ÐïëõìåóéêÝò ÂÜóåéò ÄåäïìÝíùí Åñãáóßá
|
|
- Μιλτιάδης Κοντολέων
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ÐïëõìåóéêÝò ÂÜóåéò ÄåäïìÝíùí Åñãáóßá Yëïðïßçóç óõóôþìáôïò áíüêôçóçò åéêüíùí ìå âüóç ôï ñþìá Ðåñßëçøç Ç åñãáóßá áõôþ ëáìâüíåé ôï 50% ôïõ óõíïëéêïý âáèìïý ôïõ ìáèþìáôïò. Óôü ïò åßíáé ç õëïðïßçóç åíüò óõóôþìáôïò áíüêôçóçò åéêüíùí ìå âüóç ôï ðåñéå üìåíï (content-based image retrieval). Ïé ìýèïäïé áíüêôçóçò ùò ðñïò ôï ñþìá èá óõíäõáóôïýí ìå ìåèüäïõò áíüêôçóçò ìå âüóç ôï êåßìåíï ðïõ èá áñáêôçñßæåé êüèå åéêüíá. Ç åñãáóßá óôï åýåé åðßóçò óôçí êáëýôåñç êáôáíüçóç ôùí åííïéþí ðïõ áöïñïýí óôçí áíüêôçóç ðïëõìåóéêþí äåäïìýíùí ìå âüóç ôï ðåñéå üìåíï êáé óôçí êáôáíüçóç ôùí âáóéêþí äéáöïñþí ìåôáîý ôçò áíüêôçóçò ðëçñïöïñßáò êåéìýíùí êáé ðïëõìåóéêþí äåäïìýíùí. Ç åñãáóßá èá ðñýðåé íá õëïðïéçèåß áðü ïìüäåò 2 áôüìùí. 1 ÅéóáãùãÞ Ãéá ôçí åêðüíçóç ôçò åñãáóßáò èá ñçóéìïðïéçèåß ìßá ãëþóóá ðñïãñáììáôéóìïý ç ïðïßá ìðïñåß íá åßíáé C++, JAVA Þ Üëëç. Åðßóçò, åßíáé åöéêôþ êáé ç õëïðïßçóç ôçò åöáñìïãþò ìýóù web interface, ïðüôå èá ìðïñïýóå íá ñçóéìïðïéçèåß êáé Ýíá ó Þìá üðùò PHP-MySQL. Ç åðéëïãþ ôïõ ðåñéâüëëïíôïò åñãáóßáò áöþíåôáé óôçí êüèå ïìüäá. Ç åöáñìïãþ èá ðñýðåé íá óõíåñãüæåôáé ìå êüðïéï óýóôçìá âüóåùí äåäïìýíùí. Ðñïôåßíåôáé ç ñþóç åßôå ôçò MySQL åßôå ôïõ SQL Server, ùñßò áõôü íá åßíáé äåóìåõôéêü. ¼ëåò ïé ðëçñïöïñßåò ðïõ áöïñïýí óôéò åéêüíåò èá ðñýðåé íá áðïèçêåýïíôáé óôç âüóç äåäïìýíùí. Èá ðñýðåé íá õðïóôçñé- èïýí ïé åîþò ëåéôïõñãßåò: (i) åéóáãùãþ íýáò åéêüíáò, (ii) äéáãñáöþ åéêüíáò, (iii) áíáæþôçóç åéêüíáò ìå âüóç ôéò ðåñéãñáöýò êáé (iv) áíáæþôçóç åéêüíáò ìå âüóç ôï ðåñéå üìåíï (åäþ åóôéüæïõìå óôá áñáêôçñéóôéêü ñþìáôïò ôùí åéêüíùí). Ãéá ôçí áíáæþôçóç ìå âüóç ôéò ðåñéãñáöýò, èá ðñýðåé üôáí åéóüãåôáé ìßá íýá åéêüíá óôç âüóç, ï ñþóôçò íá äßíåé êáé ìßá óýíôïìç ðåñéãñáöþ áõôþò. 1
2 Óôç óõíý åéá, ãéá ôçí áíáæþôçóç ï Þóôçò äßíåé ìåñéêýò ëýîåéò êëåéäéü êáé ôï óýóôçìá åðéóôñýöåé ôéò k êáëýôåñåò åéêüíåò, üðïõ ôï k äçëþíåé ôïí áñéèìü ôùí áðïôåëåóìüôùí. Ãéá ôçí áíáæþôçóç ìå âüóç ôï ñþìá, ï ñþóôçò äéáëýãåé ìßá åéêüíá (åßôå ìßá áðü ôéò åéêüíåò ôçò âüóçò åßôå ìßá äéêþ ôïõ) êáé óôç óõíý åéá ïñßæåé ðüóåò üìïéåò åéêüíåò åðéèõìåß óôçí Ýîïäï (ðáñüìåôñïò k). Ôï óýóôçìá åðåîåñãüæåôáé ôï åñþôçìá ôïõ ñþóôç êáé óôç óõíý åéá äßíåé óôçí Ýîïäï ôéò k åéêüíåò ðïõ åßíáé ðåñéóóüôåñï üìïéåò ìå ôçí åéêüíá ôïõ ñþóôç. Ïé åéêüíåò åìöáíßæïíôáé ìå öèßíïõóá êáôüôáîç ùò ðñïò ôçí ïìïéüôçôá. ñá, ðñþôç óôç ëßóôá èá åìöáíéóôåß ç åéêüíá ìå ôçí ìåãáëýôåñç ïìïéüôçôá êáé ôåëåõôáßá ç åéêüíá ìå ôç ìéêñüôåñç ïìïéüôçôá. Ïé åéêüíåò åìöáíßæïíôáé ìå ôç ìïñöþ thumbnails. Óôç óõíý åéá áí ï ñþóôçò åðéèõìåß íá äåé ôçí åéêüíá óå ðñáãìáôéêü ìýãåèïò ðñýðåé íá ôïõ äßíåôáé áõôþ ç äõíáôüôçôá. 2 Ìåèïäïëïãßá Ãéá íá ìðïñýóïõìå íá ïñßóïõìå ôçí ïìïéüôçôá ìåôáîý äýï åéêüíùí ðñýðåé íá ðïóïôéêïðïéþóïõìå ôéò äéáöïñýò ôïõò ùò ðñïò ôï ñþìá. íáò ôñüðïò íá ôï ðåôý ïõìå áõôü åßíáé íá ñçóéìïðïéþóïõìå éóôïãñüììáôá. Ôï êüèå pixel ôçò åéêüíáò áñáêôçñßæåôáé áðü ôéò ôéìýò RGB. Åöüóïí êüèå ìßá áðü ôéò ôñåéò ðáñáìýôñïõò ñþìáôïò ìðïñåß íá ëüâåé 256 ôéìýò (áðü 0 Ýùò 255), ìðïñïýìå íá Ý ïõìå äéáöïñåôéêü ñþìáôá. Ãéá íá áðëïðïéþóïõìå ôç äéáäéêáóßá ñçóéìïðïéïýìå êâüíôéóç ôïõ þñïõ RGB ùò åîþò: áíôß íá ñçóéìïðïéþóïõìå 256 ôéìýò ãéá ôçí êüèå ðáñüìåôñï, ñçóéìïðïéïýìå ìüíïí 16. ñá, ç êüèå äéüóôáóç (R,G,B) äéá ùñßæåôáé óå 16 ñùìáôéêýò ðåñéï Ýò. Ðñïöáíþò, ìå áõôþí ôç ìýèïäï Ý ïõìå ìßá áðþëåéá ðëçñïöïñßáò. Áõôü óçìáßíåé üôé Ý ïõìå 16 3 = äéáöïñåôéêü ñþìáôá. Óôç óõíý åéá ìåôñüìå ôïí áñéèìü ôùí pixels ôçò åéêüíáò ðïõ Ý ïõí Ýíá óõãêåêñéìýíï ñþìá (áðü ôá 4.096) êáé äçìéïõñãïýìå ôï éóôüãñáììá. Ìå ôïí ôñüðï áõôü êüèå åéêüíá áíáðáñéóôüôáé óáí Ýíá äéüíõóìá óôï þñï ôùí äéáóôüóåùí. óôù N ï áñéèìüò ôùí ñùìüôùí ðïõ ñçóéìïðïéïýìå. ÅóôéÜæïõìå óôéò áêüëïõèåò áðïóôüóåéò ìåôáîý éóôïãñáììüôùí ôéò ïðïßåò èá ìåëåôþóïõìå: ÌÝèïäïò É - Åõêëåßäéá Áðüóôáóç ÉóôïãñáììÜôùí. ñçóéìïðïéïýìå ôá éóôïãñüììáôá üðùò Ý ïõí ðñïêýøåé áðü ôçí ðñïçãïýìåíç ìåèïäïëïãßá êáé ïñßæïõìå üôé ç ïìïéüôçôá äýï åéêüíùí äßíåôáé áðü ôçí Åõêëåßäéá áðüóôáóç ôùí áíôßóôïé ùí éóôïãñáììüôùí. ñá áí X êáé Y åßíáé äýï åéêüíåò ìå éóôïãñüììáôá HX êáé HY, ôüôå ç ìåôáîý ôïõò áíïìïéüôçôá ïñßæåôáé ùò åîþò: 2
3 D euclidean (HX, HY ) = N (HX[i] HY [i]) 2 ÌÝèïäïò ÉI - ÔïìÞ ÉóôïãñáììÜôùí. Åäþ ñçóéìïðïéïýíôáé ôá éóôïãñüììáôá üðùò Ý ïõí ðñïêýøåé ðñïçãïõìýíùò, áëëü ùò ìýôñï áðüóôáóçò ïñßæåôáé ç ôïìþ ôùí éóôïãñáììüôùí üðùò ïñßæåôáé áðü ôçí ðáñáêüôù óõíüñôçóç: N min{hx[i], HY [i]} D intersection (HX, HY ) = min{ N j=1 HX[j], N k=1 HY [k]} ÌÝèïäïò ÉÉÉ - Áðüóôáóç Bhattacharyya Ç áðüóôáóç Bhattacharyya ìåôáîý äýï éóôïãñáììüôùí ïñßæåôáé ùò åîþò: D bhattacharyya (HX, HY ) = ln N HX[i] HY [i] ÌÝèïäïò IV - Áðüóôáóç Matusita Ç áðüóôáóç Matusita ìåôáîý äýï éóôïãñáììüôùí ïñßæåôáé ùò åîþò: D Matusita (HX, HY ) = N ( ) 2 HX[i] HY [i] ÌÝèïäïò V - Áðüêëéóç ÉóôïãñáììÜôùí Ç áðüêëéóç ìåôáîý äýï éóôïãñáììüôùí ïñßæåôáé ùò åîþò: N ( D divergence (HX, HY ) = (HX[i] HY [i]) ln HX[i] ) HY [i] ÌÝèïäïò VI - ÔåôñáãùíéêÞ Áðüóôáóç ÉóôïãñáììÜôùí. ñçóéìïðïéïýìå ðüëé ôá éóôïãñüììáôá üðùò ðñéí, üìùò åðéðëýïí ñçóéìïðïéïýìå êáé Ýíáí ðßíáêá ïìïéüôçôáò ñùìüôùí A. Ï ðßíáêáò A êáôáãñüöåé ôçí ïìïéüôçôá ìåôáîý ôùí èýóåùí ôïõ éóôïãñüììáôïò. Ï ðßíáêáò A åßíáé Ýíáò óõììåôñéêüò ðßíáêáò, êáé ôá óôïé åßá ôïõ ïñßæïíôáé ùò åîþò: A[i, j] = 1 d(b i, b j ) d max üðïõ b i, êáé b j åßíáé äýï èýóåéò ôïõ éóôïãñüììáôïò ðïõ áíáðáñéóôïýí ìßá áðü ôéò 4096 ñùìáôéêýò ðåñéï Ýò ðïõ ñçóéìïðïéïýìå, d(b i, b j ) ïñßæåé ôçí áðüóôáóç ôùí èýóåùí áõôþí. Áí red i, green i êáé blue i åßíáé ïé ôéìýò RGB ôçò èýóçò b i êáé red j, green j êáé blue j åßíáé ïé ôéìýò RGB ôçò èýóçò b j, ôüôå ç áðüóôáóç áõôþí ôùí èýóåùí ïñßæåôáé ùò åîþò: 3
4 d(b i, b j ) = (red i red j ) 2 + (green i green j ) 2 + (blue i blue j ) 2 Óçìåéþíåôáé üôé ôá óôïé åßá ôçò êõñßáò äéáãùíßïõ ôïõ ðßíáêá A åßíáé 1, äéüôé èåùñïýìå üôé Ýíá ñþìá Ý åé ôç ìýãéóôç ïìïéüôçôá ìå ôïí åõáôü ôïõ. Ôï d max åßíáé ç ìýãéóôç äõíáôþ áðüóôáóç êáé ñçóéìïðïéåßôáé ãéá êáíïíéêïðïßçóç, þóôå üëåò ïé ôéìýò ôïõ ðßíáêá A íá âñßóêïíôáé óôçí ðåñéï Þ [0,1]. Ìå âüóç ôá ðáñáðüíù, ôï ìýôñï ïìïéüôçôáò ìåôáîý äýï åéêüíùí X êáé Y ìå éóôïãñüììáôá HX êáé HY áíôßóôïé á ïñßæåôáé ùò åîþò: D hist3 (X, Y ) = (HX HY ) T A (HX HY ) = j=1 A[i, j] (HX[i] HY [i]) (HX[j] HY [j]) 2.1 Åðåîåñãáóßá ÅñùôÞìáôïò êáé ÅéóáãùãÞ Åéêüíáò Ï ñþóôçò äßíåé ìßá åéêüíá, Ýíáí áêýñáéï áñéèìü k êáé åðéëýãåé Ýíá áðü ôá ôñßá ðñïáíáöåñèýíôá ìýôñá ïìïéüôçôáò (D hist1, D hist2 Þ D hist3 ). Ôï óýóôçìá ìåôáôñýðåé ôçí åéêüíá ôïõ ñþóôç óå éóôüãñáììá, êáé óôç óõíý åéá âáèìïëïãåß ôéò åéêüíåò ôçò âüóçò óýìöùíá ìå ôï ìýôñï ïìïéüôçôáò ðïõ Ý åé åðéëåãåß. ÔÝëïò, áíáöýñåé óôçí Ýîïäï ôéò k ðåñéóóüôåñï üìïéåò åéêüíåò. ñçóéìïðïéþíôáò äéáöïñåôêü ìýôñá ïìïéüôçôáò ðáßñíïõìå óôç ãåíéêþ ðåñßðôùóç êáé äéáöïñåôéêü áðïôåëýóìáôá. Âáóéêüò óôü ïò ôçò åñãáóßáò åßíáé ç ðïéïôéêþ óýãêñéóç ôùí áðïôåëåóìüôùí ðïõ äßíïõí ôá äéáöïñåôéêü ìýôñá ïìïéüôçôáò. Ãéá ôçí åéóáãùãþ ìßáò íýáò åéêüíáò óôç âüóç, áñ éêü ðñýðåé íá äçìéïõñãþóïõìå ôï éóôüãñáììá ôï ïðïßï ðñýðåé íá áðïèçêåõôåß óå êáôüëëçëç ìïñöþ ìýóá óôç âüóç äåäïìýíùí. Ãéá ôçí áíáæþôçóç åéêüíáò ìå âüóç ôï êåßìåíï ï ñþóôçò äå ñåéüæåôáé íá åðéëýîåé êüðïéá åéêüíá. Áñêåß íá äþóåé ìåñéêýò ëýîåéò êëåéäéü ðïõ ðñïóäéïñßæïõí ôï åßäïò ôùí åéêüíùí ðïõ åðéèõìåß óôçí Ýîïäï. Èá åêôéìçèåß éäéáßôåñá êüèå ðñïóðüèåéá ðñïóèþêçò åðéðëýïí ëåéôïõñãéêüôçôáò óôçí åöáñìïãþ. Ãéá ðáñüäåéãìá, èá åßíáé ðïëý ñþóéìï ï ñþóôçò íá ìðïñåß íá óõíäõüæåé áðïôåëýóìáôá áðü ôçí áíáæþôçóç ùò ðñïò ôï êåßìåíï ìå ôá áðïôåëýóìáôá ôçò áíáæþôçóçò ùò ðñïò ôï ñþìá. ÐñïóðÜèåéåò ðñïò áõôþí ôçí êáôåýèõíóç èá åðéâñáâåõôïýí áíüëïãá. 3 ÐáñáäïôÝá Èá ðñýðåé íá ðáñáäþóåôå ôá áêüëïõèá: 4
5 Ôå íéêþ Ýêèåóç üðïõ èá áíáëýåôáé ç ðñïóýããéóç ðïõ áêïëïõèþóáôå ãéá ôçí åðßëõóç ôïõ ðñïâëþìáôïò, ðåéñáìáôéêü áðïôåëýóìáôá ðïõ Ý ïõí äéåîá èåß êáé ðïéïôéêþ óýãêñéóç ôùí áðïôåëåóìüôùí ðïõ äßíïõí ôá ôñßá ìýôñá ïìïéüôçôáò. Ôå íéêþ Ýêèåóç üðïõ èá áíáëýåôáé ï êþäéêáò ðïõ õëïðïéþóáôå. Ôïí ðçãáßï êþäéêá ôïõ ðñïãñüììáôïò. Ôá åêôåëýóéìá áñ åßá. Ôç âüóç ìå ôéò åéêüíåò ðïõ Ý åôå ñçóéìïðïéþóåé. Ôá ðáñáäïôýá èá ðñýðåé íá ôá äþóåôå óå øçöéáêþ ìïñöþ (CD). Ùò çìåñïìçíßá ðáñüäïóçò ôçò åñãáóßáò ïñßæåôáé ôï ôýëïò ôçò åîåôáóôéêþò Öáâñïõáñßïõ. Ùóôüóï, ïé ïìüäåò èá ðñýðåé íá Ý ïõí Ýôïéìç ôïõëü éóôïí ôçí ðáñïõóßáóç ôçò åöáñìïãþò íùñßôåñá. Ïé ìýñåò ôùí ðáñïõóéüóåùí èá ïñéóôïýí áñãüôåñá. Ç ðáñïõóßáóç èá ðåñéëáìâüíåé êáé demo ôçò ëåéôïõñãßáò ôçò åöáñìïãþò. 4 ñþóéìïé Óýíäåóìïé ÐáñáêÜôù äßíïíôáé ìåñéêïß âïçèçôéêïß óýíäåóìïé. Ðñïöáíþò èá ðñýðåé íá áíáôñýîåôå óôç ó åôéêþ âéâëéïãñáößá ãéá íá Ý åôå ìßá ðëçñýóôåñç åéêüíá ôïõ ðñïâëþìáôïò êáé íá êáôåõèõíèåßôå ó åôéêü ìå ôçí ôå íéêþ Ýêèåóç. image retrieval 5
ÓÕÍÄÕÁÓÔÉÊÇ É, ÓÅÐÔÅÌÂÑÉÏÓ ÏÌÁÄÁ ÈÅÌÁÔÙÍ Á
ÓÕÍÄÕÁÓÔÉÊÇ É, ÓÅÐÔÅÌÂÑÉÏÓ 2008 - ÏÌÁÄÁ ÈÅÌÁÔÙÍ Á ÈÝìá. Èåùñïýìå ôï óýíïëï Ω {; 2; ; 2008}. (á ( âáèìüò Ðüóåò åßíáé ïé ìåôáèýóåéò ôùí óôïé åßùí ôïõ Ω óôéò ïðïßåò ôï óôïé åßï âñßóêåôáé óå êüðïéá áðü ôéò
ÓÕÍÄÕÁÓÔÉÊÇ É, ÓÅÐÔÅÌÂÑÉÏÓ ÏÌÁÄÁ ÈÅÌÁÔÙÍ B
ÓÕÍÄÕÁÓÔÉÊÇ É, ÓÅÐÔÅÌÂÑÉÏÓ 2008 - ÏÌÁÄÁ ÈÅÌÁÔÙÍ B ÈÝìá. Èåùñïýìå ôï óýíïëï Ω {; 2; ; 2008}. (á ( âáèìüò Ðüóåò åßíáé ïé ìåôáèýóåéò ôùí óôïé åßùí ôïõ Ω óôéò ïðïßåò ôá Üñôéá óôïé åßá êáôáëáìâüíïõí ôéò ôåëåõôáßåò
Ó ÅÄÉÁÓÌÏÓ - ÊÁÔÁÓÊÅÕÇ ÓÔÏÌÉÙÍ & ÅÉÄÉÊÙÍ ÅÎÁÑÔÇÌÁÔÙÍ ÊËÉÌÁÔÉÓÌÏÕ V X
V X A B+24 AEROGRAMÌI Ïé äéáóôüóåéò ôùí óôïìßùí ôçò óåéñüò Å öáßíïíôáé óôï ðáñáêüôù ó Þìá. Áíôßóôïé á, ïé äéáóôüóåéò ôùí óôïìßùí ôçò óåéñüò ÂÔ öáßíïíôáé óôï Ó Þìá Å. Ãéá ôïí ðñïóäéïñéóìü ôçò ðáñáããåëßáò
3.1 Íá âñåèåß ôï ðåäßï ïñéóìïý ôçò óõíüñôçóçò f: 4 x. (iv) f(x, y, z) = sin x 2 + y 2 + 3z Íá âñåèïýí ôá üñéá (áí õðüñ ïõí): lim
3.1 Íá âñåèåß ôï ðåäßï ïñéóìïý ôçò óõíüñôçóçò f: 4 x (i) f(x, y) = sin 1 2 (x + y) (ii) f(x, y) = y 2 + 3 (iii) f(x, y, z) = 25 x 2 y 2 z 2 (iv) f(x, y, z) = z +ln(1 x 2 y 2 ) 3.2 (i) óôù f(x, y, z) =
ÊåöÜëáéï 4 ÄÉÁÍÕÓÌÁÔÁ. 4.1 ÅéóáãùãÞ (ÃåùìåôñéêÞ)
44 ÊåöÜëáéï 4 ÄÉÁÍÕÓÌÁÔÁ 4.1 ÅéóáãùãÞ (ÃåùìåôñéêÞ) Óå äéüöïñåò öõóéêýò åöáñìïãýò õðüñ ïõí ìåãýèç ôá ïðïßá ìðïñïýí íá áñáêôçñéóèïýí ìüíï ìå Ýíá áñéèìü. ÔÝôïéá ìåãýèç, üðùò ãéá ðáñüäåéãìá, ç èåñìïêñáóßá
ÓÕÍÈÇÊÇ ÁÌÅÔÁÈÅÔÏÔÇÔÁÓ ÓÕÓÔÇÌÁÔÏÓ ÔÏÉ ÙÌÁÔÙÍ ÐÁÑÁÑÔÇÌÁ Â
ÓÕÍÈÇÊÇ ÁÌÅÔÁÈÅÔÏÔÇÔÁÓ ÓÕÓÔÇÌÁÔÏÓ ÔÏÉ ÙÌÁÔÙÍ ÐÁÑÁÑÔÇÌÁ Â ÐÁÑÁÑÔÇÌÁ Â 464 ÅÊÙÓ 000 - Ó ÏËÉÁ ÓÕÍÈÇÊÇ ÁÌÅÔÁÈÅÔÏÔÇÔÁÓ ÓÕÓÔÇÌÁÔÏÓ ÔÏÉ ÙÌÁÔÙÍ Â.1 ÁÓÕÌÌÅÔÑÏ ÓÕÓÔÇÌÁ Η N / ( 0. + 0.1 η) 0.6 ν ν, η 3, η > 3...
ÊåöÜëáéï 5 ÄÉÁÍÕÓÌÁÔÉÊÏÉ ÙÑÏÉ. 5.1 ÅéóáãùãÞ. 56 ÊåöÜëáéï 5. ÄÉÁÍÕÓÌÁÔÉÊÏÉ ÙÑÏÉ
55 56 ÊåöÜëáéï 5. ÄÉÁÍÕÓÌÁÔÉÊÏÉ ÙÑÏÉ ÊåöÜëáéï 5 ÄÉÁÍÕÓÌÁÔÉÊÏÉ ÙÑÏÉ 5.1 ÅéóáãùãÞ Ïñéóìüò: íá óýíïëï V êáëåßôáé äéáíõóìáôéêüò þñïò Þ ãñáììéêüò þñïò ðüíù óôïí IR áí (á) ôï V åßíáé êëåéóôü ùò ðñïò ôç ðñüóèåóç,
å) Íá âñåßôå ôï äéüóôçìá ðïõ äéáíýåé ôï êéíçôü êáôü ôï ñïíéêü äéüóôçìá áðü ôï ðñþôï Ýùò ôï Ýâäïìï äåõôåñüëåðôï ôçò êßíçóþò ôïõ.
ÌÁÈÇÌÁÔÉÊÁ ÃÅÍÉÊÇÓ ÐÁÉÄÅÉÁÓ Ã ËÕÊÅÉÏÕ È Å Ì Á 1 ï 3 ï Ä É Á Ã Ù Í É Ó Ì Á á êéçôü êéåßôáé ðüù óôï Üîïá x~x. Ç èýóç ôïõ êüèå ñïéêþ óôéãìþ t äßåôáé áðü ôç 3 óõüñôçóç x(t) = t 1t + 60t + 1, üðïõ ôï t ìåôñéýôáé
ιαδικασία åãêáôüóôáóçò MS SQL Server, SingularLogic Accountant, SingularLogic Accountant Ìéóèïäïóßá
1.1 ÃåíéêÝò ðëçñïöïñßåò ãéá ôçí Express Ýêäïóç ôïõ SQL Server... 3 1.2 ÃåíéêÝò ðëçñïöïñßåò ãéá ôçí åãêáôüóôáóç... 3 2.1 ÅãêáôÜóôáóç Microsoft SQL Server 2008R2 Express Edition... 4 2.1 Åíåñãïðïßçóç ôïõ
ΕΛΕΝΗ ΓΕΡΟΥΛΑΝΟΥ. Εικονογράφηση ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ ΓΙΑ ΠΑΙΔΙΑ ΝΗΠΙΑΓΩΓΕΙΟΥ ΛΗΔΑ ΒΑΡΒΑΡΟΥΣΗ ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ
ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ ΓΙΑ ΠΑΙΔΙΑ ΝΗΠΙΑΓΩΓΕΙΟΥ ΕΛΕΝΗ ΓΕΡΟΥΛΑΝΟΥ Εικονογράφηση ΛΗΔΑ ΒΑΡΒΑΡΟΥΣΗ ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ Ï ðéï ìåãüëïò êáé ï ðéï óçìáíôéêüò ðáéäáãùãéêüò êáíüíáò äåí åßíáé ôï íá
ÄéáêñéôÝò êáé óõíå åßò ôõ áßåò ìåôáâëçôýò ÁóêÞóåéò
ÄéáêñéôÝò êáé óõíå åßò ôõ áßåò ìåôáâëçôýò ÁóêÞóåéò Áíôþíçò Ïéêïíüìïõ aeconom@math.uoa.gr ÌáÀïõ óêçóç (Ross, Exer. 4.8) Áí E[X] êáé V ar[x] 5 íá âñåßôå. E[( + X) ],. V ar[4 + X]. óêçóç (Ross, Exer. 4.64)
16. ÌåëÝôç ôùí óõíáñôþóåùí y=çìx, y=óõíx êáé ôùí ìåôáó çìáôéóìþí ôïõò.
55 16. ÌåëÝôç ôùí óõíáñôþóåùí y=çìx, y=óõíx êáé ôùí ìåôáó çìáôéóìþí ôïõò. A ÌÝñïò 1. Íá êáôáóêåõüóåéò óôï Function Probe ôç ãñáöéêþ ðáñüóôáóç ôçò y=çìx. Óôïí ïñéæüíôéï Üîïíá íá ïñßóåéò êëßìáêá áðü ôï -4ð
( ) ξî τέτοιο, + Ý åé ìßá ôïõëü éóôïí ñßæá óôï äéüóôçìá ( ) h x =,να δείξετε ότι υπάρχει ( α,β) x ΕΦΑΡΜΟΓΕΣ ΣΤΙΣ ΠΑΡΑΓΩΓΟΥΣ
. Äßíåôáé ç óõíüñôçóç : [, + ) R óõíå Þò óôï äéüóôçìá [,+ ) êáé ðáñáãùãßóéìç óôï äéüóôçìá (,+ ), ãéá ôçí ïðïßá éó ýåé ( ) = α. óôù üôé õðüñ åé κî R, þóôå íá éó ýåé ( ) κ ãéá êüèå Î (,+ ). Íá äåßîåôå üôé
ÊåöÜëáéï 3 ÏÑÉÆÏÕÓÅÓ. 3.1 ÅéóáãùãÞ
28 ÊåöÜëáéï 3 ÏÑÉÆÏÕÓÅÓ 3.1 ÅéóáãùãÞ Ãéá êüèå ôåôñáãùíéêü ðßíáêá A áíôéóôïé åß Ýíáò ðñáãìáôéêüò áñéèìüò ï ïðïßïò êáëåßôáé ïñßæïõóá êáé óõíþèùò óõìâïëßæåôáé ìå A Þ det(a). ÌåôáèÝóåéò: Ìéá áðåéêüíéóç ôïõ
2.4 ñçóéìïðïéþíôáò ôïí êáíüíá áëõóßäáò íá âñåèåß ç dr
2.1 i) Íá âñåèïýí ïé óõíôåôáãìýíåò ôïõ óçìåßïõ óôï ïðïßï ç åõèåßá r = 2 + t)i + 1 2t)j + 3tk ôýìíåé ôï åðßðåäï xz. ii) Íá âñåèïýí ïé óõíôåôáãìýíåò ôïõ óçìåßïõ óôï ïðïßï ç åõèåßá r = ti + 1 + 2t)j 3tk ôýìíåé
Cel animation. ÅöáñìïãÝò ðïëõìýóùí
ÅöáñìïãÝò ðïëõìýóùí Cel animation Ç ôå íéêþ áõôþ óõíßóôáôáé óôçí êáôáóêåõþ ðïëëþí ó åäßùí ðïõ äéáöýñïõí ìåôáîý ôïõò óå óõãêåêñéìýíá óçìåßá. Ôá ó Ýäéá áõôü åíáëëüóóïíôáé ôï Ýíá ìåôü ôï Üëëï äßíïíôáò ôçí
Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 7: Οριακή Τιμή Συνάρτησης. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά Ι Ενότητα 7: Οριακή Τιμή Συνάρτησης Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος διατίθεται
ÏÑÉÁÊÇ ÔÉÌÇ ÓÕÍÁÑÔÇÓÇÓ
ÌÜèçìá 7 ÏÑÉÁÊÇ ÔÉÌÇ ÓÕÍÁÑÔÇÓÇÓ Óôï ìüèçìá áõôü èá äïèåß ç Ýííïéá ôïõ ïñßïõ ìéáò ðñáãìáôéêþò óõíüñôçóçò ìå ôñüðï ðñïóáñìïóìýíï óôéò áðáéôþóåéò ôùí äéáöüñùí åöáñìïãþí, ðïõ áðáéôïýíôáé óôçí åðéóôþìç ôïõ.
1. Íá ëõèåß ç äéáöïñéêþ åîßóùóç (15 ìïí.) 2. Íá âñåèåß ç ãåíéêþ ëýóç ôçò äéáöïñéêþò åîßóùóçò (15 ìïí.)
ÔÅÉ ËÜñéóáò, ÔìÞìá Ìç áíïëïãßáò ÌáèçìáôéêÜ ÉI, ÅîÝôáóç Ðåñéüäïõ Éïõíßïõ 24/6/21 ÄéäÜóêùí: Á éëëýáò Óõíåöáêüðïõëïò 1. Íá ëõèåß ç äéáöïñéêþ åîßóùóç (15 ìïí.) (3x 2 + 6xy 2 )dx + (6x 2 y + 4y 3 )dy = 2. Íá
Estimation Theory Exercises*
Estimation Theory Exercises* Öþôçò ÓéÜííçò ÐáíåðéóôÞìéï Áèçíþí, ÔìÞìá Ìáèçìáôéêü fsiannis@math.uoa.gr December 22, 2009 * Áðü ôéò óçìåéþóåéò "ÓôáôéóôéêÞ Óõìðåñáóìáôïëïãßá" ôïõ Ô. ÐáðáúùÜííïõ, ôéò óçìåéþóåéò
3.1 H Ýííïéá ôçò óõíüñôçóçò ÐÁÑÁÄÅÉÃÌÁÔÁ - ÅÖÁÑÌÏÃÅÓ
.1 Ç Ýííïéá ôçò óõíüñôçóçò 55.1 H Ýííïéá ôçò óõíüñôçóçò Åñþ ôçóç 1 Ôé ëýãåôáé óõíüñôçóç; ÁðÜíôçóç Ç ó Ýóç åêåßíç ðïõ êüèå ôéìþ ôçò ìåôáâëçôþò x, áíôéóôïé ßæåôáé óå ìéá ìüíï ôéìþ ôçò ìåôáâëçôþò y ëýãåôáé
3524 ÅÖÇÌÅÑÉÓ ÔÇÓ ÊÕÂÅÑÍÇÓÅÙÓ (ÔÅÕ ÏÓ ÄÅÕÔÅÑÏ)
F ÅÖÇÌÅÑÉÓ ÔÇÓ ÊÕÂÅÑÍÇÓÅÙÓ ÔÇÓ ÅËËÇÍÉÊÇÓ ÄÇÌÏÊÑÁÔÉÁÓ 3523 ÔÅÕ ÏÓ ÄÅÕÔÅÑÏ Áñ. Öýëëïõ 252 28 Öåâñïõáñßïõ 2002 ÁÐÏÖÁÓÅÉÓ Áñéè. 19306/Ã2 ÐñïãñÜììáôá Óðïõäþí Ôå íéêþí Åðáããåëìáôéêþí Åêðáéäåõôçñßùí (Ô.Å.Å.).
Íá èõìçèïýìå ôç èåùñßá...
ÇËÅÊÔÑÉÊÏ ÐÅÄÉÏ Íá èõìçèïýìå ôç èåùñßá....1 Ôé ïíïìüæïõìå çëåêôñéêü ðåäßï; Çëåêôñéêü ðåäßï ïíïìüæïõìå ôïí þñï ìýóá óôïí ïðïßï áí âñåèåß Ýíá çëåêôñéêü öïñôßï èá äå èåß äýíáìç. Ãéá íá åîåôüóïõìå áí óå êüðïéï
Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 16: Προσέγγιση συνήθων διαφορικών εξισώσεων Μέρος ΙΙ. Αθανάσιος Μπράτσος
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 16: Προσέγγιση συνήθων διαφορικών εξισώσεων Μέρος ΙΙ Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας
Ìáèáßíïõìå ôéò áðïäåßîåéò
50. Βήµα ο Μαθαίνουµε τις αποδείξεις ã) Ùò ðñïò ôçí áñ Þ ôùí áîüíùí, áí êáé ìüíï áí Ý ïõí áíôßèåôåò óõíôåôáãìýíåò. ÄçëáäÞ: á = á êáé â = â ÂÞìá Ìáèáßíïõìå ôéò áðïäåßîåéò ä) Ùò ðñïò ôç äé ïôüìï ôçò çò êáé
ÐÉÍÁÊÅÓ ÔÉÌÙÍ ÁÍÔÉÊÅÉÌÅÍÉÊÙÍ ÁÎÉÙÍ
ÕÐÏÕÑÃÅÉÏ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ÏÉÊÏÍÏÌÉÊÙÍ ÃÅÍÉÊÇ ÄÉÅÕÈÕÍÓÇ ÄÇÌÏÓÉÁÓ ÐÅÑÉÏÕÓÉÁÓ & ÅÈÍÉÊÙÍ ÊËÇÑÏÄÏÔÇÌÁÔÙÍ ÄÉÅÕÈÕÍÓÇ ÔÅ ÍÉÊÙÍ ÕÐÇÑÅÓÉÙÍ & ÓÔÅÃÁÓÇÓ ÔÌÇÌÁ ÁÍÔÉÊÅÉÌÅÍÉÊÏÕ ÐÑÏÓÄÉÏÑÉÓÌÏÕ ÖÏÑÏËÏÃÇÔÅÁÓ ÁÎÉÁÓ ÁÊÉÍÇÔÙÍ
9. ÁíÜðôõîç ðñïãñáììüôùí ìå ñïíéêýò ëåéôïõñãßåò.
9. ÁíÜðôõîç ðñïãñáììüôùí ìå ñïíéêýò ëåéôïõñãßåò. 9.1 ÃåíéêÜ. Ôá ðåñéóóüôåñá PLC äéáèýôïõí óçìáíôéêýò åõêïëßåò üóïí áöïñü óôïí ðñïãñáììáôéóìü ñïíéêþí ëåéôïõñãéþí ìå ñçóéìïðïßçóç ôùí ñïíéêþí ëåéôïõñãéþí
ËáíèÜíïõóá ÓçìáóéïëïãéêÞ ÁíÜëõóç
8 ËáíèÜíïõóá ÓçìáóéïëïãéêÞ ÁíÜëõóç Ðåñéå üìåíá Êåöáëáßïõ 8.1 ÅéóáãùãÞ......................... 162 8.2 ÂáóéêÝò ííïéåò ÃñáììéêÞò ëãåâñáò........ 163 8.2.1 Ðßíáêåò êáé Äéáíýóìáôá................ 163 8.2.2
Κίνδυνοι στο facebook WebQuest Description Grade Level Curriculum Keywords
Κίνδυνοι στο facebook WebQuest Description: Το Facebook είναι ένας ιστοχώρος
4.5 ÁóêÞóåéò çìéêþò éóïññïðßáò ìå åðßäñáóç óôç èýóç éóïññïðßáò
4.5 ÁóêÞóåéò çìéêþò éóïññïðßáò ìå åðßäñáóç óôç èýóç éóïññïðßáò Óôéò áóêþóåéò ìå åðßäñáóç óôç èýóç ìéáò éóïññïðßáò ãßíåôáé áíáöïñü óå ðåñéóóüôåñåò áðü ìßá èýóåéò éóïññïðßáò. Ïé èýóåéò éóïññïðßáò åßíáé äéáäï
ÌÁÈÇÌÁÔÉÊÇ ËÏÃÉÊÇ Ë1 5ï ðáêýôï áóêþóåùí
ÌÁÈÇÌÁÔÉÊÇ ËÏÃÉÊÇ Ë1 5ï ðáêýôï áóêþóåùí ñþóôïò ÊïíáîÞò, A.M. 200416 ìðë 30-06-2005 óêçóç 1. óôù R N n ; n 1. ËÝìå üôé ç R åßíáé "áñéèìçôéêþ" áí õðüñ åé ôýðïò ö(x 1 ; : : : ; x n ) ôçò Ã1 èá ôýôïéïò ðïõ
Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 11: Διανυσματική Συνάρτηση. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά Ι Ενότητα 11: Διανυσματική Συνάρτηση Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος διατίθεται
Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Χημεία Θετικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ
Προτεινόμενα θέματα Πανελλαδικών εξετάσεων Χημεία Θετικής Κατεύθυνσης 2o ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ 1.1. ÓùóôÞ áðüíôçóç åßíáé ç Ä. ΘΕΜΑ 1ο 1.2. ñçóéìïðïéïýìå ôçí êáôáíïìþ ôùí çëåêôñïíßùí óå áôïìéêü ôñï éáêü óýìöùíá
ÅõñùðáúêÞ íùóç Áëïõìéíßïõ Ý åé äçìïóéåýóåé Ýíáí ìßíé - ïäçãü åðåîþãçóçò
Ôå íéêü èýìáôá CE marking of curtain walling This FAECF Guidance Sheet provides an explanation to the product standard on curtain walling EN 13830 with more details for the manufacturer and reader of the
ÓÔÁÔÉÊÏÓ ÇËÅÊÔÑÉÓÌÏÓ Ðåñéå üìåíá
ÓÔÁÔÉÊÏÓ ÇËÅÊÔÑÉÓÌÏÓ Ðåñéå üìåíá Íüìïò ôïõ Coulomb Çëåêôñéêü Ðåäßï - íôáóç ÄõíáìéêÝò ÃñáììÝò Äõíáìéêü - ÄéáöïñÜ Äõíáìéêïý ÐõêíùôÝò ÃéÜííçò Ãáúóßäçò - ÅÊÖÅ ßïõ Äéáôýðùóç ôïõ Íüìïõ F F - F r F Ç HëåêôñïóôáôéêÞ
Áóõìðôùôéêïß Óõìâïëéóìïß êáé Éåñáñ ßá ÓõíáñôÞóåùí
Áóõìðôùôéêïß Óõìâïëéóìïß êáé Éåñáñ ßá ÓõíáñôÞóåùí Çëßáò Ê. Óôáõñüðïõëïò Ïêôþâñéïò 006 1 Áóõìðôùôéêïß Óõìâïëéóìïß ÎåêéíÜìå äéáôõðþíïíôáò ôïõò ïñéóìïýò ôùí ðýíôå ãíùóôþí áóõìðôùôéêþí óõìâïëéóìþí: Ïñéóìüò
ÅÍÏÔÇÔÁ 5ç ÔÁ Ó ÇÌÁÔÁ
Ενότητα 5 Μάθημα 38 Ο κύκλος 1. Ná êáôáíïþóïõí ôçí Ýííïéá ôïõ êýêëïõ. 2. Ná ìüèïõí íá ñùôïýí êáé íá áðáíôïýí ó åôéêü ìå ôïí êýêëï. 1. Íá ðáßîïõí êáé íá ôñáãïõäþóïõí ôï «Ãýñù-ãýñù üëïé» êáé «To ìáíôçëüêé».
ÁÑÉÈÌÇÔÉÊÇ ËÕÓÇ ÓÕÍÇÈÙÍ ÄÉÁÖÏÑÉÊÙÍ ÅÎÉÓÙÓÅÙÍ
ÌÜèçìá 8 ÁÑÉÈÌÇÔÉÊÇ ËÕÓÇ ÓÕÍÇÈÙÍ ÄÉÁÖÏÑÉÊÙÍ ÅÎÉÓÙÓÅÙÍ 8.1 ÅéóáãùãéêÝò Ýííïéåò Åßíáé Þäç ãíùóôü óôïí áíáãíþóôç üôé ç åðßëõóç ôùí ðåñéóóüôåñùí ðñïâëçìüôùí ôùí èåôéêþí åðéóôçìþí ïäçãåß óôç ëýóç ìéáò äéáöïñéêþò
B i o f l o n. Ãéá åöáñìïãýò ìåôáöïñüò çìéêþí
B i o f l o n Ãéá åöáñìïãýò ìåôáöïñüò çìéêþí Ç åôáéñåßá Aflex, ç ïðïßá éäñýèçêå ôï 1973, Þôáí ç ðñþôç ðïõ ó åäßáóå ôïí åýêáìðôï óùëþíá PTFE ãéá ôç ìåôáöïñü çìéêþí õãñþí ðñßí áðü 35 ñüíéá. Ï åëéêïåéäþò
Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 15: Προσέγγιση συνήθων διαφορικών εξισώσεων Μέρος Ι. Αθανάσιος Μπράτσος
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 15: Προσέγγιση συνήθων διαφορικών εξισώσεων Μέρος Ι Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας
ÁñéèìçôéêÞ ÁíÜëõóç É - ÓÅÌÖÅ Åñãáóßá 2 ìåóåò êáé åðáíáëçðôéêýò ìýèïäïé
ÁñéèìçôéêÞ ÁíÜëõóç É - ÓÅÌÖÅ Åñãáóßá 2 ìåóåò êáé åðáíáëçðôéêýò ìýèïäïé Íéêüëáò ÊÜñáëçò Á/Ì : 91442 ÔìÞìá 1ï 28 Óåðôåìâñßïõ, 26 1 ìåóåò ÌÝèïäïé 1.1 Åñþôçìá 1 ñçóéìïðïéþíôáò ôçí gauss.m êáé ôçí herm5.m,
[ ] ÐáñÜñôçìá É : Éóüôñïðåò ôáíõóôéêýò óõíáñôþóåéò 1. Ïñéóìüò: Ï óõììåôñéêüò ôáíõóôþò B êáëåßôáé éóüôñïðç óõíüñôçóç ôïõ óõììåôñéêïý ôáíõóôþ A (Á.
ÐÁÑÁÑÔÇÌÁÔÁ 76 77 ÐáñÜñôçìá É : Éóüôñïðåò ôáíõóôéêýò óõíáñôþóåéò Ïñéóìüò: Ï óõììåôñéêüò ôáíõóôþò êáëåßôáé éóüôñïðç óõíüñôçóç ôïõ óõììåôñéêïý ôáíõóôþ f( (Á. üôáí ãéá êüèå êáíïíéêü ïñèïãþíéï ôáíõóôþ Q éó
1. i) ÊÜèå üñïò ðñïêýðôåé áðü ôçí ðñüóèåóç ôïõ óôáèåñïý áñéèìïý 3 óôïí ðñïçãïýìåíï, ïðüôå Ý ïõìå áñéèìçôéêþ ðñüïäï á í ìå ðñþôï üñï
5. ÐÑÏÏÄÏÉ 7 5. ÁñéèìçôéêÞ ðñüïäïò Á ÏìÜäá. i) ÊÜèå üñïò ðñïêýðôåé áðü ôçí ðñüóèåóç ôïõ óôáèåñïý áñéèìïý 3 óôïí ðñïçãïýìåíï, ïðüôå Ý ïõìå áñéèìçôéêþ ðñüïäï á í ìå ðñþôï üñï á = 7 êáé äéáöïñü ù = 3. Óõíåðþò
J-Y(St)Y Ôçëåöùíéêü êáëþäéï åóùôåñéêïý þñïõ ìå èùñüêéóç êáôü VDE 0815
J-Y(St)Y Ôçëåöùíéêü êáëþäéï åóùôåñéêïý þñïõ ìå èùñüêéóç êáôü VDE 0815 ÅÖÁÑÌÏÃÇ ñçóéìïðïéïýíôáé óå ìüíéìåò åãêáôáóôüóåéò ãéá ôç ìåôüäïóç áíáëïãéêïý Þ øçöéáêïý óþìáôïò. Ôï ðåäßï åöáñìïãþí ôïõò ðåñéëáìâüíåé
ΔΙΗΜΕΡΟ ΚΙΝΗΤΟΠΟΙΗΣΕΩΝ ΤΩΝ ΔΗΜΩΝ ΤΗΣ ΧΩΡΑΣ. Αναστολή λειτουργίας των δήμων στις 12 και 13 Σεπτεμβρίου 2012
ΔΙΗΜΕΡΟ ΚΙΝΗΤΟΠΟΙΗΣΕΩΝ ΤΩΝ ΔΗΜΩΝ ΤΗΣ ΧΩΡΑΣ Αναστολή λειτουργίας των δήμων στις 12 και 13 Σεπτεμβρίου 2012 Τετάρτη, 12 Σεπτεμβρίου, Πανελλαδική Συγκέντρωση στη Πλατεία Κλαυθμώνος, στις 11.00 π.μ. Πορεία
11. ΜΕΝΤΕΣΕΔΕΣ ΕΠΙΠΛΩΝ
. ΜΕΝΤΕΣΕΔΕΣ ΕΠΙΠΛΩΝ 1 . ΜΕΝΤΕΣΕΔΕΣ ÅÐÉÐËÙÍ Σύντομη αναδρομή στην ιστορία της. Η εταιρία Salice, πρωτοπόρος στον τομέα των χωνευτών μεντεσέδων επίπλων, παράγει μια πολύ μεγάλη γκάμα μεντεσέδων και μηχανισμών
Åîéóþóåéò 1ïõ âáèìïý
algevra-a-lykeiou-kef-07-08.qxd 9/8/00 9:00 Page 00 7 Åîéóþóåéò ïõ âáèìïý Ç åîßóùóç áx + â = 0 áx = â (ìå á 0) (ìå á = â = 0) â Ý åé áêñéâþò ìßá ëýóç, ôç x =. á áëçèåýåé ãéá êüèå ðñáãìáôéêü áñéèìü x (ôáõôüôçôá
11. ΜΕΝΤΕΣΕΔΕΣ ΕΠΙΠΛΩΝ
. ΜΕΝΤΕΣΕΔΕΣ ΕΠΙΠΛΩΝ 1 . ΜΕΝΤΕΣΕΔΕΣ ÅÐÉÐËÙÍ Σύντομη αναδρομή στην ιστορία της. Η εταιρία Salice, πρωτοπόρος στον τομέα των χωνευτών μεντεσέδων επίπλων, παράγει μια πολύ μεγάλη γκάμα μεντεσέδων και μηχανισμών
ÌÅÑÏÓ 3 ΥΠΗΡΕΣΙΕΣ ΥΠΟΣΤΗΡΙΞΗΣ ΤΗΣ ΚΛΙΝΙΚΗΣ ΠΡΑΞΗΣ ÁÐÁÉÔÇÓÅÙÍ ÕÐÇÑÅÓÉÙÍ. Υπηρεσίες Ιατρικής Πληροφορικής και Τηλεϊατρικής 9 ÂÁÓÉÊÅÓ ÊÁÔÅÕÈÕÍÓÅÉÓ
138 Υπηρεσίες Ιατρικής Πληροφορικής και Τηλεϊατρικής ÌÅÑÏÓ 3 ΥΠΗΡΕΣΙΕΣ ΥΠΟΣΤΗΡΙΞΗΣ ΤΗΣ ΚΛΙΝΙΚΗΣ ΠΡΑΞΗΣ 9 ÂÁÓÉÊÅÓ ÊÁÔÅÕÈÕÍÓÅÉÓ 10 ÌÏÍÔÅËÏ ÁÐÏÔÉÌÇÓÇÓ ÔÙÍ ÁÐÁÉÔÇÓÅÙÍ 11 ÔÏÌÅÉÓ ÅÖÁÑÌÏÃÇÓ ÔÙÍ ÕÐÇÑÅÓÉÙÍ 139
Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 12: Αόριστο Ολοκλήρωμα. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά Ι Ενότητα : Αόριστο Ολοκλήρωμα Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος διατίθεται
ÅÍÏÔÇÔÁ 6ç ÑÏÍÏÓ-ÄÉÁÄÏ Ç
Ενότητα 6 Μάθημα 45 Πρώτος-τελευταίος 1. Íá êáôáíïþóïõí ôéò Ýííïéåò ðñþôïò êáé ôåëåõôáßïò. 2. Ná ìüèïõí íá ñùôïýí êáé íá áðáíôïýí ó åôéêü ìå ôï ñüíï êáé ôç äéáäï Þ ãåãïíüôùí. 1. Íá áêïýóïõí ôï ðáñáìýèé
6936 ÅÖÇÌÅÑÉÓ ÔÇÓ ÊÕÂÅÑÍÇÓÅÙÓ (ÔÅÕ ÏÓ ÄÅÕÔÅÑÏ)
F ÅÖÇÌÅÑÉÓ ÔÇÓ ÊÕÂÅÑÍÇÓÅÙÓ ÔÇÓ ÅËËÇÍÉÊÇÓ ÄÇÌÏÊÑÁÔÉÁÓ 6935 ÔÅÕ ÏÓ ÄÅÕÔÅÑÏ Áñ. Öýëëïõ 432 17 Áðñéëßïõ 2001 ÁÐÏÖÁÓÅÉÓ Áñéè. 91496 Áíþôáôá ¼ñéá ÕðïëåéììÜôùí, MRLs, Öõôïðñïóôáôåõôéêþí Ðñïúüíôùí åðß êáé åíôüò
ÐïëëÝò åôáéñßåò ðñïóöýñïõí õðçñåóßåò
Ferral Ferral Της Πηνελόπης Λεονταρά Σήμανση CE: Πως γίνεται ο έλεγχος της παραγωγικής Ï êáèïñéóìüò ôïõ åëýã ïõ ðáñáãùãþò óå Ýíá êáôáóêåõáóôéêü óýìöùíá ìå ôéò ôå íéêýò ðñïäéáãñáöýò ãéá ôá êïõöþìáôá, óôçí
ΜΑΘΗΜΑ 1. Βαρυτικές και Μαγνητικές Μέθοδοι Γεωφυσικής Διασκόπησης ΝΟΜΟΣ ΒΑΡΥΤΗΤΑΣ NEWTON ΓΗΙΝΟ ΠΕΔΙΟ ΒΑΡΥΤΗΤΑΣ ΜΕΤΡΟΥΜΕΝΑ ΜΕΓΕΘΗ -
ΜΑΘΗΜΑ 1 Βαρυτικές και Μαγνητικές Μέθοδοι Γεωφυσικής Διασκόπησης ΝΟΜΟΣ ΒΑΡΥΤΗΤΑΣ NEWTON ΓΗΙΝΟ ΠΕΔΙΟ ΒΑΡΥΤΗΤΑΣ ΠΥΚΝΟΤΗΤΕΣ ΠΕΤΡΩΜΑΤΩΝ- ΟΡΥΚΤΩΝ ΜΕΤΡΟΥΜΕΝΑ ΜΕΓΕΘΗ - ΜΟΝΑΔΕΣ ΜΕΤΡΗΣΗΣ ΣΤΡΕΠΤΟΣ ΖΥΓΟΣ- ΕΚΚΡΕΜΕΣ
Συντακτική ανάλυση. Μεταγλωττιστές. (μέρος 3ον) Νίκος Παπασπύου, Κωστής Σαγώνας
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μεταγλωττιστές Νίκος Παπασπύου, Κωστής Σαγώνας Συντακτική ανάλυση (μέρος 3ον) Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό
Üóêçóç 15. ÕëéêÜ - åîáñôþìáôá äéêôýïõ ðåðéåóìýíïõ áýñá êáé ðíåõìáôéêýò óõóêåõýò
ÕëéêÜ - åîáñôþìáôá äéêôýïõ ðåðéåóìýíïõ áýñá êáé ðíåõìáôéêýò óõóêåõýò Óôü ïé ôçò Üóêçóçò äéüñêåéá Üóêçóçò: 6 äéäáêôéêýò þñåò Óôï ôýëïò ôçò Üóêçóçò ïé ìáèçôýò èá åßíáé éêáíïß: é íá áíáãíùñßæïõí ôá åîáñôþìáôá
ΕΝΔΟΣΚΟΠΙΚΕΣ ΚΑΙ ΧΕΙΡΟΥΡΓΙΚΕΣ ΤΕΧΝΙΚΕΣ ΘΕΡΑΠΕΙΑΣ ΚΙΝΗΤΙΚΩΝ ΔΙΑΤΑΡΑΧΩΝ ΓΑΣΤΡΟΟΙΣΟΦΑΓΙΚΗΣ ΣΥΜΒΟΛΗΣ Εκπαιδευτικό Σεμινάριο.
ΕΝΔΟΣΚΟΠΙΚΕΣ ΚΑΙ ΧΕΙΡΟΥΡΓΙΚΕΣ ΤΕΧΝΙΚΕΣ ΘΕΡΑΠΕΙΑΣ ΚΙΝΗΤΙΚΩΝ ΔΙΑΤΑΡΑΧΩΝ ΓΑΣΤΡΟΟΙΣΟΦΑΓΙΚΗΣ ΣΥΜΒΟΛΗΣ Εκπαιδευτικό Σεμινάριο Τελικό Πρόγραμμα Β Χειρουργική και Γαστρεντερολογική κλινική, Ναυτικού Νοσοκομείου
* ΣΧΕΔΙΟ ΕΚΘΕΣΗΣ. EL Eνωμένη στην πολυμορφία EL 2014/0321(NLE)
ΕΥΡΩΠΑΪΚΟ ΚΟΙΝΟΒΟΥΛΙΟ 2014-2019 Επιτροπή Πολιτικών Ελευθεριών, Δικαιοσύνης και Εσωτερικών Υποθέσεων 23.3.2015 2014/0321(NLE) * ΣΧΕΔΙΟ ΕΚΘΕΣΗΣ σχετικά με τη σύσταση για απόφαση του Συμβουλίου για την προσχώρηση
ÖÅÊ 816 ÅÖÇÌÅÑÉÓ ÔÇÓ ÊÕÂÅÑÍÇÓÅÙÓ (ÔÅÕ ÏÓ ÄÅÕÔÅÑÏ) ÏÄÇÃÉÅÓ ÐÁ ÔÇ ÓÕÌÐËÇÑÙÓÇ ÔÇÓ ÁÉÔÇÓÇÓ ÅÃÊÅÊÑÉÌÅÍÏÕ ÁÐÏÈÇÊÅÕÔÇ Ï ÇÌÁÔÙÍ 1. ÇÌÅÑÏÌÇÍÉÁ: ÁíáãñÜöåô
11544 ÅÖÇÌÅÑÉÓ ÔÇÓ ÊÕÂÅÑÍÇÓÅÙÓ (ÔÅÕ ÏÓ ÄÅÕÔÅÑÏ) ÖÅÊ 816 ÅÖÇÌÅÑÉÓ ÔÇÓ ÊÕÂÅÑÍÇÓÅÙÓ (ÔÅÕ ÏÓ ÄÅÕÔÅÑÏ) 11545 ÏÄÇÃÉÅÓ ÐÁ ÔÇ ÓÕÌÐËÇÑÙÓÇ ÔÇÓ ÁÉÔÇÓÇÓ ÅÃÊÅÊÑÉÌÅÍÏÕ ÁÐÏÈÇÊÅÕÔÇ Ï ÇÌÁÔÙÍ 1. ÇÌÅÑÏÌÇÍÉÁ: ÁíáãñÜöåôáé
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο. Μαθηματική Λογική. Αποδεικτικό Σύστημα.
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Μαθηματική Λογική Αποδεικτικό Σύστημα Γεώργιος Κολέτσος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Ç íýá Ýííïéá ôïõ ýðíïõ!
ΑΞΕΣΟΥΑΡ Ç íýá Ýííïéá ôïõ ýðíïõ! ÅããõÜôáé ôçí áóöüëåéá êáé õãåßá ôïõ ìùñïý êáôü ôç äéüñêåéá ôïõ ýðíïõ! AP 1270638 Õðüóôñùìá Aerosleep, : 61,00 AP 125060 ÊÜëõììá Aerosleep, : 15,30 ÁóöáëÞò, ðüíôá áñêåôüò
ÐÑÏÓÅÃÃÉÓÇ ÅËÁ ÉÓÔÙÍ ÔÅÔÑÁÃÙÍÙÍ
ÌÜèçìá 5 ÐÑÏÓÅÃÃÉÓÇ ÅËÁ ÉÓÔÙÍ ÔÅÔÑÁÃÙÍÙÍ 5.1 ÄéáêñéôÞ ðñïóýããéóç 5.1.1 ÅéóáãùãÞ Óôï ÌÜèçìá ÐïëõùíõìéêÞ ðáñåìâïëþ åîåôüóôçêå ôï ðñüâëçìá ôçò åýñåóçò ôïõ ðïëõùíýìïõ ðáñåìâïëþò, äçëáäþ ôïõ ðïëõùíýìïõ ðïõ
ÄÉÁÍÕÓÌÁÔÉÊÏÓ ÄÉÁÖÏÑÉÊÏÓ ËÏÃÉÓÌÏÓ
ÌÜèçìá 18 ÄÉÁÍÕÓÌÁÔÉÊÏÓ ÄÉÁÖÏÑÉÊÏÓ ËÏÃÉÓÌÏÓ 18.1 ÅéóáãùãÞ 1 Óôï ìüèçìá áõôü äßíïíôáé ïé âáóéêýò Ýííïéåò ôïõ Äéáíõóìáôéêïý Äéáöïñéêïý Ëïãéóìïý, ðïõ åßíáé ó åôéêýò ìå ôéò âáèìùôýò Þ ôéò äéáíõóìáôéêýò óõíáñôþóåéò
ΘΕΜΑ: Τροποποίηση κατηγοριών στα εγκεκριµένα ενιαία τιµολόγια εργασιών για έργα οδοποιϊας.
ΕΞ. ΕΠΕΙΓΟΝ ΕΓΚΥΚΛΙΟΣ 5 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Αθήνα, 23 Φεβρουαρίου 2005 ΥΠΟΥΡΓΕΙΟ ΠΕ.ΧΩ..Ε. Αρ.Πρωτ. 17α/10/22/ΦΝ 437 ΓΕΝΙΚΗ ΓΡΑΜ. ΗΜΟΣΙΩΝ ΕΡΓΩΝ ΓΕΝ. /ΝΣΗ ΙΟΙΚΗΣΗΣ & ΠΡΟΓ/ΤΟΣ /ΝΣΗ ΝΟΜΟΘΕΤΙΚΟΥ ΣΥΝΤ/ΣΜΟΥ &
Εφαρμοσμένα Μαθηματικά
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Εφαρμοσμένα Μαθηματικά Ενότητα 11: Προσέγγιση μερικών διαφορικών εξισώσεων - Παραβολικές Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ
Ç ÅÔÁÉÑÉÁ ÔÁ ÐÑÏÚÏÍÔÁ. Ç åôáéñßá ðáñüãåé, åìðïñåýåôáé êáé åîüãåé ôá ðáñáêüôù ðñïúüíôá:
Ç ÅÔÁÉÑÉÁ Ç åôáéñßá Áöïß ÊÜìôóç ÁÅ éäñýèçêå ôï 1991 ìåôü áðï óõã þíåõóç ôçò åôáéñßáò Ê.ÊÜìôóçò & Óßá ÏÅ êáé ôçò åôáéñßáò Áöïß ÊÜìôóç ÏÅ. äñá ôçò åôáéñßáò åßíáé ç Èåóóáëïíßêç. Ôï äßêôõï ðùëþóåùí ôçò åôáéñßáò
Óõíå Þ êëüóìáôá & Áöáéñåôéêüò Åõêëåßäåéïò áëãüñéèìïò
Óõíå Þ êëüóìáôá & Áöáéñåôéêüò Åõêëåßäåéïò áëãüñéèìïò Áããåëßíá ÂéäÜëç åðéâëýðùí êáèçãçôþò: ÃéÜííçò Ìïó ïâüêçò Q 13 Éïõíßïõ, 2009 ÄïìÞ äéðëùìáôéêþò åñãáóßáò 1o êåö. ÅéóáãùãÞ óôá óõíå Þ êëüóìáôá 2ï êåö. Ëßãç
ÌÉÃÁÄÉÊÅÓ ÓÕÍÁÑÔÇÓÅÉÓ
ÌÜèçìá 5 ÌÉÃÁÄÉÊÅÓ ÓÕÍÁÑÔÇÓÅÉÓ 5.1 ÅéóáãùãÞ Óôï ìüèçìá áõôü èá äïèïýí ïé âáóéêüôåñåò Ýííïéåò ôùí ìéãáäéêþí óõíáñôþóåùí. Ï áíáãíþóôçò, ãéá ìéá åêôåíýóôåñç ìåëýôç, ðáñáðýìðåôáé óôç âéâëéïãñáößá ôïõ ìáèþìáôïò
1.1 Ïé öõóéêïß áñéèìïß - ÄéÜôáîç öõóéêþí, Óôñïããõëïðïßçóç
1.1 Ïé öõóéêïß áñéèìïß - ÄéÜôáîç öõóéêþí, Óôñïããõëïðïßçóç 7 1.1 Ïé öõóéêïß áñéèìïß - ÄéÜôáîç öõóéêþí, Óôñïããõëïðïßçóç Åñþ ôçóç 1 Ðïéïé áñéèìïß ïíïìüæïíôáé öõóéêïß; Ðþò ôïõò óõìâïëßæïõìå êáé ðþò ùñßæïíôáé;
SPLINES. ÌÜèçìá ÓõíÜñôçóç spline Ïñéóìïß êáé ó åôéêü èåùñþìáôá
ÌÜèçìá 4 SPLINES 4.1 ÓõíÜñôçóç spline 4.1.1 Ïñéóìïß êáé ó åôéêü èåùñþìáôá Óôï ÌÜèçìá ÐïëõùíõìéêÞ ðáñåìâïëþ åîåôüóôçêå ôï ðñüâëçìá ôçò åýñåóçò ôùí ðïëõùíýìùí ðáñåìâïëþò, äçëáäþ ðïëõùíýìùí ðïõ óõíýðéðôáí
ΣΕΡΙΦΟΣ ΣΕΡΙΦΟΥ ΓΑΛΑΝΗΣ
ΔΗΜΟΣ: ΣΕΡΙΦΟΣ ΣΕΡΙΦΟΥ ΓΑΛΑΝΗΣ ΟΙΚΙΣΜΟΣ: ΠΑΡΑΔΟΣΙΑΚΟΣ ÏÉÊÉÓÌÏÓ ÐÑÏÓÏ Ç: ÄåäïìÝíïõ üôé ðñüêåéôáé ãéá ðáñáäïóéáêü ïéêéóìü, ãéá ôïí õðïëïãéóìü ôçò áîßáò ôùí áêéíþôùí äåí åöáñìüæïíôáé ïé óõíôåëåóôýò ðñüóïøçò:
5Ô Ô ÚÓÔ. ðüóï 15 ðüóï 1/ ðüóï 2/ ðüóï 4/ ðüóï ðüóï ðüóï. 13 ðüóï 33 ðüóï ðüóï ðüóï. ðüóï 26 ðüóï 2XA ðüóï 3XA ¼ëïé ðüóï
5Ô Ô ÚÓÔ ª ıëùòó Bã ÎÏÔ ¼ëïé óôçí ðñþôç / K 2 Ìïßñáóå ï  3 Q 10 6 2 6 J 8 7 6 3 5 7 2 / 10 8 5 4 / A J 9 7 3 A 9 7 3 K J 5 6 Q 4 6 K 10 5 A Q 9 3 5 J 10 5 4 / Q 6 3 3 8 4 3 6 A 9 5 2 5 K 8 6 ðüóï 15 ðüóï
Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 8: Συνέχεια Συνάρτησης. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά Ι Ενότητα 8: Συνέχεια Συνάρτησης Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος διατίθεται
ôéò óçìåéþóåéò Þ ôï âéâëßï ôïõ ìáèþìáôïò (åöüóïí Ý ïõí ìïéñáóôåß).
1 ÅñãáóôÞñéï 2 ÄïìÝò ÄåäïìÝíùí ôìþìá: Äéá åßñéóçò Ðëçñïöïñéþí, ÔÅÉ ÊáâÜëáò äéäüóêùí: Äñ. Âáóßëåéïò áôæþò, Åð. ÊáèçãçôÞò ôï êåßìåíï áõôü âñßóêåôáé óôï äéáäßêôõï óôç óåëßäá www.it.teithe.gr/ chatzis 2.1
ÁÏÑÉÓÔÏ ÏËÏÊËÇÑÙÌÁ. ÌÜèçìá ÅéóáãùãéêÝò Ýííïéåò ÐáñÜãïõóá óõíüñôçóç
ÌÜèçìá 0 ÁÏÑÉÓÔÏ ÏËÏÊËÇÑÙÌÁ 0. ÅéóáãùãéêÝò Ýííïéåò Óôï ìüèçìá áõôü èá äïèïýí ïé êõñéüôåñïé êáíüíåò ïëïêëþñùóçò, ðïõ êýñéá åìöáíßæïíôáé óôéò ôå íïëïãéêýò åöáñìïãýò. Äéåõêñéíßæåôáé üôé áêïëïõèþíôáò ìßá áõóôçñü
ÁÑÉÈÌÇÔÉÊÇ ÏËÏÊËÇÑÙÓÇ
ÌÜèçìá 7 ÁÑÉÈÌÇÔÉÊÇ ÏËÏÊËÇÑÙÓÇ ÅéóáãùãÞ ¼ìïéá, üðùò êáé óôï ÌÜèçìá ÐñïóÝããéóç Ðáñáãþãùí, ç ðñïóåããéóôéêþ ôéìþ ôïõ ïñéóìýíïõ ïëïêëçñþìáôïò ñçóéìïðïéåßôáé êõñßùò, üôáí I(f) = f(x) dx i) ëüãù ôçò ðïëýðëïêçò
1.1 ÊáñôåóéáíÝò óõíôåôáãìýíåò óôï 3-äéÜóôáôï þñï
ÊåöÜëáéï 1 ÄÉÁÍÕÓÌÁÔÁ 1.1 ÊáñôåóéáíÝò óõíôåôáãìýíåò óôï 3-äéÜóôáôï þñï óôù ç ôñéüäá (a, b, c). Ôï óýíïëï ôùí ôñéüäùí êáëåßôáé 3-äéÜóôáôïò þñïò êáé óõìâïëßæåôáé ìå IR 3. Åéäéêüôåñá ç ôñéüäá (a, b, c) ïñßæåé
ÍåõñùíéêÜ Äßêôõá êáé ÅõöõÞ ÕðïëïãéóôéêÜ ÓõóôÞìáôá
ÅÈÍÉÊÏ ÌÅÔÓÏÂÉÏ ÐÏËÕÔÅ ÍÅÉÏ ÔÌÇÌÁ ÇËÅÊÔÑÏËÏÃÙÍ ÌÇ ÁÍÉÊÙÍ ÊÁÉ ÌÇ ÁÍÉÊÙÍ ÕÐÏËÏÃÉÓÔÙÍ ÔÏÌÅÁÓ ÔÅ ÍÏËÏÃÉÁÓ ÐËÇÑÏÖÏÑÉÊÇÓ ÊÁÉ ÕÐÏËÏÃÉÓÔÙÍ ÅÑÃÁÓÔÇÑÉÏ ÅÎÅÑÃÁÓÉÁÓ ÅÉÊÏÍÁÓ ÂÉÍÔÅÏ ÊÁÉ ÐÏËÕÌÅÓÙÍ ÍåõñùíéêÜ Äßêôõá êáé
Εφαρμοσμένα Μαθηματικά
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Εφαρμοσμένα Μαθηματικά Ενότητα 8: Προσέγγιση ολοκληρωμάτων Μέρος ΙΙ Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του
Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 6: Γραμμική Άλγεβρα. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά Ι Ενότητα 6: Γραμμική Άλγεβρα Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος διατίθεται
2. Êáíüíåò ó åäßáóçò. 2.1 ÄéÜôáîç óõóôþìáôïò. PC äåí åßíáé áíáãêáßï ãéá ôç ëåéôïõñãßá ôçò åãêáôüóôáóçò.
PC äåí åßíáé áíáãêáßï ãéá ôç ëåéôïõñãßá ôçò åãêáôüóôáóçò. Ï êüèå óõíäñïìçôþò-bus Ý åé ôï äéêü ôïõ ìéêñïåðåîåñãáóôþ êáé ìíþìåò. ôóé, ðáñüìåôñïé êáé ðñïãñüììáôá äå Üíïíôáé ìåôü áðü ìáêñï ñüíéá äéáêïðþ ôçò
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο. Μαθηματική Λογική. Αναδρομικές Συναρτήσεις.
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Μαθηματική Λογική Αναδρομικές Συναρτήσεις Γεώργιος Κολέτσος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ÐÑÏÓÅÃÃÉÓÇ ÐÁÑÁÃÙÃÙÍ
ÌÜèçìá 6 ÐÑÏÓÅÃÃÉÓÇ ÐÁÑÁÃÙÃÙÍ ÅéóáãùãÞ 1Ç ðñïóýããéóç ôçò ôéìþò ôçò ðáñáãþãïõ ìéáò óõíüñôçóçò ñçóéìïðïéåßôáé êõñßùò: i) üôáí ëüãù ôçò ðïëýðëïêçò ìïñöþò ôïõ ôýðïõ ôçò åßíáé áäýíáôïò ï èåùñçôéêüò õðïëïãéóìüò
Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 5: Μιγαδικές Συναρτήσεις. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά Ι Ενότητα 5: Μιγαδικές Συναρτήσεις Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος διατίθεται
Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 15: Ορισμένο Ολοκλήρωμα Μέρος ΙΙΙ - Εφαρμογές. Αθανάσιος Μπράτσος
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά Ι Ενότητα 5: Ορισμένο Ολοκλήρωμα Μέρος ΙΙΙ - Εφαρμογές Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο
ÁðáñéèìçôÝò- ÓõãêñéôÝò
ÊåöÜëáéï 5 ÁðáñéèìçôÝò- ÓõãêñéôÝò Åðéäéùêüìåíïé óôü ïé: ¼ôáí ïëïêëçñþóåôå ôç ìåëýôç áõôïý ôïõ êåöáëáßïõ, èá åßóôå éêáíïß: é íá ðåñéãñüöåôå ôéò åíôïëýò ðïõ ñçóéìïðïéïýíôáé ãéá ôïí ðñïãñáììáôéóìü ôùí áðáñéèìçôþí
245/Á/1977). 2469/1997 (ÖÅÊ 36/Á/1997). 1484/Â/ ).
ÅÖÇÌÅÑÉÓ ÔÇÓ ÊÕÂÅÑÍÇÓÅÙÓ ÔÇÓ ÅËËÇÍÉÊÇÓ ÄÇÌÏÊÑÁÔÉÁÓ F 661 ÔÅÕ ÏÓ ÄÅÕÔÅÑÏ Áñ. Öýëëïõ 72 28 Éáíïõáñßïõ 2002 ÁÐÏÖÁÓÅÉÓ Áñéè. Ä14/48529 ãêñéóç Ôéìïëïãßïõ Åñãáóôçñéáêþí êáé åðß Ôüðïõ Äïêéìþí ôïõ ÊÅÄÅ. OI ÕÐÏÕÑÃÏÉ
ÅðåéäÞ ïé äõíüìåéò F 1 êáé F 2 åßíáé ïìüññïðåò (ó Þìá) èá éó ýåé: F ïë = F 1 + F 2. ÔåëéêÜ: F ïë = 1.500Í.
ÌÅÈÏÄÏËÏÃÉÁ Ç äýíáìç áëëçëåðßäñáóçò äýï çëåêôñéêþí öïñôßùí ìðïñåß íá õðïëïãéóôåß ìå âüóç ôïí íüìï ôïõ Coulomb. Óôï ðáñüäåéãìá ìáò âñßóêåôáé ç óõíéóôáìýíç äýíáìç ðïõ åíåñãåß óôï öïñôßï q áðü äýï Üëëá öïñôßá
ÓÔÏÌÉÁ ÏÑÏÖÇÓ -ÓÅÉÑÁ OK
ÓÔÏÌÉÁ ÏÑÏÖÇÓ -ÓÅÉÑÁ OK ÐÅÑÉÅ ÏÌÅÍÁ óåëßäá - ÃåíéêÞ ðåñéãñáöþ... ÏÊ - Äéáóôáóéïëüãéï... ÏÊ - Ôñüðïé åêôüîåõóçò áýñá/åðéëïãþ óôïìßùí... OK - ÄéáãñÜììáôá åðéëïãþò... OK - Ôñüðïò ðáñáããåëßáò - Ôå íéêþ ðåñéãñáöþ...
ÐÏËÕÙÍÕÌÉÊÇ ÐÁÑÅÌÂÏËÇ
ÌÜèçìá 3 ÐÏËÕÙÍÕÌÉÊÇ ÐÁÑÅÌÂÏËÇ 3.1 ÅéóáãùãÞ Åßíáé ãíùóôü üôé óôá äéüöïñá ðñïâëþìáôá ôùí åöáñìïãþí ôéò ðåñéóóüôåñåò öïñýò ðáñïõóéüæïíôáé óõíáñôþóåéò ðïõ ðåñéãñüöïíôáé áðü ðïëýðëïêïõò ôýðïõò, äçëáäþ ôýðïõò
ÓÕÍÅ ÅÉÁ ÓÕÍÁÑÔÇÓÇÓ. 8.1 ÃåíéêÝò Ýííïéåò êáé ïñéóìïß
ÌÜèçìá 8 ÓÕÍÅ ÅÉÁ ÓÕÍÁÑÔÇÓÇÓ ¼ìïéá, üðùò êáé óôï ÌÜèçìá ÏñéáêÞ ôéìþ óõíüñôçóçò, äßíïíôáé ðåñéëçðôéêü ïé âáóéêüôåñïé ïñéóìïß êáé èåùñþìáôá ðïõ áíáöýñïíôáé óôç óõíý åéá ìéáò ðñáãìáôéêþò óõíüñôçóçò, åíþ ï
F ÅÖÇÌÅÑÉÓ ÔÇÓ ÊÕÂÅÑÍÇÓÅÙÓ ÔÇÓ ÅËËÇÍÉÊÇÓ ÄÇÌÏÊÑÁÔÉÁÓ 5551 ÔÅÕ ÏÓ ÔÅÔÁÑÔÏ Áñ. Öýëëïõ 647 7 Áõãïýóôïõ 2001 ÐÅÑÉÅ ÏÌÅÍÁ ÁÐÏÖÁÓÅÉÓ Ôñïðïðïßçóç åãêåêñéìýíïõ ó åäßïõ ðüëçò ÄÞìïõ Çñáêëåßïõ, óôçí ðïëåïäïìéêþ åíüôçôá
Artwork Package GK Issue 2.0
,QWXLW\Œ/RGJLQJ Artwork Package 585-310-739GK Issue 2.0 &RPFRGH October 1997 Copyright 1997, Lucent Technologies All Rights Reserved Printed in U.S.A. v ± º Ÿ «¼± Ÿ³µ² ³ ² ³ «µ² ²µ º³²¼³ µ ž»²± ²ž± ¼³²
Union of Pure and Applied Chemistry).
.5 Ç ãëþóóá ôçò çìåßáò Ãñáö çìéêþí ôýðùí êáé åéóáãùã óôçí ïíïìáôïëïãßá ôùí áíüñãáíùí åíþóåùí..5.1 ÃåíéêÜ. Ç çìåßá Ý åé ôç äéê ôçò äéåèí ãëþóóá, ç ïðïßá êáèïñßæåôáé áðü êáíüíåò ðïõ Ý ïõí ðñïôáèåß êáé ðñïôåßíïíôáé
Chi-Square Goodness-of-Fit Test*
Chi-Square Goodness-of-Fit Test* Öþôçò ÓéÜííçò ÐáíåðéóôÞìéï Áèçíþí, ÔìÞìá Ìáèçìáôéêü fsiannis@mathuoagr February 6, 2009 * Áðü ôéò óçìåéþóåéò "ÓôáôéóôéêÞ Óõìðåñáóìáôïëïãßá" ôïõ Ô ÐáðáúùÜííïõ êáé ôá âéâëßá
(Á 154). Amitraz.
ÅÖÇÌÅÑÉÓ ÔÇÓ ÊÕÂÅÑÍÇÓÅÙÓ (ÔÅÕ ÏÓ ÄÅÕÔÅÑÏ) 13641 ñèñï 4 (Üñèñï 3 ôçò Ïäçãßáò 2001/99/ÅÊ) Ïé äéáôüîåéò ôçò ðáñïýóáò áðüöáóçò éó ýïõí áðü ôçí 1ç Éïõëßïõ 2002. Ç ðáñïýóá áðüöáóç íá äçìïóéåõèåß óôçí Åöçìåñßäá
ÌÜèçìá 7ï: ÁËÃÏÑÉÈÌÏÉ ÁÍÁÆÇÔÇÓÇÓ
ÌÜèçìá 7ï: ÁËÃÏÑÉÈÌÏÉ ÁÍÁÆÇÔÇÓÇÓ ÓåéñéáêÞ ÁíáæÞôçóç Ç áðëïýóôåñç ìýèïäïò áíáæþôçóçò åßíáé ç óåéñéáêþ sequetial) ãñáììéêþ liear). Áí êáé ç ìýèïäïò åßíáé áðïëýôùò ãíùóôþ áðü ôï áíôéêåßìåíï ôùí Äïìþí ÄåäïìÝíùí,
¼ñãáíá Èåñìïêñáóßáò - ÓõóêåõÝò Øõêôéêþí Ìç áíçìüôùí
¼ñãáíá Èåñìïêñáóßáò - ÓõóêåõÝò Øõêôéêþí Ìç áíçìüôùí ÈåñìïóôÜôçò ÓõíôÞñçóçò REF-DF-SM ÅëÝã åé Ýíá èåñìïóôïé åßï PTC Êëßìáêá èåñìïêñáóßáò: -19? +99 C ëåã ïò áðüøõîçò - dfrst Ôñßá ñåëý: óõìðéåóôþò (30Á, 2ÇÑ),
1ï ÊñéôÞñéï Áîéïëüãçóçò
1ï ÊñéôÞñéï Áîéïëüãçóçò óå üëç ôçí ýëç ÖõóéêÞò. à ôüîç ÊáèçãçôÞò: ¼íïìá: Âáèìüò: ÈÅÌÁ 1ï Åéê. 1 A. -2ìC ç Á êáé +2ìC ç  -1ìC ç Á êáé -1ìC ç  -9ìC ç Á êáé -9ìC ç  D. +1ìC ç Á êáé +1ìC ç  ÅðéëÝîôå ôç
ÓõíåñãÜæïìáé ìå ôïõò Üëëïõò
Åíüôçôá 3ç ÓõíåñãÜæïìáé ìå ôïõò Üëëïõò -Óõíåñãáóßá ìå ôïõò Üëëïõò- 49 4.3.1 Äéä. óôü ïò: Íá óõíåñãüæåôáé ìå ôá ðñüóùðá ôçò ïéêïãýíåéáò. Äñáóôçñéüôçôá: ÊïéíùíéêÝò äåîéüôçôåò óôï ðëáßóéï ôçò ïéêïãýíåéáò.