κλασσική περιγραφή Κλασσική στατιστική
|
|
- Νέστωρ Κουντουριώτης
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Η κανονική κατανομή στη κλασσική περιγραφή Κλασσική στατιστική φυσική Βίγκα Ελένη (ttp://users.aut.gr/vinga) Στατιστική Φυσική Διαφάνεια o o Μια πολύ απλή περίπτωση για να ξεκινήσουμε είναι: Na θεωρήσουμε ένα Σημειακό σωματίδιο σε -Διάσταση Ta σωματίδιο υπακούει στη Χαμιλτωνιανή που περιγράφει την εξίσωση κίνησης. ( q, p) E o Τα q και p περιγράφουν πλήρως το σωματίδιο: q, p συντεταγμένες θέσης και ορμής. H γνώση των q, p για t = 0 μας επιτρέπει να γνωρίζουμε τις τιμές τους για κάθε t. Αυτό μπορεί να περιγραφεί σχηματικά ως εξής: Βίγκα Ελένη (ttp://users.aut.gr/vinga) Στατιστική Φυσική Διαφάνεια
2 o Θεωρούμε τον -D χώρο που ορίζεται από τα q, p: Κλασσικός Φασικός Χώρος του σωματιδίου p. (q,p).. q Για κάθε t, τα (q, p) του σωματιδίου περιγράφουν την κατάστασή του. O καθορισμός της Kατάστασης του σωματιδίου Σε ποιο σημείο του επιπέδου βρίσκεται το σωματίδιο o Ta q, p είναι συνεχείς μεταβλητές: Υπάρχει ένας αριθμός σημείων στον Κλασσικό Φασικό Χώρο Βίγκα Ελένη (ttp://users.aut.gr/vinga) Στατιστική Φυσική Διαφάνεια 3 o Θέλουμε να περιγράψουμε την κατάστασή του σωματιδίου κλασσικά με ένα τρόπο ώστε ο αριθμός των καταστάσεων είναι απαριθμήσιμος «ΤΕΧΝΑΣΜΑ» Χωρίζω τον χώρο q, p σε μικρά διαστήματα. Δq (για το q) & Δp (για το p). Βίγκα Ελένη (ttp://users.aut.gr/vinga) Στατιστική Φυσική Διαφάνεια 4
3 Κλασσική περιγραφή της κατάστασης ενός συστήματος Ο φασικός χώρος τότε διαιρείται σε μικρές κυψελίδες ίσου εμβαδού: ΔqΔp (αυθαίρετη (κλασσικά) σταθερά) Η Κατάσταση του σωματιδίου (κλασσικά) καθορίζεται προσδιορίζοντας σε ποια κυψελίδα του ΧΦ βρίσκεται το σωματίδιο που γίνεται ακριβέστερη όσο πιο μικρή είναι αυτή η κυψελίδα << Κβαντομηχανικά Αρχή αβεβαιότητας: Δεν μπορούμε ταυτόχρονα να ξέρουμε το q και τo p, ΔqΔp ћ/ Δp p Δq. Α -διάσταση Γ.. Β q Βίγκα Ελένη (ttp://users.aut.gr/vinga) Στατιστική Φυσική Διαφάνεια 5 dq q dp p Θεωρώ ένα στοιχειώδες τμήμα του φασικού χώρου, διαστάσεων dq, dp Μέσα σ αυτό το ορθογώνιο dqdp χωρούν dγ κυψελίδες: Δηλ. μέσα σε μια στοιχειώδη περιοχή του φασικού χώρου όπου η συντεταγμένη q έχει τιμή μεταξύ q και q+dq, και η p έχει τιμή μεταξύ p και p+dp υπάρχουν dγ καταστάσεις (κυψελίδες) ΤΙ ΚΑΤΑΦΕΡΑΜΕ? παρότι είμαστε στον χώρο των φάσεων ( κλασσική στατιστική ) Nα απαριθμήσουμε τις καταστάσεις Βίγκα Ελένη (ttp://users.aut.gr/vinga) Στατιστική Φυσική Διαφάνεια 6 p Δp dpdq d Δq dp dq q 3
4 d dpdq Γενικεύουμε την προηγούμενη ανάλυση στην περίπτωση ενός κλασσικού συστήματος με ν ΒΕ, έχουμε: # καταστάσεων του συστήματος με συντεταγμένες θέσης και ορμής στα διαστήματα q, q +dq.., q ν, q ν +dq ν, p, p +dp.., p ν, p ν +dp ν = Πυκνότητα καταστάσεων στο χώρο των φάσεων: dq... dq dp... dp v ( qp )( q p )... q p v ο όγκοs των κυψελίδων που χωρίζεται ο φασικός χώρος Βίγκα Ελένη (ttp://users.aut.gr/vinga) Στατιστική Φυσική Διαφάνεια 7 Κλασσική και κβαντική περιγραφή της κατάστασης ενός συστήματος Η στατιστική περιγραφή ενός συστήματος με έννοιες της κλασσικής Μηχανικής είναι ανάλογη με την κβαντική περιγραφή. Η μόνη διαφορά βρίσκεται στην ερμηνεία: Κβαντική θεωρία η μικατάσταση ενός συστήματος αντιστοιχεί σε μια συγκεκριμένη κβαντική κατάσταση Κλασσική θεωρία η μικατάσταση ενός συστήματος αντιστοιχεί σε μια συγκεκριμένη κυψελίδα στον Χ.Φ Ένα απομονωμένο σύστημα σε ΘΙ έχει ίση πιθανότητα να βρίσκεται σε μια από τις οποιαδήποτε από τις προσιτές καταστάσεις του δηλαδή σε μια από τις προσιτές σε αυτό κυψελίδες του Χ.Φ Βίγκα Ελένη (ttp://users.aut.gr/vinga) Στατιστική Φυσική Διαφάνεια 8 4
5 ΙΔΙΟΤΗΤΕΣ - Θεώρημα του Liouvile dq... dqvdp... dp. Το αποτέλεσμα είναι ανεξάρτητο από την συγκεκριμένη επιλογή γενικευμένων συντεταγμένων Μια ορισμένη περιοχή του Χ.Φ. πρέπει να περιέχει πάντα τον ίδιο αριθμό καταστάσεων, ανεξάρτητα από τις τις συντεταγμένες που χρησιμοποιούμε για την περιγραφή. p (q (t 0 +Δt),p (t 0 +Δt))... (q (t 0 ),p (t 0 )). Οι περιοχές του χώρου των φάσεων που αντιστοιχούν σε διαφορετικές χρονικές στιγμές έχουν τον ίδιο όγκο q περιέχουν τον ίδιο αριθμό καταστάσεων Βίγκα Ελένη (ttp://users.aut.gr/vinga) Στατιστική Φυσική Διαφάνεια 9 Κβαντικά Z ge ( )exp( E) E r r Άθροισμα παραγόντων Boltzmann πάνω σ ολες τις ενεργειακές στάθμες, που η καθεμιά έχει μετρηθεί όσες φορές πρέπει. r Κλασσικά Άθροισμα ολοκλήρωμα χώρο των φάσεων (διαιρέσαμε τον Χ.Φ σε κυψελίδες όγκου ν ) πάνω σε καταστάσεις στον Hqp (, ) Hq (,... q, p,... p ) e H( p, q) dq... dqvdp... dp Αν το σύστημα αποτελείται από όμοια μη εντοπισμένα υποσυστήματα: N! dq dq dp dp H( p, q) e... v... Συνάρτηση επιμερισμού στην κλασσική στατιστική Βίγκα Ελένη (ttp://users.aut.gr/vinga) Στατιστική Φυσική Διαφάνεια 0 5
6 Προσεγγίσεις. Οι εκφυλισμοί g(e r ) στην κβαντική συνάρτηση επιμερισμού, αντικαταστάθηκαν από την πυκνότητα καταστάσεων στον ΧΦ προσέγγιση ικανοποιητική πάντα. Οι διάκριτοι και ασυνεχώς μεταβαλλόμενοι παράγοντες Boltzmann e -βεr αντικαταστάθηκαν από την συνεχή και ομαλά μεταβαλλόμενη συνάρτηση e -βη(p,q) Αυτό μπορεί να γίνει MONO όταν: Οι διαδοχικοί παράγοντες Boltzmann στην κβαντική συνάρτηση επιμερισμού ΔΕΝ διαφέρουν πολύ μεταξύ τους E E kt r r Για Τ<< αποκλίσεις από την κλασσική συμπεριφορά ΠΕΡΙΟΡΙΣΜΟΣ ΙΣΧΥΟΣ ΤΗΣ ΚΛΑΣΣΙΚΗΣ ΠΡΟΣΕΓΓΙΣΗΣ Βίγκα Ελένη (ttp://users.aut.gr/vinga) Στατιστική Φυσική Διαφάνεια Κβαντική θεώρηση εκφυλισμοί g(e r ) Κλασσική θεώρηση Πυκνότητα καταστάσεων (Χ.Φ) dq... dqv dp... dp Παράγοντες Boltzmann e -βεr διάκριτοι ασυνεχώς μεταβαλλόμενοι Συνάρτηση επιμερισμού Z g( Er)exp( Er) E r e -βη(p,q) Συνεχή ομαλά μεταβαλλόμενη συνάρτηση Συνάρτηση επιμερισμού exp H( p, q) dq... dqv dp... dp Βίγκα Ελένη (ttp://users.aut.gr/vinga) Στατιστική Φυσική Διαφάνεια 6
7 Πιθανότητα κατάστασης Z s exp( ) s ps s Z e exp H ( p, q ) dq... dqvdp... dp Η πιθανότητα ένα σύστημα (σε θερμική ισορροπία με Τ) να βρεθεί σε κατάσταση με συντεταγμένες θέσης και ορμής στα διαστήματα q i, q i +dq i, p i, p i +dp i, i=,,3 ν, H( p, q) e dq... H( p, q) dq Pq (,.., p) dq... dp dp e... dp Βίγκα Ελένη (ttp://users.aut.gr/vinga) Στατιστική Φυσική Διαφάνεια 3 Θεώρημα ισοκατανομής Μaxwell (860) Έστω σύστημα σε θερμική ισορροπία στην θερμοκρασία Τ Θεώρημα ισοκατανομής Μια γενικευμένη συντεταγμένη θέσης ή ορμής που εμφανίζεται στην Hamiltonian σαν δευτεροβάθμιος μόνο όρος συνεισφέρει στη μέση ενέργεια του συστήματος ενέργεια kt/ Έστω ξ μια από τις συντεταγμένες θέσεις ή ορμής : Η κατανομή πιθανότητας της ξ : P( ) d exp exp d d H A ' Τα Α και Η δεν εξαρτώνται από το ξ Κατανομή Gauss Βίγκα Ελένη (ttp://users.aut.gr/vinga) Στατιστική Φυσική Διαφάνεια 4 7
8 H A P d ( ) M.O του Αξ πάνω στην πλήρη κατανομή πιθανότητας expt dt Βίγκα Ελένη (ttp://users.aut.gr/vinga) Στατιστική Φυσική Διαφάνεια 5 d exp d exp ln exp d έ ή t ' exp exp d d Η μέση ενέργεια που συνδέεται με την μεταβλητή ξ X X / ln exp t dt ln X exp d kt A Θεώρημα ισοκατανομής -θερμοχωρητικότητα Άμεση συνέπεια του θεωρήματος της ισοκατανομής : Μια γενικευμένη συντεταγμένη θέσης ή ορμής που εμφανίζεται στην Hamiltonian σαν δευτεροβάθμιος μόνο όρος συνεισφέρει στη θερμοχωρητικότητα του ποσό k/ ΙΣΧΥΕΙ ΜΟΝΟ σε υψηλές θερμοκρασίες, γιατί τότε μόνο Ισχύει η συνθήκη: T<< : η διάκριτη φύση των σταθμών της ενέργειας ΔΕΝ μπορεί να αγνοηθεί. E r Er kt Cv f( T) Βίγκα Ελένη (ttp://users.aut.gr/vinga) Στατιστική Φυσική Διαφάνεια 6 8
9 θεώρημα ισοκατανομής Παράδειγμα Κρυσταλλικό στερεό Τα Ν άτομα σε στερεό θεωρούνται 3Ν αρμονικοί ανεξάρτητοι ταλαντωτές με ίδια κυκλική συχνότητα ω: 3 N H( p, q) pi m qi i m 6N δευτεροβάθμιοι όροι Κάθε δονητικός ΒΕ συνεισφέρει όρους ( κινητική + δυναμική ενέργεια) E BE kt 6N kt C V 3NkT 3Nk Νόμος Dulong -Petit Βίγκα Ελένη (ttp://users.aut.gr/vinga) Στατιστική Φυσική Διαφάνεια 7 ΘΥΜΟΜΑΣΤΕ ΟΤΙ: Κρυσταλλικό στερεό Ιδιο αποτέλεσμα με την κβαντική θεώρηση (μοντέλο Εinstein) για Τ>> κβαντική θεώρηση (μοντέλο Εinstein) 3Ν αρμονικοί ανεξάρτητοι ταλαντωτές με ίδια κυκλική συχνότητα ω E : E3N 3NE expe 3NkT (kt>>ω Ε ) 3 E 3 3 kbt (kt>>ω) συνθήκη ισχύος κλασσικής προσέγγισης (KT<<ω E3NE expe Ε ) 3 E N 0 E ώ ή Καταρρίπτεται η θεώρηση του συνεχούς ενεργειακού φάσματος Βίγκα Ελένη (ttp://users.aut.gr/vinga) Στατιστική Φυσική Διαφάνεια 8 9
10 Παράδειγμα ο Ιδανικό κλασσικό αέριο o Κίνηση ενός μορίου αναλύεται. Μεταφορική κίνηση του κέντρου μάζης. Εσωτερικές του κινήσεις Περιστροφή Ταλάντωση Ηλεκτρονική διέγερση Βίγκα Ελένη (ttp://users.aut.gr/vinga) Στατιστική Φυσική Διαφάνεια 9 μόριο Μεταφορική κίνηση: 3 BE (v x, v y, v z ) Η κινητική ενέργεια ενός συστήματος μπορεί να γραφεί σαν άθροισμα δευτεροβάθμιων όρων και να μας δώσει ενέργεια kt για κάθε τέτοιο όρο. y v y άτομο v άτομο x z v z x Κέντρο μάζης 3 RT C V, 3 R Βίγκα Ελένη (ttp://users.aut.gr/vinga) Στατιστική Φυσική Διαφάνεια 0 0
11 Περιστροφική κίνηση Πολυατομικά μόρια Το μόριο αποτελείται από s άτομα i.γραμμικά BE (ω z,ω y ) (γιατί στροφές ως προς τον τριτο άξονα δεν αλλάζουν τις ατομικές θέσεις) ii. Μη Γραμμικά 3BE (ω z,ω y,ω x ) Βίγκα Ελένη (ttp://users.aut.gr/vinga) Στατιστική Φυσική Διαφάνεια Προβλέψεις από το ΘΙΚ Δόνηση : 3 N H( p, q) pi m qi i m Κάθε δονητικός τρόπος προσφέρει στην ενέργεια του συστήματος ενέργεια kt ( κινητική + δυναμική ενέργεια) E RT R C V, Βίγκα Ελένη (ttp://users.aut.gr/vinga) Στατιστική Φυσική Διαφάνεια
12 Αριθμός ατόμων n ανά μόριο Τρόποι ΒΕ (f) E=(f/)RT C V =(f/)r Μεταφορικής κίνησης μορίου 3 Περιστροφής Γραμμικό μόριο Περιστροφής Μη-Γραμμικό μόριο 3 Δόνησης Γραμμικό μόριο 3n-5 Δόνησης Μη-Γραμμικό μόριο 3n-6 ΟΛΙΚΟΣ # BE= 3n 3/RT V Βίγκα Ελένη (ttp://users.aut.gr/vinga) Στατιστική Φυσική Διαφάνεια 3 RT γραμ 3 5 C R R(3n5) R(3 n ) R V 3/R R 3/RT 3/R (3n-5) RT (3n-6) RT μη-γραμ 3 3 C R R(3n6) R(3n3) R (3n-5) R (3n-6) R θεώρημα ισοκατανομής ενέργειας Θερμοχωρητικότητα διατομικού αερίου Διατομικό γραμμικό Μεταφορικής κίνησης (3) Περιστροφικής () Δονησης () CV 7 R C V για H 7/Nk B 5/Nk B Μεταφορική 3/Nk B Μεταφ+Περιστρ. Μεταφ+Περιστρ Δόνηση ΘΙΚ T, K Βίγκα Ελένη (ttp://users.aut.gr/vinga) Στατιστική Φυσική Διαφάνεια 4
ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ Περιεχόμενα 1. Κινητική Θεωρία των Αεριών. Πίεση 3. Κινητική Ερμηνεία της Πίεσης 4. Καταστατική εξίσωση των Ιδανικών
ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) Α. ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ
ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής
Σύστημα με μεταβλητό αριθμό σωματιδίων (Μεγαλοκανονική κατανομή) Ιδανικό κβαντικό αέριο
Κεφάλαιο : Σύστημα με μεταβλητό αριθμό σωματιδίων (Μεγαλοκανονική κατανομή) Ιδανικό κβαντικό αέριο Ανακεφαλαίωση (Με τι ασχοληθήκαμε) Ασχοληθήκαμε με συστήματα με μεταβλητό αριθμό σωματιδίων. Τον τρίτο
ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:
ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια (όπως ορίζεται στη μελέτη της μηχανικής τέτοιων σωμάτων): Η ενέργεια που οφείλεται σε αλληλεπιδράσεις και κινήσεις ολόκληρου του μακροσκοπικού σώματος, όπως η μετατόπιση
ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:
ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια (όπως ορίζεται στη μελέτη της μηχανικής τέτοιων σωμάτων): Η ενέργεια που οφείλεται σε αλληλεπιδράσεις και κινήσεις ολόκληρου του μακροσκοπικού σώματος, όπως η μετατόπιση
ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα 1. Θερμοδυναμική Ορισμοί. Έργο 3. Θερμότητα 4. Εσωτερική ενέργεια 5. Ο Πρώτος Θερμοδυναμικός Νόμος 6. Αντιστρεπτή
ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ
ΚΕΝΤΡΟ ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Λεωφ Κηφισίας 56, ΕΔΟΥΑΡΔΟΥ Αμπελόκηποι, ΛΑΓΑΝΑ Αθήνα PhD Τηλ: 10 69 97 985, e-mail: edlag@otenetg, wwwedlagg Λεωφ Κηφισίας 56, Τηλ: 10 69 97 985, wwwedlagg ΛΥΜΕΝΑ
11 η Διάλεξη Κινητική θεωρία των αερίων, Κίνηση Brown, Διάχυση. Φίλιππος Φαρμάκης Επ. Καθηγητής. Εισαγωγικά
η Διάλεξη Κινητική θεωρία των αερίων, Κίνηση Brown, Διάχυση Φίλιππος Φαρμάκης Επ. Καθηγητής Εισαγωγικά Οι ιδιότητες των αερίων (πίεση,θερμοκρασία) πως εξηγούνται; Σύνδεση μικρόκοσμου και μακρόκοσμου Κλασική
ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική + + δυναμική
ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Εσωτερική ενέργεια: Το άθροισμα της κινητικής (εσωτερική κινητική ενέργεια ή θερμική ενέργεια τυχαία, μη συλλογική κίνηση) και δυναμικής ενέργειας (δεσμών κλπ) όλων των σωματιδίων (ατόμων
ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΦΥΣΙΚΟΧΗΜΕΙΑ ΦΥΕ22
Λυμένες ασκήσεις Στατιστική Θερμοδυναμική Οκτώβριος ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΦΥΣΙΚΟΧΗΜΕΙΑ ΦΥΕ Άσκηση.: Το άθροισμα καταστάσεων της δονητικής κίνησης των μορίων του Ι αποτελείται από
Προβλήματα Κεφαλαίου 2
Άνοιξη 2018 8/3/2018 Προβλήματα Κεφαλαίου 2 Οι λύσεις των προβλημάτων 23,24 και 25 * να παραδοθούν μέχρι τις 22/3/2018 Οι λύσεις των προβλημάτων 26 και 27 * να παραδοθούν μέχρι τις 29/3/2018 1. Θεωρείστε
Προβλήματα Κεφαλαίου 2
Άνοιξη 2013 5/3/2013 Προβλήματα Κεφαλαίου 2 Οι λύσεις των προβλημάτων 3, 4, 5 * να παραδοθούν μέχρι τις 22/3/2013 Οι λύσεις των προβλημάτων 8 * και 20 να παραδοθούν μέχρι τις 28/3/2013 1. Για να κερδίσουμε
Προβλήματα Κεφαλαίου 2
Άνοιξη 2017 8/3/2017 Προβλήματα Κεφαλαίου 2 Οι λύσεις των προβλημάτων 23,24 και 25 * να παραδοθούν μέχρι τις 17/3/2017 Οι λύσεις των προβλημάτων 26 και 27 * να παραδοθούν μέχρι τις 24/3/2017 1. Θεωρείστε
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα. Φαινόμενα μεταφοράς Ορισμοί. Ενεργός διατομή 3. Ενεργός διατομή στο μοντέλο των σκληρών σφαιρών
Ασκήσεις Κεφαλαίου 2
Άνοιξη 2010 4/3/2010 Ασκήσεις Κεφαλαίου 2 1. Για να κερδίσουμε το ΛΟΤΤΟ πρέπει να διαλέξουμε 6 διαφορετικούς αριθμούς από τους 49 διαθέσιμους. Η σειρά επιλογής των αριθμών δεν παίζει κανέναν ρόλο. Αν θέλουμε
ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ
ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ 1. Ένα κιλό νερού σε θερμοκρασία 0 C έρχεται σε επαφή με μιά μεγάλη θερμική δεξαμενή θερμοκρασίας 100 C. Όταν το νερό φτάσει στη θερμοκρασία της δεξαμενής,
Προβλήματα Κεφαλαίου 2
Άνοιξη 2019 14/3/2019 Προβλήματα Κεφαλαίου 2 Οι λύσεις των προβλημάτων 23,24 και 25 * να παραδοθούν μέχρι τις 22/3/2019 Οι λύσεις των προβλημάτων 27 και 28 * να παραδοθούν μέχρι τις 28/3/2019 1. Θεωρείστε
ΒΑΘΜΟΣ = θ - θ. Οι πιο διαδεδομένες θερμομετρικές κλίμακες είναι: ΒΑΘΜΟΣ της θερμομετρικής μας κλίμακας είναι το μέγεθος
Οι πιο διαδεδομένες θερμομετρικές κλίμακες είναι: Μικροσκοπικά ξέρουμε ότι είναι ανάλογη της μέσης κινητικής ενέργειας του μορίου ΜΑΚΡΟΣΚΟΠΙΚΑ ΕΙΝΑΙ ΕΝΑ ΜΕΓΕΘΟΣ ΠΟΥ ΜΑΣ ΔΕΙΧΝΕΙ ΠΟΣΟ «ΖΕΣΤΟ» ΕΙΝΑΙ ΤΟ ΣΩΜΑ
Τί είδαµε και τι θα δούµε σήµερα
Τί είδαµε και τι θα δούµε σήµερα q Κίνηση σωμάτων σε κεντρικό δυναμικό Ø Το πρόβλημα ανάγεται σε κίνηση με 1 DoF: µ r = l µr + F( r) 3 q Είδαμε ποιοτική συμπεριφορά Ø Μη φραγμένες, φραγμένες και κυκλικές
ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ. Μονάδες - Τάξεις μεγέθους
ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ Μονάδες - Τάξεις μεγέθους Μονάδες ενέργειας 1 cal = 4,19 J Πυκνότητα νερού 1 g/cm 3 = 1000 Kg/m 3. Ειδική θερμότητα νερού c = 4190 J/Kg.K = 1Kcal/Kg.K = 1 cal/g.k
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
Ακαδημαϊκό έτος 0-3 Στατιστική Θερμοδυναμική ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Επώνυμο: Όνομα: Προσωπικός Αριθμός: Ημερομηνία: Βαθμολογία θεμάτων 3 4 5 6 7 8 9 0 Γενικός Βαθμός η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΗ "ΦΥΣΙΚΟΧΗΜΕΙΑ"
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΣΚΗΣΕΙΣ
693 946778 ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΣΚΗΣΕΙΣ 1 ΑΣΚΗΣΗ 1 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 Ιδανικό αέριο περιέχεται σε όγκο 1 δοχείου συνολικού όγκου με θερμομονωτικά τοιχώματα. Στο υπόλοιπο κομμάτι
ΜΑΘΗΜΑ - VII ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΙΙ (ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ. ΑΣΚΗΣΗ Β8 - Θερµοχωρητικοτήτες µετάλλων
ΜΑΘΗΜΑ - VII ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΙΙ (ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ) ΑΣΚΗΣΗ Β8 - Θερµοχωρητικοτήτες µετάλλων Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας
P(n 1, n 2... n k ) = n 1!n 2! n k! pn1 1 pn2 2 pn k. P(N L, N R ) = N! N L!N R! pn L. q N R. n! r!(n r)! pr q n r, n! r 1!r 2! r k!
Ασκήσεις Πιθανοτήτων - Στατιστικής Πρόβλημα 1 (Η Πολυωνυμική Κατανομή). Στο πρόβλημα αυτό θα μελετήσουμε μία γενίκευση της διωνυμικής κατανομής που συναντήσαμε στο μάθημα. Συγκεκριμένα, θα δούμε τί συμβαίνει
Πρόχειρες σημειώσεις Στατιστικής Θερμοδυναμικής. Γεώργιος Φανουργάκης
Πρόχειρες σημειώσεις Στατιστικής Θερμοδυναμικής 1 Γεώργιος Φανουργάκης 2 Κεφάλαιο 1 Εισαγωγή στη Στατιστική Θερμοδυναμική H Στατιστική θερμοδυναμική ή Στατιστική μηχανική είναι η εφαρμογή της θεωρίας πιθανοτήτων,
ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική + + δυναμική
ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Εσωτερική ενέργεια: Το άθροισμα της κινητικής (εσωτερική κινητική ενέργεια ή θερμική ενέργεια τυχαία, μη συλλογική κίνηση) και δυναμικής ενέργειας (δεσμών κλπ) όλων των σωματιδίων (ατόμων
ΣΥΝΟΠΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΗΣ 09/2014
ΣΥΝΟΠΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΗΣ 09/2014 ΘΕΜΑ 1 Ι. α) Κύκλος λειτουργίας στο επίπεδο P-V. P 1 2 1-2 και 3-4: ισοβαρείς (υπό σταθερές P 2 και P 1, αντίστοιχα, P 1
Μικροκανονική- Kανονική κατανομή (Boltzmann)
Κεφάλαιο 2: Βασικές αρχές της στατιστικής φυσικής- Μικροκανονική- Kανονική κατανομή (Boltzmann) Ανακεφαλαίωση (Με τι ασχοληθήκαμε) ώσαμε τις έννοιες της μακροκατάστασης, της μικροκατάστασης και του στατιστικού
* Επειδή μόνο η μεταφορά θερμότητας έχει νόημα, είτε συμβολίζεται με dq, είτε με Q, είναι το ίδιο.
ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ Μονάδες - Τάξεις μεγέθους Μονάδες ενέργειας 1 cal = 4,19 J Πυκνότητα νερού 1 g/cm 3 = 1000 Kg/m 3. Ειδική θερμότητα νερού c = 4190 J/Kg.K = 1Kcal/Kg.K = 1 cal/g.k
Κινητική θεωρία ιδανικών αερίων
Κινητική θεωρία ιδανικών αερίων (γέφυρα μακροσκοπικών και μικροσκοπικών ποσοτήτων) Εμπειρικές σχέσεις Boyle, Gay-Lussac, Charles, υπόθεση Avogadro «όταν δυο ή περισσότερα αέρια έχουν τα ίδια V, P και Τ
KATANOMEΣ- ΚΑΤΑΝΟΜΗ MAXWELL ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 KATANOMEΣ- ΚΑΤΑΝΟΜΗ MAXWELL ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα 1. Στατιστικές Συλλογές. Κατανομή Gibbs 3. Από την Κατανομή Gibbs στις Κατανομές Maxwell
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ. Διδάσκων : Καθηγητής Γ. Φλούδας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θερμοδυναμική ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ Διδάσκων : Καθηγητής Γ. Φλούδας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Στατιστική Φυσική Διδάσκων : Επίκ. Καθ. Μ. Μπενής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγxρονη Φυσική II Στατιστική Φυσική Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cretive Commons.
Διάλεξη 1: Κβαντομηχανική σε τρεις διαστάσεις
Διάλεξη : Κβαντομηχανική σε τρεις διαστάσεις Βασικές Αρχές της Κβαντομηχανικής H κατάσταση ενός φυσικού συστήματος περιγράφεται από την κυματοσυνάρτησή του και αποτελεί το πλάτος πιθανότητας να βρεθεί
Μοριακή Φασματοσκοπία I. Παραδόσεις μαθήματος Θ. Λαζαρίδης
Μοριακή Φασματοσκοπία I Παραδόσεις μαθήματος Θ. Λαζαρίδης 2 Τι μελετά η μοριακή φασματοσκοπία; Η μοριακή φασματοσκοπία μελετά την αλληλεπίδραση των μορίων με την ηλεκτρομαγνητική ακτινοβολία Από τη μελέτη
Θερμότητα - διαφάνειες , Σειρά 1
Θερμότητα - διαφάνειες 007-8, Σειρά Βιβλιογραφία (ενδεικτική) H.D. Young, Πανεπιστημιακή Φυσική Τόμος Α, (5-, 5-, 5-3, 5-5, 5-6, 6-, 6-, 6-4, 7-, 7-, 7-3, 7-4, 7-5, 7-6, 7-7,7-8) Σημειώσεις καθ. Κου Δ.
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΚΑΤΑΝΟΜΕΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ
ΚΑΤΑΝΟΜΕΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 1 Θέμα 1 α) Προσδιορίστε τον όγκο V ιδανικού αερίου, στον οποίο η σχετική διακύμανση είναι α = 10-6 και η συγκέντρωση των σωματιδίων είναι n =,7 10 19 cm -3. β) Προσδιορίστε
ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική. δυναμική
ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ + + + + κινητική δυναμική Εσωτερική ενέργεια: Το άθροισμα της κινητικής (εσωτερική κινητική ενέργεια ή θερμική ενέργεια τυχαία, μη συλλογική κίνηση) και δυναμικής ενέργειας (δεσμών κλπ)
ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ eclass: MED808 Π. Παπαγιάννης
ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ eclass: MED808 Π. Παπαγιάννης Επικ. Καθηγητής, Εργαστήριο Ιατρικής Φυσικής, Ιατρική Σχολή Αθηνών. Γραφείο 21 210-746 2442 ppapagi@phys.uoa.gr Τις προσεχείς ώρες θα συζητήσουμε τα πέντε πρώτα
Τμήμα Χημείας Πανεπιστήμιο Κρήτης. Εαρινό εξάμηνο 2009
Τμήμα Χημείας Πανεπιστήμιο Κρήτης Εργαστήριο Φυσικοχημείας Ι Στοιχεία Στατιστικής Θερμοδυναμικής Εαρινό εξάμηνο 9 Διδάσκων : Δ. Άγγλος Υπευθ. Εργαστηρίου : Ν. Στρατηγάκης Μεταπτυχιακοί : Ν. Διαμαντοπούλου,
Κεφάλαια (από το βιβλίο Serway-Jewett) και αναρτημένες παρουσιάσεις
Ύλη μαθήματος «Σύγχρονη Φυσική» Κεφάλαια (από το βιβλίο Serway-Jewett) και αναρτημένες παρουσιάσεις Σ2-Σελίδες: 673-705, (όλο το κεφάλαιο από το βιβλίο) και η παρουσίαση Σ2 που έχει αναρτηθεί στο e-class
Διάλεξη 9: Στατιστική Φυσική
Στατιστική Φυσική: Η μελέτη της θερμοδυναμικής συμπεριφοράς ενός συστήματος σωματίων σε σχέση με τις ιδιότητες των επί μέρους σωματίων. Αν και δεν μπορεί να προβλέψει με απόλυτη ακρίβεια την θερμοδυναμική
Hamiltonian Δυναμική - Παράδειγμα
Hamiltonian Δυναμική - Παράδειγμα ΦΥΣ 211 - Διαλ.12 1 Μάζα m κινείται στο εσωτερικό επιφάνειας κατακόρυφου κώνου ρ=cz. Το σώμα κινείται μέσα σε ομοιόμορφο βαρυτικό πεδίο με g προς τα κάτω. Χρησιμοποιήστε
ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης
Αστροφυσική. Ενότητα # 1 (Εισαγωγική): Εισαγωγή στη Ρευστομηχανική. Νικόλαος Στεργιούλας Τμήμα Φυσικής ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αστροφυσική Ενότητα # 1 (Εισαγωγική): Εισαγωγή στη Ρευστομηχανική Νικόλαος Στεργιούλας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Αγωγιμότητα στα μέταλλα
Η κίνηση των ατόμων σε κρυσταλλικό στερεό Θερμοκρασία 0 Θερμοκρασία 0 Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo
Αγωγιμότητα στα μέταλλα
Η κίνηση των ατόμων σε κρυσταλλικό στερεό Θερμοκρασία 0 Θερμοκρασία 0 Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo
( J) e 2 ( ) ( ) x e +, (9-14) = (9-16) ω e xe v. De = (9-18) , (9-19)
Ασκήσεις Φασµατοσκοπίας Η φασµατική περιοχή στην οποία βρίσκεται µια φωτεινή ακτινοβολία χαρακτηρίζεται από την συχνότητα ν (Hz) µε την οποία ταλαντώνεται το ηλεκτρικό και το µαγνητικό πεδίο του φωτός.
6. Στατιστικές μέθοδοι εκπαίδευσης
6. Στατιστικές μέθοδοι εκπαίδευσης Μία διαφορετική μέθοδος εκπαίδευσης των νευρωνικών δικτύων χρησιμοποιεί ιδέες από την Στατιστική Φυσική για να φέρει τελικά το ίδιο αποτέλεσμα όπως οι άλλες μέθοδοι,
ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) 1 η Άσκηση 1000 mol ιδανικού αερίου με cv J mol -1 K -1 και c
ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ 3-4 (Α. Χημική Θερμοδυναμική) η Άσκηση mol ιδανικού αερίου με c.88 J mol - K - και c p 9. J mol - K - βρίσκονται σε αρχική πίεση p =.3 kpa και θερμοκρασία Τ =
ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) 1 η Άσκηση
ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ 004-05 (Α. Χημική Θερμοδυναμική) η Άσκηση Στερεό CO, βάρους 6 g, εισάγεται μέσα σε κενό δοχείο όγκου 00 cm 3 που βρίσκεται συνεχώς σε θερμοκρασία δωματίου (300
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Μοριακή Δομή ΙΙ Διδάσκων : Επίκ. Καθ. Μ. Μπενής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγxρονη Φυσική Μοριακή Δομή ΙΙ Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Ceative Coons. Για
Παρουσίαση Εννοιών στη Φυσική της Β Λυκείου. Κεφάλαιο Πρώτο Ενότητα: Νόμοι των αερίων
Παρουσίαση Εννοιών στη Φυσική της Β Λυκείου Κεφάλαιο Πρώτο Ενότητα: Νόμοι των αερίων ΝΟΜΟΙ ΤΩΝ ΑΕΡΙΩΝ ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ 1.1. Νόμος του Boyle (ισόθερμη μεταβολή) Η πίεση ορισμένης ποσότητας αερίου, του
ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες
Κεφάλαιο 6α. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα
Κεφάλαιο 6α Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Στερεό (ή άκαμπτο) σώμα Τα μοντέλα ανάλυσης που παρουσιάσαμε μέχρι τώρα δεν μπορούν να χρησιμοποιηθούν για την ανάλυση όλων των κινήσεων. Μπορούμε
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΦΥΣΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΦΥΣΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα 1. Μοντέλο υλικού σώματος 2. Ορισμοί μάζα γραμμομόριο 3. Η κατάσταση ενός υλικού 4. Τα βασικά γνωρίσματα των καταστάσεων 5. Το μοντέλο του ιδανικού
Ασκήσεις Φασµατοσκοπίας
Ασκήσεις Φασµατοσκοπίας Η φασµατική περιοχή στην οποία βρίσκεται µια φωτεινή ακτινοβολία χαρακτηρίζεται από την συχνότητα ν (Hz) µε την οποία ταλαντώνεται το ηλεκτρικό και το µαγνητικό πεδίο του φωτός.
ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Κεντρικό: Λεωφ. Κηφισίας 56, Αμπελόκηποι, Αθήνα Τηλ.: ,
ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Κεντρικό: Τηλ.: 0 69 97 985, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ.: 0 69 97 985, e-mal: edlag@oteet.gr, www.edlag.gr ΣΜΑΡΑΓΔΑ ΣΑΡΑΝΤΟΠΟΥΛΟΥ, MSC, ΥΠΟΨΗΦΙΑ ΔΙΔΑΚΤΩΡ
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΦΥΣΙΚΗ ΛΥΣΕΙΣ 26/10/2011
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΦΥΣΙΚΗ ΛΥΣΕΙΣ 26/10/2011 1) Θεωρούµε ένα σύστηµα που αποτελείται από ένα σωµατίδιο µε σπιν ½ και µε µαγνητική ροπή
ΑΤΜΟΣΦΑΙΡΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ. Η ατμόσφαιρα συμπεριφέρεται σαν ιδανικό αέριο (ειδικά για z>10 km)
ΑΤΜΟΣΦΑΙΡΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ Η ατμόσφαιρα συμπεριφέρεται σαν ιδανικό αέριο (ειδικά για z>1 km) Οι αποστάσεις μεταξύ των μορίων είναι πολύ μεγάλες σχετικά με τον όγκο που κατέχουν Οι συγκρούσεις μεταξύ τους
Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων.
Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων. Θεωρώντας τα αέρια σαν ουσίες αποτελούμενες από έναν καταπληκτικά μεγάλο αριθμό μικροσκοπικών
ΑΝΤΙΣΤΡΕΠΤΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ ΘΕΩΡΙΑ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 ΑΝΤΙΣΤΡΕΠΤΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ ΘΕΩΡΙΑ Περιεχόμενα 1. Μελέτη Ισόχωρης μεταβολής 2. Μελέτη Ισοβαρής μεταβολής 3. Μελέτη Ισόθερμης μεταβολής 4.
Για τη συνέχεια σήμερα...
ΦΥΣ 211 - Διαλ.10 1 Για τη συνέχεια σήμερα... q Συζήτηση ξανά των νόμων διατήρησης q Χρησιμοποιώντας τον φορμαλισμό Lagrange q Γραμμική ορμή και στροφορμή q Σύνδεση μεταξύ συμμετρίας, αναλλοίωτο της Lagrangan,
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κβαντομηχανική σε τρεις διαστάσεις Διδάσκων : Επίκ. Καθ. Μ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγρονη Φυσική II Κβαντομηχανική σε τρεις διαστάσεις Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Επαναληπτικές ασκήσεις
Επαναληπτικές ασκήσεις a a a Τ Τ x Τ Έστω απομονωμένο μακροσκοπικό σύστημα το οποίο αποτελείται από 3 mol όμοιων και διακριτών μονοατομικών μορίων τα οποία δεν αλληλεπιδρούν μεταξύ τους. Τα μόρια αυτά
Μικροκανονική- Kανονική κατανομή (Boltzmann)
Κεφάλαιο 2: Βασικές αρχές της στατιστικής φυσικής- Μικροκανονική- Kανονική κατανομή (Boltzmann) Ανακεφαλαίωση (Με τι ασχοληθήκαμε) Δώσαμε τις έννοιες της μακροκατάστασης, της μικροκατάστασης και του στατιστικού
ΠΑΡΑΡΤΗΜΑ Β. υποθέτουμε ότι ένα σωματίδιο είναι μέσα σε ένα μεγάλο (ενεργειακή κβαντοποίηση) αλλά πεπερασμένο κουτί (φρεάτιο δυναμικού):
ΠΑΡΑΡΤΗΜΑ Β H DOS περιγράφει ΚΑΤΑΜΕΤΡΗΣΗ ΚΑΝΟΝΙΚΩΝ ΤΡΟΠΩΝ προσιτές σε προσδιορίσουμε ένα τον αριθμό σύστημα και των καταστάσεων είναι αρκετές ιδιότητες ενός συστήματος όπωs: σημαντική DOS που για είναι
Μηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville
Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 16/5/2000 Μηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville Στη Χαµιλτονιανή θεώρηση η κατάσταση του συστήµατος προσδιορίζεται κάθε στιγµή από ένα και µόνο σηµείο
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου Ι Άσκηση 1: Θεωρήστε δύο ορθοκανονικά διανύσματα ψ 1 και ψ και υποθέστε ότι αποτελούν βάση σε ένα χώρο δύο διαστάσεων. Θεωρήστε επίσης ένα τελαστή T που ορίζεται στο χώρο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Πτυχιακή εξέταση στη Μηχανική ΙI 20 Σεπτεμβρίου 2007
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Πτυχιακή εξέταση στη Μηχανική ΙI 0 Σεπτεμβρίου 007 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε στα ερωτήματα που ακολουθούν με σαφήνεια, ακρίβεια και απλότητα. Όλα τα
3/2 dp = f ( υ d ) υ mυ / 2 kt 4 π υ e 2 k π T
m d P = f ( υ) dυ = 4π -mυ / kt υ e dυ πkt N u 3/ Η συνάρτηση f(υ) είναι ΣΥΝΑΡΤΗΣΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ 3/ m f ( υ) = 4π υ e πkt -mυ / kt Είναι θετική Για υ0 τείνει στο μηδέν Για υ τείνει στο μηδέν Επομένως
ΥΠΟΛΟΓΙΣΤΙΚΗ ΧΗΜΕΙΑ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΕ ΜΟΡΙΑ, ΥΛΙΚΑ, ΠΕΡΙΒΑΛΛΟΝ
ΥΠΟΛΟΓΙΣΤΙΚΗ ΧΗΜΕΙΑ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΕ ΜΟΡΙΑ, ΥΛΙΚΑ, ΠΕΡΙΒΑΛΛΟΝ Ι ΑΣΚΟΝΤΕΣ: Μαρία Κανακίδου, Σταύρος Φαράντος, Γιώργος Φρουδάκης 1 / 31 ΕΝΟΤΗΤΑ ΠΡΩΤΗ Σύγχρονη Υπολογιστική Χηµεία: Επισκόπηση Μοριακές Θεωρίες
Διατομικά μόρια- Περιστροφική ενέργεια δονητικά φάσματα Raman
Διατομικά μόρια- Περιστροφική ενέργεια δονητικά φάσματα Raman Πολυατομικά μόρια ενέργεια δόνησης κανονικοί τρόποι ταλάντωσης κανόνες επιλογής ενεργοί τρόποι ταλάντωσης (μονοφωτονική μετάβαση- Raman) χαρακτηριστικές
Μικροκανονική- Kανονική κατανομή (Boltzmann)
Κεφάλαιο 2: Βασικές αρχές της στατιστικής φυσικής- Μικροκανονική- Kανονική κατανομή (Boltzmann) Ανακεφαλαίωση (Με τι ασχοληθήκαμε) Δώσαμε τις έννοιες της μακροκατάστασης, της μικροκατάστασης και του στατιστικού
ΠΑΡΑΡΤΗΜΑ Β. ΚΑΤΑΜΕΤΡΗΣΗ ΚΑΝΟΝΙΚΩΝ ΤΡΟΠΩΝ - ΠΥΚΝΟΤΗΤΑ ΚΑΤΑΣΤΑΣΕΩΝ D.O. S Density Of States
ΠΑΡΑΡΤΗΜΑ Β ΚΑΤΑΜΕΤΡΗΣΗ ΚΑΝΟΝΙΚΩΝ ΤΡΟΠΩΝ - ΠΥΚΝΟΤΗΤΑ ΚΑΤΑΣΤΑΣΕΩΝ D.O. S Density Of States Στατιστική Φυσική Διαφάνεια 1 DOS H DOS περιγράφει τον αριθμό των καταστάσεων που είναι προσιτές σε ένα σύστημα
Αρμονικός ταλαντωτής (κλασσική μηχανική)
Αρμονικός ταλανττής κλασσική μηχανική F k μετατόπιση F Δύναμη επαναφοράς k σταθερά δύναμης Ενέργεια E T V m T V m m Fd kd k d dt E m E k k Σχνότητα ταλάντσης v π k m Αρμονικός ταλανττής κβαντομηχανική
ΥΠΟΛΟΓΙΣΤΙΚΗ ΧΗΜΕΙΑ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΕ ΜΟΡΙΑ, ΥΛΙΚΑ, ΠΕΡΙΒΑΛΛΟΝ
ΥΠΟΛΟΓΙΣΤΙΚΗ ΧΗΜΕΙΑ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΕ ΜΟΡΙΑ, ΥΛΙΚΑ, ΠΕΡΙΒΑΛΛΟΝ Ι ΑΣΚΟΝΤΕΣ: Μαρία Κανακίδου, Σταύρος Φαράντος, Γιώργος Φρουδάκης 1 / 32 ΕΝΟΤΗΤΑ ΠΡΩΤΗ Σύγχρονη Υπολογιστική Χηµεία: Επισκόπηση Μοριακές Θεωρίες
Φυσική Προσανατολισμού Β Λυκείου Κεφάλαιο 2 ο. Σύντομη Θεωρία
Φυσική Προσανατολισμού Β Λυκείου 05-06 Κεφάλαιο ο Σύντομη Θεωρία Θερμοδυναμικό σύστημα είναι το σύστημα το οποίο για να το περιγράψουμε χρησιμοποιούμε και θερμοδυναμικά μεγέθη, όπως τη θερμοκρασία, τη
. Να βρεθεί η Ψ(x,t).
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου II Άσκηση 1: Εάν η κυματοσυνάρτηση Ψ(,0) παριστάνει ένα ελεύθερο σωματίδιο, με μάζα m, στη μία διάσταση την χρονική στιγμή t=0: (,0) N ep( ), όπου N 1/ 4. Να βρεθεί η
Διατομικά μόρια- Περιστροφική ενέργεια δονητικά - περιστροφικά φάσματα
Διατομικά μόρια- Περιστροφική ενέργεια δονητικά - περιστροφικά φάσματα Πολυατομικά μόρια περιστροφική ενέργεια περιστροφικά φάσματα Σκέδαση φασματοσκοπία n συνεισφορά του πυρηνικού σπιν Δονητικά περιστροφικά
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Θετ.- τεχ. κατεύθυνσης
1 ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Θετ.- τεχ. κατεύθυνσης ΘΕΜΑ 1 ο : Σε κάθε μια από τις παρακάτω προτάσεις να βρείτε τη μια σωστή απάντηση: 1. Μια ποσότητα ιδανικού αέριου εκτονώνεται ισόθερμα μέχρι τετραπλασιασμού
ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ
ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΕΙΣΑΓΩΓΗ Σκοπός της κινηματικής είναι η περιγραφή της κίνησης του ρευστού Τα αίτια που δημιούργησαν την κίνηση και η αναζήτηση των δυνάμεων που την διατηρούν είναι αντικείμενο της
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΙΜΕΛΕΙΑ: ΧΑΛΑΝΤΖΟΥΚΑ ΦΩΤΕΙΝΗ
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 07 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΙΜΕΛΕΙΑ: ΧΑΛΑΝΤΖΟΥΚΑ ΦΩΤΕΙΝΗ ΘΕΜΑ Α. Α. δ Α. γ Α. α. Α4. δ Α5. α) Λ β) Σ γ) Σ δ) Σ ε) Λ ΘΕΜΑ Β Β. Στη Θ.Ι (θέση ισορροπίας) του σώματος
2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ - ΕNTΡΟΠΙΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ - ΕNΡΟΠΙΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα. O ος Θερμοδυναμικός Νόμος. Η Εντροπία 3. Εντροπία και αταξία 4. Υπολογισμός Εντροπίας
PLANCK 1900 Προκειμένου να εξηγήσει την ακτινοβολία του μέλανος σώματος αναγκάστηκε να υποθέσει ότι η ακτινοβολία εκπέμπεται σε κβάντα ενέργειας που
ΑΤΟΜΙΚΗ ΦΥΣΙΚΗ PLANCK 1900 Προκειμένου να εξηγήσει την ακτινοβολία του μέλανος σώματος αναγκάστηκε να υποθέσει ότι η ακτινοβολία εκπέμπεται σε κβάντα ενέργειας που είναι ανάλογα με τη συχνότητα (f). PLANCK
Κινητική Θεωρία πλάσµατος
Κινητική Θεωρία πλάσµατος Λουκάς Βλάχος Τµήµα Φυσικής ΑΠΘ *Οµιλία στο ο ΣΧΟΛΕΙΟ ΦΥΣΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΣΥΝΤΗΞΗΣ, Βόλος- /5/003 1 Θέµατα Τυχαίες διαδικασίες και η κατανοµή Gauss Η συνάρτηση κατανοµής ταχυτήτων
Γενική Μεταπτυχιακή Εξέταση - ΕΜΠ & ΕΚΕΦΕ-" ηµόκριτος"
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ NATIONAL TECHNICAL UNIVERSITY ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & DEPARTMENT OF PHYSICS ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ - ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ZOGRAFOU CAMPUS ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 157 80 ATHENS -
ΤΥΠΟΛΟΓΙΟ ΚΙΝΗΤΙΚΗΣ ΘΕΩΡΙΑΣ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ T 1 <T 2 A
ΤΥΠΟΛΟΓΙΟ ΚΙΝΗΤΙΚΗΣ ΘΕΩΡΙΑΣ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ 1. ΝΟΜΟΣ OYLE-MRIOTTE = σταθ. (όταν Τ = σταθ.) (1) Ο νόμος των oyle Mariotte εφαρμόζεται σε ισόθερμη μεταβολή (Τ = σταθ.) π.χ. στην μεταβολή Α T 1
Φυσική Κατεύθυνσης Β Λυκείου.
Φυσική Κατεύθυνσης Λυκείου. Διαγώνισμα στην Θερμοδυναμική. Ζήτημα 1 o. ) Να επιλέξτε την σωστή απάντηση. 1) Ορισμένη ποσότητα ιδανικού αερίου μεταβάλλεται από κατάσταση σε κατάσταση. Τότε: α) Η μεταβολή
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΕΝΤΡΟΠΙΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ
ΕΝΤΡΟΠΙΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ 1 ΑΣΚΗΣΗ 1 Το δοχείο του σχήματος είναι απομονωμένο (αδιαβατικά τοιχώματα). Το διάφραγμα χωρίζει το δοχείο σε δύο μέρη. Το αριστερό μέρος έχει όγκο 1 και περιέχει ιδανικό αέριο
Γενική Μεταπτυχιακή Εξέταση - ΕΜΠ & ΕΚΕΦΕ-" ηµόκριτος"
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ NATIONAL TECHNICAL UNIVERSITY ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & DEPARTMENT OF PHYSICS ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ - ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ZOGRAFOU CAMPUS ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 157 80 ATHENS -
Κεφάλαιο M11. Στροφορµή
Κεφάλαιο M11 Στροφορµή Στροφορµή Η στροφορµή παίζει σηµαντικό ρόλο στη δυναµική των περιστροφών. Αρχή διατήρησης της στροφορµής Η αρχή αυτή είναι ανάλογη µε την αρχή διατήρησης της ορµής. Σύµφωνα µε την
Η Αναπαράσταση της Θέσης (Position Representation)
Η Αναπαράσταση της Θέσης (Position Representation) Δομή Διάλεξης Το παρατηρήσιμο μέγεθος της θεσης και τα αντίστοιχα πλάτη πιθανότητας (συνεχές φάσμα ιδιοτιμών και ιδιοκαταστάσεων) Οι τελεστές της θέσης
ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5
Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 1/ 53 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων Ακαδηµαικό έτος
Copyright, Οκτώβριος 2011, Π. Μουστάνης, Eκδόσεις Zήτη
ISBN 978-960-456-304-3 Copyrigt, Οκτώβριος 20, Π. Μουστάνης, Eκδόσεις Zήτη Tο παρόν έργο πνευματικής ιδιοκτησίας προστατεύεται κατά τις διατάξεις του ελληνικού νόμου (N.22/993 όπως έχει τροποποιηθεί και
ΚΑΤΑΝΟΜΗ BOLTZMANN ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΚΑΤΑΝΟΜΗ BOLTZMA ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα 1. Κατανομή Bltzmann. Ασκήσεις 1 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 1. Κατανομή Bltzmann
Εφαρμογές κβαντικής θεωρίας
Εφαρμογές κβαντικής θεωρίας Στοιχειώδες μαθηματικό υπόβαθρο Σχέση Euler Χρησιμοποιώντας τη σχέση Euler, ένα αρμονικό κύμα της μορφής Acos(kx) (πραγματική συνάρτηση), μπορεί να γραφτεί ως Re[Ae ikx ] που
Κυματική φύση της ύλης: ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ. Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης:
Κυματική φύση της ύλης: ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης: Κινούμενα ηλεκτρόνια συμπεριφέρονται σαν κύματα (κύματα de Broglie)
Enrico Fermi, Thermodynamics, 1937
I. Θερµοδυναµικά συστήµατα Enrico Feri, herodynaics, 97. Ένα σώµα διαστέλλεται από αρχικό όγκο. L σε τελικό όγκο 4. L υπό πίεση.4 at. Να υπολογισθεί το έργο που παράγεται. W - -.4 at 5 a at - (4..) - -
ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΣΥΓΧΡΟΝΗ ΦΥΣΙΚΗ ΔΙΔΑΣΚΩΝ: Δ. ΣΚΑΡΛΑΤΟΣ, ΑΝΑΠΛΗΡΩΤΗΣ ΚΑΘΗΓΗΤΗΣ ΣΥΓΧΡΟΝΗ ΦΥΣΙΚΗ
ΣΥΓΧΡΟΝΗ ΦΥΣΙΚΗ ΕΝΟΤΗΤΑ 5 Επίλυση της εξίσωσης Schrödinger σε απλά κβαντικά συστήματα Ι. ΕΙΣΑΓΩΓΗ Κάθε φυσικά πραγματοποιήσιμη φυσική κατάσταση ενός (μονοσωματιδιακού) κβαντικού συστήματος περιγράφεται