UNIVERSITÀ DEGLI STUDI DI BOLOGNA. DIPARTIMENTO DI INGEGNERIA ELETTRICA Viale Risorgimento n BOLOGNA (ITALIA)
|
|
- ῬαΧάβ Γιαννόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 UNVESTÀ EG STU OOGN PTMENTO NGEGNE EETTC Val orgno n - 4 OOGN (T N NYTC SOUTON FO THE CUENT STUTON N TWO -STNS UTHEFO CES COUPE WTH ESSTVE JONT M. Fabbr brac Ulzng gorcal ror of auo/uual nducon coffcn ar aong rand of a -rand urford cabl, oluon for gnral lnar ca of wo cabl conncd roug a r jon gn. PPOTO NTENO EU SETTEME
2 nd. nroducon..... Cabl Modl Jon Modl.... frnc..... nroducon Condr, a own n fgur, wo ual -rand cabl of lng conncd roug a r jon. Moror, au a flowng currn ually drbud on r nu rand and on r ouu rand. (/ (/ (/ NPUT CE ( ( ( ( ( JONT ( ( ( ( ( OUTPUT CE (/ (/ (/ T longudnal ranc (r of rand an rnal olag ( ald o cabl ar aud o b zro. T currn and olag on rnal bwn nu cabl and jon and bwn jon and ouu cabl ar labld w and, rcly.. Cabl Modl Condr, a own n fgur, nu -rand cabl w flowng currn ually drbud on nu rand and forally nown on ouu rand. (/ (/ (/ ( ( ( T longudnal ranc (r and rnal olag ( ar aud o b zro. Conunly, currn flowng n -rand cabl ar dcrbd by followng y: E/UNO/ Sbr d
3 (P [ G][ M] (, (, (, (, (, (, (, ( ( w,, >, < < w ( and (, and wr [M] and [G] ar followng conan-coffcn crculan yrc ar: [ M ] [ G ] g g g g g g g g g fnng oronoral cral ba b, w,,, a a for [M] and [G]: b ar [M] and [G] can b wrn a b / / b T T T T T T [ M] λ b b λbb λ b b [ G] b b bb b b w gnalu gn by λ λ λ g. - T doan Currn coo and a follow No a (coably condon Probl (P ad a: (P (, (, b (, b (, b ( ( b ( b ( b [ ] ( T ( b ( ( ( ( [ G][ M] (, (, (, (, ( (, ( b w >, < < E/UNO/ Sbr d
4 fnng g (P u u u u u u (, (, [ G][ M] (, (, [ G][ M] (, (, (, u ( ( b b ( ( w >, < < wr r dno dffrnaon w rc o argun. coong u a follow u (, µ (, b µ (, b (, b Probl (P u ly ddd n followng r robl: (P u µ µ (, µ (,, µ (, µ (, w >, < < (P u λ µ µ µ (, (, λ ( (,, µ (, µ (, w >, < < (P u µ λ µ µ (, (, λ ( (,, µ (, µ (, Probl (P u a l oluon (, µ ± ± λ ± µ ± w >, < < µ, wl robl (P u± can b wrn coacly a: µ ± (, (, λ ( (,, µ (, µ (, ± wc a bn alrady rad [] and g: ± ± µ ± ± wr Γ a wo ualn rrnaon []: ± ± ξ, (, dξ dτ ( τ Γ(, ξ τ w >, < < or Γ (, ξ; n nπ λ nπ nπξ n n E/UNO/ Sbr d
5 Γ λ (, ξ; 4 π n λ ξ n λ ξ n (T nd a bn drod fro gnalu nc λ λ and. Tu nc ( µ (, T (, b ( (, ( ( ( (, wc l (, (, b ( (, ( T ± ± ± ± ± µ (, ( ( ± ± ξ (, ± ( dξ dτ ( τ Γ(, ξ, τ w >, < < and currn n nl cabl ar (for >, < < : (, ( [ ( b ( b ] dξ dτ ( τ b ( τ ξ [ ] Γ(, ξ τ b b, No a currn n nl cabl ar colly nown f funcon ± ar aalabl. For wa concrn currn n oul cabl, nc forally yrc o nl on, oluon for, and for ± alo, can b oband cangng w and condrng nad of, a follow (* : ± ± (, ξ (, ± ( dξ dτ ( τ Γ(, ξ, τ w >, < < ( and currn n oul cabl ar (for >, < < : (, ( [ ( b ( b ] dξ dτ ( τ b ( τ ξ [ ] Γ(, ξ τ b b, gan, no a currn n oul cabl ar colly nown f funcon ± ar aalabl.. - T doan Volag (* T corrondnc ly donrad, nc dfnng ', on bco ', on bco ', and dra rul o b: ladng uaon naran and boundary condon corrcly ac. and. Tu E/UNO/ Sbr 4 d
6 For wa concrn olag n nl cabl, ang no accoun a and dcoong a follow followng rlaon ar oband: Moror, nc ψ ψ w >, < < [ G] (, (, (, ψ (, b ψ(, b ψ (, b ± ± ψ ± (, (, w >, < < (, b (, [ (, (, ] T T (, b (, (, (, (, (, (, (, and ( (,, ( (, olag a nd of nl cabl can b ad a: ( ψ (, ( ψ (, ψ (, Now, nc olag ( and ( a nd of nl cabl ar gn n r of ψ ± (,, a ar rlad o aal dra of ± (, wc ar dndn fro currn a nd of nl cabl (rd n r of ± (, aarn a obl o oban a olag- currn caracrc of nl cabl, a can b n a an ac rolar coonn. For wa concrn olag n oul cabl, nc forally yrc o nl on, oluon for ( and (, can b oband cangng w and condrng nad of, a follow: ( ψ (, ( ψ (, ψ (, (wr ψ ± a o b aluad rfrrng o aal dra of ± aluad for oul cabl To oban olag-currn caracrc for nl cabl, dfn: ξ (, ξ Γ( ξ d,, Tu, ubuon g: w >, < < E/UNO/ Sbr 5 d
7 ± ψ ± ± (, (, ( dξ dτ ( τ Γ(, ξ, τ ± ± ( dτ ( τ (, τ τ [ ] ( dτ ( τ (, τ ( τ ± ± and, nc ± (, g: ± ± ± ξ τ >, < < ± (, τ ( τ ( τ d, w >, < < ψ ± ± Moror, n a way olag-currn caracrc for oul cabl, ar oband: ± (, τ ( τ ( τ d, w >, < < ψ ± ± ( gn du o -dffrnaon: foono a. 4 Fnally, olag a nd of nl cabl can b ad a:, ( dτ ( τ ( τ [ ] ( τ ( dτ ( τ ( τ, (wr nd on a bn drod for bry and olag a bgnnng of oul cabl rul o b:, ( dτ ( τ ( τ [ ] ( τ, ( dτ ( τ ( τ. - alac doan Currn wa own, currn flowng n nl -rand cabl ar dcrbd by followng robl (P: (P [ G][ M] (, (, (, (, ( b (, ( E/UNO/ Sbr d w >, < <
8 coo and a follow w coably condon (, (, b (, b (, b ( ( b ( b ( b [ ] ( T ( b ( ( ( ( Probl (P ly ddd n followng r robl: (P (, (P λ, (P,, λ (,, (, (, ( (, ( ( (,, (, ( (, (, (,, (,, (, ( Probl (P a l oluon (, (P ± ± ± λ ± ± ± (, (, ( w >, < < w >, < < w >, < <, wl robl (P ± can b wrn coacly a: (,, (,, (, ( lyng alac ranfor o robl (P ± g: (P ± ± ± λ ± ± ± ± ± (, (, (,, (, ( ± ± ± n wc can b aly old o g: (, ( Condr now oluon for ± (, gn bfor: ± ± n ± ( ± λ ± ( λ ± ± ± w < < w >, < < ξ (, ± ( dξ dτ ( τ Γ(, ξ, τ w >, < < Nong a ngraon of conoluon nd can b aly alac-ranford: E/UNO/ Sbr 7 d
9 ξ ξ ± ± ± ± (, ( ( dξ Γ(, ξ, ( dξ Γ(, ξ, y coaron can b dducd a n( λ (, ξ, n( λ ξ dξ Γ wr nd a bn drod for bry. To oban alac-ranfor of caracrc funcon, dffrna la uaon w rc o : Tang no accoun dfnon and nc { } / wr (, { (, }, rul: co( λ (, ξ, λ n( λ ξ ξ Γ d ξ (, ξ Γ( ξ d,, ( λ ( λ. Tu, fnally (, co λ n (, co( λ co( λ (, λ (, λ n( λ n( λ.4 - alac doan Volag wa own bfor, olag a nd of nl cabl and a bgnnng of oul cabl can b ad a -conoluon. Trfor, y can b aly ranford n alac doan: ( ( (, [ ] (, ( ( ( ( ( (, [ ] (, ( ( (.5 Pror of funcon wa own bfor, currn-olag caracrc of nl and oul cabl ar uarzd n funcon. n con o ror of funcon ar gn. Sarng fro dfnon: Γ (, ξ; n nπ λ nπ nπξ n n ( < ξ < and < < and ang no accoun a ξ (, ξ Γ( ξ d,, E/UNO/ Sbr 8 d
10 ξ nπξ dξ n ( nπ nπξ nπξ nπξ n co co nπ ( nπ g λ ( λ (, co co nπ co co( nπ n nπ nπ n nπ nπ, < < n ordr o oban a dffrn (and w far conrgnc rrnaon of funcon condr a co ( co( [ co( co( ] and a llc a funcon ϑ ad followng rrnaon (wr uaon r ar non-ocllang[]: Trfor ϑ ( u, n n co nu π n ( u nπ a g (, n ϑ π λ π nπ λ n, con π π λ λ n n ϑ π λ π n nπ λ, π λ con π λ n ( λ λ λ n n,, < < π n n arcular, (, bco: ( λ, (, n nπ Corrondngly, n alac doan (, n (, nπ λ (, n λ π n λ ( n a followng r dffrn rrnaon []: λ λ n ( λ co ( λ, n λ ( E/UNO/ Sbr 9 d
11 . Jon Modl. T doan Modl Condr, a own n fgur, r jon w flowng currn nown forally on nu and on ouu rand. ( ( ( ( ( ( ( ( ( ( T KC on cnral nod g: and, dfnng ( ( ( ( ( ( ( ( ( ( ( ( ( [ Ω] KC can b coacly wrn a: Now no a ( ( ( [ Ω] ( [ Ω ] b b [ ] Ω b b b [ ] Ω b b b coong, and a follow and nong a (coably condon followng uaon old: ( ( b ( b ( b ( ( b ( b ( b ( ( b ( b ( b ( ( ( E/UNO/ Sbr d
12 E/UNO/ Sbr d ( ( ( ( ( ( ( ( ( ( T y can b aly old for ±, ladng o: ( ( [ ] ( ( [ ] T KT on lf and rg d of jon g: ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( and, dfnng ( ( [ ] [ ] [ ] { },, dag, KT can b coacly wrn a: ( [ ] ( [ ] ( ( [ ] ( [ ] ( Moror, no a [ ] [ ] T T b b ( ( ( ( ( ( T la rory ld u o wr: ( b b ( a ru for Tu, dcoong and a follow ( ( ( ( β β β b b b ( ( ( ( β β β b b b can b aly ron n β β β β β β Fnally, dfnng [ ] T, b b ρ, w,,,, and,,
13 KT can b wrn a: β ρ, ρ, ρ, ρ, ρ, ρ, β ρ, ρ, ρ, ρ, ρ, ρ, β ρ, ρ, ρ, ρ, ρ, ρ, β ρ, ρ, ρ, ρ, ρ, ρ, ρ, ρ, ρ, No a, nc ± wa rd n r of ± and ±, and la uaon can b daly old for, rulng y of four uaon, conanng ±, ± and β ±, β ±, can b old rodng currn-olag,.. -β, caracrc of nu and ouu cabl. For wa concrn coffcn, a l bu cubro calculaon lad o (w, : ρ, (, ρ ρ, ρ, ( ρ, ρ, Furror, can b aly donrad, nc [ ] yrc, an ρ, ρ,. Trfor: ρ, ( ρ ρ,, ( ρ, ρ, ( ρ, ( 4 To rduc z of olng y la uaon old for : ρ, ρ, ρ ρ Conunly, dfnng (for, ±,, ρ, ρ,, ρ, ρ, and ubung, followng rducd y (conanng only ±, ± and,,, found:,, ρ, ρ, ρ, [ ( ( ] [( ( ],, ρ, ρ, ρ, [ ( ( ] ( (,, ρ, ρ, ρ, [ ( ( ] [( ( ],, ρ, ρ, ρ, ( ( For wa concrn coffcn, a l bu cubro calculaon lad o: (, ( ( 4,,, lr for can b oband nroducng ar-ualn ranc: [ ] [ ] [( ( ] E/UNO/ Sbr d
14 Y nd u, Y Y ( Y ( Y Y Y,, Y Y, Y. Sy oluon n alac doan Coulng jon uaon, wrn n alac doan a follow,, ρ ρ ρ,,, [ ( ( ] [( ( ],, ρ ρ ρ,,, [ ( ( ] [( ( ],, ρ ρ ρ,,, [ ( ( ] [( ( ],, ρ, ρ, ρ, [ ( ( ] [( ( ] w nu and ouu cabl caracrc lad o (afr rordrng,,,,,,,,,, ρ ρ ρ,,,,,,,,, ρ,, ρ, ρ,,,,,,,, ρ,,, ρ ρ ρ,,,,,,,,,,, ρ ρ ow ow ow ow ; rd n ordr o ylfy ar, l u rfor followng oraon: ( ( ; nd ( ( ( ow ( ow4 ; 4 ( ow4 ( ow. T lad o: E/UNO/ Sbr d
15 ρ ρ,, ρ ρ,,,,,,,,,,,,,, ρ, ρ, ρ ρ,,,,, E/UNO/ Sbr 4 d,,,,,,,,,,,,,,,,,,,,,,,, ρ ρ ρ ρ,,,,,,,,,, ρ, ρ, ρ ρ,,, Forunaly, nold coffcn can b ly rd n r of rnc, a follow,, 4Y Y Y,,,, Y, Y (w, 4 ρ, ρ, ρ,,,,, ρ, ρ, ρ, ρ ρ ρ ρ,,,, ρ ρ ρ ρ,,,, ( ρ, ( ρ ρ ( ρ, ρ, (,,, ρ T ron can b furr lfd dfnng followng an ranc Y Y
16 E/UNO/ Sbr 5 d Y Y Y Y Fnally, ullyng all row by /, followng y oband: ( ( ( ( ( ( ( ( Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y ( ( ( ( ( ( ( ( ( ( ( ( Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Now dfnng (,, oluon of y can b aly found followng Crar rul: ( ( ( ( ( (,,, w, and ± wr funcon ar dfnd a follow (all ar drnan:
17 E/UNO/ Sbr d ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
18 ( ( ( ( ( ( ( ( ( Y ( ( ( ( Y ( ( ( ( Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y ( ( Y Y ( Y Y ( Y Y ( Y Y ( ( ( ( Y ( ( ( ( Y ( ( ( ( Y Y Y Y Y Y Y Y Y Y aarn fro dfnon a ( a olynoal of four dgr n, wl ( ar olynoal of rd dgr n. Moror, condrng uaon ( wc clarly nold n nron of alac ranforaon of oluon found, can b n a can b wd a cular uaon for a yrc ral ar. Trfor, gnalu ar l ral. To lfy followng calculaon aud a gnalu (dnod by,,, 4 ar dnc,.. d ( for,,, 4 d Moror, Grgorn or [4] rod bound on,.. for ac gnalu on of followng rlaon afd (w, : ( ( ( ( Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y E/UNO/ Sbr 7 d
19 for gong on w bac-ranforaon of oluon found, l u udy uaon co( λ (, λ n λ T cang of arabl λ lad o uaon co ( wr can b condrd a a ral o unnown, nc λ own n fgur (wr aud a <, oluon of uaon, dnod by ξ ( for,,,, ar boundd a π < ξ ( < ( π, for < and,,, f o a lar uaon occur; an dffrnc daaranc of roo ξ ( f >. T or oluon, dnod a bfor by ξ ( for,,, ar boundd a π < ξ ( < π, for > and,, n any way, rul a: lξ ( π. No a cal ca, a lad o an lc oluon for ξ (, anngl, nc a null gnalu of ar l ngulary and u a robl ll-od E/UNO/ Sbr 8 d
20 . Soluon n doan ( (, fnng Ψ (, w, and ± ( (, oluon n alac doan wrn a: ( ( Ψ (, w, and ± and forally nrd n doan a follow ( ( τ To rfor nron of funcon ( auon ad, lad o: dτ Ψ ( τ, w, and ± ( ( Ψ no a y afy Jordan a [5]. Tu, w ξ 4 λ Ψ (, w, and ± d u( [ (, ] ξ ( d λ wr (nfn rdu a bn drcly aluad w ad of Hoal rul, nc ngnalu wa aud o b dnc. T funcon u( dfnd a, f < and orw. T nold dffrnal ly aluad a: d d (ang no accoun a Ψ ( ( [ ( ] ( d d, ξ [ λ] ξ ( [ co ] ξ ( λ λ n ξ ξ ( ( d λ λ ξ λ ( ξ λ [ co - ( co ] ξ ( co ξ ( ( n ξ ( n ξ ( λ co ξ co ξ ( and fnally d ( ( ( ( ( n ξ ξ ξ n ξ ( ξ 4 ( ξ ( ( co u λ ( n ξ ( ξ ( n ξ ( ξ ( No a, nc ol caracrz an analycal funcon, of funcon ( Ψ ad alo followng rrnaon: Ψ ( λ ( (, w, and ± ξ ( n ξ ( ( co ξ ( n ξ ( ξ ( ξ ( 4 u w, and ± λ, E/UNO/ Sbr 9 d
21 To col ran, l u rrn currn n nl and oul cabl (roug r - coonn. Condr fr nl cabl. wa own bfor a (, dτ ( τ (, τ [ ( (, ]( ψ w >, < < and ± (, d ψ (, w >, < < and ± wr ar dno conoluon oraon. Furror, dffrnaon of a rou rul lad o []: ( τ ( dτ Ψ ( τ Ψ ( ( w ± and ubung: ( ( ψ, ( (, ( Ψ w >, < < and ± Subung agan: ( (, d ( (, ( Ψ w >, < < and ±, : (o Trfor, w bgn aluang conoluon of Ψ ( w ( [ Ψ ( (, ]( λ λ λ n ( ( ( ( ( ( nπ co co u u u ( co ξ ( co ξ ( co ( nπ ξ ( ( n ξ ( ( n ξ ( ξ ( ξ ( n ξ ( ( n ξ ( ξ ( ξ ( λ ( n ξ ( ξ ( n ξ ( ξ ( 4 λ ( ( u ξ n n nπ co co nπ co co co n ( n ξ ( ( n ξ ( ξ ( ξ nπ ( co( nπ ( nπ ( nπ ( co ξ nπ ξ ( ( λ λ λ ( ξ λ ( ξ λ λ ( nπ ( ( nπ ( ξ ξ λ nπ λ nπ λ λ nπ λ No a r n brac wa rouly dlod a rrnaon of Ψ ( and (, Trfor. dτ, rodd α β α β (o α β ατ β No a [ ] ( τ α β E/UNO/ Sbr d
22 [ Ψ ( (, ]( λ Now ang no accoun a g (,,, [ Ψ ( (, ]( Saal ngraon now g d [ Ψ ( (, ]( Fnally, dfnng lad o F (, 4 n ( ( for u ( co nπ co co ( ξ, λ for λ ( ( 4 nπ ( ( ( ( ( ( ( ( u ξ, n u ( u ( ξ co ξ ( u ( λ ( n ξ ( ξ ( n ξ ( ξ ( ( nπ Ψ λ ξ nξ coξ nξ ( ( τ co ξ co ξ nπ λ ( co Ψ ( ξ nπ λ [ ξ ( / ] n ξ ( ( co[ ξ ( / ] ( nξ ( ξ ( ( n[ ξ ( / ] ( ( nξ ( ξ ( ( n[ ξ ( / ] ( nξ ( ξ ( co ξ ( co ξ ( ξ, λ and nπ, for,n λ (, for ( ξ ( λ ( ξ λ ( n[ ξ ( / ] ( n ξ ( ξ ( ( ξ λ ( ( ( ξ λ (, dτ F (, τ w >, < < and ± ( ( ( ( For wa concrn oul cabl, nc forally yrc o nl on, oluon for ±, can b oband cangng w and condrng nad of, a follow ( ( ( ( τ (, dτ F (, τ w >, < < and ± frnc [] M. Fabbr, nalycal Soluon for currn drbuon n a urford cabl w N rand, nrnal or E-U (,. []. Couran,. Hlbr, Mod of Maacal Pyc, nrcnc, NY,9, ol.,. ; ol.,. 75. [].S. Gradyn,.M. yz, Tabl of ngral, Sr, and Produc, cadc Pr, ondon, 98,. 45. [4] Y. Saad, ra Mod for ar nar Sy, nrnaonal Toon Publng, ondon, 99,. 9. [5] G. rfn, Maacal Mod for Pyc, cadc Pr, ondon, 985, [] G. oc, Gud o alcaon of alac Tranfor,. Van Norand d., ondon, 9,.8. E/UNO/ Sbr d
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
Α Ρ Ι Θ Μ Ο Σ : 6.913
Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ
Determination of an Accurate Current Transformer Model for the Analysis of Electromagnetic Transient During Electrical Faults
bahramnohad@yahoo.com razaz_m@cu.ac.r foada@yahoo.com : - ATP-EMTP IEEE Drmnaon of an Accura Currn Tranformr Modl for h Analy of Elcromagnc Trann Durng Elcrcal Faul. oha, M. azzaz, S. G. A. Sfoada 3,,
i i (3) Derive the fixed-point iteration algorithm and apply it to the data of Example 1.
Howor#3 urvval Aalyss Na: Huag Xw 黃昕蔚 Quso: uppos ha daa ( follow h odl ( ( > ad <
2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.
Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1. Ε ι σ α γ ω γ ή 2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν 5. Π ρ ό τ α σ η 6. Τ ο γ ρ α φ ε ί ο 1. Ε ι σ α γ ω
HONDA. Έτος κατασκευής
Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V
Appendix A. Stability of the logistic semi-discrete model.
Ecological Archiv E89-7-A Elizava Pachpky, Rogr M. Nib, and William W. Murdoch. 8. Bwn dicr and coninuou: conumr-rourc dynamic wih ynchronizd rproducion. Ecology 89:8-88. Appndix A. Sabiliy of h logiic
Errata Sheet. 2 k. r 2. ts t. t t ... cos n W. cos nx W. W n x. Page Location Error Correction 2 Eq. (1.3) q dt. W/m K. 100 Last but 6 2.
Eaa S Pag can E Ccn Eq. (. q q k W/ K k W/ K A A 6 n as bu 6 s q lns s q T k T k Q.. Wall s aus n gvn Wall s aus a an C. 7 n, lf kc cs ( s sn kc cs ( s sn s f cs k sn cs k sn quan C ( s C ( s an ln 6 sn
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme
τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)
ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,
Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής
ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.
5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.
728!. -θ-cr " -;. '. UW -,2 =*- Os Os rsi Tf co co Os r4 Ι. C Ι m. Ι? U Ι. Ι os ν ) ϋ. Q- o,2 l g f 2-2 CT= ν**? 1? «δ - * * 5 Ι -ΐ j s a* " 'g cn" w *" " 1 cog 'S=o " 1= 2 5 ν s/ O / 0Q Ε!θ Ρ h o."o.
!"!# ""$ %%"" %$" &" %" "!'! " #$!
" "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα
Αλληλεπίδραση ακτίνων-χ με την ύλη
Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων
ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής
ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ04.01 5 ο Γυμνάσιο Αγ. Παρασκευής Όπως συμβαίνει στη φύση έτσι και ο άνθρωπος θέλει να πετυχαίνει σπουδαία αποτελέσματα καταναλώνοντας το λιγότερο δυνατό
Errata (Includes critical corrections only for the 1 st & 2 nd reprint)
Wedesday, May 5, 3 Erraa (Icludes criical correcios oly for he s & d repri) Advaced Egieerig Mahemaics, 7e Peer V O eil ISB: 978474 Page # Descripio 38 ie 4: chage "w v a v " "w v a v " 46 ie : chage "y
Finite Integrals Pertaining To a Product of Special Functions By V.B.L. Chaurasia, Yudhveer Singh University of Rajasthan, Jaipur
Global Joal of Scece oe eeac Vole Ie 4 Veo Jl Te: Doble Bld Pee eewed Ieaoal eeac Joal Pble: Global Joal Ic SA ISSN: 975-5896 e Iegal Peag To a Podc of Secal co B VBL Caaa Ydee Sg e of aaa Ja Abac - A
r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t
r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs
Stochastic Fusion Dynamics of Heavy-Ions
CNP, Osaka U., Jaan 3-3-6 Sochasc Fuson Dynacs o Havy-Ions Büln Yılaz Mddl Eas Tchncal U. & Ankara U. OUTLINE PAT I Basc sochasc drnal uaons Brownan oon Sur-havy lns SHE and havy-on uson racons Quanu sascal
Chapter 1 Fundamentals in Elasticity
D. of o. NU Fs s ν ss L. Pof. H L ://s.s.. D. of o. NU. Po Dfo ν Ps s - Do o - M os - o oos : o o w Uows o: - ss - - Ds W ows s o qos o so s os. w ows o fo s o oos s os of o os. W w o s s ss: - ss - -
ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα
K r i t i k i P u b l i s h i n g - d r a f t
T ij = A Y i Y j /D ij A T ij i j Y i i Y j j D ij T ij = A Y α Y b i j /D c ij b c b c a LW a LC L P F Q W Q C a LW Q W a LC Q C L a LC Q C + a LW Q W L P F L/a LC L/a LW 1.000/2 = 500
! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.
! " #$%&'()' *('+$,&'-. /0 1$23(/%/4. 1$)('%%'($( )/,)$5)/6%6 7$85,-9$(- /0 :/986-$, ;2'$(2$ 1'$-/-$)('')5( /&5&-/ 5(< =(4'($$,'(4 1$%$2/996('25-'/(& ;/0->5,$ 1'$-/%'')$(($/3?$%9'&-/?$( 5(< @6%-'9$
Calculus and Differential Equations page 1 of 17 CALCULUS and DIFFERENTIAL EQUATIONS
alculus and Diffrnial Equaions pag of 7 ALULUS and DIFFERENTIAL EQUATIONS Th following 55 qusions concrn calculus and diffrnial quaions. In his vrsion of h am, h firs choic is always h corrc on. In h acual
ΗΥ360 Αρχεία και Βάσεις εδοµένων ιδάσκων: ημήτρης Πλεξουσάκης
ΗΥ360 Αρχεία και Βάσεις εδοµένων ιδάσκων: ημήτρης Πλεξουσάκης Συναλλαγές ιαχείριση Συναλλαγών Αυγουστάκη Αργυρώ Συναλλαγές Κράτησε για τον κ. Χ την θέση 13Α για LA! Κράτησε για τον κ. Y την θέση 13Α για
A R ID CRO P J O U RNAL O F NA TU RAL R ESO U RC ES
12 3 1997 7 J O U RNAL O F NA TU RAL R ESO U RC ES Vol. 12 No. 3 J uly, 1997 ARID CROP Ξ ( 210093) A R ID CRO P, Yq, Yw, Q (Q = ( Yw - Yq) / Yq), 3 750 9 750 kg/ hm 2,, 3 750 kg/ hm 2,, 5 % 10 %, 75 %
Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design
Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH
ΗΥ360 Αρχεία και Βάσεις εδοµένων ιδάσκων: ημήτρης Πλεξουσάκης
ΗΥ360 Αρχεία και Βάσεις εδοµένων ιδάσκων: ημήτρης Πλεξουσάκης Συναλλαγές ιαχείριση Συναλλαγών Αυγουστάκη Αργυρώ Συναλλαγές Κράτησε για τον κ. Χ την θέση 13Α για LA! Κράτησε για τον κ. Y την θέση 13Α για
= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).
Worked Soluion 95 Chaper 25: The Invere Laplace Tranform 25 a From he able: L ] e 6 6 25 c L 2 ] ] L! + 25 e L 5 2 + 25] ] L 5 2 + 5 2 in(5) 252 a L 6 + 2] L 6 ( 2)] 6L ( 2)] 6e 2 252 c L 3 8 4] 3L ] 8L
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
! " #$% & '()()*+.,/0.
! " #$% & '()()*+,),--+.,/0. 1!!" "!! 21 # " $%!%!! &'($ ) "! % " % *! 3 %,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0 %%4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,5
Συστήματα αλουμινίου νέας γενιάς Ευφυΐα υψηλής ενεργειακής απόδοσης
Συστήματα αλουμινίου νέας γενιάς Ευφυΐα υψηλής ενεργειακής απόδοσης Αθήνα, 29/4/2018 Ι. Χατζηιωάννου Πολ. Μηχανικός Copyright 2018 Aluminco SA AGENDA C A L L TO A C T I O N S Αυξημένες απαιτήσεις Θετικές
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
ITU-R P (2009/10)
ITU-R.45-4 (9/) % # GHz,!"# $$ # ITU-R.45-4.. (IR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.tu.t/itu-r/go/patets/e. (http://www.tu.t/publ/r-rec/e ) () ( ) BO BR BS BT F M RA S RS SA SF SM SNG TF V.ITU-R
The following are appendices A, B1 and B2 of our paper, Integrated Process Modeling
he followng ae appendes A, B1 and B2 of ou pape, Integated Poess Modelng and Podut Desgn of Bodesel Manufatung, that appeas n the Industal and Engneeng Chemsty Reseah, Deembe (2009). Appendx A. An Illustaton
ΗΥ360 Αρχεία και Βάσεις εδοµένων ιδάσκων:. Πλεξουσάκης
ΗΥ360 Αρχεία και Βάσεις εδοµένων ιδάσκων:. Πλεξουσάκης Συναλλαγές ιαχείριση Συναλλαγών Τζικούλης Βασίλειος Credits:Γιάννης Μακρυδάκης Συναλλαγές Η ταυτόχρονες συναλλαγές (δοσοληψίες, transactions) µε µια
SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS
Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is The Royal Society of Chemistry 2018 SUPPLEMENTAL INFORMATION Fully Automated Total Metals and Chromium
Τιμοκατάλογος αυτοκινήτων NISSAN
1 / 6 NEW MICRA (K14) 5dr 1.0lt 73hp Βενζίνη (Euro 6) 1.0lt 5dr Energy Z1E 103 0,98 101 12.690 450 1.0lt 5dr Acenta Z1A 103 0,98 101 13.690 450 1.0lt 5dr Acenta Εσωτερικό ΜΠΛΕ Z1AB 103 0,98 101 13.990
Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν
Ε ρ μ ο ύ π ο λ η, 0 9 Μ α ρ τ ί ο υ 2 0 1 2 Π ρ ο ς : Π ε ρ ιφ ε ρ ε ι ά ρ χ η Ν ο τ ίο υ Α ιγ α ί ο υ Α ρ ι θ. Π ρ ω τ. 3 4 2 2 κ. Ι ω ά ν ν η Μ α χ α ι ρ ί δ η F a x : 2 1 0 4 1 0 4 4 4 3 2, 2 2 8 1
!!"#$"%&'()%*$& !! )!+($,-./,0. !! )!"% $&)#$+($1$ !!2)%$34#$$)$ !!+(&%#(%$5$( #$%
!!"#$"%&'()%*$&!! )!+($,-./,0.!"#!! )!"% $&)#$+($1$!!2)%$34#$$)$!!+(&%#(%$5$( #$% & !"# $ $ % # &#$ '()*+, -,./ $* 0" 10#')230##445$&% ##* % 0# ' 4#, ) 0# $, 0# 6 7% % # #* # 8#10&29,:# )) )# )#
SIEMENS Squirrel Cage Induction Standard Three-phase Motors
- SIEMENS Squirrel Cage Induction Standard Three-phase Motors 2 pole 3000 rpm 50Hz Rated current Power Efficiency Rated Ratio Noise Output Frame Speed Weight 3V 400V 415V factor Class 0%Load 75%Load torque
MIDWEEK CYBET REGULAR COUPON
MIDWEEK CYBET REGULAR COUPON BOTH TEAMS INFORMATION RESULTS HOME TEAM 3 - WAY ODDS (1X2) AWAY TEAM DOUBLE CHANCE TOTALS2.5 1ST HALF - 3 WAY HALFTIME/FULLTIME TO SCORE GAME CODE 1 / 2 1/ 12 /2 2.5-2.5+
? 9 Ξ : Α : 4 < ; : ; 4 ϑ Α Λ Χ< : Χ 9 : Α Α Χ : ;: Ψ 8< ;: 9 : > Α ϑ < > = 8 Α;< 4 <9 Ξ : 9 : > Α 4 Α < >
# % & ( ) ) +,. / 0, 1 / )., / 2 (& 3 5 % 6 6 7 8 : ; < : / : ; = 5 >
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 22 Φεβρουαρίου 2014
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 106 79 ΑΘΗΝΑ Τηλ. 6165-617784 - Fax: 64105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)
Ch : HÀM S LIÊN TC. Ch bám sát (lp 11 ban CB) Biên son: THANH HÂN A/ MC TIÊU:
Ch : HÀM S LIÊN TC Ch bám sát (lp ban CB) Biên son: THANH HÂN - - - - - - - - A/ MC TIÊU: - Cung cp cho hc sinh mt s dng bài tp th ng gp có liên quan n s liên tc cu hàm s và phng pháp gii các dng bài ó
Α θ ή ν α, 7 Α π ρ ι λ ί ο υ
Α θ ή ν α, 7 Α π ρ ι λ ί ο υ 2 0 1 6 Τ ε ύ χ ο ς Δ ι α κ ή ρ υ ξ η ς Α ν ο ι κ τ ο ύ Δ ι ε θ ν ο ύ ς Δ ι α γ ω ν ι σ μ ο ύ 0 1 / 2 0 1 6 μ ε κ ρ ι τ ή ρ ι ο κ α τ α κ ύ ρ ω σ η ς τ η ν π λ έ ο ν σ υ μ
Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator
Sel nd Mutul Inductnces or Fundmentl Hrmonc n Synchronous Mchne wth Round Rotor (Cont.) Double yer p Wndng on Sttor Round Rotor Feld Wndng (1) d xs s r n even r Dene S r s the number o rotor slots. Dene
LAPLACE TRANSFORM TABLE
LAPLACE TRANSFORM TABLE Th Laplac afom of am mpl fuco a gv h Tabl. Fuco U mpul U Sp U Ramp Expoal Rpad Roo S Co Polyomal Dampd Dampd co f δ u -a -a co,,... -a -a co F / / /a /a / /!/ /a a/a Thom : Shf
(... )..!, ".. (! ) # - $ % % $ & % 2007
(! ), "! ( ) # $ % & % $ % 007 500 ' 67905:5394!33 : (! ) $, -, * +,'; ), -, *! ' - " #!, $ & % $ ( % %): /!, " ; - : - +', 007 5 ISBN 978-5-7596-0766-3 % % - $, $ &- % $ % %, * $ % - % % # $ $,, % % #-
())*+,-./0-1+*)*2, *67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3*
! " # $ $ %&&' % $ $! " # ())*+,-./0-1+*)*2,-3-4050+*67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* *),+-30 *5 35(2(),+-./0 30 *,0+ 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3* *3*+-830-+-2?< +(*2,-30+
Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.
Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. 3. Λίστα Παραμέτρων 3.. Λίστα Παραμέτρων Στην αρχική ρύθμιση, μόνο οι παράμετροι
Vn 1: NHC LI MT S KIN TH C LP 10
Vn : NHC LI MT S KIN TH C LP 0 Mc ích ca vn này là nhc li mt s kin thc ã hc lp 0, nhng có liên quan trc tip n vn s hc trng lp. Vì thi gian không nhiu (khng tit) nên chúng ta s không nhc li lý thuyt mà
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Derivation of Optical-Bloch Equations
Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be
ΕΤΗΣΙΑ ΑΝΑΦΟΡΑ ΠΡΟΣ ΤΗΝ ΕΠΙΤΡΟΠΗ ΔΙΑΧΕΙΡΙΣΗΣ ΥΓΡΟΤΟΠΟΥ. Σύνοψη συμπληρωματικών δράσεων διαχείρισης των νερών στην Πρέσπα για το έτος 2014
ΕΤΗΣΙΑ ΑΝΑΦΟΡΑ ΠΡΟΣ ΤΗΝ ΕΠΙΤΡΟΠΗ ΔΙΑΧΕΙΡΙΣΗΣ ΥΓΡΟΤΟΠΟΥ Σύνοψη συμπληρωματικών δράσεων διαχείρισης των νερών στην Πρέσπα για το έτος 2014 Άγιος Γερμανός, Φεβρουάριος 2015 Ομάδα συγγραφής Βαλεντίνη Μάλιακα
Erkki Mäkinen ja Timo Poranen Algoritmit
rkki Mäkinen ja Timo Poranen Algoritmit TITOJNKÄSITTLYTITIDN LAITOS TAMPRN YLIOPISTO D 2008 6 TAMPR 2009 TAMPRN YLIOPISTO TITOJNKÄSITTLYTITIDN LAITOS JULKAISUSARJA D VRKKOJULKAISUT D 2008 6, TOUKOKUU 2009
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Na/K (mole) A/CNK
Li, W.-C., Chen, R.-X., Zheng, Y.-F., Tang, H., and Hu, Z., 206, Two episodes of partial melting in ultrahigh-pressure migmatites from deeply subducted continental crust in the Sulu orogen, China: GSA
W τ R W j N H = 2 F obj b q N F aug F obj b q Ψ F aug Ψ ( ) ϱ t + + p = 0 = 0 Ω f = Γ Γ b ϱ = (, t) = (, t) Ω f Γ b ( ) ϱ t + + p = V max 4 3 2 1 0-1 -2-3 -4-4 -3-2 -1 0 1 2 3 4 x 4 x 1 V mn V max
Ορυκ υ το κ λο το γ λο ί γ α ΓΥΨΟΣ ΚΑΙ ΑΝΥΔΡΙΤΗΣ 2
ΕΒΑΠΟΡΙΤΕΣ Αποθέσεις ορυκτών που σχηματίζονται από καθίζηση αλάτων σε κλειστές θαλάσσιες ή λιμναίες λεκάνες. Θέσεις σχηματισμού: Θαλάσσιες λεκάνες ή λεκάνες συνδεόμενες με θάλασσα Ηπειρωτικές λεκάνες Παράκτια
Electronic Supplementary Information (ESI)
Electronic Supplementary Information (ESI) Lanthanide metal-organic frameworks constructed by asymmetric 2-nitro-biphenyl-4,4 -dicarboxylate ligand: syntheses, structures, luminescence and magnetic investigations
THỂ TÍCH KHỐI CHÓP (Phần 04) Giáo viên: LÊ BÁ TRẦN PHƯƠNG
Khó học LTðH KT-: ôn Tán (Thầy Lê á Trần Phương) THỂ TÍH KHỐ HÓP (Phần 4) ðáp Á À TẬP TỰ LUYỆ Giá viên: LÊ Á TRẦ PHƯƠG ác ài tập trng tài liệu này ñược iên sạn kèm the ài giảng Thể tich khối chóp (Phần
Suy ra EA. EN = ED hay EI EJ = EN ED. Mặt khác, EID = BCD = ENM = ENJ. Suy ra EID ENJ. Ta thu được EI. EJ Suy ra EA EB = EN ED hay EA
ài tập ôn đội tuyển năm 015 guyễn Văn inh Số 6 ài 1. ho tứ giác ngoại tiếp. hứng minh rằng trung trực của các cạnh,,, cắt nhau tạo thành một tứ giác ngoại tiếp. J 1 1 1 1 hứng minh. Gọi 1 1 1 1 là tứ giác
Ax = b. 7x = 21. x = 21 7 = 3.
3 s st 3 r 3 t r 3 3 t s st t 3t s 3 3 r 3 3 st t t r 3 s t t r r r t st t rr 3t r t 3 3 rt3 3 t 3 3 r st 3 t 3 tr 3 r t3 t 3 s st t Ax = b. s t 3 t 3 3 r r t n r A tr 3 rr t 3 t n ts b 3 t t r r t x 3
Original Lambda Lube-Free Roller Chain
ambda (ub-fr) llr Ca Orgal ambda ub-fr llr Ca ambda a rass prduvy ad savs my. du maa m. Elma prdu ama. du dwm. g lf ad lw maa ambda as us spal l-mprgad busgs prvd lubra ad prlg war lf. mb Tmpraur: 10 C
AcO. O OAc OCH 3. Compound Number. (chloroform) Notes: M. Mozuch #36/46/Ac 21 mg. Acetone DMSO. CDCl 3. Atom
Copoun Nuber 3 C DMS.7.7 74 7..8 7 4.. 88 87 c c.0. 3. 7.99 0. 0.4 98 97 84 98 9.. 3.4 74.4.0. 98 9 9 9 9..77.0 73. 0..03 9 7 8 78 84. 98.8 98.0 88 C 3 C 3 3 4.4.3 4. 4. 0.3..7.7 3.7 77 7 3 c C= c C= 70.
,, #,#, %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, )
!! "#$%&'%( (%)###**#+!"#$ ',##-.#,,, #,#, /01('/01/'#!2#! %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) 6###+! 4! 4! 4,*!47! 4! (! 8!9%,,#!41! 4! (! 4!5),!(8! 4! (! :!;!(7! (! 4! 4!!8! (! 8! 4!!8(!44!
Sheet H d-2 3D Pythagoras - Answers
1. 1.4cm 1.6cm 5cm 1cm. 5cm 1cm IGCSE Higher Sheet H7-1 4-08d-1 D Pythagoras - Answers. (i) 10.8cm (ii) 9.85cm 11.5cm 4. 7.81m 19.6m 19.0m 1. 90m 40m. 10cm 11.cm. 70.7m 4. 8.6km 5. 1600m 6. 85m 7. 6cm
ALFA ROMEO. Έτος κατασκευής
145 1.4 i.e. AR33501 66 90 10/94-01/01 0802-1626M 237,40 1.4 i.e. 16V AR33503 76 103 12/96-01/01 0802-1627M 237,40 1.6 i.e. AR33201 76 103 10/94-01/01 0802-1628M 237,40 1.6 i.e. 16V AR67601 88 120 12/96-01/01
Cable Systems - Postive/Negative Seq Impedance
Cable Systems - Postive/Negative Seq Impedance Nomenclature: GMD GMR - geometrical mead distance between conductors; depends on construction of the T-line or cable feeder - geometric mean raduius of conductor
Equilibrium pka Table (DMSO Solvent and Reference)
Equilibrium pka Table (DM olvent and Reference) Copyright ans J. 2016 All Rights Reserved This pka table is on the web: http://www.chem.wisc.edu/areas/reich/pkatable/index.htm Ketones Ar = 26.5 52 19.8
T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ
Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α g r i l l b a r t a s o s Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 1 : 0 π μ Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ T ortiyas Σ ο υ
Homework #6. A circular cylinder of radius R rotates about the long axis with angular velocity
Homwork #6 1. (Kittl 5.1) Cntrifug. A circular cylindr of radius R rotats about th long axis with angular vlocity ω. Th cylindr contains an idal gas of atoms of mass m at tmpratur. Find an xprssion for
LOWER LEAGUES CYBET REGULAR COUPON
LOWER LEAGUES CYBET REGULAR COUPON BOTH TEAMS INFORMATION RESULTS HOME TEAM 3 - WAY ODDS (1X2) AWAY TEAM DOUBLE CHANCE TOTALS2.5 1ST HALF - 3 WAY HALFTIME/FULLTIME TO SCORE GAME CODE 1 / 2 1/ 12 /2 2.5-2.5+
tel , version 1-7 Feb 2013
!"## $ %&' (") *+ '#),! )%)%' *, -#)&,-'" &. % /%%"&.0. )%# "#",1 2" "'' % /%%"&30 "'' "#", /%%%" 4"," % /%%5" 4"," "#",%" 67 Y% !"!"# $ %& & # &$ ' '#( ''# ))'%&##& *'#$ ##''' "#$ %% +, %'# %+)% $
RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form:
G Tuorial xlc3.oc / iear roblem i e C i e C ( ie ( Differeial equaio for C (3 Thi fir orer iffereial equaio ca eaily be ole bu he uroe of hi uorial i o how how o ue he iz-galerki meho o fi ou he oluio.
!"#$%& '!(#)& a<.21c67.<9 /06 :6>/ 54.6: 1. ]1;A76 _F -. /06 4D26.36 <> A.:4D6:6C C4/4 /06 D:43? C</ O=47?6C b*dp 12 :1?6:E /< D6 3:4221N6C 42 D:A6 O=
! " #$% & '( )*+, -. /012 3045/67 8 96 57626./ 4. 4:;74= 69676.36 D426C
Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques
Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques Raphael Chenouard, Patrick Sébastian, Laurent Granvilliers To cite this version: Raphael
Chương 1: VECTOR KHÔNG GIAN VÀ BỘ NGHỊCH LƯU BA PHA
I. Vcto không gian Chương : VECTOR KHÔNG GIAN VÀ BỘ NGHỊCH LƯ BA PHA I.. Biể diễn vcto không gian cho các đại lượng ba pha Động cơ không đồng bộ (ĐCKĐB) ba pha có ba (hay bội ố của ba) cộn dây tato bố
Chương 12: Chu trình máy lạnh và bơm nhiệt
/009 Chương : Chu trình máy lạnh và bơm nhiệt. Khái niệm chung. Chu trình lạnh dùng không khí. Chu trình lạnh dùng hơi. /009. Khái niệm chung Máy lạnh/bơmnhiệt: chuyển CÔNG thành NHIỆT NĂNG Nguồn nóng
General theorems of Optical Imaging systems
Gnral thorms of Optcal Imagng sstms Tratonal Optcal Imagng Topcs Imagng qualt harp: mags a pont sourc to a pont Dstorton fr: mags a shap to a smlar shap tgmatc Imagng Imags a pont sourc to a nfntl sharp
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΙΟΙΚΗΣΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΙΠΛΩΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΕ. Ι..Ε.
ΑΣΚΗΣΗ 1 ΟΜΑ Α 2 Στην ακόλουθη άσκηση σας δίνονται τα έξοδα ανά µαθητή και οι ετήσιοι µισθοί (κατά µέσο όρο) των δασκάλων για 51 πολιτείες της Αµερικής. Τα δεδοµένα είναι για τη χρονιά 1985. Οι µεταβλητές
POISSON PROCESSES. Ανάλυση και Μοντελοποίηση Δικτύων - Ιωάννης Σταυρακάκης / Αντώνης Παναγάκης (ΕΚΠΑ) 1 COUNTING (ARRIVAL) PROCESS
5-Oc-6 OIO ROC 6 Ανάλυση και Μοντελοποίηση Δικτύων - Ιωάννης Σταυρακάκης / Αντώνης Παναγάκης ΕΚΠΑ COUIG ARRIVAL ROC ω> dfid o o apl pac Ω i calld a coig proc providd ha: i i o-dcraig i icra by jp oly 3
1 B0 C00. nly Difo. r II. on III t o. ly II II. Di XR. Di un 5.8. Di Dinly. Di F/ / Dint. mou. on.3 3 D. 3.5 ird Thi. oun F/2. s m F/3 /3.
. F/ /3 3. I F/ 7 7 0 0 Mo ode del 0 00 0 00 A 6 A C00 00 0 S 0 C 0 008 06 007 07 09 A 0 00 0 00 0 009 09 A 7 I 7 7 0 0 F/.. 6 6 8 8 0 00 0 F/3 /3. fo I t o nt un D ou s ds 3. ird F/ /3 Thi ur T ou 0 Fo
Kocaeli Üniversitesi 41380, Kocaeli, Türkiye
ĐKĐCĐ ETEBEDE EUTA DEAY DĐFEASĐYE DEKEEĐ KAAIIĞI AĐ FUAT YEĐÇEĐOĞU BAIŞ DEĐ Koali Ünirii 438 Koali Türi faniriogl@oali.d.r barirof@omail.om Ö: B maald abi aaılı doğral iini mrbdn nral dla difranil dnlmlrin
ECE 222b Applied Electromagnetics Notes Set 3b
C b Appl lcomancs Nos S 3b Insuco: Pof. Val Loman Dpamn of lccal an Compu nnn Unvs of Calfona San Do Rflcon an Tansmsson. Nomal ncnc T R T R Fs fn h manc fls: 3 Rflcon an Tansmsson T R T R T R T R R T
Distributed by: www.jameco.com -800-83-4242 The content and copyrights of the attached material are the property of its owner. φ δ δ φ φφ φ 86 δ φ δ An explanation of the taping dimensions can be found
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο
18 ρ * -sf. NO 1 D... 1: - ( ΰ ΐ - ι- *- 2 - UN _ ί=. r t ' \0 y «. _,2. "* co Ι». =; F S " 5 D 0 g H ', ( co* 5. «ΰ ' δ". o θ * * "ΰ 2 Ι o * "- 1 W co o -o1= to»g ι. *ΰ * Ε fc ΰ Ι.. L j to. Ι Q_ " 'T
Parts Manual. Wide Transport Stretcher Model 738
Wide Transport Stretcher Model 738 Modèle 738 De Civière Large Pour Le Transport Breites Transport-Bahre-Modell 738 Breed Model 738 van de Brancard van het Vervoer Modello Largo 738 Della Barella Di Trasporto
21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics
I Main Topics A Intoducon to stess fields and stess concentaons B An axisymmetic poblem B Stesses in a pola (cylindical) efeence fame C quaons of equilibium D Soluon of bounday value poblem fo a pessuized
Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci
3 H 12.35 Y β Low 80 1 - - Betas: 19 (100%) 11 C 20.38 M β+, EC Low 400 1 5.97 13.7 13 N 9.97 M β+ Low 1 5.97 13.7 Positrons: 960 (99.7%) Gaas: 511 (199.5%) Positrons: 1,199 (99.8%) Gaas: 511 (199.6%)
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
CYLINDRICAL & SPHERICAL COORDINATES
CYLINDRICAL & SPHERICAL COORDINATES Here we eamine two of the more popular alternative -dimensional coordinate sstems to the rectangular coordinate sstem. First recall the basis of the Rectangular Coordinate