤΙΑ ΑΛΛΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΠΑΡΑΜΕΤΡΟΥΣ
22 ...συνέχεια Για παράδειγμα, από την σχέση Προκύπτει ότι με ολοκλήρωση σε σταθερή πίεση Επειδή, δε, έχουμε προκύπτει ότι ύστερα από ολοκλήρωση σε σταθερή θερμοκρασία Ενώ για την ειδική εσωτερική ενέργεια έχουμε Από την σχέση και τον ειδικό όγκο
23 ...συνέχεια Από την σχέση έχουμε που μας οδηγεί στην και σε συνδυασμό με την έχουμε ΜΕ ΑΛΛΑ ΛΟΓΙΑ, ΑΠΟ ΤΗΝ ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΥΠΟΛΟΓΙΖΟΥΜΕ ΤΑ ΥΠΟΛΟΙΠΑ ΓΙΑ ΤΗΝ ΕΙΔΙΚΗ ΕΝΘΑΛΠΙΑ, ΕΝΤΡΟΠΙΑ, ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ
24 ...συνέχεια Σε σχέση με τις «ανηγμένες» παραμέτρους θερμοκρασίας-πίεσης έχουμε Με βάση τον συντελεστή «ακεντρότητας» των μορίων ενός υλικού, έχουμε οπότε
25 ...συνέχεια και αφού έχουμε και Για την ελεύθερη ενέργεια του Helmholtz έχουμε που σε σταθερή θερμοκρασία είναι ίση με Εν γένει «Άπειρος» όγκος σημαίνει (κατ ουσίαν) το όριο του τέλειου αερίου. Για να προσδιορίσουμε Το όριο αυτό προσταφερούμε την ποσότητα
26 ...συνέχεια οπότε Που οδηγεί στην σχέση Η σχέση αυτή απλοποιείται στην μορφή που οδηγεί στην Από την σχέση έχουμε που γίνεται και (σε συνέχεια)
27 Χρήση εμπειρικής καταστατικής εξίσωσης Από την καταστατική εξίσωση των Redlich-Kwong και τις σχέσεις ενθαλπίας Εντροπίας που είδαμε προηγουμένως Από την σχέση R-K Και σχετική αντικατάσταση, έχουμε
28 ...συνέχεια Για την ποσότητα από την R-K έχουμε Που με σχετική αντικατάσταση μας δίνει
29 ...συνέχεια Για την εσωτερική ενέργεια έχουμε Ενώ από την έχουμε Που με σχετικές αντικαταστάσεις έχουμε
ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΜΕΡΟΣ Β Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΑΠΛΩΝ ΥΛΙΚΩΝ
ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΜΕΡΟΣ Β Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΑΠΛΩΝ ΥΛΙΚΩΝ ΟΙ ΕΛΕΥΘΕΡΕΣ ΜΕΤΑΒΛΗΤΕΣ ΣΤΗΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΝΑΛΥΣΗ ΕΝ ΓΕΝΕΙ, ΟΛΕΣ ΟΙ ΠΑΡΑΜΕΤΡΟΙ ΕΝΟΣ ΑΠΛΟΥ, ΔΟΜΙΚΑ ΟΜΟΙΟΜΟΡΦΟΥ ΥΛΙΚΟΥ (ΔΗΛΑΔΗ ΟΤΑΝ ΟΛΗ
ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΜΑΘΗΜΑ 3 : ΟΙ ΑΛΛΑΓΕΣ ΤΩΝ ΦΑΣΕΩΝ
ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΜΑΘΗΜΑ 3 : ΟΙ ΑΛΛΑΓΕΣ ΤΩΝ ΦΑΣΕΩΝ ΟΙ ΦΑΣΕΙΣ ΤΩΝ ΥΛΙΚΩΝ Ο ΟΡΟΣ «ΜΕΤΑΒΟΛΗ ΦΑΣΗΣ» ΑΦΟΡΑ ΤΗΝ ΜΕΤΑΠΤΩΣΗ ΕΝΟΣ ΘΕΡΜΟΔΥΝΑΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟς ΑΠΟ ΜΙΑ ΦΑΣΗ (ή κατάσταση της ύλης που εμπεριέχεται
Υπολογισμός & Πρόρρηση. Θερμοδυναμικών Ιδιοτήτων
Υπολογισμός & Πρόρρηση Θερμοδυναμικών Ιδιοτήτων d du d Θερμοδυναμικές Ιδιότητες d dh d d d du d d dh U A H G d d da d d dg d du dq dq d / d du dq Θεμελιώδεις Συναρτήσεις περιέχουν όλες τις πληροφορίες
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 8: Θερμοχωρητικότητα Χημικό δυναμικό και ισορροπία. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 8: Θερμοχωρητικότητα Χημικό δυναμικό και ισορροπία Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η ανάπτυξη μαθηματικών
Enrico Fermi, Thermodynamics, 1937
I. Θερµοδυναµικά συστήµατα Enrico Feri, herodynaics, 97. Ένα σώµα διαστέλλεται από αρχικό όγκο. L σε τελικό όγκο 4. L υπό πίεση.4 at. Να υπολογισθεί το έργο που παράγεται. W - -.4 at 5 a at - (4..) - -
ΘΕΡΜΟΔΥΝΑΜΙΚΗ. Χαροκόπειο Πανεπιστήμιο. 11 Μαΐου 2006
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Χαροκόπειο Πανεπιστήμιο 11 Μαΐου 2006 Κλάδοι της Θερμοδυναμικής Χημική Θερμοδυναμική: Μελετά τις μετατροπές ενέργειας που συνοδεύουν φυσικά ή χημικά φαινόμενα Θερμοχημεία: Κλάδος της Χημικής
Εφαρμοσμένη Θερμοδυναμική: Εξετάζει σχέσεις θερμότητας,
Στοιχεία Χημικής Θερμοδυναμικής Κλάδοι της Θερμοδυναμικής Θερμοδυναμική: Ο κλάδος της επιστήμης που μελετά τις μετατροπές ενέργειας. Στην πραγματικότητα μετρά μεταβολές ενέργειας. Μελετά τη σχέση μεταξύ
Εφαρμοσμένη Θερμοδυναμική: Εξετάζει σχέσεις θερμότητας, μηχανικού έργου και ιδιοτήτων των διαφόρων θερμοδυναμικών
Στοιχεία Χημικής Θερμοδυναμικής Κλάδοι της Θερμοδυναμικής Θερμοδυναμική: Ο κλάδος της επιστήμης που μελετά τις μετατροπές ενέργειας. Στην πραγματικότητα μετρά μεταβολές ενέργειας. Μελετά τη σχέση μεταξύ
Ανάλυση Τροφίμων. Ενότητα 4: Θερμοχημεία Χημική Ενέργεια Τ.Ε.Ι. ΘΕΣΣΑΛΙΑΣ. Τμήμα Τεχνολογίας Τροφίμων. Ακαδημαϊκό Έτος
Ανάλυση Τροφίμων Ενότητα 4: Θερμοχημεία Χημική Ενέργεια Τμήμα Τεχνολογίας Τροφίμων Τ.Ε.Ι. ΘΕΣΣΑΛΙΑΣ Ακαδημαϊκό Έτος 2018-2019 Δημήτρης Π. Μακρής PhD DIC Αναπληρωτής Καθηγητής Εσωτερική Ενέργεια & Καταστατικές
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΑΕΡΙΟ VAN DER WAALS ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΑΕΡΙΟ AN DER WAALS ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΑΣΚΗΣΗ Αέριο an der Waals ν moles συμπιέζεται ισόθερμα από
Τμήμα Χημείας Μάθημα: Φυσικοχημεία Ι Εξέταση: Περίοδος Ιουνίου (21/6/2017)
Τμήμα Χημείας Μάθημα: Φυσικοχημεία Ι Εξέταση: Περίοδος Ιουνίου -7 (//7). Δίνεται η θεμελιώδης εξίσωση για την εσωτερική ενέργεια ενός συστήματος ενός συστατικού όπου κατάλληλη σταθερά. Να προσδιορίσετε
14. ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΚΑΙ ΙΣΟΡΡΟΠΙΑ ΠΕΡΙΕΧΟΜΕΝΑ
14. ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΚΑΙ ΙΣΟΡΡΟΠΙΑ ΠΕΡΙΕΧΟΜΕΝΑ Πρώτος νόμος της θερμοδυναμικής-ενθαλπία Εντροπία και ο δεύτερος νόμος της θερμοδυναμικής Πρότυπες εντροπίες και ο τρίτος νόμος της θερμοδυναμικής Ελεύθερη ενέργεια
Ο δεύτερος νόμος Παραδείγματα αυθόρμητων φαινομένων: Παραδείγματα μη αυθόρμητων φαινομένων: συγκεκριμένο χαρακτηριστικό
Ο δεύτερος νόμος Κάποια φαινόμενα στη φύση συμβαίνουν αυθόρμητα, ενώ κάποια άλλα όχι. Παραδείγματα αυθόρμητων φαινομένων: α) ένα αέριο εκτονώνεται για να καταλάβει όλο το διαθέσιμο όγκο, β) ένα θερμό σώμα
Ενθαλπία. Ηενθαλπία (Η) συστήµατος ορίζεται ως: Η=U+pV
Ενθαλπία Ενθαλπία Ηενθαλπία (Η) συστήµατος ορίζεται ως: Η=U+pV Ενθαλπία Ηενθαλπία (Η) συστήµατος ορίζεται ως: Η=U+pV Αλλά ποια είναι η φυσική σηµασία της ενθαλπίας ; Ενθαλπία Ηενθαλπία (Η) συστήµατος ορίζεται
ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ. Μονάδες - Τάξεις μεγέθους
ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ Μονάδες - Τάξεις μεγέθους Μονάδες ενέργειας 1 cal = 4,19 J Πυκνότητα νερού 1 g/cm 3 = 1000 Kg/m 3. Ειδική θερμότητα νερού c = 4190 J/Kg.K = 1Kcal/Kg.K = 1 cal/g.k
Εφηρμοσμένη Θερμοδυναμική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφηρμοσμένη Θερμοδυναμική Ενότητα 3: Ιδανικά Αέρια, συντελεστής συμπιεστότητας, ειδικές θερμότητες Χατζηαθανασίου Βασίλειος Καδή Στυλιανή
Τμήμα Τεχνολογίας Τροφίμων. Ανόργανη Χημεία. Ενότητα 6 η : Θερμοχημεία Χημική ενέργεια. Δρ. Δημήτρης Π. Μακρής Αναπληρωτής Καθηγητής.
Τμήμα Τεχνολογίας Τροφίμων Ανόργανη Χημεία Ενότητα 6 η : Θερμοχημεία Χημική ενέργεια Οκτώβριος 2018 Δρ. Δημήτρης Π. Μακρής Αναπληρωτής Καθηγητής Εσωτερική Ενέργεια & Καταστατικές Συναρτήσεις 2 1 ος Νόμος
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΕΝΤΡΟΠΙΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ
ΕΝΤΡΟΠΙΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ Θέμα Απομονωμένο σύστημα περνάει από κατάσταση με εντροπία S σε κατάσταση με εντροπία S. Αποδείξτε και σχολιάστε ότι ισχύει S S. Για οποιαδήποτε μηχανή (σύστημα που εκτελεί
Πρόρρηση. Φυσικών Ιδιοτήτων Μιγμάτων
Πρόρρηση Φυσικών Ιδιοτήτων Μιγμάτων Συντελεστής συμπιεστότητας, Ζ Αρχή Αντιστοίχων Καταστάσεων Τριών παραμέτρων Ptzer : z z (0) + ω z (1) Lee-Kesler: z (0), z (1) f(t r,p r ) Εξίσωση Ptzer Κανόνες Ανάμειξης
* Επειδή μόνο η μεταφορά θερμότητας έχει νόημα, είτε συμβολίζεται με dq, είτε με Q, είναι το ίδιο.
ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ Μονάδες - Τάξεις μεγέθους Μονάδες ενέργειας 1 cal = 4,19 J Πυκνότητα νερού 1 g/cm 3 = 1000 Kg/m 3. Ειδική θερμότητα νερού c = 4190 J/Kg.K = 1Kcal/Kg.K = 1 cal/g.k
M V n. nm V. M v. M v T P P S V P = = + = σταθερή σε παραγώγιση, τον ορισµό του συντελεστή διαστολής α = 1, κυκλική εναλλαγή 3
Τµήµα Χηµείας Μάθηµα: Φυσικοχηµεία Ι Εξέταση: Περίοδος εκεµβρίου 04- (//04. ίνονται οι ακόλουθες πληροφορίες για τον διθειάνθρακα (CS. Γραµµοµοριακή µάζα 76.4 g/mol, κανονικό σηµείο ζέσεως 46 C, κανονικό
ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ
ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ 1. Ένα κιλό νερού σε θερμοκρασία 0 C έρχεται σε επαφή με μιά μεγάλη θερμική δεξαμενή θερμοκρασίας 100 C. Όταν το νερό φτάσει στη θερμοκρασία της δεξαμενής,
3. Ν αποδειχθεί ότι σε ιδανικό αέριο : α=1/t και κ Τ =1/Ρ όπου α ο συντελεστής διαστολής και κ T ο ισόθερµος συντελεστής συµπιεστότητας.
Φυσικοχηµεία / Β. Χαβρεδάκη Ασκήσεις Θερµοδυναµικής Εργο. Θερµότητα. Τέλεια µη τέλεια διαφορικά. Αρχη διατήρησης της ενέργειας.. α) όσετε την γενική µορφή της καταστατικής εξίσωσης τριών θερµοδυναµικών
F 2 ( F / T ) T T. (β) Να δείξετε ότι µετασχηµατισµός Legendre της J(1/T,V) που δίνει το
[1] Να αποδειχθούν οι παρακάτω εξισώσεις: F ( F / T ) U = F T = T T T V F CV T = T V G G T H = G T = T ( / ) T P T P G CP T = T P [] Μπορούµε να ορίσουµε ένα άλλο σετ χαρακτηριστικών συναρτήσεων καθαρής
ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ
ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ Η εξίσωση αυτή εκφράζει μια σχέση μεταξύ της πίεσης, της θερμοκρασίας και του ειδικού όγκου. P v = R Όπου P = πίεση σε Pascal v = Ο ειδικός
Παππάς Χρήστος. Επίκουρος καθηγητής
Παππάς Χρήστος Επίκουρος καθηγητής 1 ΑΝΤΙΚΕΙΜΕΝΟ ΤΗΣ ΧΗΜΙΚΗΣ ΘΕΡΜΟ ΥΝΑΜΙΚΗΣ Η χημική θερμοδυναμική ασχολείται με τις ενεργειακές μεταβολές που συνοδεύουν μια χημική αντίδραση. Προβλέπει: ΠΛΕΟΝΕΚΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Θερμοδυναμική
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Θερμοδυναμική Ενότητα 3 : Ιδανικά Αέρια Δρ Γεώργιος Αλέξης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική + + δυναμική
ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Εσωτερική ενέργεια: Το άθροισμα της κινητικής (εσωτερική κινητική ενέργεια ή θερμική ενέργεια τυχαία, μη συλλογική κίνηση) και δυναμικής ενέργειας (δεσμών κλπ) όλων των σωματιδίων (ατόμων
ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΦΥΣΙΚΟΧΗΜΕΙΑ ΦΥΕ22
Λυμένες ασκήσεις Στατιστική Θερμοδυναμική Οκτώβριος ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΦΥΣΙΚΟΧΗΜΕΙΑ ΦΥΕ Άσκηση.: Το άθροισμα καταστάσεων της δονητικής κίνησης των μορίων του Ι αποτελείται από
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΗ ΣΤΙΣ Μ.Ε.Κ. Μ.Ε.Κ. Ι (Θ)
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΗ ΣΤΙΣ Μ.Ε.Κ. Μ.Ε.Κ. Ι (Θ) Διαλέξεις Μ4, ΤΕΙ Χαλκίδας Επικ. Καθηγ. Δρ. Μηχ. Α. Φατσής ΣΚΟΠΟΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Το «φρεσκάρισμα» των γνώσεων από τη Θερμοδυναμική με σκοπό
ΜΑΓΔΑΛΗΝΗ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ
ΜΑΘΗΜΑ: «ΓΕΝΙΚΗ ΧΗΜΕΙΑ» Α ΕΞΑΜΗΝΟ (ΧΕΙΜΕΡΙΝΟ) Διδάσκουσα: ΣΟΥΠΙΩΝΗ ΜΑΓΔΑΛΗΝΗ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Cmmns. Για
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 11: Μεταπτώσεις πρώτης και δεύτερης τάξης. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 11: Μεταπτώσεις πρώτης και δεύτερης τάξης Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η εισαγωγή του παράγοντα της
3 ος ΘΕΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ- ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΥΝΑΜΙΚΑ ΘΕΩΡΙΑ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 3 ος ΘΕΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ- ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΥΝΑΜΙΚΑ ΘΕΩΡΙΑ Περιεχόμενα 1. Ο τρίτος θερμοδυναμικός Νόμος 2. Συστήματα με αρνητικές θερμοκρασίες 3. Θερμοδυναμικά
ΣΤΟΙΧΕΙΑ ΨΥΞΗΣ ΚΛΙΜΑΤΙΣΜΟΥ
ΣΤΟΙΧΕΙΑ ΨΥΞΗΣ ΚΛΙΜΑΤΙΣΜΟΥ 2/12/2018 ΚΑΡΑΓΚΙΑΟΥΡΗΣ ΝΙΚΟΛΑΟΣ ΘΕΜΑ 1 ο 1. Να γράψετε στο τετράδιό σας το γράμμα καθεμιάς από τις παρακάτω προτάσεις και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή ή τη λέξη ΛΑΘΟΣ,
Εφηρμοσμένη Θερμοδυναμική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφηρμοσμένη Θερμοδυναμική Ενότητα 7: Εντροπία - Ισοζύγια εντροπίας Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών
2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ - ΕNTΡΟΠΙΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ - ΕNΡΟΠΙΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα. O ος Θερμοδυναμικός Νόμος. Η Εντροπία 3. Εντροπία και αταξία 4. Υπολογισμός Εντροπίας
Έκφραση της Ισορροπίας φάσεων ατμών υγρού με τη βοήθεια του Aspen plus
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Εργαστήριο Θερμοδυναμικής & Φαινομένων Μεταφοράς Έκφραση της Ισορροπίας φάσεων ατμών υγρού με τη βοήθεια του Aspen plus Η έννοια της ισορροπίας Εξ ορισμού
ΠΑΡΑΡΤΗΜΑ 3 ΥΠΟΛΟΓΙΣΜΟΣ ΔΙΑΓΡΑΜΜΑΤΩΝ ΦΑΣΕΩΝ ΑΠΟ ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΕΔΟΜΕΝΑ
ΠΑΡΑΡΤΗΜΑ 3-ΥΠΟΛΟΓΙΣΜΟΣ ΔΙΑΓΡΑΜΜΑΤΩΝ ΦΑΣΕΩΝ ΠΑΡΑΡΤΗΜΑ 3 ΥΠΟΛΟΓΙΣΜΟΣ ΔΙΑΓΡΑΜΜΑΤΩΝ ΦΑΣΕΩΝ ΑΠΟ ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΕΔΟΜΕΝΑ 1 Εισαγωγή Τα διαγράμματα φάσεων δεν είναι εμπειρικά σχήματα αλλά είναι ουσιαστικής σημασίας
ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ (ΘΧΜ) 1. ΣΚΟΠΟΣ και ΑΝΤΙΚΕΙΜΕΝΟ 2. ΘΕΜΕΛΙΑ
ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ (ΘΧΜ) 1. ΣΚΟΠΟΣ και ΑΝΤΙΚΕΙΜΕΝΟ 2. ΘΕΜΕΛΙΑ 1 1. ΣΚΟΠΟΣ και ΑΝΤΙΚΕΙΜΕΝΟ Σκοπός της θερμοδυναμικής χημικής μηχανικής είναι η παροχή των κατάλληλων θεωρητικών γνώσεων και των
ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα 1. Θερμοδυναμική Ορισμοί. Έργο 3. Θερμότητα 4. Εσωτερική ενέργεια 5. Ο Πρώτος Θερμοδυναμικός Νόμος 6. Αντιστρεπτή
ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΡΕΥΣΤΩΝ Για τον υπολογισμό της θερμότητας και του έργου των βιομηχανικών διεργασιών είναι απαραίτητες αριθμητικές τιμές
Για τον υπολογισμό της θερμότητας και του έργου των βιομηχανικών διεργασιών είναι απαραίτητες αριθμητικές τιμές των θερμοδυναμικών ιδιοτήτων. Είναι εμφανές λοιπόν ότι αυτές πρέπει ότι πρέπει να αναπτυχθούν
Ιδιότητες Μιγμάτων. Μερικές Μολαρικές Ιδιότητες
Ιδιότητες Μιγμάτων Μερικές Μολαρικές Ιδιότητες ΙΔΑΝΙΚΟ ΔΙΑΛΥΜΑ = ή διαιρεμένη διά του = x όπου όλα τα προσδιορίζονται στην ίδια T και P. = Όπου ή διαιρεμένη διά του : = x ορίζεται η μερική μολαρική ιδιότητα
ΘΕΡΜΟΧΗΜΕΙΑ. Είδη ενέργειας ΘΕΡΜΟΔΥΝΑΜΙΚΟΙ ΟΡΙΣΜΟΙ
ΘΕΡΜΟΧΗΜΕΙΑ Όλες οι χημικές αντιδράσεις περιλαμβάνουν έκλυση ή απορρόφηση ενέργειας υπό μορφή θερμότητας. Η γνώση του ποσού θερμότητας που συνδέεται με μια χημική αντίδραση έχει και πρακτική και θεωρητική
Εντροπία Ελεύθερη Ενέργεια
Μάθημα Εντροπία Ελεύθερη Ενέργεια Εξαγωγική Μεταλλουργία Καθ. Ι. Πασπαλιάρης Εργαστήριο Μεταλλουργίας ΕΜΠ Αυθόρμητες χημικές αντιδράσεις Ηαντίδρασηοξείδωσηςενόςμετάλλουμπορείναγραφτείστη γενική της μορφή
Φυσικοί μετασχηματισμοί καθαρών ουσιών
Φυσικοί μετασχηματισμοί καθαρών ουσιών Ή εξάτμιση, η τήξη και η μετατροπή του γραφίτη σε διαμάντι αποτελούν συνηθισμένα παραδείγματα αλλαγών φάσης χωρίς μεταβολή της χημικής σύστασης. Ορισμός φάσης: Μια
5,2 5,1 5,0 4,9 4,8. Συµπιεστοτητα (10-10 Pa -1 ) 4,7. k T 4,6 4,5 4,4. k S 4,3 4,2. Θερµοκρασια ( 0 C)
[1] Να αποδειχθούν οι παρακάτω εξισώσεις: F ( F / T ) U = F T = T T T V F CV T = T V G G T H = G T = T ( / ) T P T P G CP T = T P [] Μπορούµε να ορίσουµε ένα άλλο σετ χαρακτηριστικών συναρτήσεων καθαρής
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 9: Θερμοδυναμική αερίων. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 9: Θερμοδυναμική αερίων Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι ο ορισμός του ιδανικού αερίου με βάση το χημικό
1. Παράρτηµα. Θερµοδυναµικής της ατµόσφαιρας
1. Παράρτηµα. Θερµοδυναµικής της ατµόσφαιρας Αδιαβατικές µεταβολές στην ατµόσφαιρα Ο ατµοσφαιρικός αέρας µπορεί να θεωρηθεί ως µίγµα δύο αερίων, του ξηρού αέρα ο οποίος αποτελεί ιδανικό αέριο, µε την γνωστή
ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική + + δυναμική
ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Εσωτερική ενέργεια: Το άθροισμα της κινητικής (εσωτερική κινητική ενέργεια ή θερμική ενέργεια τυχαία, μη συλλογική κίνηση) και δυναμικής ενέργειας (δεσμών κλπ) όλων των σωματιδίων (ατόμων
O δεύτερος νόµος της θερµοδυναµικής
O δεύτερος νόµος της θερµοδυναµικής O δεύτερος νόµος της θερµοδυναµικής Γιατί χρειαζόµαστε ένα δεύτερο νόµο ; Ζεστό, Τζ Κρύο, Τκ Ζεστό, Τζ Κρύο, Τκ q Tε Τε Ζεστό, Τζ Κρύο, Τκ q q Tε Τε Πιο ζεστό Πιο κρύο
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 1 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 Θέμα 1 Με βάση τα θεωρήματα Carnot αποδείξτε
ΘΕΡΜΟΔΥΝΑΜΙΚΗ. 2.1 Εισαγωγή
ΚΕΦΑΛΑΙΟ ΔΕΥΤΕΡΟ: ΘΕΡΜΟΔΥΝΑΜΙΚΗ 1 2 2.1 Εισαγωγή ΘΕΡΜΟΔΥΝΑΜΙΚΗ Σύστημα: Ένα σύνολο σωματιδίων που τα ξεχωρίζουμε από τα υπόλοιπα για να τα μελετήσουμε ονομάζεται σύστημα. Οτιδήποτε δεν ανήκει στο σύστημα
Σχέσεις µεταξύ θερµοδυναµικών παραµέτρων σε κλειστά συστήµατα σταθερής σύστασης
Σχέσεις µεταξύ θερµοδυναµικών παραµέτρων σε κλειστά συστήµατα σταθερής σύστασης Κλειστό σύστηµα σταθερής σύστασης Η ενθαλπία θεωρούµενη ως συνάρτηση της θερµοκρασίας και της πίεσης, Η=Η(T, p), δίνει :
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ 1 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 Θέμα 1 Επιλέγοντας το κατάλληλο διάγραμμα φάσεων για ένα πραγματικό
Υπό Γεωργίου Κολλίντζα
ΔΕΙΓΜΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΧΙΛΙΑΔΩΝ ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΦΥΣΙΚΩΝ (ΒΑΣΙΚΟ+ΣΥΝΕΞΕΤΑΖΟΜΕΝΟ) ΠΟΥ ΔΙΑΘΕΤΟΥΜΕ ΚΑΙ ΠΟΥ ΑΝΟΙΓΟΥΝ ΤΟ ΔΡΟΜΟ ΓΙΑ ΤΟΝ ΔΙΟΡΙΣΜΟ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΜΑΣ ΣΤΟ ΔΗΜΟΣΙΟ Υπό Γεωργίου Κολλίντζα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική. Διαγράμματα Ισορροπίας Φάσεων. Διδάσκων : Καθηγητής Γ. Φλούδας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θερμοδυναμική Διαγράμματα Ισορροπίας Φάσεων Διδάσκων : Καθηγητής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:
ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια (όπως ορίζεται στη μελέτη της μηχανικής τέτοιων σωμάτων): Η ενέργεια που οφείλεται σε αλληλεπιδράσεις και κινήσεις ολόκληρου του μακροσκοπικού σώματος, όπως η μετατόπιση
Θερμοδυναμική. Ενότητα 6: Εντροπία. Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ
Θερμοδυναμική Ενότητα 6: Εντροπία Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων.
Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων. Θεωρώντας τα αέρια σαν ουσίες αποτελούμενες από έναν καταπληκτικά μεγάλο αριθμό μικροσκοπικών
1 IΔΑΝΙΚΑ ΑΕΡΙΑ 1.1 ΓΕΝΙΚΑ
1 1 IΔΑΝΙΚΑ ΑΕΡΙΑ 1.1 ΓΕΝΙΚΑ Θα αρχίσουμε τη σειρά των μαθημάτων της Φυσικοχημείας με τη μελέτη της αέριας κατάστασης της ύλης. Η μελέτη της φύσης των αερίων αποτελεί ένα ιδανικό μέσο για την εισαγωγή
P(n 1, n 2... n k ) = n 1!n 2! n k! pn1 1 pn2 2 pn k. P(N L, N R ) = N! N L!N R! pn L. q N R. n! r!(n r)! pr q n r, n! r 1!r 2! r k!
Ασκήσεις Πιθανοτήτων - Στατιστικής Πρόβλημα 1 (Η Πολυωνυμική Κατανομή). Στο πρόβλημα αυτό θα μελετήσουμε μία γενίκευση της διωνυμικής κατανομής που συναντήσαμε στο μάθημα. Συγκεκριμένα, θα δούμε τί συμβαίνει
[6] Να επαληθευθεί η εξίσωση του Euler για (i) ιδανικό αέριο, (ii) πραγματικό αέριο
[1] Να βρεθεί ο αριθμός των ατόμων του αέρα σε ένα κυβικό μικρόμετρο (κανονικές συνθήκες και ιδανική συμπεριφορά) (Τ=300 Κ και P= 1 atm) (1atm=1.01x10 5 Ν/m =1.01x10 5 Pa). [] Να υπολογισθεί η απόσταση
Χημικές Διεργασίες: Χημική Ισορροπία η σύνδεση με τη Θερμοδυναμική
: Χημική Ισορροπία η σύνδεση με τη Θερμοδυναμική Η Θερμοδυναμική σε μία τάξη Θεμελιώδης συνάρτηση: F(U, S, V) = 0 Ενέργεια, ικανότητα παραγωγής έργου Εντροπία, μη ικανότητα παραγωγής έργου, μη διαθεσιμότητα
εύτερος Θερμοδυναμικός Νόμος Εντροπία ιαθέσιμη ενέργεια Εξέργεια
εύτερος Θερμοδυναμικός Νόμος Εντροπία ιαθέσιμη ενέργεια Εξέργεια Χαρακτηριστικά Θερμοδυναμικών Νόμων 0 ος Νόμος Εισάγει την έννοια της θερμοκρασίας Αν Α Γ και Β Γ τότε Α Β, όπου : θερμική ισορροπία ος
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΕΝΤΡΟΠΙΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ
ΕΝΤΡΟΠΙΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ 1 ΑΣΚΗΣΗ 1 Το δοχείο του σχήματος είναι απομονωμένο (αδιαβατικά τοιχώματα). Το διάφραγμα χωρίζει το δοχείο σε δύο μέρη. Το αριστερό μέρος έχει όγκο 1 και περιέχει ιδανικό αέριο
Φυσική Κατεύθυνσης Β Λυκείου.
Φυσική Κατεύθυνσης Λυκείου. Διαγώνισμα στην Θερμοδυναμική. Ζήτημα 1 o. ) Να επιλέξτε την σωστή απάντηση. 1) Ορισμένη ποσότητα ιδανικού αερίου μεταβάλλεται από κατάσταση σε κατάσταση. Τότε: α) Η μεταβολή
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Θερμοδυναμική
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Θερμοδυναμική Ενότητα 7 : Εντροπία Δρ Γεώργιος Αλέξης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Εφηρμοσμένη Θερμοδυναμική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφηρμοσμένη Θερμοδυναμική Ενότητα 11: Μίγματα Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Άδειες
Ακρίβεια αποτελεσμάτων σχεδιασμού διεργασιών ΜΑΔ, 2013
Ακρίβεια αποτελεσμάτων σχεδιασμού διεργασιών ΜΑΔ, 2013 1 ΣΚΟΠΟΣ και ΑΝΤΙΚΕΙΜΕΝΟ ΘΧΜ Σκοπός της θερμοδυναμικής χημικής μηχανικής είναι η παροχή των κατάλληλων θεωρητικών γνώσεων και των απαραίτητων υπολογιστικών-μεθοδολογικών
ΘΕΡΜΟΧΗΜΕΙΑ Δημήτρης Παπαδόπουλος, χημικός Βύρωνας, 2015
ΘΕΡΜΟΧΗΜΕΙΑ Δημήτρης Παπαδόπουλος, χημικός Βύρωνας, 2015 ΘΕΡΜΟΧΗΜΕΙΑ Κάθε ουσία, εκτός από άτομα μόρια ή ιόντα, περιέχει χημική ενέργεια. H χημική ενέργεια οφείλεται στις δυνάμεις του δεσμού (που συγκρατούν
Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις
Φυσικοχημεία Εργαστηριακές Ασκήσεις Άσκηση α: Συντελεστής Joule Thomson (Τζουλ Τόμσον ) Αθανάσιος Τσεκούρας Τμήμα Χημείας Θεωρία 3 Μετρήσεις 6 3 Επεξεργασία Μετρήσεων 6 Σελίδα Θεωρία Η καταστατική εξίσωση
Καταστατική εξίσωση ιδανικών αερίων
Καταστατική εξίσωση ιδανικών αερίων 21-1. Από τι εξαρτάται η συμπεριφορά των αερίων; Η συμπεριφορά των αερίων είναι περισσότερο απλή και ομοιόμορφη από τη συμπεριφορά των υγρών και των στερεών. Σε αντίθεση
Υπολογισμός συνάρτησης μεταφοράς σε Υδραυλικά συστήματα. Αντίσταση ροής υγρού. Μανομετρικό Υψος h. Υψος h2. Ροή q
Υπολογισμός συνάρτησης μεταφοράς σε Υδραυλικά συστήματα. Αντίσταση ροής υγρού Υψος h Μανομετρικό Υψος h Υψος h Σχήμα.4 Ροή q Ας υποθέσουμε ότι έχουμε δύο δεξαμενές που επικοινωνούν με ένα σωλήνα όπως ακριβώς
ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ. ΕΝΕΡΓΕΙΑ ΔΙΕΡΓΑΣΙΩΝ (Μεταβατικές) ΕΝΕΡΓΕΙΑ ΣΥΣΤΗΜΑΤΟΣ ΕΡΓΟ ΘΕΡΜΟΤΗΤΑ
Έργο - Θερμότητα ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ ΕΝΕΡΓΕΙΑ ΔΙΕΡΓΑΣΙΩΝ (Μεταβατικές) ΕΡΓΟ ΘΕΡΜΟΤΗΤΑ ΕΝΕΡΓΕΙΑ ΣΥΣΤΗΜΑΤΟΣ ΕΞΩΤΕΡΙΚΗ (Κινητική, Δυναμική) ΕΣΩΤΕΡΙΚΗ (Εσωτερική [U], Ενθαλπία [Η]) Χαρακτηριστικά και Σύμβαση
ΑΡΧΕΣ ΜΕΤΑΦΟΡΑΣ ΘΕΡΜΟΤΗΤΑΣ
1 ΑΡΧΕΣ ΜΕΤΑΦΟΡΑΣ ΘΕΡΜΟΤΗΤΑΣ Προβλήματα μεταφοράς θερμότητας παρουσιάζονται σε κάθε βήμα του μηχανικού της χημικής βιομηχανίας. Ο υπολογισμός των θερμικών απωλειών, η εξοικονόμηση ενέργειας και ο σχεδιασμός
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
Ακαδημαϊκό έτος 0-3 Στατιστική Θερμοδυναμική ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Επώνυμο: Όνομα: Προσωπικός Αριθμός: Ημερομηνία: Βαθμολογία θεμάτων 3 4 5 6 7 8 9 0 Γενικός Βαθμός η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΗ "ΦΥΣΙΚΟΧΗΜΕΙΑ"
12 η Διάλεξη Θερμοδυναμική
12 η Διάλεξη Θερμοδυναμική Φίλιππος Φαρμάκης Επ. Καθηγητής 1 ΘΕΡΜΟΔΥΝΑΜΙΚΗ Εισαγωγικά Προσέγγιση των μεγεθών όπως πίεση, θερμοκρασία, κλπ. με άλλο τρόπο (διαφορετικό από την στατιστική φυσική) Ασχολείται
ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-V ΑΣΚΗΣΗ Α2 - JOULE-THOMSON
ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-V ΑΣΚΗΣΗ Α2 - JOULE-THOMSON Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη http://tccc.iesl.forth.gr/education/local.html
ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ
ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ Διδάσκοντες: Κώστας Περράκης, Δημοσθένης Γεωργίου http://eclass.upatras.gr/ p Βιβλιογραφία Advanced Thermodynamics for Engineers, Kenneth, Jr. Wark Advanced thermodynamics engineering
Φυσικοχημεία για Βιολόγους. Εργ. Φυσικοχημείας. Τηλ
Ιωάννης Πούλιος, Καθηγητής Εργ. Φυσικοχημείας Α.Π.Θ. Τηλ. 2310 997785 poulios@chem.auth.gr http://photocatalysisgroup.web.auth.gr/ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΓΕΝΙΚΕΣ ΕΝΟΙΕΣ ΠΡΩΤΟ ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ ΘΕΡΜΟΧΗΜΕΙΑ ΔΕΥΤΕΡΟ
ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αμπελόκηποι, Αθήνα Τηλ.: ,
ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Τηλ.: 69 97 985, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ.: 69 97 985, e-mail: edlag@otenet.gr, www.edlag.gr ΣΜΑΡΑΓΔΑ ΣΑΡΑΝΤΟΠΟΥΛΟΥ, MSC, ΥΠΟΨΗΦΙΑ ΔΙΔΑΚΤΩΡ ΕΜΠ KENTΡΟ
ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014
ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1 Α4 και δίπλα το γράμμα
1bar. bar; = = y2. mol. mol. mol. P (bar)
Τµήµα Χηµείας Μάθηµα: Φυσικοχηµεία Ι Εξέταση: Περίοδος Σεπτεµβρίου -3 (7//4). Σηµειώστε µέσα στην παρένθεση δίπλα σε κάθε µέγεθος αν είναι εντατικό (Ν) ή εκτατικό (Κ): όγκος (Κ), θερµοκρασία (Ν), πυκνότητα
Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 4: Θερμοδυναμική και Κινητική της Δομής. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών
Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ Ενότητα 4: Θερμοδυναμική και Κινητική της Δομής Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΠΡΟΧΩΡΗΜΕΝΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ
ΠΡΟΧΩΡΗΜΕΝΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ Δ. Τσιπλακίδης Πρόγραμμα Μεταπτυχιακών Σπουδών Κατεύθυνση: «Φυσική Χημεία Υλικών και Ηλεκτροχημεία» ΠΡΟΧΩΡΗΜΕΝΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΠΡΩΤΟΣ ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ Βασικές
Υποθέστε ότι ο ρυθμός ροής από ένα ακροφύσιο είναι γραμμική συνάρτηση της διαφοράς στάθμης στα δύο άκρα του ακροφυσίου.
ΕΡΩΤΗΜΑ Δίνεται το σύστημα δεξαμενών του διπλανού σχήματος, όπου: q,q : h,h : Α : R : οι παροχές υγρού στις δύο δεξαμενές, τα ύψη του υγρού στις δύο δεξαμενές, η διατομή των δεξαμενών και η αντίσταση ροής
ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:
ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια (όπως ορίζεται στη μελέτη της μηχανικής τέτοιων σωμάτων): Η ενέργεια που οφείλεται σε αλληλεπιδράσεις και κινήσεις ολόκληρου του μακροσκοπικού σώματος, όπως η μετατόπιση
Θερμοδυναμική του ατμοσφαιρικού αέρα
6 Θερμοδυναμική του ατμοσφαιρικού αέρα 6. Θερμοδυναμικό σύστημα Κάθε ποσότητα ύλης που περιορίζεται από μια κλειστή (πραγματική ή φανταστική) επιφάνεια. Ανοικτό σύστημα: Αν από την οριακή αυτή επιφάνεια
21/5/2008. Θερµοχηµεία
Θερµοχηµεία Θερµοχηµεία Είναι η µελέτη των θερµικών φαινοµένων που συνοδεύουν µια χηµική αντίδραση. Θερµότητα αντίδρασης υπό σταθερή πίεση Θερµότητα αντίδρασης υπό σταθερή πίεση Η θερµοδυναµική συνάρτηση
Περιεχόμενα. Πρόλογος Κεφάλαιο 1. Θεμελιώδεις Αρχές και Ορισμοί Κεφάλαιο 2. Το Πρώτο Θερμοδυναμικό Αξίωμα... 35
Περιεχόμενα Πρόλογος... 11 Κεφάλαιο 1. Θεμελιώδεις Αρχές και Ορισμοί... 13 1.1 Tι Είναι Θερμοδυναμική...13 1.2 Σύστημα...14 1.3 Θερμοδυναμικά Καταστατικά Μεγέθη...14 1.4 Εντατικά, Εκτατικά και Ειδικά Καταστατικά
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Θερμοδυναμική
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Θερμοδυναμική Ενότητα 5 : Α Θερμοδυναμικός Νόμος Δρ Γεώργιος Αλέξης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό
Κάθε ποσότητα ύλης που περιορίζεται από μια κλειστή
6 Θερμοδυναμική του ατμοσφαιρικού αέρα 6. Θερμοδυναμικό μ σύστημα Κάθε ποσότητα ύλης που περιορίζεται από μια κλειστή (πραγματική ή φανταστική) επιφάνεια. Ανοικτό σύστημα: Αν από την οριακή αυτή επιφάνεια
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Θερμοδυναμική
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Θερμοδυναμική Ενότητα 1 : Εισαγωγή Δρ Γεώργιος Αλέξης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) Α. ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ
ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής
Γεωχημεία. Ενότητα 1: Γεωχημικές διεργασίες στο εσωτερικό της γης. Χριστίνα Στουραϊτη Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας και Γεωπεριβάλλοντος
Γεωχημεία Ενότητα 1: Γεωχημικές διεργασίες στο εσωτερικό της γης Χριστίνα Στουραϊτη Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας και Γεωπεριβάλλοντος Γεωχημικές διεργασίες στο εσωτερικό της γης Στοιχεία Θερμοδυναμικής
ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-ΙΙΙ ΤΑ ΘΕΡΜΟ ΥΝΑΜΙΚΑ ΑΞΙΩΜΑΤ
ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-ΙΙΙ ΤΑ ΘΕΡΜΟ ΥΝΑΜΙΚΑ ΑΞΙΩΜΑΤΑ Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη http://tccc.iesl.forth.gr/education/local.html
ΕΞΙΣΩΣΗ CLAUSIUS-CLAPEYRON ΘΕΩΡΙΑ
ΕΞΙΣΩΣΗ CLAUSIUS-CLAEYRON ΘΕΩΡΙΑ Περιεχόμενα 1. 3D Διάγραμμα Φάσης 2. Λανθάνουσα θερμότητα 3. Εξίσωση Clausius Clapeyron 4. Συμπιεστότητα 5. Θερμική διαστολή 6. Θερμοχωρητικότητα 1 στερεό στερεό+υγρό υγρό
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική. Απόκλιση από την Ιδανική Συμπεριφορά Θερμοδυναμική ισορροπία Καταστατικές εξισώσεις
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θερμοδυναμική Απόκλιση από την Ιδανική Συμπεριφορά Θερμοδυναμική ισορροπία Καταστατικές εξισώσεις Διδάσκων : Καθηγητής Γ. Φλούδας Άδειες Χρήσης Το παρόν
ΣΥΝΟΠΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΗΣ 09/2014
ΣΥΝΟΠΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΗΣ 09/2014 ΘΕΜΑ 1 Ι. α) Κύκλος λειτουργίας στο επίπεδο P-V. P 1 2 1-2 και 3-4: ισοβαρείς (υπό σταθερές P 2 και P 1, αντίστοιχα, P 1
ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014
ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1 Α4 και δίπλα το γράμμα που αντιστοιχεί