ΠΛΗ 405 Τεχνητή Νοηµοσύνη Ε ανάληψη. πεπερασµένα χρονικά περιθώρια ανά κίνηση. απευθείας αξιολόγηση σε ενδιάµεσους κόµβους
|
|
- Διονύσιος Αθανασιάδης
- 9 χρόνια πριν
- Προβολές:
Transcript
1 ΠΛΗ 405 Τεχνητή Νοηµοσύνη Παιχνίδια Τύχης Λογικοί Πράκτορες Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης
2 Ε ανάληψη Περιορισµοί χρόνου πεπερασµένα χρονικά περιθώρια ανά κίνηση Συναρτήσεις αξιολόγησης απευθείας αξιολόγηση σε ενδιάµεσους κόµβους Έλεγχος α οκο ής απόφαση τερµατισµού εκβάθυνσης Μ. Γ. Λαγουδάκης Πρώιµο κλάδεµα Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 2 κλάδεµα επιλεγµένων κινήσεων
3 Σήµερα Παιχνίδια τύχης αναζήτηση expectiminimax Παιχνίδια ατελούς ληροφόρησης εξέταση διαθέσιµης πληροφορίας Λογικοί ράκτορες πράκτορες βασισµένοι στη λογική Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 3
4 Παιχνίδια Τύχης Chance Games
5 Παιχνίδια Τύχης (Chance Games) Παιχνίδια τύχης παιχνίδια µε στοιχείο τύχης Στοιχείο τύχης απρόβλεπτα ενδεχόµενα καθορίζει νόµιµες κινήσεις ζάρια, κέρµα, νέα κάρτα,... Μ. Α όδοση Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 5 ικανότητα και τύχη Παράδειγµα: Τάβλι ζαριά νόµιµες κινήσεις
6 3 Κόµβοι τύχης σηµεία τυχαιότητας στο δένδρο απόγονοι: πιθανά συµβάντα βάρος: πιθανότητα συµβάντος τρίτος «παίκτης» Υ ολογισµός Μ. Γ. Λαγουδάκης αναµενόµενη τιµή Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 6 Τάβλι 36 ζαριές, 21 διακριτές Ρ(διπλή)=1/36, Ρ(απλή)=1/18 Κόµβοι Τύχης (Chance Nodes)
7 ένδρο Αναζήτησης µε Κόµβους Τύχης Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 7
8 EXP-MINIMAX-VALUE(n)= UTILITY(n) maxs successors(n)exp-minimax-value(s) mins successors(n)exp-minimax-value(s) s successors(n)p(s) EXP-MINIMAX-VALUE(s) If nis a chance terminal max node node Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 8 Βέλτιστη Στρατηγική ExpectiMinimax Περι τωσιακή στρατηγική για κάθε δυνατή κίνηση του αντιπάλου, για κάθε πιθανό ενδεχόµενο ExpectiMinimax Παραδοχές ο αντίπαλος είναι αλάνθαστος, παίζει πάντα τη βέλτιστη κίνηση η πιθανότητα κάθε τυχαίου συµβάντος είναι γνωστή
9 Συναρτήσεις Αξιολόγησης Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 9 παρεκλίσεις από πραγµατικές τιµές πιθανόν να αποβούν µοιραίες διατήρηση: θετικός γραµµικός µετασχηµατισµός πιθανότητας νίκης
10 O( (bn)m) Πολυ λοκότητα b νόµιµες κινήσες, n τυχαία ενδεχόµενα, m στρώσεις χρονική πολυπλοκότητα: τάβλι: b 20, n = 21 bn 420 αναζήτηση µέχρι m 3 Χαρακτηριστικά Αλγορίθµου ExpectiMinimax Κλάδεµα α-β δεν µπορεί να κλαδέψει κόµβους τύχης Μ. Γ. Λαγουδάκης η τυχαιότητα Τµήµα «σπάει» ΗΜΜΥ πιθανές Πολυτεχνείο ακολουθίες κινήσεων Κρήτης Σελίδα 10 πολύ περιορισµένη βελτίωση Κλάδεµα α-β για ExpectiMinimax άνω ή κάτω φράγµα για την τιµή κόµβου τύχης προϋπόθεση: φράγµατα για τις τιµές των τερµατικών κόµβων
11 Παιχνίδια Ατελούς Πληροφόρησης Games with Incomplete Information
12 Παιχνίδια Ατελούς Πληροφόρησης Ατελής ληροφόρηση ατελής γνώση της κατάστασης και των κινήσεων του αντιπάλου παραδείγµατα: χαρτοπαίγνια, ναυµαχία, stratego, scrabble,... Μέση τιµή α ό εικασίες (averaging over clairvoyancy) υπολογισµός τιµής για όλες τις πιθανές πλήρεις καταστάσεις υπολογισµός αναµενόµενης τιµής µε αντίστοιχες πιθανότητες Μ. Γ. Λαγουδάκης Πρόβληµα Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 12 λανθασµένη θεώρηση: η πλήρης κατάσταση θα γίνει γνωστή, δηλαδή η µελλοντική αβεβαιότητα θα επιλυθεί όταν χρειαστεί! Παράδειγµα: πόρτα Α: 100, πόρτα Β: ή πηγάδι
13 Στρατηγική υ ό Ατελή Πληροφόρηση Πληροφορία εξέταση της διαθέσιµης ληροφορίας σε κάθε σηµείο του παιχνιδιού αναζήτηση στο χώρο των πεποιθήσεων ή καταστάσεων πληροφορίας Στόχοι εξασφάλιση περισσότερης πληροφορίας για τον παίκτη αποκάλυψη λιγότερης πληροφορίας στον αντίπαλο Μ. Γ. Ορθολογιστική Λαγουδάκης Τµήµα συµ εριφορά ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 13 ενέργειες που αποσκοπούν στη συλλογή πληροφοριών ενέργειες που αποσκοπούν στη µετάδοση πληροφοριών ενέργειες που αποσκοπούν στη σύγχυση πληροφοριών
14 Σύνοψη Παιχνίδια προκλητικά, διασκεδαστικά, αλλά και επικίνδυνα! ιδάγµατα η τελειότητα είναι ουτοπία, «επιτυγχάνεται» µόνο προσεγγιστικά η αβεβαιότητα παρεµποδίζει την ακριβή αξιολόγηση καταστάσεων αξίζει να σκέφτεται κανείς για τι πρέπει να σκέφτεται (µετα-σκέψη) Μ. Γ. Λαγουδάκης βέλτιστες αποφάσεις Τµήµα ΗΜΜΥ εξαρτώνται Πολυτεχνείο από την κατάσταση Κρήτης πληροφορίας Σελίδα 14 Παιχνίδια και Τεχνητή Νοηµοσύνη τα παιχνίδια για την ΤΝ είναι ό,τι το grand prix για τα αυτοκίνητα
15 Λογικοί ράκτορες Logical Agents
16 Πράκτορες Βασισµένοι στη Γνώση (Knowledge-Based Agents) Λογικοί ράκτορες αναπαράσταση γνώσης (knowledge representation) διαδικασίες συµπερασµού (inference procedures) βασικό όχηµα: λογική (logic) Πλεονεκτήµατα αναπαράσταση γενικής χρήσης ευελιξία, προσαρµογή Μ. Γ. Λαγουδάκης συνδυασµός Τµήµα πληροφοριών ΗΜΜΥ Πολυτεχνείο «ανακάλυψη» Κρήτης νέας γνώσης Σελίδα 16 συνδυασµός γνώσης και αντίληψης αποκάλυψη κατάστασης Μειονεκτήµατα οριστική (definite) γνώση, έλλειψη χειρισµού αβεβαιότητας
17 Βάση Γνώσης (Knowledge Base) Βάση γνώσης ένα σύνολο προτάσεων (sentences) αρχικοποίηση: γνωστικό υπόβαθρο (background knowledge) Πρόταση ισχυρισµός για τον κόσµο του πράκτορα γλώσσα αναπαράστασης: τυπική γλώσσα Μ. Γ. Λαγουδάκης Βασικές διεργασίες Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 17 Tell: ενηµέρωση της βάσης γνώσης Ask: εξαγωγή συµπερασµάτων από βάση γνώσης
18 Α λός Λογικός Πράκτορας Μ. Γ. Λαγουδάκης στόχοι, σε αντίθεση µεταβολές Τµήµα τη διαδικαστική ηλωτική (declarative) ΗΜΜΥ καταστάσεων, ροσέγγιση Πολυτεχνείο (procedural) αµετάβλητοι Κρήτης προσέγγιση ισχυρισµοί,... Σελίδα 18 ο πράκτορας αποφασίζει πώς πρέπει να ενεργήσει δίνουµε στον πράκτορα την απαραίτητη γνώση για τον κόσµο
19 ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006 για wumpus, χρυσόγούβα Ο Κόσµος του Wumpus Μέτρο πλέγµα για για κάθε χρήση βήµα βέλους α όδοσης µετακίνηση στροφή 4x4, P(γούβα)=0.2 αρπαγή Περιβάλλον εξακόντιση +90οή εµπρός 90ο Ε ενεργητές Μ. Γ. Λαγουδάκης [δυσοσµία, χρυσού αύρα, βέλους Τµήµα λάµψη, γδούπος, ΗΜΜΥ κραυγή] Πολυτεχνείο Κρήτης Σελίδα 19 Αισθητήρες
20 Παράδειγµα Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 20
21 Παράδειγµα Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 21
22 Μελέτη Σύγγραµµα Ενότητες 6.5, 7.1, 7.2 Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 22
Ε ανάληψη. Παιχνίδια παιχνίδια ως αναζήτηση. Βέλτιστες στρατηγικές στρατηγική minimax. Βελτιώσεις κλάδεµα α-β
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Παιχνίδια Τύχης Παιχνίδια Ατελούς Πληροφόρησης Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Παιχνίδια παιχνίδια ως αναζήτηση Βέλτιστες στρατηγικές
Ε ανάληψη. Προβλήµατα ικανο οίησης εριορισµών. ορισµός και χαρακτηριστικά Ε ίλυση ροβληµάτων ικανο οίησης εριορισµών
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Αναζήτηση µε Αντι αλότητα Adversarial Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Προβλήµατα ικανο οίησης εριορισµών ορισµός και
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Λογικοί Πράκτορες Προτασιακή Λογική Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Παιχνίδια τύχης αναζήτηση expectiminimax Παιχνίδια ατελούς
ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2007. Ε ανάληψη. Προβλήµατα ικανο οίησης εριορισµών ορισµός και χαρακτηριστικά
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Αναζήτηση µε Αντι αλότητα Adversarial Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Προβλήµατα ικανο οίησης εριορισµών ορισµός και
ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 2015-2016 Τεχνητή Νοημοσύνη Λογικοί Πράκτορες Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος http://ai.uom.gr/aima/ 2 Πράκτορες βασισμένοι
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Α οδοτικός Προτασιακός Συµ ερασµός Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Λογικοί ράκτορες πράκτορες βασισµένοι στη λογική Λογικές
ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 9: Προτασιακή λογική. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 9: Προτασιακή λογική Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Α οδοτικός Προτασιακός Συµ ερασµός Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Λογικές τυπικές γλώσσες λογική κάλυψη Προτασιακή λογική
Λογικοί πράκτορες. Πράκτορες βασισµένοι στη γνώση
Λογικοί πράκτορες Πράκτορες βασισµένοι στη γνώση Βάση γνώσης (knowledge base: Σύνολο προτάσεων (sentences Γλώσσα αναπαράστασης της γνώσης Γνωστικό υπόβαθρο: «Αµετάβλητο» µέρος της ΒΓ Βασικές εργασίες:
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Πληροφορηµένη Αναζήτηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Πράκτορας ε ίλυσης ροβληµάτων πράκτορας µε στόχο Αναζήτηση διατύπωση
Θεωρία Λήψης Αποφάσεων
Θεωρία Λήψης Αποφάσεων Ενότητα 8: Αναζήτηση με Αντιπαλότητα Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.) Αναζήτηση
Ε ανάληψη. Παιχνίδια τύχης. Παιχνίδια ατελούς ληροφόρησης. Λογικοί ράκτορες. ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. αναζήτηση expectiminimax
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Προτασιακή Λογική Propositional Logic Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Παιχνίδια τύχης αναζήτηση expectiminimax Παιχνίδια ατελούς
Ε ανάληψη. Ορισµοί της Τεχνητής Νοηµοσύνης (ΤΝ) Καταβολές. Ιστορική αναδροµή. Πράκτορες. Περιβάλλοντα. κριτήρια νοηµοσύνης
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Αναζήτηση Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Ορισµοί της Τεχνητής Νοηµοσύνης (ΤΝ) κριτήρια νοηµοσύνης Καταβολές συνεισφορά
Ε ανάληψη. Καταβολές. Ιστορική αναδροµή. Πράκτορες. Περιβάλλοντα. συνεισφορά άλλων επιστηµών στην ΤΝ. 1956 σήµερα
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Α ληροφόρητη Αναζήτηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Καταβολές συνεισφορά άλλων επιστηµών στην ΤΝ Ιστορική αναδροµή 1956
Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 6η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας
Ε ανάληψη. Α ληροφόρητη αναζήτηση
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Το ική Αναζήτηση Local Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Α ληροφόρητη αναζήτηση σε πλάτος, οµοιόµορφου κόστους, σε βάθος,
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες
ΕΚΠ 43 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Πιθανοτική Συλλογιστική στο Χρόνο Temporal robabilisic Reasoning Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης ΕΚΠ 43/606 Αυτόνοµοι
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Α ληροφόρητη και Πληροφορηµένη Αναζήτηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Πράκτορες χαρακτηριστικά στοιχεία και είδη πρακτόρων
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Πιθανοτική Συλλογιστική Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Αβεβαιότητα πεποιθήσεων πράκτορας θεωρίας
Αναζήτηση με Αντιπαλότητα
Αναζήτηση με Αντιπαλότητα Μανόλης Κουμπαράκης Τεχνητή Νοημοσύνη 1 Αναζήτηση με Αντιπαλότητα Όταν σε ένα περιβάλλον έχουμε περισσότερους από ένα πράκτορες, τότε κάθε πράκτορας πρέπει να λαμβάνει υπόψη του
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Σύγχρονοι Αλγόριθµοι Σχεδιασµού Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Σχεδιασµός το πρόβληµα του σχεδιασµού γλώσσα αναπαράστασης
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Πράκτορες και Περιβάλλοντα Αναζήτηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Ορισµοί της Τεχνητής Νοηµοσύνης κριτήρια νοηµοσύνης Καταβολές
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 5: Αναπαράσταση Γνώσης με Λογική
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Τεχνητή Νοημοσύνη Ενότητα 5: Αναπαράσταση Γνώσης με Λογική Αν. καθηγητής Στεργίου Κωνσταντίνος kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Επίλυση Προβλημάτων 1
Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης
ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. Ε ανάληψη. πράκτορες βασισµένοι σε προτασιακή λογική. πράκτορες βασισµένοι σε κύκλωµα
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Λογική Πρώτης Τάξης First-Order Logic Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Συστηµατική αναζήτηση DPLL Το ική αναζήτηση WalkSat Λογικοί
Επίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης
Επίλυση προβληµάτων Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης! Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Γενικά " Ντετερµινιστικά
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Σχεδιασµός και ράση στον Πραγµατικό Κόσµο Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Γραφήµατα σχεδιασµού δοµή δεδοµένων για κατασκευή
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι Ροµ οτικοί Πράκτορες Αβεβαιότητα Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Πράκτορες χαρακτηριστικά στοιχεία είδη πρακτόρων αυτόνοµοι
ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. Ε ανάληψη. δοµή δεδοµένων για κατασκευή ευρετικών συναρτήσεων Ο αλγόριθµος GraphPlan
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Σχεδιασµός και ράση στον Πραγµατικό Κόσµο Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Γραφήµατα σχεδιασµού δοµή δεδοµένων για κατασκευή
Συστηματική Αναζήτηση και Ενισχυτική Μάθηση για το Επιτραπέζιο Παιχνίδι Backgammon
Συστηματική Αναζήτηση και Ενισχυτική Μάθηση για το Επιτραπέζιο Παιχνίδι Backgammon Στέλιος Τσιγδινός Σχολή Ηλεκτρονικών Μηχανικών & Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Εξεταστική Επιτροπή: Αν. Καθ.
ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΕΡΓΑΣΤΗΡΙΟ 3
Version 1.0 (16/03/2017) Σχολή Τεχνολογικών Εφαρμογών (ΣΤΕΦ) Τμήμα Μηχανικών Πληροφορικής Τ.Ε. Διδάσκων: Γκόγκος Χρήστος Μάθημα: Τεχνητή Νοημοσύνη (εργαστήριο Δ εξαμήνου) Ακαδημαϊκό έτος 2016-2017 εαρινό
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Θεωρία Παιγνίων Μαρκωβιανά Παιχνίδια Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Μερική αρατηρησιµότητα POMDPs
Τεχνητή Νοημοσύνη. 7η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 7η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel
Επίλυση προβλημάτων με αναζήτηση
Επίλυση προβλημάτων με αναζήτηση Περιεχόμενα Μέθοδοι (πράκτορες) επίλυσης προβλημάτων Προβλήματα και Λύσεις Προβλήματα παιχνίδια Προβλήματα του πραγματικού κόσμου Αναζήτηση λύσεων Δέντρο αναζήτησης Στρατηγικές
Βιβλιογραφικές και ιστορικές σηµειώσεις Ασκήσεις Προβλήµατα Ικανοποίησης Περιορισµών
Περιεχόµενα 1 Εισαγωγή... 31 1.1 Τι Είναι η Τεχνητή Νοηµοσύνη... 31 Ανθρώπινη δράση: Η προσέγγιση µε τη δοκιµασία Turing... 32 Ανθρώπινη σκέψη: Η προσέγγιση µε γνωστικά µοντέλα... 33 Ορθολογική σκέψη:
Κεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση
Κεφάλαιο 5 Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Λήψη Α οφάσεων υ ό Αβεβαιότητα Decision Making under Uncertainty Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Εντο
Επίλυση προβληµάτων. Αλγόριθµοι Αναζήτησης
Επίλυση προβληµάτων! Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Γενικά " Τεχνητή
Κεφάλαιο 29 Θεωρία παιγνίων
HA. VAIAN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Εκδόσεις Κριτική Κεφάλαιο 29 Θεωρία παιγνίων Ύλη για τη Μίκρο ΙΙ: κεφάλαιο 29.1, 29.2, 29.4, 29.7, 29.8 Κεφάλαιο 29 Θεωρία παιγνίων Ταυτόχρονα
Υπολογιστικό Πρόβληµα
Υπολογιστικό Πρόβληµα Μετασχηµατισµός δεδοµένων εισόδου σε δεδοµένα εξόδου. Δοµή δεδοµένων εισόδου (έγκυρο στιγµιότυπο). Δοµή και ιδιότητες δεδοµένων εξόδου (απάντηση ή λύση). Τυπικά: διµελής σχέση στις
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Πιθανοτική Συλλογιστική II Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης ίκτυα Bayes σηµασιολογία Πλεονεκτήµατα συµπαγής αναπαράσταση
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις Πέμπτη 27 Ιουνίου 2013 10:003:00 Έστω το πάζλ των οκτώ πλακιδίων (8-puzzle)
ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 2015-2016 Τεχνητή Νοημοσύνη Επίλυση προβλημάτων με αναζήτηση Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος http://ai.uom.gr/aima/ 2
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Παίγνια Δύο Αντιπάλων Τα προβλήματα όπου η εξέλιξη των καταστάσεων εξαρτάται
Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων
Τεχνητή Νοημοσύνη 06 Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Εισαγωγικά (1/3) Τα προβλήματα όπου η εξέλιξη των καταστάσεων εξαρτάται από δύο διαφορετικά σύνολα τελεστών μετάβασης που εφαρμόζονται
ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 2015-2016 Τεχνητή Νοημοσύνη Αβεβαιότητα Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος http://ai.uom.gr/aima/ 2 Δράση υπό αβεβαιότητα
Αιτιολόγηση με αβεβαιότητα
Αιτιολόγηση με αβεβαιότητα Στα προβλήματα του πραγματικού κόσμου οι αποφάσεις συνήθως λαμβάνονται υπό αβεβαιότητα (uncertainty), δηλαδή έλλειψη επαρκούς πληροφορίας. Οι κυριότερες πηγές αβεβαιότητας είναι:
Περιεχόμενα ΕΝΟΤΗΤΑ I. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Πρόλογος 15
Περιεχόμενα Πρόλογος 15 ΕΝΟΤΗΤΑ I. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 1 Τεχνητή νοημοσύνη 21 1.1 Εισαγωγή 21 1.2 Ιστορική εξέλιξη 22 1.3 Εφαρμογές Τεχνητής Νοημοσύνης 25 2 Επίλυση Προβλημάτων 29 2.1 Διαμόρφωση
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΤΗΝ ΛΟΓΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΥ
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΤΗΝ ΛΟΓΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΥ μπλ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΚΑΙ ΣΥΜΠΕΡΑΣΜΟΣ ΜΙΧΑΛΗΣ
Ε ανάληψη. Ε αναλαµβανόµενες καταστάσεις. Αναζήτηση µε µερική ληροφόρηση. Πληροφορηµένη αναζήτηση. µέθοδοι αποφυγής
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Πληροφορηµένη Αναζήτηση II Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Ε αναλαµβανόµενες καταστάσεις µέθοδοι αποφυγής Αναζήτηση µε µερική
ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις Παρασκευή 28 Σεπτεµβρίου 2007 ιάρκεια: 13:00-16:00
Ασκήσεις μελέτης της 6 ης διάλεξης
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 6 ης διάλεξης 6.1. (α) Το mini-score-3 παίζεται όπως το score-4,
Extensive Games with Imperfect Information
Extensive Games with Imperfect Information Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εκτεταµένα παίγνια µε ατελή πληροφόρηση
ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση
ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης
Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης
Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων
ΠΑΙΧΝΙΔΙ PACMAN 3D ΜΕ ΜΕΘΟΔΟΥΣ ΕΝΙΣΧΗΤΙΚΗΣ ΜΑΘΗΣΗΣ
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΛΗ513 - ΑΥΤΟΝΟΜΟΙ ΠΡΑΚΤΟΡΕΣ- ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2015 ΕΡΓΑΣΙΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΠΑΙΧΝΙΔΙ PACMAN 3D ΜΕ ΜΕΘΟΔΟΥΣ ΕΝΙΣΧΗΤΙΚΗΣ ΜΑΘΗΣΗΣ
Τεχνητή Νοημοσύνη Ι. Ενότητα 6: Αναζήτηση με Αντιπαλότητα
Τεχνητή Νοημοσύνη Ι Ενότητα 6: Αναζήτηση με Αντιπαλότητα Μουστάκας Κωνσταντίνος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Αναζήτηση με Αντιπαλότητα 2 Περιεχόμενα
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Μερική Παρατηρησιµότητα Θεωρία Παιγνίων Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Reinforcement Learning (RL)
Πρόλογος. Πρόλογος 13. Πώς χρησιμοποείται αυτό το βιβλίο 17
Πρόλογος Πρόλογος 13 Πώς χρησιμοποείται αυτό το βιβλίο 17 1 Η λογική σκέψη 19 1.1 Τυπική λογική 20 1.1.1 Διερευνητικά προβλήματα 21 1.1.2 Σύνδεσμοι και προτάσεις 21 1.1.3 Οι πίνακες αλήθειας 23 1.1.4 Λογικές
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες ίκτυα Bayes Bayesian Networks Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Αβεβαιότητα πεποιθήσεων πράκτορας θεωρίας
Επιλογές και Κριτήρια Σχεδιασμού ΑΤΔ Ανεξαρτήτως από Γλώσσα Υλοποίησης 24/4/2012
Επιλογές και Κριτήρια Σχεδιασμού ΑΤΔ Ανεξαρτήτως από Γλώσσα Υλοποίησης 24/4/2012 Κύκλος (Ζωής) Λογισμικού (ΑΤΔ) Γενικά Ορισμός ΑΤΔ (Προδιαγραφές) Οργάνωση Δεδομένων Τι κάνει Υλοποίηση Σχεδιασμός (ανεξάρτητος
Σηματοδοτικά Παίγνια και Τέλεια Μπεϊζιανή Ισορροπία
Σηματοδοτικά Παίγνια και Τέλεια Μπεϊζιανή Ισορροπία - Ορισμός. Ένα παίγνιο ονομάζεται παίγνιο πλήρους πληροφόρησης (game of complete information) όταν κάθε παίκτης διαθέτει πλήρη πληροφόρηση για τις συναρτήσεις
ΑΥΤΟΝΟΜΟΙ ΠΡΑΚΤΟΡΕΣ. ΑΝΑΦΟΡΑ ΕΡΓΑΣΙΑΣ Othello-TD Learning. Βόλτσης Βαγγέλης Α.Μ
ΑΥΤΟΝΟΜΟΙ ΠΡΑΚΤΟΡΕΣ ΑΝΑΦΟΡΑ ΕΡΓΑΣΙΑΣ Othello-TD Learning Βόλτσης Βαγγέλης Α.Μ. 2011030017 Η παρούσα εργασία πραγματοποιήθηκε στα πλαίσια του μαθήματος Αυτόνομοι Πράκτορες και σχετίζεται με λήψη αποφάσεων
Ασκήσεις στην διωνυμική κατανομή
Ασκήσεις στην διωνυμική κατανομή Όπου χρειάζεται να γίνει χρήση του μικροϋπολογιστή 1) Επιλέγουμε ένα τυχαίο δείγμα τεσσάρων μεταχειρισμένων ραδιοφώνων. Αν γνωρίζουμε ότι η πιθανότητα να μην υπάρχει ελαττωματικό
Αλγόριθµοι Ευριστικής Αναζήτησης
Αλγόριθµοι Ευριστικής Αναζήτησης Ευριστικός µηχανισµός (heuristic) είναι µία στρατηγική, βασισµένη στη γνώση για το συγκεκριµένο πρόβληµα, ηοποίαχρησιµοποιείται σα βοήθηµα στη γρήγορη επίλυσή του.! Ο ευριστικόςµηχανισµός
Σχεδίαση και Ανάλυση Αλγορίθμων
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4.0 Επιλογή Αλγόριθμοι Επιλογής Select και Quick-Select Σταύρος Δ. Νικολόπουλος 2016-17 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros
Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/
Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας
Δομές Δεδομένων και Αλγόριθμοι. Λουκάς Γεωργιάδης
Δομές Δεδομένων και Αλγόριθμοι Λουκάς Γεωργιάδης loukas@cs.uoi.gr www.cs.uoi.gr/~loukas Στόχοι Μαθήματος Η σχεδίαση και ανάλυση αλγορίθμων και δομών δεδομένων αποτελεί σημαντικό τμήμα της πληροφορικής.
Πληροφορική 2. Τεχνητή νοημοσύνη
Πληροφορική 2 Τεχνητή νοημοσύνη 1 2 Τι είναι τεχνητή νοημοσύνη; Τεχνητή νοημοσύνη (AI=Artificial Intelligence) είναι η μελέτη προγραμματισμένων συστημάτων τα οποία μπορούν να προσομοιώνουν μέχρι κάποιο
ΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση μεγιστοποιήσει την πιθανότητά
ΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση: Έστω ότι έχουμε τους παίκτες Χ και Υ. Ο κάθε παίκτης, σε κάθε κίνηση που κάνει, προσπαθεί να μεγιστοποιήσει την πιθανότητά του να κερδίσει. Ο Χ σε κάθε κίνηση που κάνει
Το Υπόδειγμα της Οριακής Τιμολόγησης
Το Υπόδειγμα της Οριακής Τιμολόγησης (ilgrom, Paul and John Roberts 98, imit Pricing and Entry under Incomplete Information) - Μια επιχείρηση ακολουθεί πολιτική οριακής τιμολόγησης (limit pricing) όταν
Στοχαστικές Στρατηγικές
Στοχαστικές Στρατηγικές 3 η ενότητα: Εισαγωγή στα στοχαστικά προβλήματα διαδρομής Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 2018-2019 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ 035: οµές εδοµένων και Αλγόριθµοι για Ηλεκτρολόγους Μηχανικούς και Μηχανικούς Υπολογιστών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 035: οµές εδοµένων και Αλγόριθµοι για Ηλεκτρολόγους Μηχανικούς και Μηχανικούς Υπολογιστών Ακαδηµαϊκό έτος 2010 2011, Χειµερινό εξάµηνο Παρασκευή - 17/12/10 (08:30-11:30)
Ασκήσεις στις κατανομές και ειδικά στην διωνυμική κατανομή και κανονική κατανομή
Ασκήσεις στις κατανομές και ειδικά στην διωνυμική κατανομή και κανονική κατανομή Όπου χρειάζεται να γίνει χρήση του μικροϋπολογιστή 3xi -2 1) Για την τυχαία διακριτή μεταβλητή Χ ισχύει Ρ(Χ=x i )= 5, x
66 Κάρτες. 1 εξάπλευρο ζάρι 1 εγχειρίδιο κανόνων. φύλλα κίνησης μαθητευόμενων. το ταμπλό. 16 δείκτες θορύβου / εξαφάνισης. δείκτες σύλληψης & γύρου
...και να είστε βέβαιοι, πως η αμαρτία σας θα σας βρει. ΠΔ Αριθμοί 32:23 Οι μαθητευόμενες έχουν ξεφύγει! Οι προκλήσεις τις έχουν τραβήξει έξω από τα κελιά τους, και ελπίζουν να μην τις πιάσουν οι ηγουμένες.
Δέντρα Απόφασης (Decision(
Δέντρα Απόφασης (Decision( Trees) Το μοντέλο που δημιουργείται είναι ένα δέντρο Χρήση της τεχνικής «διαίρει και βασίλευε» για διαίρεση του χώρου αναζήτησης σε υποσύνολα (ορθογώνιες περιοχές) Ένα παράδειγμα
ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ
ΚΕΦΑΛΑΙΟ 3 ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ Πολλαπλασιαστική αρχή (multiplicatio rule). Έστω ότι ένα πείραμα Ε 1 έχει 1 δυνατά αποτελέσματα. Έστω επίσης ότι για κάθε ένα από αυτά τα δυνατά
ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΠΕΜΠΤΟ ΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ
ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΠΕΜΠΤΟ ΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 Προηγούµενα Μαθήµατα: Παίχτες: είναι αυτοί που λαµβάνουν τις αποφάσεις. Ένα παίγνιο πρέπει
Συστήματα Υποστήριξης Αποφάσεων Διάλεξη Νο2 και 3. Ενισχυτικές διαφάνειες
Συστήματα Υποστήριξης Αποφάσεων Διάλεξη Νο2 και 3 Ενισχυτικές διαφάνειες Πρόβλημα απόφασης υπό το καθεστώς αβεβαιότητας (decision making under uncertainty) Ένα πρόβλημα τοποθετείται γενικά ως πρόβλημα
ΗΥ562 Προχωρημένα Θέματα Βάσεων Δεδομένων Efficient Query Evaluation over Temporally Correlated Probabilistic Streams
ΗΥ562 Προχωρημένα Θέματα Βάσεων Δεδομένων Efficient Query Evaluation over Temporally Correlated Probabilistic Streams Αλέκα Σεληνιωτάκη Ηράκλειο, 26/06/12 aseliniotaki@csd.uoc.gr ΑΜ: 703 1. Περίληψη Συνεισφοράς
Αναπαράσταση Γνώσης και Συλλογιστικές
ναπαράσταση Γνώσης και Συλλογιστικές! Γενικά Προτασιακή λογική Λογική πρώτης τάξης Λογικός προγραµµατισµός Επεκτάσεις της Λογικής Πρώτης Τάξης Συστήµατα Κανόνων Επίλογος ναπαράσταση γνώσης " ναπαράσταση
ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ. Κατηγορίες Πληροφοριακών Συστημάτων Διοικητικής Υποστήριξης
ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Κατηγορίες Πληροφοριακών Συστημάτων Διοικητικής Υποστήριξης 1 ΕΙΣΑΓΩΓΗ (1) Ταξινόμηση ΠΣ ανάλογα με τις λειτουργίες που υποστηρίζουν: Συστήματα Επεξεργασίας Συναλλαγών ΣΕΣ (Transaction
Περιεχόμενα. Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23. Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ
Περιεχόμενα Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23 Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ 1. Επαναληπτικοί αλγόριθμοι: Μέτρα προόδου και αναλλοίωτες συνθήκες.....................................................29
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Τελικές εξετάσεις Παρασκευή 4 Ιουλίου 2014, 18:00-21:00
ΘΕΜΑ 1 ο (2 μονάδες) ΠΑΝΕΠΙΣΤΗΜΙ ΜΑΚΕΔΝΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΣΜΕΝΗΣ ΠΛΗΡΦΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΗΜΣΥΝΗ Τελικές εξετάσεις Παρασκευή 4 Ιουλίου 2014, 18:00-21:00 Δίνεται ο παρακάτω χάρτης πόλεων της Ρουμανίας με τις μεταξύ
ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 5: Παραδείγματα. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 5: Παραδείγματα Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας
ΕΚΠ 413 / ΕΚΠ 606 Υ ολογισµός µε Πράκτορες στο ιαδίκτυο
ΕΚΠ 413 / ΕΚΠ 606 Υ ολογισµός µε Πράκτορες στο ιαδίκτυο ιδάσκων Μιχαήλ Γ. Λαγουδάκης Ε ίκουρος Καθηγητής Τοµέας Πληροφορικής Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης ΕΚΠ
Αλγόριθµοι Ευριστικής Αναζήτησης
Αλγόριθµοι Ευριστικής Αναζήτησης Ευριστικός µηχανισµός (heuristic) είναι µία στρατηγική, βασισµένη στη γνώση για το συγκεκριµένο πρόβληµα, ηοποίαχρησιµοποιείται σα βοήθηµα στη γρήγορη επίλυσή του.! Ο ευριστικόςµηχανισµός
Συστήματα Γνώσης. Θεωρητικό Κομμάτι Μαθήματος Ενότητα 2: Βασικές Αρχές Αναπαράστασης Γνώσης και Συλλογιστικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Θεωρητικό Κομμάτι Μαθήματος Ενότητα 2: Βασικές Αρχές Αναπαράστασης Γνώσης και Συλλογιστικής Νίκος Βασιλειάδης, Αναπλ. Καθηγητής Άδειες
Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών. Ένα στοιχείο γράφεται ως, όπου κάθε.
Ψηφιακά Δένδρα Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών τα οποία είναι ακολουθίες συμβάλλων από ένα πεπερασμένο αλφάβητο Ένα στοιχείο γράφεται ως, όπου κάθε. Μπορούμε να
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ
ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 17 Φεβρουαρίου 2004 ιάρκεια: 2 ώρες (15:00-17:00)
ΓΕΩΠΟΝΙΚΗ ΣΧΟΛΗ ΑΠΘ Εργαστήριο Πληροφορικής στη Γεωργία ΠΛΗΡΟΦΟΡΙΚΗ Ι
ΓΕΩΠΟΝΙΚΗ ΣΧΟΛΗ ΑΠΘ Εργαστήριο Πληροφορικής στη Γεωργία ΠΛΗΡΟΦΟΡΙΚΗ Ι Συστήματα Υποστήριξης Αποφάσεων Τα Συστήματα Υποστήριξης Αποφάσεων (Σ.Υ.Α. - Decision Support Systems, D.S.S.) ορίζονται ως συστήματα
Διωνυμική Κατανομή. x Αποδεικνύεται ότι για την διωνυμική κατανομή ισχύει: Ε(Χ)=np και V(X)=np(1-p).
Διωνυμική Κατανομή Ορισμός: Μια τυχαία μεταβλητή Χ λέγεται ότι ακολουθεί την διωνυμική κατανομή αν πληρούνται οι ακόλουθες τρεις συνθήκες: α) Υπάρχουν n επαναλαμβανόμενες δοκιμές οι οποίες είναι στατιστικώς
Προσεγγιστικοί Αλγόριθμοι
Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
Θ.Ε. ΠΛΗ31 (2005-6) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #1 Στόχος Η εργασία επικεντρώνεται σε θέματα προγραμματισμού για Τεχνητή Νοημοσύνη και σε πρακτικά θέματα εξάσκησης σε Κατηγορηματική Λογική. Θέμα 1: Απλές Αναζητήσεις
[ΠΛΗ 417] Τεχνητή Νοημοσύνη. Project Εξαμήνου ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ
[ΠΛΗ 417] Τεχνητή Νοημοσύνη Project Εξαμήνου Γεωργαρά Αθηνά (A.M. 2011030065) ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2015-2016 Στη εργασία εξαμήνου αυτή
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Α ληροφόρητη και Πληροφορηµένη Αναζήτηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Πράκτορας ε ίλυσης ροβληµάτων πράκτορας µε στόχο Αναζήτηση
Μεθοδολογίες παρεµβολής σε DTM.
Μάθηµα : Αλγοριθµικές Βάσεις στη Γεωπληροφορική ιδάσκων : Συµεών Κατσουγιαννόπουλος Μεθοδολογίες παρεµβολής σε DTM.. Μέθοδοι παρεµβολής. Η παρεµβολή σε ψηφιακό µοντέλο εδάφους (DTM) είναι η διαδικασία
οµηµένος Εξελικτικός Αλγόριθµος
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ιπλωµατική Εργασία: οµηµένος Εξελικτικός Αλγόριθµος του Ιωάννη Μ. Κλωνάρη Επιβλέπων: Κυριάκος Χ. Γιαννάκογλου
Περιεχόμενα. 2 Αριθμητικά συστήματα
Περιεχόμενα Πρόλογος 1 Εισαγωγή 1.1 Το μοντέλο Turing 1.2 Το μοντέλο von Neumann 1.3 Συστατικά στοιχεία υπολογιστών 1.4 Ιστορικό 1.5 Κοινωνικά και ηθικά ζητήματα 1.6 Η επιστήμη των υπολογιστών ως επαγγελματικός
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Πράκτορες και Περιβάλλοντα Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Σήµερα Πράκτορες χαρακτηριστικά στοιχεία είδη πρακτόρων