Έργο παραγώμενο στο τοίχωμα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Έργο παραγώμενο στο τοίχωμα"

Transcript

1 Έργο παραγώμενο στο τοίχωμα δw =F x dx= p S dx= pdv Εξαρτάται από την αρχική κατάσταση, την τελική κατάσταση και από το είδος της μεταβολής C:\Users\Nicholas\Documents\PhysicsIV-Lectures\Thermodynamics\gas-properties_en.jar

2 Έργο παραγώμενο στο τοίχωμα δw =F x dx= p S dx= pdv Εξαρτάται από την αρχική κατάσταση, την τελική κατάσταση και από το είδος της μεταβολής C:\Users\Nicholas\Documents\PhysicsIV-Lectures\Thermodynamics\gas-properties_en.jar

3 ΘΕΡΜΟΔΥΝΑΜΙΚΗ η μελέτη των καταστάσεων θερμοδυναμικής ισορροποίας Πρώτος θερμοδυναμικός νόμος = αρχή διατήρησης της ενέργειας Σε ένα κλειστό σύστημα: δq=du+δw

4 U η εσωτερική ενέργεια Είναι συνάρτηση καταστάσεως,δηλαδή των παραμέτρων, π.χ. p, V, T, που καθορίζουν την θερμοδυναμική ισορροποία U=U(p,V,T). Αυτός είναι και ο λόγος που για το διαφορικό του χρησιμοποιήσαμε d και όχι δ. Επειδή για ένα κλειστό σύστημα όπως είναι τα αέρια που εξετάζουμε τα (p, V, T) είναι εξαρτημένα μεταξύ τους μέσω της καταστατικής εξίσωσης (pv=nk B T) έχουμε σε αυτή τη περίπτωση, U=U(V,T) Στην περίπτωση του ιδανικού αερίου (δηλαδή των αραιών μονοατομικών αερίων) έχουμε U=K, όπου Κ η συνολική κινητική ενέργεια των μορίων του αερίου, όπως είδαμε, Κ=3Nk T/2=U

5 Tι είναι το δq? Είναι η θερμότητα, δηλαδή η ενέργεια που "ρέει" από ένα σύστημα σε ένα άλλο λόγω διαφοράς "θερμοκρασίας". Στό απλό σύστημα του ιδανικού αερίου που εξετάζουμε μπορούμε να θεωρήσουμε (όπως ήδη έχουμε κάνει) ότι οι ανακλάσεις στα τοιχώματα είναι και αυτές ελαστικές. Τότε δq=0.

6 Όταν δq=0 στο ιδανικό αέριο... Aπό 1 ο ΘΝ, δq=0=du+δw (1) με U=K=3Nk B T/2 και εφόσον η μεταβολή είναι αντιστρεπτή (δηλαδή διέρχεται από διαδοχικές καταστάσεις θερμοδυναμικής ισορροποίας) έχουμε δw=pdv με pv=2k/3 για κάθε τιμή του V. Tότε η εξ. (1) γράφεται 0=dK+pδV=dK+2KdV/(3V) ή dκ/κ+(2/3)dv/v=0 Δηλαδή d[log(kv (2/3) )]=0 άρα KV (2/3) =c, όπου c σταθερά, ή ισοδύναμα ΤV (2/3) =c' και αφού Τ=pV/Nk B, pv (2/3+1) =pv (5/3) =c'' ή όπως γράφουμε συνήθως pv γ =σταθερό με γ=5/3

7

8 Όταν δq=0, και η μεταβολή είναι αντιστρεπτή στο ιδανικό αέριο έχουμε τις "αδιαβατικές" αντιστρεπτές μεταβολές για τις οποίες pv γ =σταθερό με γ=5/3 που δεν μας επιτρέπουν να πάμε από μια αρχική κατάσταση σε αυθαίρετη τελική κατάσταση.

9 Όταν δq 0, και η μεταβολή είναι αντιστρεπτή στο ιδανικό αέριο o 1 ος Θερμοδυναμικός Νόμος γίνεται... δq=du +δw δw = pdv, pv = Nk B T,U = 3 2 Nk B T δq T = 3 2 Nk B δq= 3 2 Nk B dt +Nk B T dv V dt T +Nk B dv V =d [Nk B log(t 3 /2 V )] επομένως το μέγεθος δq/τ είναι συνάρτηση καταστάσεως. Η νέα αυτή συνάρτηση καταστάσεως ονομάζεται ΕΝΤΡΟΠΙΑ S, ds δq/τ

10 ΜΑΘΗΜΑΤΙΚΟ ΣΥΜΠΛΗΡΩΜΑ Ας θυμηθούμε από το πρώτο εξάμηνο τις διατηρητικές δυνάμεις δw = f d x= f x dx f y dy, f = f x, f y, d x= dx, dy Πότε το έργοείναιανεξάρτητο της διαδρομής? Όταν f = V δηλαδή f = V x x, f V = y y τότε δw = V x dx V y dy= dv τότε W A B =V A V B

11 ΜΑΘΗΜΑΤΙΚΟ ΣΥΜΠΛΗΡΩΜΑ Όταν f = V δηλαδή f x = V x, f y= V y τότε επίσης f x y = 2 V y x = 2 V x y = f y x επομένως γιανα είναι το έργοανεξάρτητο της διαδρομής πρέπει f x y = f y x

12 ΜΑΘΗΜΑΤΙΚΟ ΣΥΜΠΛΗΡΩΜΑ Επομένως στηθερμοδυναμική εάν δr= A( p, V )dp+ B( p, V )dv και ( Α V ) =( B p ) p V τότε η ποσότητα R είναι συνάρτηση καταστάσεως ομοίως και για την R' εάν δr = A' (Τ,V )dτ +B ' (Τ,V )dv και ( Α V ) =( B ' Τ ) Τ V ds= δq T =3 2 Nk B dt. Όπως πριν T +Nk B dv V

13 ΜΑΘΗΜΑΤΙΚΟ ΣΥΜΠΛΗΡΩΜΑ Επειδή τα( p, V,T )είναι εξαρτημένα από τη εξίσωση καταστάσεως (π.χ. pv = Nk B T ), dp=( p T ) V ( p T ) V dp=( p T ) V dt =( T p ) V ( T p ) V ( T p ) V dt+( p V ) T dp+( T V ) p dp+[( p T ) V επομένως =1 και( p T ) V dv dv έχουμε ( T V ) +( p V ) p T = ( p V ) T ( V T ) p ]dv

14 Δηλαδή ( p Η θερμική πίεση T ) V = ( p V ) ( V T ) = β B T p όπου β ο συντελεστής κυβικής διαστολής β 1 V ( V T ) και p Β το μέτρο ελαστικότητας όγκου(bulk modulus) B= V ( p V ) T

15 Μετρώντας τη θερμότητα... μέσω της εσωτερικής ενέργειας U, του όγκου V και της ΕΝΘΑΛΠΙΑΣ Η. H θερμότητα δεν είναι συνάρτηση καταστάσεως καί έτσι δεν έχει <<παράγωγο>> όπως συνήθως du =( U T ) V δq=du + pdv =( U dt +( U V ) T T ) V dv dt +[ p+( U V ) T ισόχωρα δq=c V ΔΤ : C V =( U T ) V ]dv

16 ισόχωρα δq=c V ΔΤ : C V =( U T ) V

17 Μετρώντας τη θερμότητα... μέσω της εσωτερικής ενέργειας U, του όγκου V και της ΕΝΘΑΛΠΙΑΣ Η. H θερμότητα δεν είναι συνάρτηση καταστάσεως καί έτσι δεν έχει <<παράγωγο>> όπως συνήθως δq=du + pdv H Eνθαλπία H U + pv, dh =du +Vdp+ pdv =δq+vdp, ισοβαρώς δq=c p ΔΤ : C p =( H ισόθερμα: δq= [ p+( U V ) T T ) p ]dv

18 ισoβαρώς δq=c p ΔΤ : C p = H T p

19 ισόθερμα : δq= [ p+( U V ) T ή δq=t ΔS ]dv

20 Μετρώντας τη θερμότητα... δq=du pdv, du = U δq= U T V C p =C v [ p U V T όμως θαδούμε ότι[ p U T V dt U V T dt [ p U V ]dv T dv ] V T =C v βv [ p U V p T V T C p =C v VTβ 2 B ]=Τ p T V =TβΒ ]

21 Δεν μπορεί να υπάρξει πραγματική θερμική μηχανή που να λειτουργεί ανάμεσα σε δύο δεξαμενές θερμότητας και να είναι πιο αποδοτική από μια μηχανή Carnot η οποία λειτουργεί ανάμεσα στις ίδιες δύο δεξαμενές. Αρχή του Carnot Q AB Q CD

22 η Carnot = W = Q Q AB CD = T ΔS T ΔS AB CD Q AB Q AB T AB ΔS = Τ T AB CD = ΔΤ =1 T CD η T AB T AB T πραγματική AB Κύκλος Carnot (θερμικές μηχανές) Q AB Q CD

23 Στοιχειώδης (απειροστός) κύκλος Carnot η Carnot = W Q AB = ΔΤ T AB, W = Δp ΔV =Q AB ΔΤ T AB ΔV Δp=( ΔΤ T AB )(θερμότητα γιαv V + ΔV ) T ΔV (αλλαγήστο p όταντ αλλάζει κατά ΔΤ ) V = ΔΤ T AB Q AB T AB ( p T ) = (θερμότητα για V V +ΔV ) T V ΔV Q AB =T AB ( p T ) V ΔV ΔU =Q AB pδv =[T AB ( p T ) p] ΔV V ( U V ) =T ( p T T ) p V

24 Θερμοδυναμικές Εξισώσεις Καταστάσεως du =δq pdv ( U V ) =T ( p T ) T V p=τββ p dh =d (U + pv )=du + pdv +Vdp=δQ+Vdp dh =δq+vdp U H, p V, V p ( H p ) =V T ( V T ) =V [1 T V ( V T ) ] T p p ( H p ) =V (1 Τ β ) T

25 Κύκλος Carnot Q AB Q CD η Carnot = W Q AB =1 T DC T AB η πραγματική = Q AB Q CD Q AB, T DC Q CD, T DC Q CD, Q AB Q CD T AB Q AB T AB Q AB T AB T CD 0

26 O δεύτερος Θερμοδυναμικός Νόμος (ανισότητα Clausius) Για ένα κλειστό σύστημα και για μια αυθαίρετη κυκλική μεταβολή ισχύει δq T 0

27 O δεύτερος Θερμοδυναμικός Νόμος (διατύπωση Καραθεoδωρή) Σε ένα κλειστό σύστημα και για αδιαβατικές μεταβολές (αντιστρεπτές ή μη-αντιστρεπτές) ισχύει ΔS=S τελικό -S αρχικό 0

28 ΠΑΡΑΔΕΙΓΜΑ ΜΗ-ΑΝΤΙΣΤΡΕΠΤΗ ΑΔΙΑΒΑΤΙΚΗ ΜΕΤΑΒΟΛΗ Α δq T 0 δq T δq μη αντιστρεπτή T αντιστρεπτή 0 0 ds 0 S A S B 0 S A S B Β

29 Στατιστική ερμηνεία της εντροπίας κατά Boltzmann S =k B log [Ω(U )] Ω (U 1 +U 2 )=Ω (U 1 )Ω(U 2 ) ds = du T + p T dv 1 T =( S U ) V,T =( U S ) V

30 Eλεύθερη Ενέργεια Helmholtz F=U TS, df =du S dt T ds, du =TdS p dv, df = pdv SdT σεισόθερμες διαδικασίες ΔF=F F = B p dv = W B A A F = F W B A

31 Α Αυθόρμητες διαδικασίες Β Γενικά δq T 0, δq Τ = B δq A ( Τ ) + A δq B ( μη αντιστρ Τ ) 0, αντιστρ B δq A ( Τ ) +(S A S B ) 0, μη αντιστρ εάν το σύστημαπαραμένει σεθερμοκρασίατ,τότε A B δq μη αντιστρ +T (S A S B ) 0, Q AB +T (S A S B ) 0 Q AB =U B U A +W AB, F B F A +W AB 0 Σε σύστημα( p,v,t ): εάν ο όγκος σταθερος W AB =0, F B F A εάν η πίεση σταθερήw AB = p (V B V A ), G B G A G=U TS+ pv = H TS,ελεύθερη ενέργειαgibbs dg=du T ds S dt + p dv +V dp= S dt +V dp

32 Δεύτερος Θερμοδυναμικός Νόμος κατά W. Kelvin και Μ. Planck Eίναι αδύνατον να κατασκευάσουμε θερμική μηχανή, η οποία να μπορεί να μετατρέπει όλη τη θερμότητα που λαμβάνει σε έργο Δεύτερος Θερμοδυναμικός Νόμος κατά R. Clausius Είναι αδύνατο να κατασκευαστεί μηχανή που θα μεταφέρει θερμότητα από ένα ψυχρό σώμα σε ένα θερμό χωρίς τη δαπάνη μηχανικού έργου

33 Tρίτος Θερμοδυναμικός Νόμος Είναι αδύνατον να μειωθεί η θερμοκρασία (εντροπία) ενός συστήματος στην τιμή της του απολύτου μηδενός με πεπερασμένο αριθμό διαδικασιών. (Η θερμοχωρητικότητα κάθε συστήματος τείνει στο μηδέν όταν η θερμοκρασία τείνει στο απόλυτο μηδέν, Τ=0Κ) η Carnot = W Q AB =1 T ψυχρό T θερμό, ds = δq T = C T dt

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΕΝΤΡΟΠΙΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΕΝΤΡΟΠΙΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΝΤΡΟΠΙΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ Θέμα Απομονωμένο σύστημα περνάει από κατάσταση με εντροπία S σε κατάσταση με εντροπία S. Αποδείξτε και σχολιάστε ότι ισχύει S S. Για οποιαδήποτε μηχανή (σύστημα που εκτελεί

Διαβάστε περισσότερα

P = 1 3 Nm V u2 ή P = 1 3 ΦΥΣΙΚΗ (ΚΑΤΕΥΘΥΝΣΗ Β ΛΥΚΕΙΟΥ) ΤΥΠΟΛΟΓΙΟ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ Καταστατική Εξίσωση Αερίων PV = nrt Nm u V εν PV = m M r RT P = drt M r Κινητική Θεωρία 2 ή P = 1 3 du2 ή P = 1 du 3 εν

Διαβάστε περισσότερα

2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ - ΕNTΡΟΠΙΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ - ΕNTΡΟΠΙΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ - ΕNΡΟΠΙΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα. O ος Θερμοδυναμικός Νόμος. Η Εντροπία 3. Εντροπία και αταξία 4. Υπολογισμός Εντροπίας

Διαβάστε περισσότερα

ΑΝΤΙΣΤΡΕΠΤΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ ΘΕΩΡΙΑ

ΑΝΤΙΣΤΡΕΠΤΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 ΑΝΤΙΣΤΡΕΠΤΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ ΘΕΩΡΙΑ Περιεχόμενα 1. Μελέτη Ισόχωρης μεταβολής 2. Μελέτη Ισοβαρής μεταβολής 3. Μελέτη Ισόθερμης μεταβολής 4.

Διαβάστε περισσότερα

3 ος ΘΕΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ- ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΥΝΑΜΙΚΑ ΘΕΩΡΙΑ

3 ος ΘΕΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ- ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΥΝΑΜΙΚΑ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 3 ος ΘΕΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ- ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΥΝΑΜΙΚΑ ΘΕΩΡΙΑ Περιεχόμενα 1. Ο τρίτος θερμοδυναμικός Νόμος 2. Συστήματα με αρνητικές θερμοκρασίες 3. Θερμοδυναμικά

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΑΕΡΙΟ VAN DER WAALS ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΑΕΡΙΟ VAN DER WAALS ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΑΕΡΙΟ AN DER WAALS ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΑΣΚΗΣΗ Αέριο an der Waals ν moles συμπιέζεται ισόθερμα από

Διαβάστε περισσότερα

Αντιστρεπτές και μη μεταβολές

Αντιστρεπτές και μη μεταβολές Αντιστρεπτές και μη μεταβολές Στην φύση όλες οι μεταβολές όταν γίνονται αυθόρμητα εξελίσσονται προς μία κατεύθυνση, αλλά όχι προς την αντίθετη, δηλ. δεν είναι αντιστρεπτές, π.χ. θερμότητα ρέει πάντα από

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΗ ΣΤΙΣ Μ.Ε.Κ. Μ.Ε.Κ. Ι (Θ)

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΗ ΣΤΙΣ Μ.Ε.Κ. Μ.Ε.Κ. Ι (Θ) ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΗ ΣΤΙΣ Μ.Ε.Κ. Μ.Ε.Κ. Ι (Θ) Διαλέξεις Μ4, ΤΕΙ Χαλκίδας Επικ. Καθηγ. Δρ. Μηχ. Α. Φατσής ΣΚΟΠΟΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Το «φρεσκάρισμα» των γνώσεων από τη Θερμοδυναμική με σκοπό

Διαβάστε περισσότερα

O δεύτερος νόµος της θερµοδυναµικής

O δεύτερος νόµος της θερµοδυναµικής O δεύτερος νόµος της θερµοδυναµικής O δεύτερος νόµος της θερµοδυναµικής Γιατί χρειαζόµαστε ένα δεύτερο νόµο ; Ζεστό, Τζ Κρύο, Τκ Ζεστό, Τζ Κρύο, Τκ q Tε Τε Ζεστό, Τζ Κρύο, Τκ q q Tε Τε Πιο ζεστό Πιο κρύο

Διαβάστε περισσότερα

Αντιστρεπτές και μη μεταβολές

Αντιστρεπτές και μη μεταβολές Αντιστρεπτές και μη μεταβολές Στην φύση όλες οι μεταβολές όταν γίνονται αυθόρμητα εξελίσσονται προς μία κατεύθυνση, αλλά όχι προς την αντίθετη, θερμότητα ρέει πάντα από θερμό σε ψυχρό σώμα Ένα αέριο καταλαμβάνει

Διαβάστε περισσότερα

εύτερος Θερμοδυναμικός Νόμος Εντροπία ιαθέσιμη ενέργεια Εξέργεια

εύτερος Θερμοδυναμικός Νόμος Εντροπία ιαθέσιμη ενέργεια Εξέργεια εύτερος Θερμοδυναμικός Νόμος Εντροπία ιαθέσιμη ενέργεια Εξέργεια Χαρακτηριστικά Θερμοδυναμικών Νόμων 0 ος Νόμος Εισάγει την έννοια της θερμοκρασίας Αν Α Γ και Β Γ τότε Α Β, όπου : θερμική ισορροπία ος

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. α. Χρησιμοποιώντας τον πρώτο θερμοδυναμικό νόμο έχουμε : J J J

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. α. Χρησιμοποιώντας τον πρώτο θερμοδυναμικό νόμο έχουμε : J J J ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ 1 ος θερμοδυναμικός νόμος 1. α. Αέριο απορροφά θερμότητα 2500 και παράγει έργο 1500. Να υπολογισθεί η μεταβολή της εσωτερικής του ενέργειας. β. Αέριο συμπιέζεται ισόθερμα και αποβάλλει

Διαβάστε περισσότερα

Θερμότητα - διαφάνειες , Σειρά 1

Θερμότητα - διαφάνειες , Σειρά 1 Θερμότητα - διαφάνειες 007-8, Σειρά Βιβλιογραφία (ενδεικτική) H.D. Young, Πανεπιστημιακή Φυσική Τόμος Α, (5-, 5-, 5-3, 5-5, 5-6, 6-, 6-, 6-4, 7-, 7-, 7-3, 7-4, 7-5, 7-6, 7-7,7-8) Σημειώσεις καθ. Κου Δ.

Διαβάστε περισσότερα

Ενθαλπία. Ηενθαλπία (Η) συστήµατος ορίζεται ως: Η=U+pV

Ενθαλπία. Ηενθαλπία (Η) συστήµατος ορίζεται ως: Η=U+pV Ενθαλπία Ενθαλπία Ηενθαλπία (Η) συστήµατος ορίζεται ως: Η=U+pV Ενθαλπία Ηενθαλπία (Η) συστήµατος ορίζεται ως: Η=U+pV Αλλά ποια είναι η φυσική σηµασία της ενθαλπίας ; Ενθαλπία Ηενθαλπία (Η) συστήµατος ορίζεται

Διαβάστε περισσότερα

12 η Διάλεξη Θερμοδυναμική

12 η Διάλεξη Θερμοδυναμική 12 η Διάλεξη Θερμοδυναμική Φίλιππος Φαρμάκης Επ. Καθηγητής 1 ΘΕΡΜΟΔΥΝΑΜΙΚΗ Εισαγωγικά Προσέγγιση των μεγεθών όπως πίεση, θερμοκρασία, κλπ. με άλλο τρόπο (διαφορετικό από την στατιστική φυσική) Ασχολείται

Διαβάστε περισσότερα

Θερμοδυναμική. Ενότητα 6: Εντροπία. Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ

Θερμοδυναμική. Ενότητα 6: Εντροπία. Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Θερμοδυναμική Ενότητα 6: Εντροπία Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

ΘΕΡΜΙΚΕΣ & ΨΥΚΤΙΚΕΣ ΜΗΧΑΝΕΣ ΘΕΩΡΙΑ

ΘΕΡΜΙΚΕΣ & ΨΥΚΤΙΚΕΣ ΜΗΧΑΝΕΣ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 www.pmoiras.weebly.om ΘΕΡΜΙΚΕΣ & ΨΥΚΤΙΚΕΣ ΜΗΧΑΝΕΣ ΘΕΩΡΙΑ Περιεχόμενα 1. Κυκλικές διαδικασίες 2. O 2ος Θερμοδυναμικός Νόμος- Φυσική Ερμηνεία 2.1 Ισοδυναμία

Διαβάστε περισσότερα

Επανάληψη των Κεφαλαίων 1 και 2 Φυσικής Γ Έσπερινού Κατεύθυνσης

Επανάληψη των Κεφαλαίων 1 και 2 Φυσικής Γ Έσπερινού Κατεύθυνσης Επανάληψη των Κεφαλαίων 1 και Φυσικής Γ Έσπερινού Κατεύθυνσης Φυσικά µεγέθη, µονάδες µετρήσεως (S.I) και µετατροπές P: Η πίεση ενός αερίου σε N/m (1atm=1,013 10 5 N/m ). : Ο όγκος τουαερίου σε m 3 (1m

Διαβάστε περισσότερα

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-V ΑΣΚΗΣΗ Α2 - JOULE-THOMSON

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-V ΑΣΚΗΣΗ Α2 - JOULE-THOMSON ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-V ΑΣΚΗΣΗ Α2 - JOULE-THOMSON Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη http://tccc.iesl.forth.gr/education/local.html

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 6: Εντροπία. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 6: Εντροπία. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 6: Εντροπία Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η περιγραφή των ορισμών και των θεμελιωδών εννοιών και η

Διαβάστε περισσότερα

ΕΝΤΡΟΠΙΑ-2ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ-ΚΥΚΛΟΣ CARNOT

ΕΝΤΡΟΠΙΑ-2ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ-ΚΥΚΛΟΣ CARNOT ΕΝΤΡΟΠΙΑ-ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ-ΚΥΚΛΟΣ CARNO Η εντροπία είναι το φυσικό µέγεθος το οποίο εκφράζει ποσοτικά το βαθµό αταξίας µιας κατάστασης ενός θερµοδυναµικού συστήµατος. ΣΤΑΤΙΣΤΙΚΟΣ ΟΡΙΣΜΟΣ Η εντροπία

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 1 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 Θέμα 1 Με βάση τα θεωρήματα Carnot αποδείξτε

Διαβάστε περισσότερα

ΠΡΟΧΩΡΗΜΕΝΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΠΡΟΧΩΡΗΜΕΝΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΠΡΟΧΩΡΗΜΕΝΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ Δ. Τσιπλακίδης Πρόγραμμα Μεταπτυχιακών Σπουδών Κατεύθυνση: «Φυσική Χημεία Υλικών και Ηλεκτροχημεία» ΠΡΟΧΩΡΗΜΕΝΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΠΡΩΤΟΣ ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ Βασικές

Διαβάστε περισσότερα

ΝΟΜΟΙ ΑΕΡΙΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΝΟΜΟΙ ΑΕΡΙΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΝΟΜΟΙ ΑΕΡΙΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΣΚΗΣΗ 1 Μία θερμική μηχανή λειτουργεί μεταξύ των θερμοκρασιών T h 400 Κ και T c με T c < T h Η μηχανή έχει απόδοση e 0,2 και αποβάλλει στη δεξαμενή χαμηλής θερμοκρασίας θερμότητα

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα 1. Θερμοδυναμική Ορισμοί. Έργο 3. Θερμότητα 4. Εσωτερική ενέργεια 5. Ο Πρώτος Θερμοδυναμικός Νόμος 6. Αντιστρεπτή

Διαβάστε περισσότερα

Ο δεύτερος νόμος Παραδείγματα αυθόρμητων φαινομένων: Παραδείγματα μη αυθόρμητων φαινομένων: συγκεκριμένο χαρακτηριστικό

Ο δεύτερος νόμος Παραδείγματα αυθόρμητων φαινομένων: Παραδείγματα μη αυθόρμητων φαινομένων: συγκεκριμένο χαρακτηριστικό Ο δεύτερος νόμος Κάποια φαινόμενα στη φύση συμβαίνουν αυθόρμητα, ενώ κάποια άλλα όχι. Παραδείγματα αυθόρμητων φαινομένων: α) ένα αέριο εκτονώνεται για να καταλάβει όλο το διαθέσιμο όγκο, β) ένα θερμό σώμα

Διαβάστε περισσότερα

* Επειδή μόνο η μεταφορά θερμότητας έχει νόημα, είτε συμβολίζεται με dq, είτε με Q, είναι το ίδιο.

* Επειδή μόνο η μεταφορά θερμότητας έχει νόημα, είτε συμβολίζεται με dq, είτε με Q, είναι το ίδιο. ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ Μονάδες - Τάξεις μεγέθους Μονάδες ενέργειας 1 cal = 4,19 J Πυκνότητα νερού 1 g/cm 3 = 1000 Kg/m 3. Ειδική θερμότητα νερού c = 4190 J/Kg.K = 1Kcal/Kg.K = 1 cal/g.k

Διαβάστε περισσότερα

ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ-2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ

ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ-2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ-2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ Θερμικες μηχανες 1. Το ωφελιμο εργο μπορει να υπολογιστει με ένα από τους παρακατω τροπους: Α.Υπολογιζουμε το αλγεβρικο αθροισμα των εργων ( μαζι με τα προσημα

Διαβάστε περισσότερα

Εφηρμοσμένη Θερμοδυναμική

Εφηρμοσμένη Θερμοδυναμική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφηρμοσμένη Θερμοδυναμική Ενότητα 7: Εντροπία - Ισοζύγια εντροπίας Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ. Μονάδες - Τάξεις μεγέθους

ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ. Μονάδες - Τάξεις μεγέθους ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ Μονάδες - Τάξεις μεγέθους Μονάδες ενέργειας 1 cal = 4,19 J Πυκνότητα νερού 1 g/cm 3 = 1000 Kg/m 3. Ειδική θερμότητα νερού c = 4190 J/Kg.K = 1Kcal/Kg.K = 1 cal/g.k

Διαβάστε περισσότερα

Υπεύθυνοι Καθηγητές: Γκαραγκουνούλης Ι., Κοέν Ρ., Κυριτσάκας Β. B ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Υπεύθυνοι Καθηγητές: Γκαραγκουνούλης Ι., Κοέν Ρ., Κυριτσάκας Β. B ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 Ονοματεπώνυμο.., τμήμα:. Υπεύθυνοι Καθηγητές: Γκαραγκουνούλης Ι., Κοέν Ρ., Κυριτσάκας Β. B ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ >

Διαβάστε περισσότερα

ΘΕΜΑ A. 4. Η πρόταση «Δε μπορεί να κατασκευαστεί θερμική μηχανή με συντελεστή απόδοσης = 1» ισοδυναμεί με. α. Την αρχή της ανεξαρτησίας των κινήσεων.

ΘΕΜΑ A. 4. Η πρόταση «Δε μπορεί να κατασκευαστεί θερμική μηχανή με συντελεστή απόδοσης = 1» ισοδυναμεί με. α. Την αρχή της ανεξαρτησίας των κινήσεων. ΘΕΜΑ Α. Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση. Ποιο από τα πιο κάτω χαρακτηριστικά μπορεί να αποδοθεί

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ

ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΚΑΙ ο : 1. ΝΟΜΟΣ ΤΟΥ oyle:.=σταθ. για Τ =σταθ. για δύο καταστάσεις Α και Β : Α. Α = Β. Β (α)ισόθερμη εκτόνωση:αύξηση όγκου > και μείωση της πίεσης

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 8: Θερμοχωρητικότητα Χημικό δυναμικό και ισορροπία. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 8: Θερμοχωρητικότητα Χημικό δυναμικό και ισορροπία. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 8: Θερμοχωρητικότητα Χημικό δυναμικό και ισορροπία Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η ανάπτυξη μαθηματικών

Διαβάστε περισσότερα

Σχέσεις µεταξύ θερµοδυναµικών παραµέτρων σε κλειστά συστήµατα σταθερής σύστασης

Σχέσεις µεταξύ θερµοδυναµικών παραµέτρων σε κλειστά συστήµατα σταθερής σύστασης Σχέσεις µεταξύ θερµοδυναµικών παραµέτρων σε κλειστά συστήµατα σταθερής σύστασης Κλειστό σύστηµα σταθερής σύστασης Η ενθαλπία θεωρούµενη ως συνάρτηση της θερµοκρασίας και της πίεσης, Η=Η(T, p), δίνει :

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 2 ΕΡΓΟ ΑΕΡΙΟΥ

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 2 ΕΡΓΟ ΑΕΡΙΟΥ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ ΕΡΓΟ ΑΕΡΙΟΥ Κατά την εκτόνωση ενός αερίου, το έρο του είναι θετικό ( δηλαδή παραόμενο). Κατά την συμπίεση ενός

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ

ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ Η εξίσωση αυτή εκφράζει μια σχέση μεταξύ της πίεσης, της θερμοκρασίας και του ειδικού όγκου. P v = R Όπου P = πίεση σε Pascal v = Ο ειδικός

Διαβάστε περισσότερα

Άσκηση 2.2. Ιδανικό αέριο διαστέλλεται ακολουθώντας τη διαδικασία PV 2 =const. Θερμαίνεται ή ψύχε- ται? (n=1 mole)

Άσκηση 2.2. Ιδανικό αέριο διαστέλλεται ακολουθώντας τη διαδικασία PV 2 =const. Θερμαίνεται ή ψύχε- ται? (n=1 mole) Άσκηση. Ιδανικό αέριο διαστέλλεται ακολουθώντας τη διαδικασία nst. Θερμαίνεται ή ψύχε ται? (n mle) Ιδανικό ( mle) Διαστέλλεται d>0 . d/? nst d d 0 d d 0 () (ιδαν) d d () () d d (3) () & (3) d d 0 d 0 d/

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 4: Πρώτος Θερμοδυναμικός Νόμος. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 4: Πρώτος Θερμοδυναμικός Νόμος. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 4: Πρώτος Θερμοδυναμικός Νόμος Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η περιγραφή των ορισμών και των θεμελιωδών

Διαβάστε περισσότερα

Υπό Γεωργίου Κολλίντζα

Υπό Γεωργίου Κολλίντζα ΔΕΙΓΜΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΧΙΛΙΑΔΩΝ ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΦΥΣΙΚΩΝ (ΒΑΣΙΚΟ+ΣΥΝΕΞΕΤΑΖΟΜΕΝΟ) ΠΟΥ ΔΙΑΘΕΤΟΥΜΕ ΚΑΙ ΠΟΥ ΑΝΟΙΓΟΥΝ ΤΟ ΔΡΟΜΟ ΓΙΑ ΤΟΝ ΔΙΟΡΙΣΜΟ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΜΑΣ ΣΤΟ ΔΗΜΟΣΙΟ Υπό Γεωργίου Κολλίντζα

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική + + δυναμική

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική + + δυναμική ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Εσωτερική ενέργεια: Το άθροισμα της κινητικής (εσωτερική κινητική ενέργεια ή θερμική ενέργεια τυχαία, μη συλλογική κίνηση) και δυναμικής ενέργειας (δεσμών κλπ) όλων των σωματιδίων (ατόμων

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική + + δυναμική

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική + + δυναμική ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Εσωτερική ενέργεια: Το άθροισμα της κινητικής (εσωτερική κινητική ενέργεια ή θερμική ενέργεια τυχαία, μη συλλογική κίνηση) και δυναμικής ενέργειας (δεσμών κλπ) όλων των σωματιδίων (ατόμων

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Θέμα 1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ 1--015 1. Ορισμένη ποσότητα ιδανικού αερίου υπόκειται σε μεταβολή κατά τη διάρκεια της οποίας η θερμοκρασία του παραμένει σταθερή, ενώ η πίεση του

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι

ΦΥΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι ΦΥΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι Ενότητα 3 η - Β ΜΕΡΟΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗ Όνομα καθηγητή: ΕΥΑΓΓΕΛΙΟΥ ΒΑΣΙΛΙΚΗ Τμήμα: Επιστήμης Τροφίμων και Διατροφής του Ανθρώπου ΣΤΟΧΟΙ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Στόχος (1) Κατανόηση των εννοιών:

Διαβάστε περισσότερα

Μεταβολή Q, W, ΔU Παρατηρήσεις (3) ) Q = nrt ln V 1. W = Q = nrt ln U = 0 (5). Q = nc V T (8) W = 0 (9) U = nc V T (10)

Μεταβολή Q, W, ΔU Παρατηρήσεις (3) ) Q = nrt ln V 1. W = Q = nrt ln U = 0 (5). Q = nc V T (8) W = 0 (9) U = nc V T (10) Θερμοδυναμική 1 1 Θερμοδυναμική 11 Τυπολόγιο Θερμοδυναμικής Πίνακας 1: Οι Μεταβολές Συνοπτικά Μεταβολή Q, W, ΔU Παρατηρήσεις Ισόθερμη Μεταβολή Νόμος oyle = σταθερό (1) 1 1 = 2 2 (2) Q = nrt ln ( 2 W =

Διαβάστε περισσότερα

ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ

ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ Περιεχόμενα 1. Κινητική Θεωρία των Αεριών. Πίεση 3. Κινητική Ερμηνεία της Πίεσης 4. Καταστατική εξίσωση των Ιδανικών

Διαβάστε περισσότερα

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Β Θέμα ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Β Θέμα ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Τράπεζα θεμάτων Β Θέμα ΘΕΡΜΟΔΥΝΑΜΙΚΗ 16111 Στο πιο κάτω διάγραμμα παριστάνονται τρεις περιπτώσεις Α, Β και Γ αντιστρεπτών μεταβολών τις οποίες

Διαβάστε περισσότερα

2 ΟΣ ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ

2 ΟΣ ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ 2 ΟΣ ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ ΑΝΤΙΣΤΡΕΠΤΕΣ ΚΑΙ ΜΗ ΑΝΤΙΣΤΡΕΠΤΕΣ ΜΕΤΑΒΟΛΕΣ Ένα ζεστό φλυτζάνι καφέ πάντα κρυώνει καθώς θερμότητα μεταφέρεται προς το περιβάλλον. Πότε δεν παρατηρούμε το αντίθετο παρότι ΔΕΝ παραβιάζεται

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΕΝΤΡΟΠΙΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΕΝΤΡΟΠΙΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΕΝΤΡΟΠΙΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ 1 ΑΣΚΗΣΗ 1 Το δοχείο του σχήματος είναι απομονωμένο (αδιαβατικά τοιχώματα). Το διάφραγμα χωρίζει το δοχείο σε δύο μέρη. Το αριστερό μέρος έχει όγκο 1 και περιέχει ιδανικό αέριο

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΙΔΑΝΙΚΑ ΑΕΡΙΑ/ΘΕΡΜΟΔΥΝΑΜΙΚΗ Φυσική Προσανατολισμού Β Λυκείου Κυριακή 6 Μαρτίου 2016 Θέμα Α

ΔΙΑΓΩΝΙΣΜΑ ΙΔΑΝΙΚΑ ΑΕΡΙΑ/ΘΕΡΜΟΔΥΝΑΜΙΚΗ Φυσική Προσανατολισμού Β Λυκείου Κυριακή 6 Μαρτίου 2016 Θέμα Α ΔΙΑΓΩΝΙΣΜΑ ΙΔΑΝΙΚΑ ΑΕΡΙΑ/ΘΕΡΜΟΔΥΝΑΜΙΚΗ Φυσική Προσανατολισμού Β Λυκείου Κυριακή 6 Μαρτίου 2016 Θέμα Α Στις ημιτελείς προτάσεις Α.1 Α.4 να γράψετε στο τετράδιο σας τον αριθμό της πρότασης και δίπλα το γράμμα

Διαβάστε περισσότερα

Να γράψετε στο τετράδιο σας την σωστή απάντηση στις παρακάτω ερωτήσεις.

Να γράψετε στο τετράδιο σας την σωστή απάντηση στις παρακάτω ερωτήσεις. ΘΕΜΑ 1 Να γράψετε στο τετράδιο σας την σωστή απάντηση στις παρακάτω ερωτήσεις. 1. Αέριο συμπιέζεται ισόθερμα στο μισό του αρχικού όγκου.η ενεργός ταχύτητα των μορίων του: α) διπλασιάζεται. β) παραμένει

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ Α. και d B οι πυκνότητα του αερίου στις καταστάσεις Α και Β αντίστοιχα, τότε

ΔΙΑΓΩΝΙΣΜΑ Α. και d B οι πυκνότητα του αερίου στις καταστάσεις Α και Β αντίστοιχα, τότε ΔΙΑΓΩΝΙΣΜΑ Α Θέµα ο Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση Σύµφωνα µε την κινητική θεωρία των ιδανικών αερίων, η πίεση

Διαβάστε περισσότερα

3ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Θερµοδυναµική/Ιδανικά Αέρια. Ενδεικτικές Λύσεις. Θέµα Α

3ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Θερµοδυναµική/Ιδανικά Αέρια. Ενδεικτικές Λύσεις. Θέµα Α 3ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Θερµοδυναµική/Ιδανικά Αέρια Ενδεικτικές Λύσεις Θέµα Α Α.1 Ορισµένη ποσότητα ιδανικού αερίου πραγµατοποιεί ισοβαρή ϑέρµανση κατά την διάρκεια της οποίας η ϑερµοκρασία

Διαβάστε περισσότερα

2.60 ακαριαία. σιγά σιγά

2.60 ακαριαία. σιγά σιγά ΑΣΚΗΣΕΙΣ .60 Θερμικά μονωμένος κύλινδρος χωρίζεται σε δύο μέρη από αδιαβατικό, αβαρές έμβολο που κινείται χωρίς τριβή. Αρχικά το έμβολο συγκρατείται ακίνητο. Ο κύλινδρος περιέχει n mles ιδανικού αερίου

Διαβάστε περισσότερα

β) Ένα αέριο μπορεί να απορροφά θερμότητα και να μην αυξάνεται η γ) Η εσωτερική ενέργεια ενός αερίου είναι ανάλογη της απόλυτης

β) Ένα αέριο μπορεί να απορροφά θερμότητα και να μην αυξάνεται η γ) Η εσωτερική ενέργεια ενός αερίου είναι ανάλογη της απόλυτης Κριτήριο Αξιολόγησης - 26 Ερωτήσεις Θεωρίας Κεφ. 4 ο ΑΡΧΕΣ ΤΗΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ - ΦΥΣΙΚΗ Ομάδας Προσανατολισμού Θετικών Σπουδών Β Λυκείου επιμέλεια ύλης: Γ.Φ.Σ ι ώ ρ η ς ΦΥΣΙΚΟΣ 1. Σε μια αδιαβατική εκτόνωση

Διαβάστε περισσότερα

Παρουσίαση Εννοιών στη Φυσική της Β Λυκείου. Κεφάλαιο Πρώτο Ενότητα: Θερμοδυναμική

Παρουσίαση Εννοιών στη Φυσική της Β Λυκείου. Κεφάλαιο Πρώτο Ενότητα: Θερμοδυναμική Παρουσίαση Εννοιών στη Φυσική της Β Λυκείου Κεφάλαιο Πρώτο Ενότητα: Θερμοδυναμική ΣΤΟΙΧΕΙΑ ΘΕΡΜΟ ΥΝΑΜΙΚΗΣ Εισαγωγή Η θερμοδυναμική μελετά τη συμπεριφορά ενός συστήματος με βάση τα πειραματικά δεδομένα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 Ο ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΒΑΣΙΚΟΙ ΤΥΠΟΙ

ΚΕΦΑΛΑΙΟ 4 Ο ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΒΑΣΙΚΟΙ ΤΥΠΟΙ 91 Α. ΕΙΣΑΓΩΓΗ ΒΑΣΙΚΕΣ ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ 1. Εισαγωγή-Τι είναι ενέργεια; ΚΕΦΑΛΑΙΟ 4 Ο ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΒΑΣΙΚΟΙ ΤΥΠΟΙ Ενέργεια ονομάζουμε το φυσικό μέγεθος του οποίου η ύπαρξη και οι μεταβολές αποτελούν το κοινό

Διαβάστε περισσότερα

E. ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ. 2. Β2.26 Με ποιόν τρόπο αποβάλλεται θερµότητα κατά τη λειτουργία της µηχανής του αυτοκινήτου;

E. ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ. 2. Β2.26 Με ποιόν τρόπο αποβάλλεται θερµότητα κατά τη λειτουργία της µηχανής του αυτοκινήτου; E. ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ 1. Β2.25 Θερµική µηχανή είναι, α) το τρόλεϊ; β) ο φούρνος; γ) το ποδήλατο; δ) ο κινητήρας του αεροπλάνου; Επιλέξτε τη σωστή απάντηση. 2. Β2.26 Με ποιόν τρόπο αποβάλλεται θερµότητα κατά

Διαβάστε περισσότερα

14. ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΚΑΙ ΙΣΟΡΡΟΠΙΑ ΠΕΡΙΕΧΟΜΕΝΑ

14. ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΚΑΙ ΙΣΟΡΡΟΠΙΑ ΠΕΡΙΕΧΟΜΕΝΑ 14. ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΚΑΙ ΙΣΟΡΡΟΠΙΑ ΠΕΡΙΕΧΟΜΕΝΑ Πρώτος νόμος της θερμοδυναμικής-ενθαλπία Εντροπία και ο δεύτερος νόμος της θερμοδυναμικής Πρότυπες εντροπίες και ο τρίτος νόμος της θερμοδυναμικής Ελεύθερη ενέργεια

Διαβάστε περισσότερα

Μεταβολή Q, W, ΔU Παρατηρήσεις (3) ) Q = nrt ln V 1. W = Q = nrt ln U = 0 (5). Q = nc V T (8) W = 0 (9) U = nc V T (10)

Μεταβολή Q, W, ΔU Παρατηρήσεις (3) ) Q = nrt ln V 1. W = Q = nrt ln U = 0 (5). Q = nc V T (8) W = 0 (9) U = nc V T (10) Θερμοδυναμική 1 1 Θερμοδυναμική 11 Τυπολόγιο Θερμοδυναμικής Πίνακας 1: Οι Μεταβολές Συνοπτικά Μεταβολή Q, W, ΔU Παρατηρήσεις Ισόθερμη Μεταβολή Νόμος oyle = σταθερό (1) 1 1 = 2 2 (2) Q = nrt ln ( 2 W =

Διαβάστε περισσότερα

2 mol ιδανικού αερίου, η οποία

2 mol ιδανικού αερίου, η οποία ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΕΡΓΑΣΙΑ 7 ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ 1. Μια μηχανή Carnot λειτουργεί μεταξύ των θερμοκρασιών Τ h =400Κ και Τ c =300Κ. Αν στη διάρκεια ενός κύκλου, η μηχανή αυτή απορροφά

Διαβάστε περισσότερα

β) διπλασιάζεται. γ) υποδιπλασιάζεται. δ) υποτετραπλασιάζεται. Μονάδες 4

β) διπλασιάζεται. γ) υποδιπλασιάζεται. δ) υποτετραπλασιάζεται. Μονάδες 4 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΟΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΠΡΟΣΟΜΟΙΩΣΗΣ B ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 5 ΙΑΝΟΥΑΡΙΟΥ 009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΣΚΗΣΕΙΣ

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΣΚΗΣΕΙΣ 693 946778 ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΣΚΗΣΕΙΣ 1 ΑΣΚΗΣΗ 1 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 Ιδανικό αέριο περιέχεται σε όγκο 1 δοχείου συνολικού όγκου με θερμομονωτικά τοιχώματα. Στο υπόλοιπο κομμάτι

Διαβάστε περισσότερα

Προσανατολισμού Θερμοδυναμική

Προσανατολισμού Θερμοδυναμική ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ 60 Ον/μο:.. Β Λυκείου Ύλη: Κινητική θεωρία αερίων Προσανατολισμού Θερμοδυναμική 8-2-2015 Θέμα 1 ο : 1. Η απόλυτη θερμοκρασία ορισμένης ποσότητας αερίου διπλασιάζεται υπό σταθερό όγκο.

Διαβάστε περισσότερα

- Q T 2 T 1 + Q T 1 T T

- Q T 2 T 1 + Q T 1 T T oς ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ. oς Θερµοδυναµικός νόµος σχετίζεται ιστορικά µε τις προσπάθειες για τη βελτίωση των θερµικών µηχανών. Ποιοτικά: ιατυπώνεται µε τι προτάσεις Kelvin-Plank και Clausius Ποσοτικά: ιατυπώνεται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 Ο ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΚΕΦΑΛΑΙΟ 4 Ο ΘΕΡΜΟΔΥΝΑΜΙΚΗ 103 Α. ΠΡΩΤΟΣ ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ ΚΕΦΑΛΑΙΟ 4 Ο ΘΕΡΜΟΔΥΝΑΜΙΚΗ 1. Ιδανικό αέριο εκτελεί διαδοχικά τις αντιστρεπτές μεταβολές ΑΒ, ΒΓ, ΓΑ που παριστάνονται στο ακόλουθο διάγραμμα P-V. α. Αν δίνονται Q ΑΒΓ

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / B ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ Μ.-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ.

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / B ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ Μ.-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ. ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / B ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 01-03-2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ Μ.-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ. ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς

Διαβάστε περισσότερα

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αμπελόκηποι, Αθήνα Τηλ.: ,

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αμπελόκηποι, Αθήνα Τηλ.: , ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Τηλ.: 69 97 985, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ.: 69 97 985, e-mail: edlag@otenet.gr, www.edlag.gr ΣΜΑΡΑΓΔΑ ΣΑΡΑΝΤΟΠΟΥΛΟΥ, MSC, ΥΠΟΨΗΦΙΑ ΔΙΔΑΚΤΩΡ ΕΜΠ KENTΡΟ

Διαβάστε περισσότερα

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Β ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 2016

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Β ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Β ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 2016 ΘΕΜΑ 1 Ο : Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα

Διαβάστε περισσότερα

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-ΙΙΙ ΤΑ ΘΕΡΜΟ ΥΝΑΜΙΚΑ ΑΞΙΩΜΑΤ

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-ΙΙΙ ΤΑ ΘΕΡΜΟ ΥΝΑΜΙΚΑ ΑΞΙΩΜΑΤ ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-ΙΙΙ ΤΑ ΘΕΡΜΟ ΥΝΑΜΙΚΑ ΑΞΙΩΜΑΤΑ Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη http://tccc.iesl.forth.gr/education/local.html

Διαβάστε περισσότερα

Φυσική Κατεύθυνσης Β Λυκείου.

Φυσική Κατεύθυνσης Β Λυκείου. Φυσική Κατεύθυνσης Λυκείου. Διαγώνισμα στην Θερμοδυναμική. Ζήτημα 1 o. ) Να επιλέξτε την σωστή απάντηση. 1) Ορισμένη ποσότητα ιδανικού αερίου μεταβάλλεται από κατάσταση σε κατάσταση. Τότε: α) Η μεταβολή

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Θερμοδυναμική

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Θερμοδυναμική ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Θερμοδυναμική Ενότητα 7 : Εντροπία Δρ Γεώργιος Αλέξης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση. Μάθημα/Τάξη: Φυσική Β Λυκείου Προσανατολισμού Κεφάλαιο: Θερμοδυναμική Ονοματεπώνυμο Μαθητή: Ημερομηνία: 12-02-2018 Επιδιωκόμενος Στόχος: 75/100 Θέμα A Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της

Διαβάστε περισσότερα

V (β) Αν κατά τη μεταβολή ΓΑ μεταφέρεται θερμότητα 22J από το αέριο στο περιβάλλον, να βρεθεί το έργο W ΓA.

V (β) Αν κατά τη μεταβολή ΓΑ μεταφέρεται θερμότητα 22J από το αέριο στο περιβάλλον, να βρεθεί το έργο W ΓA. Άσκηση 1 Ιδανικό αέριο εκτελεί διαδοχικά τις αντιστρεπτές μεταβολές ΑΒ, ΒΓ, ΓΑ που παριστάνονται στο διάγραμμα p V του σχήματος. (α) Αν δίνονται Q ΑΒΓ = 30J και W BΓ = 20J, να βρεθεί η μεταβολή της εσωτερικής

Διαβάστε περισσότερα

ΛΥΣΕΙΣ. µεταφορική κινητική ενέργεια του K η θερµοκρασία του αερίου πρέπει να: β) τετραπλασιαστεί δ) υποτετραπλασιαστεί (Μονάδες 5) δ) 0 J

ΛΥΣΕΙΣ. µεταφορική κινητική ενέργεια του K η θερµοκρασία του αερίου πρέπει να: β) τετραπλασιαστεί δ) υποτετραπλασιαστεί (Μονάδες 5) δ) 0 J ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 0-0 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ/Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 30// ΛΥΣΕΙΣ ΘΕΜΑ ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό κάθε µίας από τις παρακάτω ερωτήσεις Α.- Α.4

Διαβάστε περισσότερα

Εξοικονόμηση Ενέργειας

Εξοικονόμηση Ενέργειας Εξοικονόμηση Ενέργειας Θεωρητικό Υπόβαθρο: Θερμοδυναμική Θερμοδυναμική: Η επιστήμη που ασχολείται με τις μετατροπές ενέργειας από μια μορφή σε μια άλλη «Κάθε παραγωγική διαδικασία βρίσκεται κάτω από τον

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΚΕΦΑΛΑΙΟ 2 ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΚΕΦΑΛΑΙΟ 2 ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΠΟ ΤΗ ΒΕΡΩΝΗ ΕΙΡΗΝΗ ΜΗΧΑΝΙΚΗ Ο κλάδος της Φυσικής που εξετάζει μόνο όσες ενεργειακές ανταλλαγές γίνονται με την εκτέλεση έργου. ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ο κλάδος της Φυσικής που εξετάζει

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 13 ΣΕΠΤΕΜΒΡΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 13 ΣΕΠΤΕΜΒΡΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 13 ΣΕΠΤΕΜΒΡΙΟΥ 001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1ο Για τις ερωτήσεις 1-5 να γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι

ΦΥΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι ΦΥΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι Ενότητα 2 η - Α ΜΕΡΟΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗ Όνομα καθηγητή: ΕΥΑΓΓΕΛΙΟΥ ΒΑΣΙΛΙΚΗ Τμήμα: Επιστήμης Τροφίμων και Διατροφής του Ανθρώπου ΣΤΟΧΟΙ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Στόχος (1) Κατανόηση των εννοιών:

Διαβάστε περισσότερα

ΕΠΙΛΟΓΗ ΘΕΜΑΤΩΝ ΠΑΝΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1&2

ΕΠΙΛΟΓΗ ΘΕΜΑΤΩΝ ΠΑΝΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1&2 2001 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΙΟΥΝΙΟΥ 2001 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ: Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

Α Θερμοδυναμικός Νόμος

Α Θερμοδυναμικός Νόμος Α Θερμοδυναμικός Νόμος Θερμότητα Έχουμε ήδη αναφέρει ότι πρόκειται για έναν τρόπο μεταφορά ενέργειας που βασίζεται στη διαφορά θερμοκρασιών μεταξύ των σωμάτων. Ορίζεται από τη σχέση: Έργο dw F dx F dx

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014 ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1 Α4 και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

Ζήτημα 1 0. Επώνυμο... Όνομα... Αγρίνιο 1/3/2015. Επιλέξτε τη σωστή απάντηση

Ζήτημα 1 0. Επώνυμο... Όνομα... Αγρίνιο 1/3/2015. Επιλέξτε τη σωστή απάντηση 1 Επώνυμο... Όνομα... Αγρίνιο 1/3/2015 Ζήτημα 1 0 Επιλέξτε τη σωστή απάντηση 1) Η θερμότητα που ανταλλάσει ένα αέριο με το περιβάλλον θεωρείται θετική : α) όταν προσφέρεται από το αέριο στο περιβάλλον,

Διαβάστε περισσότερα

Εντροπία (1/3) Ανισότητα Clausius. ds T. = αντιστρεπτές < αναντίστρεπτες

Εντροπία (1/3) Ανισότητα Clausius. ds T. = αντιστρεπτές < αναντίστρεπτες Εντροπία (1/3) Ανισότητα Clausius δq 0 = αντιστρεπτές < αναντίστρεπτες ds δq R Η εντροπία Ορίζεται για αντιστρεπτές διεργασίες Είναι καταστατική ιδιότητα (η μεταβολή της δεν εξαρτάται από το δρόμο) Ορίζονται

Διαβάστε περισσότερα

Κατά την αδιαβατική αντιστρεπτή µεταβολή ενός ιδανικού αερίου, η πίεση του αερίου αυξάνεται. Στην περίπτωση αυτή

Κατά την αδιαβατική αντιστρεπτή µεταβολή ενός ιδανικού αερίου, η πίεση του αερίου αυξάνεται. Στην περίπτωση αυτή Μάθημα/Τάξη: Κεφάλαιο: Φυσική Προσανατολισμού Β Λυκείου Θερμοδυναμική Ονοματεπώνυμο Μαθητή: Ημερομηνία: 20-02-2017 Επιδιωκόμενος Στόχος: 85/100 Θέμα 1 ο Στις ερωτήσεις Α.1 Α.4 επιλέξτε την σωστή απάντηση

Διαβάστε περισσότερα

Πρώτος Θερμοδυναμικός Νόμος

Πρώτος Θερμοδυναμικός Νόμος Πρώτος Θερμοδυναμικός Νόμος ος Θερμοδυναμικός Νόμος dq = de + dw Ε = U + E κιν + E δυν + Ε λοιπές Εκφράζει την αρχή διατήρησης της ενέργειας Συνδέει ποσότητες και ιδιότητες και επιτρέπει τον υπολογισμό

Διαβάστε περισσότερα

Περιεχόμενα. 2ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ. Περιορισμοί του 1ου νόμου. Γένεση - Καταστροφή ενέργειας

Περιεχόμενα. 2ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ. Περιορισμοί του 1ου νόμου. Γένεση - Καταστροφή ενέργειας ΘΕΡΜΟΔΥΝΑΜΙΚΗ I Περιεχόμενα This 1000 hp engine photo is courtesy of Bugatti automobiles. 2ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ Εισαγωγή στον 2ο Θερμοδυναμικό Νόμο Θερμικές Μηχανές: Χαρακτηριστικά-

Διαβάστε περισσότερα

Φυσική Προσανατολισμού Β Λυκείου Κεφάλαιο 2 ο. Σύντομη Θεωρία

Φυσική Προσανατολισμού Β Λυκείου Κεφάλαιο 2 ο. Σύντομη Θεωρία Φυσική Προσανατολισμού Β Λυκείου 05-06 Κεφάλαιο ο Σύντομη Θεωρία Θερμοδυναμικό σύστημα είναι το σύστημα το οποίο για να το περιγράψουμε χρησιμοποιούμε και θερμοδυναμικά μεγέθη, όπως τη θερμοκρασία, τη

Διαβάστε περισσότερα

Enrico Fermi, Thermodynamics, 1937

Enrico Fermi, Thermodynamics, 1937 I. Θερµοδυναµικά συστήµατα Enrico Feri, herodynaics, 97. Ένα σώµα διαστέλλεται από αρχικό όγκο. L σε τελικό όγκο 4. L υπό πίεση.4 at. Να υπολογισθεί το έργο που παράγεται. W - -.4 at 5 a at - (4..) - -

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ B' ΛΥΚΕΙΟΥ 15/11/2009

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ B' ΛΥΚΕΙΟΥ 15/11/2009 ΕΠΩΝΥΜΟ:... ΤΣΙΜΙΣΚΗ &ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 270727 222594 ΑΡΤΑΚΗΣ 12 - Κ. ΤΟΥΜΠΑ THΛ: 919113 949422 ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΗΜΕΡΟΜΗΝΙΑ:... www.syghrono.gr ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ B' ΛΥΚΕΙΟΥ 15/11/2009

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 29/12/12 ΛΥΣΕΙΣ

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 29/12/12 ΛΥΣΕΙΣ ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 29/12/12 B ΛΥΚΕΙΟΥ ΘΕΜΑ A Σελίδα 1 από 6 ΛΥΣΕΙΣ Στις ημιτελείς προτάσεις Α 1 -Α 4 να γράψετε στο τετράδιο σας τον αριθμό της πρότασης και δίπλα

Διαβάστε περισσότερα

3. Ν αποδειχθεί ότι σε ιδανικό αέριο : α=1/t και κ Τ =1/Ρ όπου α ο συντελεστής διαστολής και κ T ο ισόθερµος συντελεστής συµπιεστότητας.

3. Ν αποδειχθεί ότι σε ιδανικό αέριο : α=1/t και κ Τ =1/Ρ όπου α ο συντελεστής διαστολής και κ T ο ισόθερµος συντελεστής συµπιεστότητας. Φυσικοχηµεία / Β. Χαβρεδάκη Ασκήσεις Θερµοδυναµικής Εργο. Θερµότητα. Τέλεια µη τέλεια διαφορικά. Αρχη διατήρησης της ενέργειας.. α) όσετε την γενική µορφή της καταστατικής εξίσωσης τριών θερµοδυναµικών

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ. Διάρκεια εξέτασης: 7.200sec (& κάθε ένα μετράει ) ΟΝΟΜΑΤΕΠΩΝΥΜΟ:

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ. Διάρκεια εξέτασης: 7.200sec (& κάθε ένα μετράει ) ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ (εξεταστέα ύλη: νόμοι αερίων, θερμοδυναμική) ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ Διάρκεια εξέτασης: 7.200sec (& κάθε ένα μετράει ) ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1 4 να γράψετε στο

Διαβάστε περισσότερα

Θερμοδυναμική. Ερωτήσεις πολλαπλής επιλογής

Θερμοδυναμική. Ερωτήσεις πολλαπλής επιλογής Ερωτήσεις πολλαπλής επιλογής Θερμοδυναμική 1. Η εσωτερική ενέργεια ορισμένης ποσότητας ιδανικού αερίου α) Είναι αντιστρόφως ανάλογη της απόλυτης θερμοκρασίας του αερίου. β) Είναι ανάλογη της απόλυτης θερμοκρασίας

Διαβάστε περισσότερα

ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ

ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Μη αντιστρεπτά φαινόμενα Η ενέργεια διατηρείται και στη χρονικά αντίστροφη μεταβολή, όμως αυτή ποτέ δεν συμβαίνει π.χ. Δεν μπορούμε να κατασκευάσουμε το αεικίνητο.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο 1.1. Φορτισμένο σωματίδιο αφήνεται ελεύθερο μέσα σε ομογενές ηλεκτρικό πεδίο χωρίς την επίδραση της βαρύτητας. Το σωματίδιο: α. παραμένει ακίνητο. β. εκτελεί ομαλή κυκλική κίνηση.

Διαβάστε περισσότερα

Θερμοδυναμική Ενότητα 7:

Θερμοδυναμική Ενότητα 7: Θερμοδυναμική Ενότητα 7: 3 ος νόμος Θερμοδυναμικής -Συναρτήσεις έργου - Εξάτμιση ισορροπίας - Ασκήσεις Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΑΕΡΙΑ

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΑΕΡΙΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΑΕΡΙΑ 1) Η αντιστρεπτή θερµοδυναµική µεταβολή ΑΒ που παρουσιάζεται στο διάγραµµα πίεσης όγκου (P V) του σχήµατος περιγράφει: α. ισόθερµη εκτόνωση β. ισόχωρη ψύξη γ. ισοβαρή

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΙΑΩΝΙΣΜΑ ΣΤΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ 1. Κατά την αδιαβατική αντιστρεπτή µεταβολή ποσότητας αερίου ισχύει η σχέση P γ = σταθερό. Ο αριθµός γ: α) εξαρτάται από την ατοµικότητα του αερίου και είναι γ < 1 β) εξαρτάται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική. Μη Αντιστρεπτότητα και ο 2ος Θ.ν. Διδάσκων : Καθηγητής Γ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική. Μη Αντιστρεπτότητα και ο 2ος Θ.ν. Διδάσκων : Καθηγητής Γ. ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θερμοδυναμική Μη Αντιστρεπτότητα και ο 2ος Θ.ν. Διδάσκων : Καθηγητής Γ. Φλούδας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα