ΠΛΗ 405 Τεχνητή Νοηµοσύνη
|
|
- Ê Πυλαρινός
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΠΛΗ 405 Τεχνητή Νοηµοσύνη Α ληροφόρητη και Πληροφορηµένη Αναζήτηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης
2 Ε ανάληψη Πράκτορας ε ίλυσης ροβληµάτων πράκτορας µε στόχο Αναζήτηση διατύπωση δένδρο αναζήτησης γενικός αλγόριθµος µετρικές απόδοσης
3 ιατύ ωση Προβληµάτων Αναζήτησης Αρχική κατάσταση (initial state) τρέχουσα κατάσταση περιβάλλοντος και πράκτορα Χώρος καταστάσεων (state space) όλες οι κατάστασεις που είναι προσπελάσιµες από την αρχική Συνάρτηση διαδοχής (successor function) για κάθε κατάσταση, οι έγκυρες ενέργειες και οι διάδοχες καταστάσεις Έλεγχος στόχου (goal test) αποφαίνεται για το αν επιτυγχάνεται ο στόχος σε κάποια κατάσταση Συνάρτηση κόστους (cost function) προσδιορίζει το κόστος για κάθε βήµα µιας ακολουθίας ενεργειών
4 ένδρο Αναζήτησης
5 Άτυ ος Αλγόριθµος Αναζήτησης function Tree-Search( ρόβληµα, στρατηγική ) returns µια λύση ή αποτυχία αρχικοποίηση του δένδρου αναζήτησης µε χρήση της αρχικής κατάστασης του ροβλήµατος loop do if δεν υπάρχουν υποψήφιοι για επέκταση then return αποτυχία επιλογή ενός κόµβου-φύλλου για να επεκταθεί, σύµφωνα µε τη στρατηγική if ο κόµβος περιέχει µια κατάσταση στόχου then return την αντίστοιχη λύση else ο κόµβος επεκτείνεται και οι κόµβοι που προκύπτουν προστίθενται στο δένδρο αναζήτησης
6 Μέτρηση Α όδοσης Αναζήτησης Πληρότητα (completeness) θα βρει εγγυηµένα κάποια λύση, αν υπάρχει; Βελτιστότητα (optimality) θα βρει µια βέλτιστη λύση; Χρονική ολυ λοκότητα (time complexity) πόσο χρόνο χρειάζεται για να βρει λύση; Χωρική ολυ λοκότητα (space complexity) πόσο χώρο (µνήµη) χρειάζεται για να βρει λύση; Μέγεθος ροβλήµατος παράγοντας διακλάδωσης (branching factor) b βάθος της πιο κοντινής λύσης d µέγιστο µήκος οποιασδήποτε διαδροµής m
7 Σήµερα Α ληροφόρητη αναζήτηση σε πλάτος, οµοιόµορφου κόστους, σε βάθος, περιορισµένου βάθους, επαναληπτική εκβάθυνση, αµφίδροµη αναζήτηση επαναλαµβανόµενες καταστάσεις Αναζήτηση µε µερική ληροφόρηση προβλήµατα χωρίς αισθητήρες και προβλήµατα ενδεχοµένων Πληροφορηµένη αναζήτηση άπληστη αναζήτηση πρώτα στο καλύτερο, αναζήτηση Α* Πληροφορηµένη αναζήτηση µε εριορισµό µνήµης Ευρετικές συναρτήσεις
8 Στρατηγικές Α ληροφόρητης Αναζήτησης Uninformed or Blind Search
9 Αναζήτηση σε Πλάτος (Breadth-First) επέκταση του κόµβου µε το µικρότερο βάθος στο τρέχον σύνορο υλοποίηση µε ουρά FIFO (First In, First Out) πλήρης, βέλτιστη (υπό προϋποθέσεις), εκθετική πολυπλοκότητα O(b d+1 ) Βάθος (d) Κόµβοι (b=10) Χρόνος (10000 κόµβοι/sec) Μνήµη (1000 byte/κόµβο) δευτερόλε τα 1 megabyte δευτερόλε τα 106 megabytes λε τά 10 gigabytes ώρες 1 terabyte ηµέρες 101 terabytes χρόνια 10 petabytes χρόνια 1 exabyte
10 Αναζήτηση Οµοιόµορφου Κόστους (uniform cost search) παραλλαγή της αναζήτησης κατά πλάτος επέκταση του κόµβου µε το µικρότερο κόστος διαδροµής σύνορο: κόµβοι µε (περίπου) οµοιόµορφο κόστος πλήρης, εάν το κόστος βήµατος είναι πάντα θετικό βέλτιστη, εάν το κόστος βήµατος είναι πάντα θετικό εκθετική πολυπλοκότητα εξαρτώµενη από το βέλτιστο κόστος εξαρτώµενη από το ελάχιστο κόστος βήµατος πιθανόν καλύτερη, πιθανόν χειρότερη
11 Αναζήτηση σε Βάθος (Depth-First) επέκταση του κόµβου µε το µεγαλύτερο βάθος στο τρέχον σύνορο οπισθοχώρηση στον αµέσως προηγούµενο κόµβο υλοποίηση µε ουρά LIFO (Last In, First Out) ή στοίβα (stack) δεν είναι πλήρης (διαδροµές απείρου µήκους) δεν είναι βέλτιστη (προχωράει σε βάθος ανεξάρτητα από κόστος) γραµµική χωρική πολυπλοκότητα βελτίωση µε υπαναχώρηση (backtracking) βελτίωση µε µεταβολή κατάστασης (προϋποθέτει δυνατότητα αναίρεσης) εκθετική χρονική πολυπλοκότητα
12 Αναζήτηση κατά Βάθος
13 Αναζήτηση Περιοσµένου Βάθους (Depth-Limited Search) παραλλαγή της αναζήτησης κατά βάθος διακοπή της επέκτασης πέρα από κάποιο προκαθορισµένο βάθος ευρετικός προσδιορισµός ορίου βάθους (διάµετρος γράφου) πλεονέκτηµα: αποφυγή άπειρων διαδροµών µειονέκτηµα: πρόβληµα πληρότητας η λύση µπορεί να βρίσκεται χαµηλότερα µειονέκτηµα: πρόβληµα βελτιστότητας µια βέλτιστη λύση µπορεί να βρίσκεται χαµηλότερα
14 Ε αναλη τική Εκβάθυνση (Iterative-Deepening Search) έξυπνος χειρισµός αναζήτησης περιορισµένου βάθους σταδιακή αύξηση του ορίου βάθους (L = 0, 1, 2, 3,...) συνδυάζει τα πλεονεκτήµατα των αναζητήσεων σε βάθος και πλάτος πλήρης βέλτιστη (υπό προϋποθέσεις) χωρική πολυπλοκότητα Ο(bd) µικρότερη από τη χωρική πολυπλοκότητα της αναζήτησης σε πλάτος! χρονική πολυπλοκότητα εκθετική, αλλά όχι µεγαλύτερη (d)b + (d 1)b (1)b d = O(b d )!!!! παραλλαγή: αναζήτηση επαναληπτικής επιµήκυνσης
15 Ε αναλη τική Εκβάθυνση
16 Ε αναλη τική Εκβάθυνση
17 Αµφόδροµη Αναζήτηση (Bidirectional Search) b d/2 +b d/2 << b d
18 Σύγκριση Α ληροφόρητων Στρατηγικών
19 Ε αναλαµβανόµενες Καταστάσεις Repeated States
20 Ε αναλαµβανόµενες Καταστάσεις πρόβληµα: ένας γραµµικός χώρος φαίνεται εκθετικός συνήθως σε προβλήµατα µε αναστρέψιµες ενέργειες απλή σύγκριση µε τους κόµβους προς επέκταση δεν αρκεί οι αλγόριθµοι ου ξεχνούν την ιστορία τους είναι καταδικασµένοι να την ε αναλαµβάνουν
21 Α οφυγή Ε αναλαµβανόµενων Καταστάσεων Α οµνηµόνευση κλειστή λίστα (closed list): επεκταµένοι κόµβοι ανοικτή λίστα (open list): κόµβοι προς επέκταση σύνορο Πλεονεκτήµατα απαιτήσεις χώρου και χρόνου ανάλογες µε το χώρο κατάστασης όλοι οι αλγόριθµοι γίνονται πλήρεις για πεπερασµένους χώρους γρήγορος έλεγχος για κλειστή λίστα µε πίνακα hash Μειονεκτήµατα κανείς αλγόριθµος δεν έχει πλέον γραµµικές απαιτήσεις χώρου χρειάζεται προσοχή στην επιλογή εναλλακτικών διαδροµών
22 Αλγόριθµος Αναζήτησης µε Α οφυγή Ε αναλαµβανόµενων Καταστάσεων
23 Αναζήτηση µε Μερική Πληροφόρηση Search with Partial Information
24 Προβλήµατα µε Ατελή Γνώση Προβλήµατα χωρίς αισθητήρες (sensorless problems) ο πράκτορας δεν µπορεί να αντιληφθεί την κατάσταση Προβλήµατα ενδεχοµένων (contingency problems) µερικώς παρατηρήσιµα περιβάλλοντα ή αβέβαιες ενέργειες οι αντιλήψεις παρέχουν πληροφορίες και ορίζουν ενδεχόµενα Προβλήµατα αντι αλότητας (adversarial problems) η αβεβαιότητα προκαλείται από κάποιο άλλο πράκτορα Προβλήµατα εξερεύνησης (exploration problems) άγνωστος χώρος κατάστασης και άγνωστες ενέργειες ακραία περίπτωση προβληµάτων ενδεχοµένων
25 Προβλήµατα χωρίς Αισθητήρες Χαρακτηριστικά γνωστός ο χώρος κατάστασης και τα αποτελέσµατα των ενεργειών άγνωστη η τρέχουσα (αρχική, ενδιάµεση, τελική) κατάσταση Αντιµετώ ιση συλλογισµός µε σύνολα καταστάσεων, όχι µε απλές καταστάσεις χώρος πεποιθήσεων (beliefs): δυναµοσύνολο χώρου καταστάσεων πεποίθηση: το υποσύνολο των καταστάσεων όπου µπορεί να βρίσκεται ενέργειες: µεταβάσεις µεταξύ πεποιθήσεων (ένωση ατοµικών µεταβάσεων) αρχικοποίηση: πεποίθηση µε όλες τις πιθανές καταστάσεις επίλυση: αναζήτηση στο χώρο των πεποιθήσεων στόχος: πεποίθηση όπου όλες οι καταστάσεις είναι στόχοι
26 Ενέργειες χωρίς Αισθητήρες Εξαναγκασµός επιλογή κάποιας ενέργειας για αποκλεισµό κάποιων καταστάσεων Παράδειγµα µικρόκοσµου αρχική πεποίθηση {1,2,3,4,5,6,7,8} ενέργεια: εξιά επόµενη πεποίθηση: {2,4,6,8} ενέργεια: Αναρρόφηση επόµενη πεποίθηση: {4,8}... Γενίκευση µη αιτιοκρατικές ενέργειες µε αβέβαια αποτελέσµατα
27 Μικρόκοσµος Σκού ας χωρίς Αισθητήρες
28 Πληροφορηµένη Αναζήτηση Informed Search
29 Αναζήτηση Πρώτα στο Καλύτερο Πληροφορηµένη αναζήτηση (informed search) χρήση ειδικής γνώσης για το πρόβληµα, όχι µόνο ο ορισµός απληροφόρητη αναζήτηση: βάθος, κόστος, επανάληψη, κλπ. πληροφορηµένη αναζήτηση: εξαγωγή πληροφορίας από κατάσταση Αναζήτηση ρώτα στο καλύτερο (best-first search) συνάρτηση αξιολόγησης (evaluation function) «καλύτερου» αξιολόγηση κάθε κόµβου n µε τη συνάρτηση αξιολόγησης f(n) επέκταση του κόµβου µε τη µικρότερη τιµή αξιολόγησης υλοποίηση µε ουρά προτεραιότητας
30 Ά ληστη Αναζήτηση Πρώτα στο Καλύτερο (greedy best-first search) Συνάρτηση αξιολόγησης ευρετική συνάρτηση (heuristic function) h(n), h(g)=0 εκτιµώµενο κόστος φθηνότερης διαδροµής από n σε στόχο η εκτίµηση εξαρτάται µόνο από τον κόµβο n και το στόχο αξιολόγηση: f(n) = h(n) Παράδειγµα: ιαδροµές στη Ρουµανία h SLD (n) : Straight-Line Distance heuristic (ευθύγραµµη απόσταση) ευθύγραµµη απόσταση πόλης n από το Βουκουρέστι δεν µπορεί να προκύψει µόνο από τον ορισµό του προβλήµατος
31 ιαδροµές στη Ρουµανία h SLD Πόλη h SLD Πόλη 374 Zerind 244 Lugoj 199 Vaslui 226 Iasi 80 Urziceni 151 Hirsova 329 Timisoara 77 Giurgiu 253 Sibiu 176 Fagaras 193 Rimnisc Vilcea 161 Eforie 100 Pitesti 242 Dobreta 380 Oradea 160 Craiova 234 Neamt 0 Bucharest 241 Mehadia 366 Arad
32 ιαδροµές στη Ρουµανία
33 ιαδροµές στη Ρουµανία Η διαδροµή που βρέθηκε δεν είναι η συντοµότερη!
34 Ά ληστη Αναζήτηση Πρώτα στο Καλύτερο Πληρότητα γενικά όχι, µπορεί να µπλέξει σε ατέρµονα κλαδιά (Iasi Fagaras) πλήρης σε πεπερασµένους χώρους µε αποφυγή επανάληψης Βελτιστότητα όχι, επιρρεπής σε λανθασµένες εκτιµήσεις (Sibiu Bucharest) Χρονική και χωρική ολυ λοκότητα εκθετική Ο(b m ), όπου m είναι το µέγιστο βάθος του χώρου Γενικά οµοιάζει µε την αναζήτηση πρώτα κατά βάθος
35 Αναζήτηση Α* Συνάρτηση αξιολόγησης εκτιµώµενο κόστος h(n) φθηνότερης διαδροµής από n σε στόχο πραγµατικό κόστος g(n) τρέχουσας διαδροµής από αρχική έως n αξιολόγηση: f(n) = g(n) + h(n) συνολικό κόστος µέσω κόµβου n Παραδεκτός ευρετικός µηχανισµός (admissible heuristic) κάνει πάντα αισιόδοξες εκτιµήσεις δεν κάνει υπερεκτιµήσεις του κόστους (για ελαχιστοποίηση) δεν κάνει υποεκτιµήσεις του κόστους (για µεγιστοποίηση) Θεώρηµα η αναζήτηση A* χωρίς κλάδεµα επαναλαµβανόµενων καταστάσεων είναι βέλτιστη αν η h(n) είναι παραδεκτή
36 ιαδροµές στη Ρουµανία (Α*)
37 ιαδροµές στη Ρουµανία (Α*)
38 Συνε είς Ευρετικές Συναρτήσεις Συνέ εια (consistency) συνεπής (consistent) ή µονοτονική (monotonic) ευρετική συνάρτηση γενικευµένη τριγωνική ανισότητα: h(n) c(n, a, n') + h(n') Θεώρηµα η αναζήτηση A* µε κλάδεµα επαναλαµβανόµενων καταστάσεων, χωρίς να λαµβάνεται υπόψη εάν η νέα κατάσταση έχει µικρότερη τιµή f(n) από την παλιά, είναι βέλτιστη αν η h(n) είναι συνεπής Πορίσµατα µια συνεπής ευρετική συνάρτηση είναι και παραδεκτή οι περισσότερες παραδεκτές ευρετικές συναρτήσεις είναι και συνεπείς h(n) συνεπής η f(n) σε οποιαδήποτε διαδροµή είναι µη φθίνουσα
39 Ισοϋψείς Καµ ύλες Κόστους
40 Α οδοτικότητα Α* Πληρότητα ναι, εκτός αν υπάρχουν άπειροι κόµβοι µε f f(g) = C * Βελτιστότητα ναι, µε παραδεκτή ή συνεπή ευριστική συνάρτηση επέκταση: όλοι µε f(n)<c *, µερικοί µε f(n)=c * κανένας µε f(n)>c * Πολυ λοκότητα εκθετικές απαιτήσεις σε χρόνο και (κυρίως) σε µνήµη Βέλτιστα α οδοτικός για το ίδιο πρόβληµα εξερευνά τις λιγότερες καταστάσεις από όλους τους βέλτιστους και πλήρεις αλγορίθµους αναζήτησης
41 Πληροφορηµένη Αναζήτηση µε Περιορισµένη Μνήµη Informed Search with Bounded Memory
42 A* µε Ε αναλη τική Εκβάθυνση (Iterative-Deepening A* - IDA*) Μεθοδολογία ανάλογη µέθοδος µε την αναζήτηση επαναληπτικής επιµήκυνσης αναζήτησης A* πρώτα κατά βάθος µε περιορισµένο κόστος g(n) + h(n) σταδιακή αύξηση του ορίου αποκοπής 0, f 1 (n), f 2 (n), f 3 (n),... νέο όριο: το µικρότερο f(n) πάνω από το όριο στο προηγούµενο στάδιο πλήρης και βέλτιστη µε παραδεκτή h γραµµική χωρική πολυπλοκότητα Ο(bd) εκθετική χρονική πολυπλοκότητα O(b d ) Μειονεκτήµατα πιθανόν, αργή αύξηση του ορίου αποκοπής αργή πρόοδος δεν ανιχνεύει επαναλαµβανόµενες καταστάσεις
43 Α* - Σύνορο Αναζήτησης
44 Α* - Ε έκταση Ορίου Α οκο ής
45 Στάδια Αναζήτησης IDA*
46 Αναδροµική Αναζήτηση Πρώτα στο Καλύτερο (Recursive Best-First Search, RBFS) Μεθοδολογία αναζήτηση πρώτα στο καλύτερο µε γραµµικό χώρο ουσιαστικά, αναζήτηση κατά βάθος, όχι όµως τυφλά θυµάται το καλύτερο κόστος f* γειτόνων κατά µήκος του µονοπατιού επέκταση κατά βάθος αν f f*, αλλιώς οπισθοχώρηση οπισθοδρόµηση πίσω στο καλύτερο εναλλακτικό µονοπάτι (f*) αλλαγή του f κάθε κόµβου µε το καλύτερο f των παιδιών του πλήρης και βέλτιστη µε παραδεκτή h γραµµική χωρική, εκθετική χρονική πολυπλοκότητα Μειονεκτήµατα πιθανόν, υπερβολική επαναπαραγωγή κόµβων αργή πρόοδος δεν ανιχνεύει επαναλαµβανόµενες καταστάσεις
47 Αναζήτηση RBFS
48 Αναζήτηση RBFS
49 Αναζήτηση SMA* (Simple Memory-bounded A*) Μεθοδολογία αναζήτηση A* µε περιορισµένο χώρο όταν γεµίσει η µνήµη, διαγράφει ένα παλιό κόµβο για κάθε νέο διαγράφεται ο χειρότερος κόµβος (αυτός µε το µεγαλύτερο f) και τα αδέλφια του και εισάγεται ο γονικός κόµβος η καλύτερη τιµή f των διαγραφόµενων κόµβων µεταφέρε ται στον γονέα διαγράφεται ο παλαιότερος κόµβος, σε περίπτωση ισοτιµίας τιµών f πλήρης (υπό προϋποθέσεις) και βέλτιστη µε παραδεκτή h περιορισµένη χωρική, εκθετική χρονική πολυπλοκότητα Χαρακτηριστικά γενικά, ο καλύτερος αλγόριθµος αναζήτησης γενικής χρήσης περιορισµός µνήµης, πιθανόν επιφέρει απαγορευτικό χρόνο
50 Ευρετικές Συναρτήσεις Heuristic Functions
51 Puzzle των 8 Πλακιδίων h 1 = 8 h 2 = 18 h* = 26 Ευρετικές συναρτήσεις h 1 = ο αριθµός των πλακιδίων που δεν είναι στη θέση τους h 2 = το άθροισµα αποστάσεων των πλακιδίων από τον προορισµό τους απόσταση Manhattan ή απόσταση οικοδοµικών τετραγώνων παραδεκτές ευρετικές συναρτήσεις (δεν υπερεκτιµούν) h 1 h 2 η h 2 κυριαρχεί της h 1 η h 2 επεκτείνει λιγότερους κόµβους
52 ραστικός Παράγοντας ιακλάδωσης οµοιόµορφο δένδρο: N + 1 = 1 + b* + (b*) (b*) d Κόστος αναζήτησης N ραστικός αράγοντας διακλάδωσης b* d IDS A*(h ) 1 A*(h ) 2 IDS A*(h ) 1 A*(h ) ,45 1,79 1, ,87 1,48 1, ,73 1,34 1, ,80 1,33 1, ,79 1,38 1, ,78 1,42 1, ,44 1, ,45 1, ,46 1, ,47 1, ,48 1, ,48 1,26
53 Ε ινόηση Παραδεκτών Ευρετικών Χαλαρά ροβλήµατα (relaxed problems) απλοποίηση (χαλάρωση) των κανόνων του προβλήµατος προϋπόθεση: f(βέλτιστη λύση χαλαρού) f(βέλτιστη λύση αρχικού) συνεπής h: το κόστος βέλτιστης λύσης για το χαλαρό πρόβληµα Παραδείγµατα χαλάρωσης κανόνων Puzzle: ένα λακίδιο µ ορεί να µετακινηθεί α ό το A στο B αν το A συνορεύει οριζόντια ή κάθετα µε το B και το B είναι κενό TSP: το κόστος του MST είναι κάτω όριο για το βέλτιστη διαδροµή Συλλογή ευρετικών συναρτήσεων παραδεκτές ευρετικές συναρτήσεις h 1, h 2,..., h m h=max{h 1, h 2,..., h m } συνεπής και κυριαρχεί έναντι των h 1,...,h m
54 Ε ινόηση Παραδεκτών Ευρετικών Βάσεις δεδοµένων ροτύ ων (pattern databases) ακριβή κόστη λύσεων υποπροβληµάτων Βάσεις ξένων ροτύ ων (disjoint pattern databases) ξεχωριστές βάσεις δεδοµένων, πλήρης αφαίρεση κοινών κινήσεων κατασκευή ευριστικής µε πρόσθεση των εκτιµήσεών τους
55 Εκµάθηση Ευρετικών Συναρτήσεων Εµ ειρία επίλυση προβληµάτων και υπολογισµός πραγµατικού κόστους συλλογή παραδειγµάτων { κατάσταση n, κόστος h*(n) } Χαρακτηριστικά (features) εµπλουτισµός περιγραφής κατάστασης π.χ. αριθµός πλακιδίων εκτός θέσης, άθροισµα αποστάσεων νέα συλλογή { [κατάσταση n, χαρακτηριστικά n], κόστος h*(n) } Εκµάθηση (learning) αλγόριθµος επαγωγικής (inductive) µάθησης για γενίκευση π.χ. δένδρα αποφάσεων ή νευρωνικά δίκτυα
56 Μελέτη Σύγγραµµα Ενότητα ,
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Πληροφορηµένη Αναζήτηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Πράκτορας ε ίλυσης ροβληµάτων πράκτορας µε στόχο Αναζήτηση διατύπωση
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Α ληροφόρητη και Πληροφορηµένη Αναζήτηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Πράκτορες χαρακτηριστικά στοιχεία και είδη πρακτόρων
ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 3: Αλγόριθμοι πληροφορημένης αναζήτησης. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 3: Αλγόριθμοι πληροφορημένης αναζήτησης Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Ε ανάληψη. Καταβολές. Ιστορική αναδροµή. Πράκτορες. Περιβάλλοντα. συνεισφορά άλλων επιστηµών στην ΤΝ. 1956 σήµερα
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Α ληροφόρητη Αναζήτηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Καταβολές συνεισφορά άλλων επιστηµών στην ΤΝ Ιστορική αναδροµή 1956
Ε ανάληψη. Ε αναλαµβανόµενες καταστάσεις. Αναζήτηση µε µερική ληροφόρηση. Πληροφορηµένη αναζήτηση. µέθοδοι αποφυγής
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Πληροφορηµένη Αναζήτηση II Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Ε αναλαµβανόµενες καταστάσεις µέθοδοι αποφυγής Αναζήτηση µε µερική
Θεωρία Λήψης Αποφάσεων
Θεωρία Λήψης Αποφάσεων Ενότητα 5: Πληροφορημένη Αναζήτηση και Εξερεύνηση Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)
ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 2: Δένδρο αναζήτησης. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 2: Δένδρο αναζήτησης Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου
ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 2014-2015 Τεχνητή Νοημοσύνη Πληροφορημένη αναζήτηση και εξερεύνηση Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος http://ai.uom.gr/aima/
Ε ανάληψη. Ορισµοί της Τεχνητής Νοηµοσύνης (ΤΝ) Καταβολές. Ιστορική αναδροµή. Πράκτορες. Περιβάλλοντα. κριτήρια νοηµοσύνης
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Αναζήτηση Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Ορισµοί της Τεχνητής Νοηµοσύνης (ΤΝ) κριτήρια νοηµοσύνης Καταβολές συνεισφορά
Πληροφορηµένη αναζήτηση και εξερεύνηση
Πληροφορηµένη αναζήτηση και εξερεύνηση Στρατηγικές πληροφορηµένης αναζήτησης Πληροφορηµένη αναζήτηση (informed search) Συνάρτηση αξιολόγησης (evaluation function), f(n) Προτιµώνται οι µικρότερες τιµές
ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 2015-2016 Τεχνητή Νοημοσύνη Επίλυση προβλημάτων με αναζήτηση Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος http://ai.uom.gr/aima/ 2
Επίλυση προβληµάτων µε αναζήτηση
Επίλυση προβληµάτων µε αναζήτηση Πράκτορες επίλυσης προβληµάτων (1/2) ιατύπωση στόχου: Σύνολο καταστάσεων του κόσµου ιατύπωση προβλήµατος Επιλογή επιπέδου λεπτοµέρειας (αφαίρεση) 3-2 Πράκτορες επίλυσης
Επίλυση προβλημάτων με αναζήτηση
Επίλυση προβλημάτων με αναζήτηση Περιεχόμενα Μέθοδοι (πράκτορες) επίλυσης προβλημάτων Προβλήματα και Λύσεις Προβλήματα παιχνίδια Προβλήματα του πραγματικού κόσμου Αναζήτηση λύσεων Δέντρο αναζήτησης Στρατηγικές
Τεχνητή Νοημοσύνη Ι. Ενότητα 3: Επίλυση Προβλημάτων με Αναζήτηση
Τεχνητή Νοημοσύνη Ι Ενότητα 3: Επίλυση Προβλημάτων με Αναζήτηση Μουστάκας Κωνσταντίνος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Επίλυση προβλημάτων με
ΤΥΦΛΗ ΑΝΑΖΗΤΗΣΗ (1) ΣΤΡΑΤΗΓΙΚΗ Ή ΑΛΓΟΡΙΘΜΟΣ ΑΝΑΖΗΤΗΣΗΣ
ΤΥΦΛΗ ΑΝΑΖΗΤΗΣΗ (1) ΣΤΡΑΤΗΓΙΚΗ Ή ΑΛΓΟΡΙΘΜΟΣ ΑΝΑΖΗΤΗΣΗΣ Μια αυστηρά καθορισµένη ακολουθία ενεργειών µε σκοπό τη λύση ενός προβλήµατος. Χαρακτηριστικά οθέν πρόβληµα: P= Επιλυθέν πρόβληµα: P s
ΚΑΙ ΕΞΕΡΕΥΝΗΣΗ 4.1 ΣΤΡΑΤΗΓΙΚΕΣ ΠΛΗΡΟΦΟΡΗΜΕΝΗΣ (ΕΥΡΕΤΙΚΗΣ) ΑΝΑΖΗΤΗΣΗΣ
4 ΠΛΗΡΟΦΟΡΗΜΕΝΗ ΑΝΑΖΗΤΗΣΗ ΚΑΙ ΕΞΕΡΕΥΝΗΣΗ Όπου θα δούµε πώς η πληροφόρηση για το χώρο καταστάσεων µπορεί να απαλλάξει τους αλγόριθµους από το παραπάτηµα στο σκοτάδι. Στο Κεφάλαιο 3 είδαµε ότι οι στρατηγικές
Επίλυση Προβλημάτων 1
Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης
Θεωρία Λήψης Αποφάσεων
Θεωρία Λήψης Αποφάσεων Ενότητα 4: Επίλυση προβλημάτων με αναζήτηση Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)
Ε ανάληψη. Α ληροφόρητη αναζήτηση
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Το ική Αναζήτηση Local Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Α ληροφόρητη αναζήτηση σε πλάτος, οµοιόµορφου κόστους, σε βάθος,
Αναζήτηση σε Γράφους. Μανόλης Κουμπαράκης. ΥΣ02 Τεχνητή Νοημοσύνη 1
Αναζήτηση σε Γράφους Μανόλης Κουμπαράκης ΥΣ02 Τεχνητή Νοημοσύνη 1 Πρόλογος Μέχρι τώρα έχουμε δει αλγόριθμους αναζήτησης για την περίπτωση που ο χώρος καταστάσεων είναι δένδρο (υπάρχει μία μόνο διαδρομή
Τεχνητή Νοημοσύνη. 3η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 3η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας
Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.
Κεφάλαιο 3 Αλγόριθµοι Τυφλής Αναζήτησης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Τυφλής Αναζήτησης Οι αλγόριθµοι τυφλής αναζήτησης (blind
Επίλυση Προβλημάτων. Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης. Αλγόριθμοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων
Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων
Επίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης
Επίλυση προβληµάτων Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης! Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Αλγόριθµοι τυφλής
Αλγόριθμοι Τυφλής Αναζήτησης
Τεχνητή Νοημοσύνη 04 Αλγόριθμοι Τυφλής Αναζήτησης Αλγόριθμοι Τυφλής Αναζήτησης (Blind Search Algorithms) Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει αξιολόγηση των καταστάσεων.
ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΘΕΜΑ 1 ο (3 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις Τρίτη 26 Ιουνίου 2007 ιάρκεια: 13:00-16:00 ίνεται ο
Επίλυση Προβλημάτων. Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσματα της νοημοσύνης.
Επίλυση Προβλημάτων Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσματα της νοημοσύνης. Τεχνητή Νοημοσύνη = Αναπαράσταση Γνώσης + Αλγόριθμοι Αναζήτησης Κατηγορίες Προβλημάτων Aναζήτησης Πραγματικά και
Τεχνητή Νοημοσύνη. 4η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 4η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται κυρίως στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β.
Επίλυση προβληµάτων. Αλγόριθµοι Αναζήτησης
Επίλυση προβληµάτων! Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Γενικά " Τεχνητή
ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 5: Παραδείγματα. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 5: Παραδείγματα Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας
Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή
Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή επίλυση προβλημάτων μέσω αναζήτησης κάθε πρόβλημα το οποίο μπορεί να διατυπωθεί αυστηρά λύνεται μέσω αναζήτησης. Για τα περισσότερα ενδιαφέροντα προβλήματα
Ε ανάληψη. Προβλήµατα ικανο οίησης εριορισµών. ορισµός και χαρακτηριστικά Ε ίλυση ροβληµάτων ικανο οίησης εριορισµών
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Αναζήτηση µε Αντι αλότητα Adversarial Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Προβλήµατα ικανο οίησης εριορισµών ορισµός και
ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. Ε ανάληψη. πεπερασµένα χρονικά περιθώρια ανά κίνηση. απευθείας αξιολόγηση σε ενδιάµεσους κόµβους
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Παιχνίδια Τύχης Λογικοί Πράκτορες Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Περιορισµοί χρόνου πεπερασµένα χρονικά περιθώρια ανά κίνηση
Τεχνητή Νοημοσύνη Ι. Εργαστηριακή Άσκηση 4-6. Σγάρμπας Κυριάκος. Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστων
Τεχνητή Νοημοσύνη Ι Εργαστηριακή Άσκηση 4-6 Σγάρμπας Κυριάκος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστων ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ
Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 4 ης διάλεξης 4.1. (α) Αποδείξτε ότι αν η h είναι συνεπής, τότε h(n
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 3: Αναζήτηση
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Τεχνητή Νοημοσύνη Ενότητα 3: Αναζήτηση Αν. καθηγητής Στεργίου Κωνσταντίνος kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης
Για παράδειγμα η αρχική και η τελική κατάσταση αναπαριστώνται ως εξής: (ένα λίτρο)
8 1 η ΕΡΓΑΣΙΑ ΣΤΟ ΜΑΘΗΜΑ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Απάντηση 1ης άσκησης Κατάσταση (κόμβοι): Αναπαριστούμε μια κατάσταση του προβλήματος με ένα διατεταγμένο ζεύγος (X,Y) όπου X είναι τα λίτρα στο βάζο Α (χωρητικότητα
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Πράκτορες και Περιβάλλοντα Αναζήτηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Ορισµοί της Τεχνητής Νοηµοσύνης κριτήρια νοηµοσύνης Καταβολές
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αλγόριθμοι Τυφλής Αναζήτησης Οι αλγόριθμοι τυφλής αναζήτησης εφαρμόζονται σε
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αναζήτηση Δοθέντος ενός προβλήματος με περιγραφή είτε στον χώρο καταστάσεων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Τελικές εξετάσεις Παρασκευή 4 Ιουλίου 2014, 18:00-21:00
ΘΕΜΑ 1 ο (2 μονάδες) ΠΑΝΕΠΙΣΤΗΜΙ ΜΑΚΕΔΝΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΣΜΕΝΗΣ ΠΛΗΡΦΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΗΜΣΥΝΗ Τελικές εξετάσεις Παρασκευή 4 Ιουλίου 2014, 18:00-21:00 Δίνεται ο παρακάτω χάρτης πόλεων της Ρουμανίας με τις μεταξύ
Αναζήτηση (Search) συνέχεια. Τµήµα Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς
Αναζήτηση (Search) συνέχεια 1 Ευριστικοί Αλγόριθµοι Αναζήτησης n Ευριστικοί Μηχανισµοί (Heuristics) n Αναζήτηση Πρώτα στο Καλύτερο (Best-First Search) n Αλγόριθµος Α* n Ιδιότητες Ευριστικών Συναρτήσεων
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 2: Αναζήτηση (Search)
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Τεχνητή Νοημοσύνη Ενότητα 2: Αναζήτηση (Search) Αν. καθηγητής Στεργίου Κωνσταντίνος kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Σύγχρονοι Αλγόριθµοι Σχεδιασµού Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Σχεδιασµός το πρόβληµα του σχεδιασµού γλώσσα αναπαράστασης
Ε ανάληψη. Παιχνίδια παιχνίδια ως αναζήτηση. Βέλτιστες στρατηγικές στρατηγική minimax. Βελτιώσεις κλάδεµα α-β
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Παιχνίδια Τύχης Παιχνίδια Ατελούς Πληροφόρησης Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Παιχνίδια παιχνίδια ως αναζήτηση Βέλτιστες στρατηγικές
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ 1. ίνεται το γνωστό πρόβληµα των δύο δοχείων: «Υπάρχουν δύο δοχεία
ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο
ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο 2014-2015 Πρώτη Σειρά Ασκήσεων (Υποχρεωτική, 25% του συνολικού βαθμού στο μάθημα) Ημερομηνία Ανακοίνωσης: 22/10/2014 Ημερομηνία Παράδοσης: Μέχρι 14/11/2014 23:59
Αναζήτηση (Search) Τµήµα Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς
Αναζήτηση (Search) 1 Αλγόριθµοι και Πολυπλοκότητα n Ας υποθέσουµε ότι έχουµε δύο διαφορετικούς αλγόριθµους για την επίλυση ενός προβλήµατος. Πως θα βρούµε ποιος είναι ο καλύτερος? g Ποιος τρέχει πιο γρήγορα?
Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης.
Ανάλογα με το αν ένας αλγόριθμος αναζήτησης χρησιμοποιεί πληροφορία σχετική με το πρόβλημα για να επιλέξει την επόμενη κατάσταση στην οποία θα μεταβεί, οι αλγόριθμοι αναζήτησης χωρίζονται σε μεγάλες κατηγορίες,
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αλγόριθμοι Ευριστικής Αναζήτησης Πολλές φορές η τυφλή αναζήτηση δεν επαρκεί
ΕΡΩΤΗΜΑΤΑ σε ΑΝΑΖΗΤΗΣΗ
ηµήτρης Ψούνης ΠΛΗ31, Απαντήσεις Ερωτήσεων Quiz - ΑΝΑΖΗΤΗΣΗ 1 ΕΡΩΤΗΜΑΤΑ σε ΑΝΑΖΗΤΗΣΗ ΕΡΩΤΗΜΑ 1 Έστω h µία παραδεκτή ευρετική συνάρτηση. Είναι η συνάρτηση h ½ παραδεκτή; a. Ναι, πάντα. b. Όχι, ποτέ. c.
Επίλυση Προβληµάτων. ! Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης. ! Χαρακτηριστικά αλγορίθµων:
Επίλυση Προβληµάτων! Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης.! Χαρακτηριστικά αλγορίθµων: # Αποδοτικότητα (efficiency) σε µνήµηκαιχρόνο, # Πολυπλοκότητα (complexity), # Πληρότητα
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Α οδοτικός Προτασιακός Συµ ερασµός Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Λογικοί ράκτορες πράκτορες βασισµένοι στη λογική Λογικές
ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2007. Ε ανάληψη. Προβλήµατα ικανο οίησης εριορισµών ορισµός και χαρακτηριστικά
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Αναζήτηση µε Αντι αλότητα Adversarial Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Προβλήµατα ικανο οίησης εριορισµών ορισµός και
ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο
ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο 2010-2011 Πρώτη Σειρά Ασκήσεων (20% του συνολικού βαθμού στο μάθημα, Άριστα = 390 μονάδες) Ημερομηνία Ανακοίνωσης: 6/10/2010 Ημερομηνία Παράδοσης: 15/11/2010 σύμφωνα
Αλγόριθµοι Ευριστικής Αναζήτησης
Αλγόριθµοι Ευριστικής Αναζήτησης Ευριστικός µηχανισµός (heuristic) είναι µία στρατηγική, βασισµένη στη γνώση για το συγκεκριµένο πρόβληµα, ηοποίαχρησιµοποιείται σα βοήθηµα στη γρήγορη επίλυσή του.! Ο ευριστικόςµηχανισµός
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Σχεδιασµός και ράση στον Πραγµατικό Κόσµο Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Γραφήµατα σχεδιασµού δοµή δεδοµένων για κατασκευή
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Ικανο οίηση Περιορισµών Constraint Satisfaction Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Το ική αναζήτηση αναρρίχηση λόφων προσοµοιωµένη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. Ε ανάληψη. δοµή δεδοµένων για κατασκευή ευρετικών συναρτήσεων Ο αλγόριθµος GraphPlan
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Σχεδιασµός και ράση στον Πραγµατικό Κόσµο Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Γραφήµατα σχεδιασµού δοµή δεδοµένων για κατασκευή
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Α οδοτικός Προτασιακός Συµ ερασµός Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Λογικές τυπικές γλώσσες λογική κάλυψη Προτασιακή λογική
Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/
Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας
Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2016-17 Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) http://mixstef.github.io/courses/csintro/ Μ.Στεφανιδάκης Αφηρημένες
Επίλυση Προβλημάτων 1
Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης
Δυναµικός Προγραµµατισµός (ΔΠ)
Δυναµικός Προγραµµατισµός (ΔΠ) Περίληψη Δυναµικός Προγραµµατισµός Αρχή του Βέλτιστου Παραδείγµατα Δυναµικός Προγραµµατισµός ΔΠ (Dynamic Programming DP) Μέθοδος σχεδιασµού αλγορίθµων Είναι µια γενική µεθοδολογία
Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 6η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας
Μηχανές Turing (T.M) I
Μηχανές Turing (T.M) I Οι βασικές λειτουργίες μιας TM είναι: Διάβασε το περιεχόμενο του τρέχοντος κυττάρου Γράψε 1 ή 0 στο τρέχον κύτταρο Κάνε τρέχον το αμέσως αριστερότερο ή το αμέσως δεξιότερο κύτταρο
Κεφάλαιο 2. Περιγραφή Προβληµάτων και Αναζήτηση Λύσης. Τεχνητή Νοηµοσύνη - Β' Έκδοση
Κεφάλαιο 2 Περιγραφή Προβληµάτων και Αναζήτηση Λύσης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Περιγραφή Προβληµάτων ιαισθητικά: υπάρχει µία δεδοµένη
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τμήμα Πληροφορικής
ΕΠΛ132 Άσκηση 4 - Αρχές Προγραμματισμού ΙΙ Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου Ι. Στόχοι ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τμήμα Πληροφορικής ΕΠΛ 132 Αρχές Προγραμματισμού ΙΙ Άσκηση 4 Αυτόματη Επίλυση του Παιχνιδιού
Δομές Δεδομένων & Αλγόριθμοι
Θέματα Απόδοσης Αλγορίθμων 1 Η Ανάγκη για Δομές Δεδομένων Οι δομές δεδομένων οργανώνουν τα δεδομένα πιο αποδοτικά προγράμματα Πιο ισχυροί υπολογιστές πιο σύνθετες εφαρμογές Οι πιο σύνθετες εφαρμογές απαιτούν
Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων
Π Π Τ Μ Τ Μ Η/Υ Π Δ Μ Π Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων Φοιτητής: Ν. Χασιώτης (AM: 0000) Καθηγητής: Ι. Χατζηλυγερούδης 22 Οκτωβρίου 2010 ΑΣΚΗΣΗ 1. Δίνεται
Επίλυση Προβλημάτων 1
Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης
Ε ανάληψη. Χρόνος και όροι. Ιεραρχία. ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. χρονοπρογραµµατισµός εργασιών. ιεραρχικά δίκτυα εργασιών
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Σχεδιασµός και ράση σε µη Αιτιοκρατικά Πεδία Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Χρόνος και όροι χρονοπρογραµµατισµός εργασιών
Δομές Δεδομένων (Data Structures)
Δομές Δεδομένων (Data Structures) Στοίβες Ουρές Στοίβες: Βασικές Έννοιες. Ουρές: Βασικές Έννοιες. Βασικές Λειτουργίες. Παραδείγματα. Στοίβες Δομή τύπου LIFO: Last In - First Out (τελευταία εισαγωγή πρώτη
Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e
Άσκηση 1 Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e Υπάρχουν τρία μαύρα τετραγωνάκια (b), τρία άσπρα (w) και ένα κενό (e). Η σπαζοκεφαλιά έχει τις ακόλουθες
Αφηρημένες Δομές Δεδομένων. Στοίβα (Stack) Υλοποίηση στοίβας
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής ισαγωγή στην πιστήμη των Υπολογιστών 2015-16 λγόριθμοι και ομές εδομένων (IΙ) (γράφοι και δένδρα) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης φηρημένες
Θεωρία Λήψης Αποφάσεων
Θεωρία Λήψης Αποφάσεων Ενότητα 6: Αλγόριθμοι Τοπικής Αναζήτησης Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 6 Μαΐου 2015 1 / 42 Εύρεση Ελάχιστου Μονοπατιού
Initialize each person to be free. while (some man is free and hasn't proposed to every woman) { Choose such a man m w = 1 st woman on m's list to
Κεφάλαιο 2 Δοµές Δεδοµένων Ι Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 Δοµές Δεδοµένων Ι Στην ενότητα αυτή θα γνωρίσουµε ορισµένες Δοµές Δεδοµένων και θα τις χρησιµοποιήσουµε
Περιεχόμενα. Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23. Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ
Περιεχόμενα Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23 Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ 1. Επαναληπτικοί αλγόριθμοι: Μέτρα προόδου και αναλλοίωτες συνθήκες.....................................................29
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Θεωρία Παιγνίων Μαρκωβιανά Παιχνίδια Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Μερική αρατηρησιµότητα POMDPs
Αναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήµατα Μοντελοποίηση πολλών σηµαντικών προβληµάτων (π.χ. δίκτυα
ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 6: Προβλήματα ικανοποίησης περιορισμών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 6: Προβλήματα ικανοποίησης περιορισμών Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Οι βασικές λειτουργίες (ή πράξεις) που γίνονται σε μια δομή δεδομένων είναι:
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Μια δομή δεδομένων στην πληροφορική, συχνά αναπαριστά οντότητες του φυσικού κόσμου στον υπολογιστή. Για την αναπαράσταση αυτή, δημιουργούμε πρώτα ένα αφηρημένο μοντέλο στο οποίο προσδιορίζονται
Παράδειγµα: Προσοµοίωση µιας ουράς FIFO Οι λειτουργίες που υποστηρίζονται από µια ουρά FIFO είναι: [enq(q,x), ack(q)] [deq(q), return(q,x)] όπου x είν
Wait-free προσοµοιώσεις αυθαίρετων αντικειµένων Έχουµε δει ότι το πρόβληµα της οµοφωνίας δεν µπορεί να επιλυθεί µε χρήση µόνο read/write καταχωρητών. Πολλοί µοντέρνοι επεξεργαστές παρέχουν επιπρόσθετα
Επίλυση Προβλημάτων 1
Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα Ανάλυση Αλγορίθμων Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ανάλυση Αλγορίθμων Η ανάλυση αλγορίθμων περιλαμβάνει τη διερεύνηση του τρόπου
ΤΕΧΝΗΤΉ ΝΟΗΜΟΣΎΝΗ ΚΑΙ ΕΜΠΕΙΡΑ ΣΥΣΤΉΜΑΤΑ
ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΤΕΧΝΗΤΉ ΝΟΗΜΟΣΎΝΗ ΚΑΙ ΕΜΠΕΙΡΑ ΣΥΣΤΉΜΑΤΑ Σημειώσεις Διδασκαλίας Θεμιστοκλής Ν. Παναγιωτόπουλος Καθηγητής Τμήμα Πληροφορικής Πανεπιστήμιο Πειραιά Δρ. Γ. Αναστασάκης
Σχεδιασµός και δράση στον πραγµατικό κόσµο
Σχεδιασµός και δράση στον πραγµατικό κόσµο Planning and Acting in the Real World Ενέργειες µε διάρκεια Init(Σασί(C 1 ) Σασί(C 2 ) Μηχανή(E 1, C 1, 30) Μηχανή(E 2, C 2, 60) Τροχοί(W 1, C 1, 30) Τροχοί(W
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Μερική Παρατηρησιµότητα Θεωρία Παιγνίων Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Reinforcement Learning (RL)
ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ
ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΡΑΚΤΟΡΩΝ ΠΕΡΙΓΡΑΦΗ ΠΡΟΒΛΗΜΑΤΩΝ ΚΑΙ ΑΝΑΖΗΤΗΣΗ ΛΥΣΗΣ Καραγιώργου Σοφία Γενικά Περί Πρακτόρων Με το όρο πράκτορα
Πρόβληµα ικανοποίησης περιορισµών
Προβλήµατα ικανοποίησης περιορισµών Constraint Satisfaction Problems Πρόβληµα ικανοποίησης περιορισµών Μεταβλητές: X 1, X 2,, X n, Πεδία ορισµού: D 1, D 2, D n Περιορισµοί: C 1, C 2,, C m Ανάθεση τιµών:
ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ
ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΑΛΓΟΡΙΘΜΟΙ ΕΥΡΕΣΗΣ ΛΥΣΗΣ ΑΛΓΟΡΙΘΜΟΙ ΕΥΡΕΣΗΣ ΒΕΛΤΙΣΤΗΣ ΛΥΣΗΣ ΑΛΓΟΡΙΘΜΟΙ ΕΥΡΕΣΗΣ ΛΥΣΗΣ ΣΕ ΠΑΙΓΝΙΑ ΔΥΟ ΑΝΤΙΠΑΛΩΝ Καραγιώργου
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Λήψη Α οφάσεων υ ό Αβεβαιότητα Decision Making under Uncertainty Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Εντο
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Πιθανοτική Συλλογιστική Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Αβεβαιότητα πεποιθήσεων πράκτορας θεωρίας
Αλγόριθµοι Γραφηµάτων
Αλγόριθµοι Γραφηµάτων Παύλος Σπυράκης Πανεπιστήµιο Πατρών Τοµέας Θεµελιώσεων και Εφαρµογών της Επιστήµης των Υπολογιστών Ερευνητικό Ακαδηµαϊκό Ινστιτούτο Τεχνολογίας Υπολογιστών Γραφήµατα Μοντελοποίηση
ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ
ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΚΟΥΛΙΝΑΣ ΓΕΩΡΓΙΟΣ Δρ. Μηχανικός Παραγωγής & Διοίκησης ΔΠΘ The Tabu Search Algorithm Glover, F. (1986). Future paths for integer programming and links to artificial
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 / ένδρα Ενα δένδρο είναι
Άσκηση 2: Λαβύρινθοι και ρομπότ Α. (Σχεδιασμός χώρου καταστάσεων) Ενδεικτική επίλυση
Άσκηση 2: Λαβύρινθοι και ρομπότ Η εταιρία «Ρομπότ» παρουσιάζει το νέο της μοντέλο, τον πλοηγό πάρκων Ρ-310. Το Ρ-310 είναι δημοφιλές γιατί όπου και αν είσαι μέσα στο πάρκο σου λέει πώς πρέπει να κινηθείς
Τεχνητή Νοημοσύνη ( )
Εβδομάδα Διάλεξη Ενδεικτικά θέματα διαλέξεων Ενδεικτικά θέματα εργαστηρίων/φροντιστηρίων 1 1 1 2 2 3 2 4 3 5 3 6 4 7 4 8 5 9 Τεχνητή Νοημοσύνη (2017-18) Γενικές πληροφορίες για το μάθημα. Εισαγωγή στην