Υπολογισμός συνάρτησης μεταφοράς σε Υδραυλικά συστήματα. Αντίσταση ροής υγρού. Μανομετρικό Υψος h. Υψος h2. Ροή q
|
|
- Καλόγερος Δουμπιώτης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Υπολογισμός συνάρτησης μεταφοράς σε Υδραυλικά συστήματα. Αντίσταση ροής υγρού Υψος h Μανομετρικό Υψος h Υψος h Σχήμα.4 Ροή q Ας υποθέσουμε ότι έχουμε δύο δεξαμενές που επικοινωνούν με ένα σωλήνα όπως ακριβώς φαίνεται στο σχήμα.4. Αν το ύψος στη μία δεξαμενή είναι h και στην δεύτερη h, και αν h<h τότε θα έχουμε ροή υγρού από τη δεξαμενή με το μεγαλύτερο ύψος προς την δεξαμενή με το μικρότερο ύψος. Ονομάζουμε ροή υγρού τη μεταβολή του όγκου στη μονάδα του χρόνου και συμβολίζουμε ως εξής: dv () t q : ροή, V : όγκος και επομένως έχουμε: q Η διαφορά ύψους των δύο δεξαμενών h hh αποτελεί την υδροστατική πίεση και ονομάζεται μανομετρικό ύψος. Από την φυσική ισχύει: dv () t h R. q R, όπου R η αντίσταση ροής του σωλήνα. Δηλαδή η υδροστατική πίεση είναι ίση με την αντίσταση ροής του σωλήνα επί την ροή. Σε έναν σωλήνα όπου έχουμε στρωτή ροή ισχύει: K.. n L R 4. gd. όπου : K σταθερά n Συντελεστής τριβής του υγρού L Μήκος του σωλήνα D Εσωτερική διάμετρος του σωλήνα g επιτάχυνση της βαρύτητας Συστήματα Αυτομάτου Ελέγχου ΙΙ Γιώργος Σούλτης 3
2 Χωρητικότητα δοχείου Ας υποθέσουμε ότι έχουμε μια δεξαμενή διατομής Ε και η δεξαμενή γεμίζει με ροή q (Σχήμα.5) Ροή q Μεταβολή Υψους Δh Υψος h Σχήμα.5 Διατομή Δεξαμενής Ε dv () t όπως είπαμε έχουμε: q, ο όγκος όμος είναι : V E. h και επομένως έχουμε dh() t ML ότι : q E. q Eh Παράδειγμα Ροή q Υψος h Αντίστασση ροής R Σχήμα.6 Διατομή Δεξαμενής Ε Ροή q Συστήματα Αυτομάτου Ελέγχου ΙΙ Γιώργος Σούλτης 3
3 Στο σύστημα της δεξαμενής του παραπάνω σχήματος.6 έχουμε είσοδο υγρού από τη ροή q και έξοδο από την ροή q. Δηλαδή ένα μέρος θα φεύγει από τη ροή q και θα ανεβαίνει η στάθμη του υγρού. Θέλουμε την συνάρτηση μεταφοράς με είσοδο τη ροή q και έξοδο το ύψος h, έτσι ώστε να μπορούμε να δούμε πως ανεβαίνει η στάθμη με το χρόνο. Αν ονομάσουμε q h την ροή ανόδου της στάθμης στη δεξαμενή θα ισχύει: q q qh Και από αυτό έχουμε: h του Lplce έχουμε: dh() t q q q q E αν τα μεταφέρουμε στο πεδίο q q Eh h () q() R h RE q Eh ( E) h h R R R μεταφοράς : h() R H() q RE και επομένως έχουμε: και άρα η συνάρτηση Παράδειγμα Ροή q Υψος h Αντίστασση ροής R Διατομή Δεξαμενής Ε Ροή q Υψος h Αντίστασση ροής R Διατομή Δεξαμενής Ε Ροή q3 Σχήμα.7 Στις δεξαμενές που βλέπουμε (Σχήμα.7) θέλουμε να υπολογίσουμε τη συνάρτηση μεταφοράς του συστήματος με είσοδο τη ροή q και έξοδο το ύψος h και του συστήματος με είσοδο το q και έξοδο το h. Συστήματα Αυτομάτου Ελέγχου ΙΙ Γιώργος Σούλτης 33
4 Γράφουμε τις σχέσεις όπως και στο προηγούμενο παράδειγμα, δηλαδή: Στη δεξαμενή έχουμε: q q q αν το γράψουμε στο πεδίο του Lplce έχουμε: h q q q q E h q q E h h() ( ) h( ) ( ) ( ) ( ) ( ) ( ) ( ) () R Από τη σχέση () μπορούμε να υπολογίσουμε την συνάρτηση μεταφοράς : H () h () q () από τη σχέση () έχουμε: h ER h R q Eh q h H R R q ER Παρατήρηση: παρατηρούμε ότι η δεύτερη δεξαμενή δεν παίζει κανένα ρόλο στην συνάρτηση μεταφοράς που προαναφέραμε. Αυτό είναι λογικό αν δούμε την φυσική του συστήματος. Με τον ίδιο τρόπο στη δεξαμενή έχουμε: q q q q E h h () ( ) h( ) 3( ) ( ) ( ) αλλά το R επομένως έχουμε: h h E h () () R R q () h() R και Από τη σχέση της προηγούμενης συνάρτησης μεταφοράς, αντικαθιστούμε το h() και έχουμε από τη σχέση (): h h q h ( E R ) E h E h h R R ER R R Και τελικά έχουμε: h() R H() q ( E R )( E R ) Παράδειγμα 3 Ροή q Υψος h Δεξαμενή Αντίστασση ροής R Υψος h h Δεξαμενή Αντίστασση ροής R Διατομή Δεξαμενής E q Διατομή Δεξαμενής E q3 Σχήμα.8 Συστήματα Αυτομάτου Ελέγχου ΙΙ Γιώργος Σούλτης 34
5 Στο συγκρότημα δεξαμενών του σχήματος.8 θέλουμε και πάλι να υπολογίσουμε την συνάρτηση μεταφοράς: H () h () q () και h () H() q () Στη Δεξαμενή έχουμε: q Eh q () Στη Δεξαμενή με τον ίδιο τρόπο έχουμε: q E h h () ( ) ( ) () R Η ροή όμως στο σωλήνα που συνδέει τις δύο δεξαμενές είναι: q () h h R (3) Από τις 3 εξισώσεις θα λύσουμε και θα πάρουμε τις συναρτήσεις που θέλουμε: Κατ αρχήν λύνουμε την εξίσωση (3) ως προς h () και στη συνέχεια το q h R ER ( R R ) αντικαθιστούμε στη σχέση (): h q R h και στην συνέχεια: h ER ER q Eh h q ( q R h ) R R R R R ( ER ) ER ( ER ) q h q h R R ( R R ER R ) Αντικαθιστούμε στη σχέση () και έχουμε: ( ER ) E( R RE R R ) ( ER ) q Eh h q h ( R R ER R ) ( R RE R R ) E E R R ( E R E R E R ) και άρα συνάρτηση μεταφοράς: H () h () q () = R E R ( R R ) E E R R ( E R E R E R ) Συστήματα Αυτομάτου Ελέγχου ΙΙ Γιώργος Σούλτης 35
6 Υπολογισμός συνάρτησης μεταφοράς σε Πνευματικά συστήματα Ροή αερίου και Αντίσταση ροής αερίου Η ροή των αερίων είναι αντίστοιχη με εκείνη της ροής των υγρών. Ονομάζουμε ροή αερίου και συμβολίζουμε με W, τη μάζα του αερίου που διέρχεται από μια διατομή ενός σωλήνα στη μονάδα του χρόνου. Αν λοιπόν με Μ συμβολίζουμε τη Μάζα του αερίου ισχύει: Ροή αερίου W Αντίσταση ροής R Πίεση P Πίεση P dm () t Wt (). Η αιτία που δημιουργεί τη ροή ενός αερίου μέσα σε ένα σωλήνα είναι είναι η διαφορά πιέσεων στα άκρα του σωλήνα. Για στρωτή ροή ισχύει μια σχέση ανάλογη με εκείνη των υγρών. Αν P είναι η διαφορά πιέσεων μέσα στο σωλήνα δηλαδή P P P τότε ισχύει: P RW. και βέβαια ισχύει και: P( t) RW. ( t) όπου R είναι η αντίσταση ροής αερίου στο σωλήνα. Χωρητικότητα δοχείου Ροή αερίου W V=Όγκος δοχείου P=Πίεση αερίου Μ=Μάζα αερίου Αν θεωρήσουμε ότι έχουμε ένα δοχείο που έχει όγκο V και από ένα σωλήνα εισέρχεται αέριο τότε από τη φυσική γνωρίζουμε ότι: M PV M B rt Όπου: M η μάζα του αερίου P η πίεση του αερίου M B το μοριακό βάρος του αερίου Η παραπάνω σχέση μπορεί να γραφεί ως εξής: Αν ονομάσουμε χωρητικότητα του δοχείου το εξής: C M r Η σταθερά των αερίων T η απόλυτη θερμοκρασία του αερίου MV B M P rt C P και ακόμα: M ( t) C P( t) και στη συνέχεια: dm ( t) dp( t) C και τελικά : Lplce τη σχέση έχουμε: W C P M N rt B τότε έχουμε: dp() t W () t C και αν γράψουμε στο πεδίο του Συστήματα Αυτομάτου Ελέγχου ΙΙ Γιώργος Σούλτης 36
7 Παράδειγμα Πίεση P Ροή αερίου W Χωρητικότητα Δοχείου C Ροή αερίου W Αντίσταση ροής R Πίεση Δοχείου P Σχήμα.9 Στο δοχείο του σχήματος.9 εισέρχεται αέριο από το σωλήνα εισόδου. Η πίεση εισόδου είναι P, η αντίσταση ροής του σωλήνα R, και το δοχείο έχει χωρητικότητα C. Θέλουμε να υπολογίσουμε την συνάρτηση μεταφοράς του συστήματος με είσοδο την πίεση εισόδου και έξοδο την πίεση στο δοχείο, δηλαδή: H() Σύμφωνα με σχέσεις που περιγράψαμε παραπάνω έχουμε: P P RW () και P () P () W C P () Από τις σχέσεις () και () έχουμε: P P RC P P RC P P P ( ) P P( RC ) H P RC Παράδειγμα Ροή αερίου W Χωρητικότητα Δοχείου C Ροή αερίου W Χωρητικότητα Ροή αερίου W3 Πίεση P=0 Δοχείου ατμοσφαιρικη C Πίεση P Αντίσταση ροής R Πίεση Δοχείου P Αντίσταση ροής R Πίεση Δοχείου P3 Αντίσταση ροής R3 Σχήμα.0 Συστήματα Αυτομάτου Ελέγχου ΙΙ Γιώργος Σούλτης 37
8 Στο σύστημα του σχήματος.0 έχουμε δύο δοχεία τα οποία συνδέονται στη σειρά με σωλήνες και έχουμε ροή αερίου. Το αέριο εφαρμόζεται με μια πίεση P στο πρώτο δοχείο και καταλήγει στην ατμόσφαιρα από το δεύτερο δοχείο (πίεση την οποία θεωρούμε πίεση αναφοράς δηλαδή μηδέν. Οι αντιστάσεις των σωλήνων και οι ροές σημειώνονται ακριβώς στο σχήμα.0. Δίνονται ακόμα και οι χωρητικότητες των δοχείων, όπως σημειώνονται στο σχήμα. Θέλουμε να βρούμε την συνάρτηση μεταφοράς του συστήματος με είσοδο P και έξοδο την πίεση P3, δηλαδή την πίεση στο δεύτερο δοχείο. Δηλαδή θέλουμε να υπολογίσουμε: Στον πρώτο σωλήνα έχουμε: P P RW () P3 () H() P() Στον πρώτο δοχείο έχουμε: W W CP () Στο ενδιάμεσο σωλήνα έχουμε: P P3 RW (3) Στον δεύτερο δοχείο έχουμε: W W3 C P3 (4) Και στον τελικό σωλήνα έχουμε: P3 P R3W 3 και επειδή θεωρούμε την ατμοσφαιρική πίεση μηδέν η προηγούμενη σχέση γίνεται: P3 R3W 3 (5) Προσθέτω τις σχέσεις () και (3) κατά μέλη και εχουμε: P P RW R W (6) 3 Λύνουμε τη σχέση () ως προς W () και έχουμε: W C P W Στη συνέχεια αντικαθιστούμε στη σχέση (6) και έχουμε: P P3 RC P RW RW (7) P P R C P W ( R R ) 3 Από τη σχέση (3) έχουμε: P RW P3 και η σχέση (7) γίνεται: P P R C ( R W P ) W ( R R ) 3 3 P P R C R W R C P W ( R R ) 3 3 P P R C P W ( R R R C R ) 3 3 P P ( R C ) W ( R R R C R ) 3 Από τη σχέση (4) και (5) έχουμε: P3 ( CR3 ) P3 W CP3 W3 CP3 R R 3 3 Και τελικά αν αντικαταστήσουμε στην προηγούμενη σχέση έχουμε: Συστήματα Αυτομάτου Ελέγχου ΙΙ Γιώργος Σούλτης 38
9 ( C R ) P P P ( R C ) ( R R R C R ) R3 P ( R C ) R P ( R R R C R )( C R ) P () R3 P ( R C ) R ( R R R C R )( C R ) P () R3 P3() R3 H() P P ( R C ) R ( R R R C R )( C R ) Υπολογισμός συνάρτησης μεταφοράς σε Συστήματα μεταφοράς θερμότητας Θερμική Αντίσταση Ράβδος διατομής α Θερμοκρασία θ Θερμοκρασία θ Μήκος λ Αν υποθέσουμε ότι έχουμε δύο χώρους οι οποίοι έχουν θερμοκρασίες θ και θ αντίστοιχα όπου θ<θ. Αν οι δύο χώροι ενώνονται με μια ράβδο μήκους λ και διατομή α, τότε θα έχουμε ροή ποσού θερμότητας Q από τον χώρο υψηλότερης θερμοκρασίας προς αυτόν με τη μικρότερη. Το ποσό θερμότητας που διέρχεται από την διατομή α στη μονάδα του χρόνου ονομάζεται Θερμική ένταση και το συμβολίζουμε με q. Η θερμική ένταση δηλαδή είναι: Από την θερμοδυναμική ξέρουμε ότι ισχύει: dq() t qt () k q ( ), όπου k : ο συντελεστής θερμικής αγωγιμότητας της ράβδου. Ονομάζουμε θερμική αντίσταση την ποσότητα: R και επομένως ισχύει (κατ k αναλογία με τον ηλεκτρισμό) : Rq, όπου Θ είναι η θερμοκρασιακή διαφορά στα άκρα της ράβδου. Η παραπάνω σχέση ισχύει και ως εξής: ( t) Rq( t) Συστήματα Αυτομάτου Ελέγχου ΙΙ Γιώργος Σούλτης 39
10 Θερμοχωρητικότητα Q Δθ Αν σε ένα σώμα προσδώσουμε ποσό θερμότητας Q και ανέβει η θερμοκρασία του από μια αρχική θερμοκρασία θ σε μια τελική θ, δηλαδή έχουμε θερμοκρασιακή διαφορά Θ, τότε ισχύει: Q C, όπου C είναι η θερμοχωρητικότητα του σώματος. Η θερμοχωρητικότητα ενός σώματος είναι το γινόμενο της ειδική θερμότητας του σώματος επί τη μάζα του δηλαδή: C και Μ η μάζα του σώματος. cm Αν την παραπάνω σχέση τη γράψουμε με διαφορικά έχουμε:, όπου c: η ειδική θερμότητα του σώματος dq( t) d( t) d( t) C q() t C και αν γράψουμε τη σχέση στο πεδίο του Lplce έχουμε: q C ή Παράδειγμα q C Χώρος θ Χώρος θ Θερμοχωριτητότητα C Σχήμα. Θερμική Αντίσταση R Έχουμε δύο χώρους όπως φαίνεται στο σχήμα. οι δύο χώροι διαχωρίζονται από ένα τοίχο που έχει θερμική αντίσταση R. O χώρος έχει θερμοχωρητικότητα C, θέλουμε να βρούμε τη συνάρτηση μεταφοράς του συστήματος με είσοδο θ και έξοδο θ, δηλαδή ζητούμε την συνάρτηση μεταφοράς: Έχουμε τις σχέσεις: Rq Για το χώρο η θερμοκρασία είναι: q C Από τις δύο σχέσεις έχουμε: () H() () Συστήματα Αυτομάτου Ελέγχου ΙΙ Γιώργος Σούλτης 40
11 RC RC () ( ) RC ( RC ) H Παράδειγμα Χώρος 0 θ Χώρος θ Θερμοχωριτητότητα C Χώρος θ Θερμοχωριτητότητα C Σχήμα. Θερμική Αντίσταση R Θερμική Αντίσταση R Έχουμε τρείς χώρους όπως φαίνεται στο σχήμα. οι δύο χώροι διαχωρίζονται από τοίχους που έχουν θερμική αντίσταση R και R όπως φαίνεται στο σχήμα.. O χώρος έχει θερμοχωρητικότητα C, και ό χώρος έχει θερμοχωρητικότητα C. θέλουμε να βρούμε τη συνάρτηση μεταφοράς του συστήματος με είσοδο θ και έξοδο τη θερμοκρασία θ. Έχουμε τις σχέσεις: Rq () και ομοίως Rq Όπου q, q είναι η ροή θερμότητας μέσω των τοίχων R και R Για το χώρο η θερμοκρασία είναι: q C (3) δηλαδή η ροή θερμότητας q () ανεβάζει τη θερμοκρασία του χώρου Για το χώρο ισχύει: q C q (4) δηλαδή η ροή q () αναλώνεται για να ανεβάσει την θερμοκρασία του χώρου και για την ροή q () Από την εξίσωση () και (4) έχουμε: Rq και q C C και άρα έχουμε: () R C R C ( R C ) R C Από την εξίσωση () και (3) έχουμε: R q R C ( R C ) Στη συνέχεια έχουμε: Συστήματα Αυτομάτου Ελέγχου ΙΙ Γιώργος Σούλτης 4
12 ( R C )( R C ) R C H () ( R C )( R C ) R C () ( R C )( R C ) R C Συστήματα Αυτομάτου Ελέγχου ΙΙ Γιώργος Σούλτης 4
μεταβάλλουμε την απόσταση h της μιας τρύπας από την επιφάνεια του υγρού (π.χ. προσθέτουμε ή αφαιρούμε υγρό) έτσι ώστε h 2 =2 Α 2
ΑΣΚΗΣΕΙΣ ΣΤΑ ΡΕΥΣΤΑ 1 Μια κυλινδρική δεξαμενή ακτίνας 6m και ύψους h=5m είναι γεμάτη με νερό, βρίσκεται στην κορυφή ενός πύργου ύψους 45m και χρησιμοποιείται για το πότισμα ενός χωραφιού α Ποια η παροχή
Διαβάστε περισσότεραΝα υπολογίσετε τη μάζα 50 L βενζίνης. Δίνεται η σχετική πυκνότητά της, ως προς το νερό ρ σχ = 0,745.
1 Παράδειγμα 101 Να υπολογίσετε τη μάζα 10 m 3 πετρελαίου, στους : α) 20 ο C και β) 40 ο C. Δίνονται η πυκνότητά του στους 20 ο C ρ 20 = 845 kg/m 3 και ο συντελεστής κυβικής διαστολής του β = 9 * 10-4
Διαβάστε περισσότεραΔιαγώνισμα Φυσικής Γ Λυκείου 5/3/2017
Διαγώνισμα Φυσικής Γ Λυκείου 5/3/2017 ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ Θέμα Α 1) Το δοχείο του σχήματος 1 είναι γεμάτο με υγρό και κλείνεται με έμβολο Ε στο οποίο ασκείται δύναμη F. Όλα τα μανόμετρα 1,2,3,4 δείχνουν
Διαβάστε περισσότεραΣτο διπλανό σχήμα το έμβολο έχει βάρος Β, διατομή Α και ισορροπεί. Η δύναμη που ασκείται από το υγρό στο έμβολο είναι
Ερωτήσεις θεωρίας - Θέμα Β Εκφώνηση 1η Στο διπλανό σχήμα το έμβολο έχει βάρος Β, διατομή Α και ισορροπεί. Η δύναμη που ασκείται από το υγρό στο έμβολο είναι α) β) γ) Λύση Εκφώνηση 2η Στο διπλανό υδραυλικό
Διαβάστε περισσότεραΘέμα Α Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.
Μάθημα/Τάξη: Φυσική Γ Λυκείου Κεφάλαιο: Ταλάντωση Doppler Ρευστά -Στερεό Ονοματεπώνυμο Μαθητή: Ημερομηνία: 04-03-2019 Επιδιωκόμενος Στόχος: 80/100 Θέμα Α Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της
Διαβάστε περισσότερα5.1 Μηχανική των ρευστών Δ.
5.1 Μηχανική των ρευστών Δ. 41. Το έμβολο και οι πιέσεις. Ένα κυλινδρικό δοχείο ύψους Η=2m είναι γεμάτο νερό, ενώ κοντά στη βάση F του έχει προσαρμοσθεί κατακόρυφος σωλήνας ύψους h=1m και διατομής =4cm
Διαβάστε περισσότεραΔιαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~
Διαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~ Διάρκεια: 3 ώρες Θέμα Α 1) Το δοχείο του σχήματος 1 είναι γεμάτο με υγρό και κλείνεται με έμβολο Ε στο οποίο ασκείται δύναμη F. Όλα τα μανόμετρα 1,2,3,4 δείχνουν
Διαβάστε περισσότεραΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 4 ο ΔΙΑΓΩΝΙΣΜΑ ΡΕΥΣΤΑ - ΘΕΜΑΤΑ ΘΕΜΑ A Στις προτάσεις Α1α έως Α4β να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη
Διαβάστε περισσότεραΟνοματεπώνυμο: Μάθημα: Ύλη: Επιμέλεια διαγωνίσματος: Αξιολόγηση: Φυσική Προσανατολισμού Ρευστά Ιωάννης Κουσανάκης
Ονοματεπώνυμο: Μάθημα: Ύλη: Επιμέλεια διαγωνίσματος: Αξιολόγηση: Φυσική Προσανατολισμού Ρευστά Ιωάννης Κουσανάκης ΘΕΜΑ Α Α1. Το ανοιχτό κυλινδρικό δοχείο του σχήματος βρίσκεται εντός πεδίο βαρύτητας με
Διαβάστε περισσότεραΦΥΣΙΚΗ Ο.Π/Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ)
ΦΥΣΙΚΗ Ο.Π/Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) 25/02/2018 ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
Διαβάστε περισσότεραΣυνοπτική Παρουσίαση Σχέσεων για τον Προσδιορισμό του Επιφανειακού Συντελεστή Μεταφοράς της Θερμότητας.
5 η ΔΙΑΛΕΞΗ Στόχος της διάλεξης αυτής είναι η κατανόηση των διαδικασιών αλλά και των σχέσεων που χρησιμοποιούνται για τον προσδιορισμό του ρυθμού μεταφοράς θερμότητας, Q &, αλλά και του επιφανειακού συντελεστή
Διαβάστε περισσότεραΔιαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Ρευστά. Τετάρτη 12 Απριλίου Θέμα 1ο
Διαγώνισμα Ρευστά Τετάρτη 12 Απριλίου 2017 Θέμα 1ο Στις παρακάτω προτάσεις 1.1 1.4 να επιλέξτε την σωστή απάντηση (4 5 = 20 μονάδες ) 1.1. Στον πυθμένα των δύο δοχείων 1 και 2 του διπλανού σχήματος, που
Διαβάστε περισσότεραΡΕΥΣΤΑ. Φυσική Θετικού Προσανατολισμου Γ' Λυκείου
ΡΕΥΣΤΑ ΕΙΣΑΓΩΓΗ Ρευστά Με τον όρο ρευστά εννοούμε τα ΥΓΡΑ και τα ΑΕΡΙΑ τα οποία, αντίθετα από τα στερεά, δεν έχουν καθορισμένο όγκο ούτε σχήμα. Τα υγρά είναι ασυμπίεστα και τα αέρια συμπιεστά. Τα υγρά
Διαβάστε περισσότεραΟρμή και Δυνάμεις. Θεώρημα Ώθησης Ορμής
501 Ορμή και Δυνάμεις Θεώρημα Ώθησης Ορμής «Η μεταβολή της ορμής ενός σώματος είναι ίση με την ώθηση της δύναμης που ασκήθηκε στο σώμα» = ή Το θεώρημα αυτό εφαρμόζεται διανυσματικά. 502 Θεώρημα Ώθησης
Διαβάστε περισσότεραKefˆlaio 1. Jermìthta. 1.1 Ask seic. k 1. k 2 + L2
Kefˆlaio 1 Jermìthta 1.1 Ask seic 1. Εστω δύο ράβδοι με μήκη L 1 και L 2 και θερμικές αγωγιμότητες k 1 και k 2 αντιστοίχως. Συνδέουμε τις ράβδους μεταξύ τους σε σειρά, ενώ τα δύο ελεύθερα άκρα τους έρχονται
Διαβάστε περισσότεραGenerated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ
ΑΣΚΗΣΗ 13 ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ ΜΕΡΟΣ ΠΡΩΤΟ ΒΑΣΙΚΕΣ ΘΕΩΡΗΤΙΚΕΣ ΓΝΩΣΕΙΣ 1.1. Εσωτερική ενέργεια Γνωρίζουμε ότι τα μόρια των αερίων κινούνται άτακτα και προς όλες τις διευθύνσεις με ταχύτητες,
Διαβάστε περισσότεραΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/02/17 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 9/02/7 ΕΠΙΜΕΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις
Διαβάστε περισσότεραΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα 1. Θερμοδυναμική Ορισμοί. Έργο 3. Θερμότητα 4. Εσωτερική ενέργεια 5. Ο Πρώτος Θερμοδυναμικός Νόμος 6. Αντιστρεπτή
Διαβάστε περισσότεραΘΕΡΜΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ. όπου το κ εξαρτάται από το υλικό και τη θερμοκρασία.
Εισαγωγή Έστω ιδιότητα Ρ. ΘΕΡΜΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ α) Ρ = Ρ(r, t) => μη μόνιμη, μεταβατική κατάσταση. β) P = P(r), P =/= P(t) => μόνιμη κατάσταση (μη ισορροπίας). γ) P =/= P(r), P(t) σε μακροσκοπικό χωρίο =>
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ 4- ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ( ) ΚΕΦΑΛΑΙΟ 3 ΡΕΥΣΤΑ ΕΚΦΩΝΗΣΕΙΣ
ΘΕΜΑ A ΔΙΑΓΩΝΙΣΜΑ 4- ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (2016-17) ΚΕΦΑΛΑΙΟ 3 ΡΕΥΣΤΑ ΕΚΦΩΝΗΣΕΙΣ Στις προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,
Διαβάστε περισσότερα2g z z f k k z z f k k z z V D 2g 2g 2g D 2g f L ka D
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΥΔΡΑΥΛΙΚΗ ΚΑΙ ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ ΕΞΕΤΑΣΗ ΠΡΟΟΔΟΥ ΝΟΕΜΒΡΙΟΥ 017 Άσκηση 1 1. Οι δεξαμενές Α και Β, του Σχήματος 1, συνδέονται με σωλήνα
Διαβάστε περισσότεραΜεθοδολογίες στην Μηχανική των Ρευστών
Μεθοδολογίες στην Μηχανική των Ρευστών η Μεθοδολογία: «Ανυψωτήρας» Το υγρό του δοχείου κλείνεται με δύο έμβολα που βρίσκονται στην ίδια οριζόντιο. Στο έμβολο με επιφάνεια Α ασκείται δύναμη F. ον Η F ασκεί
Διαβάστε περισσότεραΧειμερινό εξάμηνο
Μεταβατική Αγωγή Θερμότητας: Ανάλυση Ολοκληρωτικού Συστήματος Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής 1 Μεταβατική Αγωγή (ranen conducon Πολλά προβλήματα μεταφοράς θερμότητας εξαρτώνται από
Διαβάστε περισσότεραΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/02/17 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/02/17 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις
Διαβάστε περισσότεραΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Ρευστά. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός. https://physicscourses.wordpress.com
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Ρευστά Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός https://physicscourses.wordpress.com Βασικές έννοιες Πρώτη φορά συναντήσαμε τη φυσική των ρευστών στη Β Γυμνασίου. Εκεί
Διαβάστε περισσότερα2.1 Παραμορφώσεις ανομοιόμορφων ράβδων
ΑΞΟΝΙΚΗ ΦΟΡΤΙΣΗ 9 Αξονική φόρτιση. Παραμορφώσεις ανομοιόμορφων ράβδων. Ελαστική ράβδος ΑΒ μήκους, Γ B μέτρου ελαστικότητας Ε και / συντελεστή θερμικής διαστολής α, είναι πακτωμένη στα σημεία Α και Β και
Διαβάστε περισσότεραΔύναμη F F=m*a kgm/s 2. N = W / t 1 J / s = 1 Watt ( W ) 1 HP ~ 76 kp*m / s ~ 746 W. 1 PS ~ 75 kp*m / s ~ 736 W. 1 τεχνική ατμόσφαιρα 1 at
Δύναμη F F=m*a kgm/s 2 1 kg*m/s 2 ~ 1 N 1 N ~ 10 5 dyn Ισχύς Ν = Έργο / χρόνος W = F*l 1 N*m = 1 Joule ( J ) N = W / t 1 J / s = 1 Watt ( W ) 1 1 kp*m / s 1 HP ~ 76 kp*m / s ~ 746 W 1 PS ~ 75 kp*m / s
Διαβάστε περισσότεραΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ. Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση. Βλιώρα Ευαγγελία
ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση Βλιώρα Ευαγγελία ΘΕΣΣΑΛΟΝΙΚΗ 2014 Σκοπός της εργαστηριακής άσκησης Σκοπός της εργαστηριακής άσκησης είναι ο υπολογισμός της
Διαβάστε περισσότεραΘερμοκρασία - Θερμότητα. (Θερμοκρασία / Θερμική διαστολή / Ποσότητα θερμότητας / Θερμοχωρητικότητα / Θερμιδομετρία / Αλλαγή φάσης)
Θερμοκρασία - Θερμότητα (Θερμοκρασία / Θερμική διαστολή / Ποσότητα θερμότητας / Θερμοχωρητικότητα / Θερμιδομετρία / Αλλαγή φάσης) Θερμοκρασία Ποσοτικοποιεί την αντίληψή μας για το πόσο ζεστό ή κρύο είναι
Διαβάστε περισσότερα3. Τριβή στα ρευστά. Ερωτήσεις Θεωρίας
3. Τριβή στα ρευστά Ερωτήσεις Θεωρίας Θ3.1 Να συμπληρωθούν τα κενά στις προτάσεις που ακολουθούν: α. Η εσωτερική τριβή σε ένα ρευστό ονομάζεται. β. Η λίπανση των τμημάτων μιας μηχανής οφείλεται στις δυνάμεις
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ Σκοπός της άσκησης Στην παρούσα εργαστηριακή άσκηση γίνεται μελέτη του Στρωτού
Διαβάστε περισσότεραΦΥΣΙΚΗ Ο.Π/Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ)
ΦΥΣΙΚΗ Ο.Π/Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) 5/0/018 ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
Διαβάστε περισσότεραΈνωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος
Β Γυμνασίου 29 Μαρτίου 2013 Θεωρητικό Μέρος Θέμα 1 ο Α. Όταν μετατρέπουμε την τιμή ενός μήκους από km σε m προκύπτει: α) αριθμός πάντοτε μεγαλύτερος του αρχικού β) αριθμός πάντοτε μικρότερος του αρχικού
Διαβάστε περισσότεραΚεφάλαιο 20. Θερμότητα
Κεφάλαιο 20 Θερμότητα Εισαγωγή Για να περιγράψουμε τα θερμικά φαινόμενα, πρέπει να ορίσουμε με προσοχή τις εξής έννοιες: Θερμοκρασία Θερμότητα Θερμοκρασία Συχνά συνδέουμε την έννοια της θερμοκρασίας με
Διαβάστε περισσότεραΔιαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Ρευστά - Μηχανική Στερεού Σώματος. Κυριακή 5 Μαρτίου Θέμα 1ο
Διαγώνισμα Ρευστά - Μηχανική Στερεού Σώματος Κυριακή 5 Μαρτίου 2017 Θέμα 1ο Στις παρακάτω προτάσεις 1.1 1.4 να επιλέξτε την σωστή απάντηση (4 5 = 20 μονάδες ) 1.1. Στον πυθμένα των δύο δοχείων 1 και 2
Διαβάστε περισσότεραA3. Το δοχείο του σχήματος 1 είναι γεμάτο με υγρό και κλείνεται με έμβολο Ε στο οποίο ασκείται δύναμη F.
ΘΕΜΑ Α ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ-ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ- ΚΕΦΑΛΑΙΟ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 23 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ
Διαβάστε περισσότεραΆσκηση 9. Προσδιορισμός του συντελεστή εσωτερικής
1.Σκοπός Άσκηση 9 Προσδιορισμός του συντελεστή εσωτερικής τριβής υγρών Σκοπός της άσκησης είναι ο πειραματικός προσδιορισμός του συντελεστή εσωτερικής τριβής (ιξώδες) ενός υγρού. Βασικές θεωρητικές γνώσεις.1
Διαβάστε περισσότεραα. 0 β. mωr/2 γ. mωr δ. 2mωR (Μονάδες 5) γ) στην ισόθερμη εκτόνωση δ) στην ισόχωρη ψύξη (Μονάδες 5)
ΜΑΘΗΜΑ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ Φυσική Β Λυκείου Προσανατολισμού Γκικόντης Λαμπρος ΗΜΕΡΟΜΗΝΙΑ 5 - - 07 ΔΙΑΡΚΕΙΑ ώρες ΘΕΜΑ ο Α. Στις παρακάτω ερωτήσεις -5 να επιλέξετε τη σωστή απάντηση. Α. Μικρό σώμα μάζας m εκτελεί
Διαβάστε περισσότεραΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ)
ΦΥΣΙΚΗ ΠΡΟΣΝΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝ) 3/3/019 ΤΖΓΚΡΚΗΣ ΓΙΝΝΗΣ ΘΕΜ A Να γράψετε στην κόλλα σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
Διαβάστε περισσότεραΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ
1 ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο 1. Aν ο ρυθμός μεταβολής της ταχύτητας ενός σώματος είναι σταθερός, τότε το σώμα: (i) Ηρεμεί. (ii) Κινείται με σταθερή ταχύτητα. (iii) Κινείται με μεταβαλλόμενη
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ
166 Α. ΕΡΩΤΗΣΕΙΣ ΑΝΟΙΚΤΟΥ ΤΥΠΟΥ: ΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ 1. Να αναφέρεται παραδείγματα φαινομένων που μπορούν να ερμηνευτούν με την μελέτη των ρευστών σε ισορροπία. 2. Ποια σώματα ονομάζονται ρευστά;
Διαβάστε περισσότερα3 Μετάδοση Θερμότητας με Φυσική Μεταφορά και με Ακτινοβολία
3 Μετάδοση Θερμότητας με Φυσική Μεταφορά και με Ακτινοβολία 3.1 Εισαγωγή Η μετάδοση θερμότητας, στην πράξη, γίνεται όχι αποκλειστικά με έναν από τους τρεις δυνατούς μηχανισμούς (αγωγή, μεταφορά, ακτινοβολία),
Διαβάστε περισσότεραh 1 M 1 h 2 M 2 P = h (2) 10m = 1at = 1kg/cm 2 = 10t/m 2
ΕΡΓΑΣΤΗΡΙΟ 4 Ο Ενότητα: Βασικές υδραυλικές έννοιες Πίεση απώλειες πιέσεως Ι. Υδροστατική πίεση Η υδροστατική πίεση, είναι η πίεση που ασκεί το νερό, σε κατάσταση ηρεμίας, στα τοιχώματα του δοχείου που
Διαβάστε περισσότεραΑπώλειες φορτίου Συντελεστής τριβής Ο αριθμός Reynolds Το διάγραμμα Moody Εφαρμογές
Απώλειες φορτίου Συντελεστής τριβής Ο αριθμός Reynolds Το διάγραμμα Moody Εφαρμογές Στο σχήμα έχουμε ροή σε ένα ιδεατό ρευστό. Οι σωλήνες πάνω στον αγωγό (μανομετρικοί σωλήνες) μετρούν μόνο το ύψος πίεσης
Διαβάστε περισσότεραv = 1 ρ. (2) website:
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Βασικές έννοιες στη μηχανική των ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 17 Φεβρουαρίου 2019 1 Ιδιότητες των ρευστών 1.1 Πυκνότητα Πυκνότητα
Διαβάστε περισσότεραΝα επιλέξετε τη σωστή απάντηση και να δικαιολογήσετε την επιλογή σας. έμβολο Ε 1 ασκούνται επιπρόσθετα οι εξής
Ερώτηση. Στον υδραυλικό ανυψωτήρα του σχήματος τα αβαρή έμβολα E, E βρίσκονται στο ίδιο οριζόντιο επίπεδο σε ισορροπία και μπορούν να μετακινούνται στους κατακόρυφους σωλήνες χωρίς τριβές. Τοποθετούμε
Διαβάστε περισσότεραΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΙΑΧΕΙΡΙΣΗΣ ΕΝΕΡΓΕΙΑΚΩΝ ΠΟΡΩΝ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι 1
ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι ιδάσκων: Καθ. Α.Γ.Τοµπουλίδης ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΙΑΧΕΙΡΙΣΗΣ ΕΝΕΡΓΕΙΑΚΩΝ ΠΟΡΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ, ΚΟΖΑΝΗ Εαρινό εξάµηνο 2003-2004 Άσκηση 1: Κυλινδρικό έµβολο περιέχει αέριο το
Διαβάστε περισσότεραΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ. Μονάδες - Τάξεις μεγέθους
ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ Μονάδες - Τάξεις μεγέθους Μονάδες ενέργειας 1 cal = 4,19 J Πυκνότητα νερού 1 g/cm 3 = 1000 Kg/m 3. Ειδική θερμότητα νερού c = 4190 J/Kg.K = 1Kcal/Kg.K = 1 cal/g.k
Διαβάστε περισσότεραΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΡΕΥΣΤΑ -ΣΤΕΡΕΟ 24/02/2019
ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΡΕΥΣΤΑ -ΣΤΕΡΕΟ 24/02/2019 ΘΕΜΑ A Στις ερωτήσεις 1-4 να γράψετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη
Διαβάστε περισσότεραΥδραυλικός Υπολογισμός Βροχωτών Δικτύων
Υδραυλικός Υπολογισμός Βροχωτών Δικτύων Π. Σιδηρόπουλος Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων Τμήμα Πολιτικών Μηχανικών Π.Θ. E-mail: psidirop@uth.gr Συνολικό δίκτυο ύδρευσης Α. Ζαφειράκου,
Διαβάστε περισσότερα* Επειδή μόνο η μεταφορά θερμότητας έχει νόημα, είτε συμβολίζεται με dq, είτε με Q, είναι το ίδιο.
ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ Μονάδες - Τάξεις μεγέθους Μονάδες ενέργειας 1 cal = 4,19 J Πυκνότητα νερού 1 g/cm 3 = 1000 Kg/m 3. Ειδική θερμότητα νερού c = 4190 J/Kg.K = 1Kcal/Kg.K = 1 cal/g.k
Διαβάστε περισσότεραΤμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 10 Μηχανική των ρευστών
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 10 Μηχανική των ρευστών ΦΥΣ102 1 Πυκνότητα Πυκνότητα είναι η μάζα ανά μονάδα όγκου,
Διαβάστε περισσότεραΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ
5 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ B ΓΥΜΝΑΣΙΟΥ Κυριακή, 17 Μαΐου 2009 Ώρα: 10:00 12:30 Προτεινόμενες Λύσεις θεμα - 1 (5 μον.) Στον πίνακα υπάρχουν δύο στήλες με ασυμπλήρωτες προτάσεις. Στο τετράδιο των απαντήσεών
Διαβάστε περισσότεραΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ
Κανάρη 36, Δάφνη Τηλ 0 973934 & 0 9769376 ΘΕΜΑ Α ΦΥΣΙΚΗ ΟΠ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Ι Οδηγία: Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή
Διαβάστε περισσότεραΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Σελίδα 1 από 6
ΘΕΜΑ Α Στις παρακάτω ερωτήσεις να επιλέξετε τη σωστή απάντηση 1) Το δοχείο του σχήματος 1 είναι γεμάτο με υγρό και κλείνεται με έμβολο Ε στο οποίο ασκείται δύναμη F. Όλα τα μανόμετρα 1,, 3, 4 δείχνουν
Διαβάστε περισσότεραΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 2019 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 5
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 019 ΘΕΜΑ 1 Ο : ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 5 Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας τον αριθμό της
Διαβάστε περισσότεραΘΕΡΜΙΚΗ ΑΓΩΓΙΜΟΤΗΤΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 www.pmoiras.weebly.om ΘΕΡΜΙΚΗ ΑΓΩΓΙΜΟΤΗΤΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα. Φαινόμενα μεταφοράς στα αέρια. Μηχανισμοί διάδοσης θερμότητας 3. Διάδοση θερμότητας
Διαβάστε περισσότεραΥΠΟΛΟΓΙΣΜΟΣ ΚΑΙ ΜΕΤΡΗΣΗ ΣΥΝΑΡΤΗΣΗΣ ΜΕΤΑΦΟΡΑΣ ΣΕ ΠΡΑΚΤΙΚΑ ΣΥΣΤΗΜΑΤΑ
Κεφάλαιο ΥΠΟΛΟΓΙΣΜΟΣ ΚΑΙ ΜΕΤΡΗΣΗ ΣΥΝΑΡΤΗΣΗΣ ΜΕΤΑΦΟΡΑΣ ΣΕ ΠΡΑΚΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Στη διαδικασία σχεδιασμού των Συστημάτων Αυτομάτου Ελέγχου, η απαραίτητη και η πρώτη εργασία που έχουμε να κάνουμε, είναι να
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ. ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 11 ΑΠΡΙΛΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Θετ.- τεχ. κατεύθυνσης
1 ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Θετ.- τεχ. κατεύθυνσης ΘΕΜΑ 1 ο : Σε κάθε μια από τις παρακάτω προτάσεις να βρείτε τη μια σωστή απάντηση: 1. Μια ποσότητα ιδανικού αέριου εκτονώνεται ισόθερμα μέχρι τετραπλασιασμού
Διαβάστε περισσότερα6 Εξαναγκασμένη ροή αέρα
6 Εξαναγκασμένη ροή αέρα 6.1 Εισαγωγή Όταν θέτουμε σε κίνηση κάποια μόρια ενός ρευστού μέσω μιας αντλίας ή ενός φυσητήρα, η κίνηση μεταδίδεται και στα υπόλοιπα μόρια του ρευστού μέσω των αλληλεπιδράσεων
Διαβάστε περισσότεραΠαραδείγµατα ροής ρευστών (Moody κλπ.)
Παραδείγµατα ροής ρευστών (Mooy κλπ.) 005-006 Παράδειγµα 1. Να υπολογισθεί η πτώση πίεσης σε ένα σωλήνα από χάλυβα του εµπορίου µήκους 30.8 m, µε εσωτερική διάµετρο 0.056 m και τραχύτητα του σωλήνα ε 0.00005
Διαβάστε περισσότεραΔιατήρηση της Ύλης - Εξίσωση Συνέχειας
Διατήρηση της Ύλης - Εξίσωση Συνέχειας Α. Ερωτήσεις Πολλαπλής Επιλογής 1. Ένα ρευστό χαρακτηρίζεται ως πραγματικό όταν α. κατά τη ροή του δεν παρουσιάζει εσωτερικές τριβές. β. κατά τη ροή του δεν παρουσιάζονται
Διαβάστε περισσότεραΒΑΣΙΚΕΣ ΑΡΧΕΣ ΑΝΤΛΗΤΙΚΩΝ ΕΓΚΑΤΑΣΤΑΣΕΩΝ
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΑΝΤΛΗΤΙΚΩΝ ΕΓΚΑΤΑΣΤΑΣΕΩΝ Εισαγωγικά Στην περίπτωση που επιθυμείται να διακινηθεί υγρό από μία στάθμη σε μία υψηλότερη στάθμη, απαιτείται η χρήση αντλίας/ αντλιών. Γενικώς, ονομάζεται δεξαμενή
Διαβάστε περισσότεραΗμερομηνία: Παρασκευή 05 Ιανουαρίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ //07 ΕΩΣ 05/0/08 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Παρασκευή 05 Ιανουαρίου 08 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις
Διαβάστε περισσότεραΣεµινάριο Αυτοµάτου Ελέγχου
ΤΕΙ ΠΕΙΡΑΙΑ Τµήµα Αυτοµατισµού Σεµινάριο Αυτοµάτου Ελέγχου Ειδικά θέµατα Ανάλυσης συστηµάτων Σύνθεσης συστηµάτων ελέγχου Μελέτης στοχαστικών συστηµάτων. Καλλιγερόπουλος Σεµινάριο Αυτοµάτου Ελέγχου Ανάλυση
Διαβάστε περισσότεραΘέµα 1 ο Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΜΑΘΗΜΑ - ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΠΑΡΑΡΤΗΜΑ ΔΙΑΡΚΕΙΑ ΡΕΥΣΤΑ - ΣΤΕΡΕΟ Λάµπρος Τσιουρής Άνω Πατησίων 3ώρες Θέµα 1 ο Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα
Διαβάστε περισσότεραΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 4 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 3) ΘΕΜΑΤΑ ΘΕΜΑ Α Στις προτάσεις Α1α έως Α4β να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Στις παρακάτω ερωτήσεις Α-Α4 να σημειώσετε την σωστή απάντηση Α. Νερό διαρρέει έναν κυλινδρικό σωλήνα, ο οποίος στενεύει σε κάποιο σημείο του χωρίς να διακλαδίζεται. Ποια
Διαβάστε περισσότεραΕργαστήριο Μηχανικής Ρευστών. Εργασία 2 η Κατανομή πίεσης σε συγκλίνοντα αποκλίνοντα αγωγό.
Εργαστήριο Μηχανικής Ρευστών Εργασία 2 η Κατανομή πίεσης σε συγκλίνοντα αποκλίνοντα αγωγό. Κυρκιμτζής Γιώργος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Γ Ημ/νία παράδοσης Εργασίας: Τετάρτη 24 Μαΐου 2 1 Θεωρητική Εισαγωγή:
Διαβάστε περισσότεραΑ.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2014 ΜΑΘΗΜΑ ΦΥΣΙΚΗ Ι Μαρούσι Καθηγητής Σιδερής Ε.
Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2014 Μαρούσι 04-02-2014 Καθηγητής Σιδερής Ε. ΘΕΜΑ 1 ο (βαθμοί 4) (α) Θέλετε να κρεμάσετε μια ατσάλινη δοκό που έχει
Διαβάστε περισσότεραΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο 1.1. Φορτισμένο σωματίδιο αφήνεται ελεύθερο μέσα σε ομογενές ηλεκτρικό πεδίο χωρίς την επίδραση της βαρύτητας. Το σωματίδιο: α. παραμένει ακίνητο. β. εκτελεί ομαλή κυκλική κίνηση.
Διαβάστε περισσότεραΚινηματική ρευστών. Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του
301 Κινηματική ρευστών Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του Είδη ροής α) Σταθερή ή μόνιμη = όταν σε κάθε σημείο του χώρου οι συνθήκες ροής, ταχύτητα, θερμοκρασία, πίεση και πυκνότητα,
Διαβάστε περισσότεραkg(χιλιόγραμμο) s(δευτερόλεπτο) Ένταση ηλεκτρικού πεδίου Α(Αμπέρ) Ένταση φωτεινής πηγής cd (καντέλα) Ποσότητα χημικής ουσίας mole(μόλ)
ΕΙΣΑΓΩΓΗ- ΦΥΣΙΚΑ ΜΕΓΕΘΗ Στα φυσικά φαινόμενα εμφανίζονται κάποιες ιδιότητες της ύλης. Για να περιγράψουμε αυτές τις ιδιότητες χρησιμοποιούμε τα φυσικά μεγέθη. Τέτοια είναι η μάζα, ο χρόνος, το ηλεκτρικό
Διαβάστε περισσότεραΔιατήρηση της Ενέργειας - Εξίσωση Bernoulli. Α. Ερωτήσεις Πολλαπλής Επιλογής
Διατήρηση της Ενέργειας - Εξίσωση Bernoulli Α. Ερωτήσεις Πολλαπλής Επιλογής 1. Ένα ιδανικό ρευστό ρέει σε σωλήνα μεταβλητής διατομής. α. H παροχή του ρευστού μειώνεται όταν η διατομή του σωλήνα αυξάνεται.
Διαβάστε περισσότεραΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ
ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΑΣΚΗΣΕΙΣ Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 1a-1
Διαβάστε περισσότερα2. Κατά την ανελαστική κρούση δύο σωμάτων διατηρείται:
Στις ερωτήσεις 1-4 να επιλέξετε μια σωστή απάντηση. 1. Ένα πραγματικό ρευστό ρέει σε οριζόντιο σωλήνα σταθερής διατομής με σταθερή ταχύτητα. Η πίεση κατά μήκος του σωλήνα στην κατεύθυνση της ροής μπορεί
Διαβάστε περισσότεραΔυναμική των ρευστών Στοιχεία θεωρίας
Δυναμική των ρευστών Στοιχεία θεωρίας 1. Ρευστά σε ισορροπία Πίεση, p: Ορίζεται ως το πηλίκο του μέτρου της δύναμης df που ασκείται κάθετα σε μια επιφάνεια εμβαδού dα προς το εμβαδόν αυτό. p= df da Η πίεση
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 23 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ
Διαβάστε περισσότεραΣΤΟΙΧΕΙΑ ΨΥΞΗΣ ΚΛΙΜΑΤΙΣΜΟΥ
ΣΤΟΙΧΕΙΑ ΨΥΞΗΣ ΚΛΙΜΑΤΙΣΜΟΥ 2/12/2018 ΚΑΡΑΓΚΙΑΟΥΡΗΣ ΝΙΚΟΛΑΟΣ ΘΕΜΑ 1 ο 1. Να γράψετε στο τετράδιό σας το γράμμα καθεμιάς από τις παρακάτω προτάσεις και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή ή τη λέξη ΛΑΘΟΣ,
Διαβάστε περισσότεραΛυμένες Aσκήσεις. Άσκηση 1 Για καθέναν από τους παρακάτω γραμμικούς γράφους (i) (iii):
Mέρος 1 Λυμένες Aσκήσεις Άσκηση 1 Για καθέναν από τους παρακάτω γραμμικούς γράφους (i) (iii): Σχήμα 1-1. Γραμμικοί γράφοι. (α) Να βρεθεί το κανονικό δένδρο. (β) Να αναγνωριστούν οι πρωτεύουσες και οι δευτερεύουσες
Διαβάστε περισσότεραΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ
ΘΕΜΑ Α ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 3 ΜΑΪOY 016 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει
Διαβάστε περισσότεραΘΕΡΜΟΤΗΤΑ Πρόκειται για τρόπο μεταφοράς ενέργειας από ένα σώμα σε ένα άλλο λόγω διαφοράς θερμοκρασίας. Είναι διαφορετική από την εσωτερική (θερμική)
ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΤΗΤΑ Πρόκειται για τρόπο μεταφοράς ενέργειας από ένα σώμα σε ένα άλλο λόγω διαφοράς θερμοκρασίας. Είναι διαφορετική από την εσωτερική (θερμική) ενέργεια που έχει ένα σώμα. Συμβολίζεται
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ 4- ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ( ) ΚΕΦΑΛΑΙΟ 3 ΡΕΥΣΤΑ ΑΠΑΝΤΗΣΕΙΣ
ΙΑΩΝΙΣΜΑ 4- ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (06-7) ΚΕΦΑΛΑΙΟ ΡΕΥΣΤΑ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ A Α. β Α. β Α.γ Α4. α Α5. α. Λ β.σ γ. Λ δ.λ ε.σ ΘΕΜΑ Β Β. Σωστή απάντηση είναι η (α). Tα έμβολα διατηρούνται ακίνητα, άρα για καθένα
Διαβάστε περισσότεραΤο μανόμετρο (1) που βρίσκεται στην πάνω πλευρά του δοχείου δείχνει πίεση Ρ1 = 1,2 10 5 N / m 2 (ή Ρα).
1. Το κυβικό δοχείο του σχήματος ακμής h = 2 m είναι γεμάτο με υγρό πυκνότητας ρ = 1,1 10³ kg / m³. Το έμβολο που κλείνει το δοχείο έχει διατομή Α = 100 cm². Το μανόμετρο (1) που βρίσκεται στην πάνω πλευρά
Διαβάστε περισσότεραp = p n, (2) website:
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Ιδανικά ρευστά Μαάιτα Τζαμάλ-Οδυσσέας 7 Απριλίου 2019 1 Καταστατικές εξισώσεις ιδανικού ρευστού Ιδανικό ρευστό είναι ένα υποθετικό
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 23 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ
Διαβάστε περισσότεραV P P. [3] (α) Να δειχθεί ότι για ένα υδροστατικό σύστημα ισχύει: P V
ΘΕΡΜΟΔΥΝΑΜΙΚΗ (ΦΥΣΙΚΗ I) 1 [1] Θεωρώντας την εσωτερική ενέργεια ενός υδροστατικού συστήματος σα συνάρτηση των Τ και, αποδείξτε τις παρακάτω εξισώσεις: d d dq (1) β () β κ ) ( κ () [] Θεωρώντας την εσωτερική
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ ΕΣΠΕΡΙΝΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 23 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6)
Διαβάστε περισσότεραΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 03/05/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΠΑΝΤΗΣΕΙΣ
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 03/05/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Τζαγκαράκης Γιάννης, Δημοπούλου Ηρώ, Αδάμη Μαρία, Αγγελίδης Άγγελος, Παπαθανασίου Θάνος, Παπασταμάτης Στέφανος
Διαβάστε περισσότερα4Q m 2c Δθ 2m = 4= Q m c Δθ m. m =2m ΘΕΡΜΙΔΟΜΕΤΡΙΑ
ΘΕΡΜΙΔΟΜΕΤΡΙΑ 1. Σε ένα οριζόντιο φύλλο αλουμινίου το οποίο είναι στερεωμένο σε μία βάση υπάρχει μια στρογγυλή οπή με διάμετρο m. Πάνω στην οπή ηρεμεί μία σφαίρα από σίδηρο με διάμετρο,4m. Αρχικά η θερμοκρασία
Διαβάστε περισσότεραΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ ΜΑΘΗΜΑ ΤΑΞΗ Γ ΛΥΚΕΙΟΥ ΟΝΟΜ/ΜΟ: ΗΜΕΡ/ΝΙΑ ΚΑΘ/ΤΕΣ ΓΙΑΡΕΝΟΠΟΥΛΟΣ Λ. ΚΟΥΣΟΥΛΗΣ Δ.
ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ ΤΑΞΗ Γ ΛΥΚΕΙΟΥ ΟΝΟΜ/ΜΟ: ΗΜΕΡ/ΝΙΑ 15-1-017 ΚΑΘ/ΤΕΣ ΓΙΑΡΕΝΟΠΟΥΛΟΣ Λ. ΚΟΥΣΟΥΛΗΣ Δ. ΒΑΘΜΟΣ: /100, /0 Θέμα 1ο 1. Αν η εξίσωση ενός αρμονικού κύματος είναι y =10ημ(6πt
Διαβάστε περισσότεραΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική + + δυναμική
ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Εσωτερική ενέργεια: Το άθροισμα της κινητικής (εσωτερική κινητική ενέργεια ή θερμική ενέργεια τυχαία, μη συλλογική κίνηση) και δυναμικής ενέργειας (δεσμών κλπ) όλων των σωματιδίων (ατόμων
Διαβάστε περισσότεραμία ποικιλία διατομών, σε αντίθεση με τους κλειστούς που έχουμε συνήθως κυκλικές διατομές).
Μερικές ερωτήσεις στους κλειστούς αγωγούς: D Παροχή: Q (στους ανοικτούς αγωγός συνήθως χρησιμοποιούμε 4 μία ποικιλία διατομών, σε αντίθεση με τους κλειστούς που έχουμε συνήθως κυκλικές διατομές). Έστω
Διαβάστε περισσότεραΠόλοι φανταστικοί. Είναι μια ιδιαίτερη περίπτωση των μιγαδικών πόλων με συντελεστή απόσβεσης ξ=0. jω. s 1 σ. s 3. s 2
Πόλοι φανταστικοί Είναι μια ιδιαίτερη περίπτωση των μιγαδικών πόλων με συντελεστή απόσβεσης ξ=0. jω 3 σ F P Q P 3 n 3 3 Πόλοι φανταστικοί 3 3 3 P Q P F n j j e e e n n 3 3 j j n n n n e 3 3 n φ=τόξο του
Διαβάστε περισσότεραΚεφάλαιο 7. Θερμοκρασία
Κεφάλαιο 7 Θερμοκρασία Θερμοδυναμική Η θερμοδυναμική περιλαμβάνει περιπτώσεις όπου η θερμοκρασία ή η κατάσταση ενός συστήματος μεταβάλλονται λόγω μεταφοράς ενέργειας. Η θερμοδυναμική ερμηνεύει με επιτυχία
Διαβάστε περισσότεραΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 8 η : Εναλλάκτες θερμότητας Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης reative mmns.
Διαβάστε περισσότεραΠεριβαλλοντική Χημεία
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Περιβαλλοντική Χημεία Εργαστηριακό Μέρος Ενότητα 3: Ισοζύγιο Ενέργειας Ευάγγελος Φουντουκίδης Τμήμα Πολιτικών Μηχανικών Τ.Ε. Άδειες
Διαβάστε περισσότεραΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Β Θέμα ΘΕΡΜΟΔΥΝΑΜΙΚΗ
ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Τράπεζα θεμάτων Β Θέμα ΘΕΡΜΟΔΥΝΑΜΙΚΗ 16111 Στο πιο κάτω διάγραμμα παριστάνονται τρεις περιπτώσεις Α, Β και Γ αντιστρεπτών μεταβολών τις οποίες
Διαβάστε περισσότεραΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΡΑΚΤΙΚΗ ΑΝΤΙΜΕΤΩΠΙΣΗ ΚΑΜΙΝΑΔΑΣ
ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΡΑΚΤΙΚΗ ΑΝΤΙΜΕΤΩΠΙΣΗ ΚΑΜΙΝΑΔΑΣ Η βασική σχέση που περιγράφει την λειτουργία της καμινάδας είναι Η σχέση αυτή προέρχεται από την εφαρμογή της αρχής διατήρησης ενέργειας στην καμινάδα σύμφωνα
Διαβάστε περισσότερα