Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ
|
|
- Δράκων Ανδρέου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Α. Να συμπληρωθούν οι ισότητες: (α + β) =.., (α β) 3 = και (α + β)(α β) =.. Β. Να αποδείξετε τη δεύτερη. Θέμα ο Να γράψετε τα τρία (3) κριτήρια ισότητας τριγώνων. Να λυθεί η εξίσωση: = Άσκηση η (5 + 3y) 5 ( y) = Να λυθεί το σύστημα: 4 3y = 5 8y + 1 Στο διπλανό σχήμα ισχύουν ΑΒ = ΑΕ, ΑΕ = ΑΒ και ΑΒ = 6cm, Α = 10cm, Β = 1cm, Α = 4cm. α. Να αποδείξετε ότι τα τρίγωνα ΑΒ και ΑΕ είναι όμοια. β. Να γραφούν οι ίσοι λόγοι των αντίστοιχων πλευρών. γ. Να υπολογιστούν τα ΑΕ και Ε.
2 Α. Να ορίσετε τους τριγωνομετρικούς αριθμούς γωνίας ω με 0 ω 180. Β. Να αποδείξετε ότι για οποιαδήποτε γωνία ω ισχύουν: α. ημ ω + συν ω = 1 β. εφω = ημω συνω Θέμα ο Α. Ποια είναι η γενική μορφή μιας εξίσωσης ου βαθμού με έναν άγνωστο; Β. Ποια παράσταση ονομάζουμε διακρίνουσα;. Να αντιστοιχίσετε τα ερωτήματα της στήλης (Α) με τις απαντήσεις της στήλης (Β) στον παρακάτω πίνακα γνωρίζοντας ότι αναφέρονται σε εξίσωση ου βαθμού: Στήλη Α ιακρίνουσα Α. > 0 Β. < 0. = 0 Στήλη Β Λύσεις εξίσωσης α. ιπλή λύση β. Αόριστη γ. Αδύνατη δ. ύο λύσεις άνισες Μία απάντηση της στήλης (Β) περισσεύει. ίνεται ισοσκελές τρίγωνο ΑΒ (ΑΒ = Α) και ένα σημείο Ο στο εσωτερικό του τριγώνου τέτοιο ώστε να ισχύει ΟΒ = Ο. Να αποδειχθούν ότι: Α. ΟΒ = ΟΒ Β. ΑΒΟ = ΑΟ. Τα τρίγωνα ΑΒΟ και ΑΟ είναι ίσα μεταξύ τους. Άσκηση η Να λυθεί η εξίσωση: = 0 Να λυθεί το σύστημα: ( + 1) + (y ) = ( 3) + (y + 1) + y = 1
3 Να αποδείξετε τις αξιοσημείωτες ταυτότητες: (α β) = α αβ + β (α + β) 3 = α 3 + 3α β + 3αβ + β 3 Θέμα ο Να αποδείξετε ότι: ημ ω + συν ω = 1 (Να γίνει σχήμα) 1 Να γίνουν οι πράξεις: α β Άσκηση η 1 + α + αβ 1 α αβ Να λυθεί το σύστημα: 3 y = y 3 = 4 6 Στο διπλανό σχήμα (σκαρίφημα) να 3 βρεθεί το αν είναι γνωστό ότι ισχύει Ε // Β. +1
4 Α. Τι λέγεται μονώνυμο και από τι αποτελείται; ώστε ένα παράδειγμα μονωνύμου στο οποίο και να αναφέρετε από τι αποτελείται. Β. Πότε δύο μονώνυμα λέγονται όμοια; ώστε ένα παράδειγμα.. Να βρείτε τους φυσικούς αριθμούς λ, μ ώστε η αλγεβρική παράσταση Θέμα ο λ y μ +3 y να είναι μονώνυμο. Α. Τι ονομάζεται ταυτότητα; Β. Να αποδείξετε την ταυτότητα (α β) = α αβ + β. Να συμπληρώσετε τις ταυτότητες: (α + β)(α β) = (α β) 3 = α 3 + β 3 = ίνεται ισοσκελές τρίγωνο ΑΒ (ΑΒ = Α) και η διχοτόμος του Α. Έστω Μ τυχαίο σημείο της Α. Να αποδείξετε ότι το τρίγωνο ΜΒ είναι ισοσκελές. Άσκηση η Α. Αν 1< α < και 1< β < 5, να συμπληρώσετε τα κενά...< 3α <,.. < β <,..< 3α β < (Να δικαιολογήσετε τις απαντήσεις σας). Β. Να βρείτε τις κοινές λύσεις των ανισώσεων: + 5 < και +1 > + 3 Να εξετάσετε αν έχουν κοινή λύση οι εξισώσεις: = 0 και = 4.
5 Α. Να διατυπώσετε το θεώρημα που αναφέρεται σε ίσα τμήματα μεταξύ παράλληλων ευθειών. Β. Να αποδείξετε ότι αν από το μέσο μιας πλευράς ενός τριγώνου φέρουμε ευθεία παράλληλη προς μία άλλη πλευρά του, τότε αυτή διέρχεται από το μέσο της τρίτης πλευράς του.. Να γράψετε τα κριτήρια ισότητας δύο ορθογωνίων τριγώνων. Θέμα ο Α. Να αποδείξετε τη σχέση ημ ω + συν ω = 1 (να γίνει σχήμα). Β. Ο τύπος εφω = ημω ισχύει για τις γωνίες των 0, 90 και 180 ; Να δικαιολογήσετε την συνω απάντησή σας.. Να γράψετε τους τύπους που συνδέουν τους τριγωνομετρικούς αριθμούς δύο παραπληρωματικών γωνιών. Α. Να απλοποιήσετε τα κλάσματα: Α = και Β = 8 και στη συνέχεια να λύσετε την εξίσωση Α Β =1. Άσκηση η Στο διπλανό ορθογώνιο τρίγωνο ΑΒ ( Α = 90 ) φέρ- νουμε το ύψος ΑΚ προς την υποτείνουσα. Από το Κ Κ φέρνουμε την ΚΛ κάθετη στην ΑΒ. Να αποδείξετε: Α. ότι τα τρίγωνα ΑΚ, ΑΚΛ είναι όμοια και Β. ότι ΑΚ = Α ΚΛ. Λ Η γραφική παράσταση της συνάρτησης y = α + β + 3 διέρχεται από τα σημεία 1 7 Α(, 5) και Β,. Να βρείτε τα α, β και στη συνέχεια για α = 1 και β = να 4 βρείτε τις συντεταγμένες των σημείων τομής της παραπάνω συνάρτησης με τους άξονες και y y (υπολογιστικά).
6 Α. Να δώσετε τον ορισμό της ταυτότητας. Β. Να συμπληρώσετε και στη συνέχεια να αποδείξετε την ταυτότητα: (α + β) 3 =... Να χαρακτηρίσετε σωστές (Σ) ή λανθασμένες (Λ) τις παρακάτω σχέσεις: α. (α β) = (β α) β. ( α β) = (α + β) γ. α β = (α + β)(β α) Θέμα ο Α. Με τη βοήθεια κατάλληλου σχήματος να ορίσετε τους τριγωνομετρικούς αριθμούς μιας αμβλείας γωνίας ω. Β. Να συμπληρώσετε τις ισότητες: ημ180 =.. συν(180 ω) = εφ90 =... Να χαρακτηρίσετε σωστές (Σ) ή λανθασμένες (Λ) τις σχέσεις: α. ημ ω = 1 + συν ω β. αν ω = 110 τότε συνω >0 Α. Να απλοποιήσετε τις παραστάσεις: Α = ( ) και Β = 8 Β. Να λύσετε την εξίσωση: Β Α = 0 Άσκηση η ίνεται το πολυώνυμο 3 + α + β 6. Να βρείτε τα α, β αν η αριθμητική τιμή του για = 1είναι 0 και για = 3 είναι Στο διπλανό σχήμα είναι Ε // Β. Α. Να αποδείξετε ότι τα τρίγωνα ΑΕ και ΑΒ είναι όμοια. 6 Β. Να υπολογίσετε το μήκος.
7 Α. ια κάθε πραγματικό αριθμό α και β να δείξετε ότι: (α β) = α αβ + β Β. Να συμπληρώσετε τα αναπτύγματα των ταυτοτήτων: (α + β) =. (α β) 3 = (α β)(α + αβ + β ) = Θέμα ο Α. Στο διπλανό σχήμα δίνεται σημείο Μ(, y) y τέτοιο ώστε να είναι OM = ωκαι ΟΜ = ρ. Να ορίσετε τους τριγωνομετρικούς αριθ- M(, y) ρ ω μούς της γωνίας ω συναρτήσει των συντεταγμένων του σημείου Μ και να γρά- y ψετε τη σχέση του ρ με τις συντεταγμένες του σημείου Μ. Β. Να αποδείξετε ότι για κάθε γωνία ω ισχύει η ισότητα: ημ ω + συν ω = 1 Να λύσετε την εξίσωση: 3 + Άσκηση η = Να λύσετε το σύστημα: (y +1) 1 = y + 8 = ( y) Στο ισοσκελές τρίγωνο ΑΒ το σημείο Μ είναι μέσο της βάσης Β. Αν είναι Β = Ε, να αποδείξετε ότι: Α. το τρίγωνο ΜΕ είναι ισοσκελές Β. τα τρίγωνα ΑΜ και ΑΕΜ είναι ίσα. M
8 Α. Να αποδείξετε ότι: (α + β) = α + αβ + β Β. Να αντιστοιχίσετε τα στοιχεία της 1 ης στήλης με τα στοιχεία της ης : 1 η Στήλη η Στήλη 1. (α + β). (α β) 3. (α + β) 3 4. α β 5. (α β) 3 Α. α αβ + β Β. (α β)(α + β). α 3 3 α β + 3αβ β 3. α + αβ + β Ε. α 3 + 3α β + 3αβ + β 3 Θέμα ο Α. Να διατυπώσετε το Θεώρημα του Θαλή. Β. Να γίνει σχήμα και να γραφτούν οι αντίστοιχες σχέσεις. Στο ισοσκελές τρίγωνο ΑΒ του διπλανού σχήματος το σημείο Μ είναι μέσο της βάσης Β. Αν είναι Β = Ε να αποδείξετε ότι Μ = ΜΕ. Άσκηση η M Να λύσετε την εξίσωση: = ( +1) 9 y = 6 Να λύσετε το σύστημα: 3 y = 14 4
9 Α. Τι είναι μονώνυμο, ποια τα μέρη του και πότε δύο μονώνυμα λέγονται όμοια; Να δώσετε παράδειγμα. Β. Να βρεθεί και να αποδειχθεί το ανάπτυγμα στις παρακάτω δύο ταυτότητες: Θέμα ο (α + β) και (α + β) 3 Να διατυπώσετε τα κριτήρια ισότητας τριγώνου καθώς και τα κριτήρια ισότητας ορθογωνίων τριγώνων. ( 1) + 3y = 3 Να λυθεί το σύστημα: 3 5(y 1) = 6 Άσκηση η Α. Να παραγοντοποιήσετε τις παραστάσεις: α. + β. 3 6 γ. Β. Να λύσετε την εξίσωση: = 3 6 Σε τρίγωνο ΑΒ φέρνουμε τo τμήμα Ε παράλληλο στη Β. Αν είναι ΑΕ =, Α = 30, Β = 18 και Ε = 4 να υπολογίσετε τα ευθύγραμμα τμήματα Α και Ε
10 Α. Να διατυπώσετε το νόμο των Ημιτόνων, Συνημιτόνων σε ένα τρίγωνο. Β. Σε τρίγωνο ΕΖ να εκφράσετε την πλευρά ΕΖ με το νόμο των Συνημιτόνων και μετά να επιλύσετε τον παραπάνω τύπο ως προς το συνημίτονο της γωνίας. Θέμα ο ίνεται η εξίσωση α + β + γ = 0 με α 0 Α. Να γράψετε τους τύπους που μας δίνουν τη ιακρίνουσα και τις λύσεις της εξίσωσης. Β. ια τις διάφορες τιμές της ιακρίνουσας να διακρίνετε το πλήθος των ριζών της εξίσωσης. Στο παρακάτω σχήμα είναι: ΑΒ = 3, Α = 3+, Α = 60, = 30 και Β = Α. Να αποδείξετε ότι Β = 3 Β. Να υπολογίσετε τη Β. Άσκηση η ίνονται οι παραστάσεις: Α = 4 = = Α. Να παραγοντοποιηθούν οι παραπάνω παραστάσεις. 30 Β. Να λυθεί η εξίσωση: 1 Α + 1 Β + 1 = 0 Σε τρίγωνο ΑΒ φέρνουμε τη διχοτόμο Α της γωνίας Α και από την κορυφή Β φέρνουμε τη ΒΚ κάθετο στη διχοτόμο Α η οποία τέμνει την Α στο Ε. Α. Να αποδειχθεί ότι το τρίγωνο ΑΒΕ είναι K ισοσκελές. Β. Να αποδειχθεί ότι το τρίγωνο ΒΕ είναι ισοσκελές.
ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Γ
ΥΜΝΑΣΙΟ - 010 90 Α. Πότε μια αλγεβρική παράσταση λέγεται μονώνυμο και από ποια μέρη αποτελείται; Β. Πότε δύο μονώνυμα λέγονται όμοια;. Τι λέγεται πολυώνυμο; Θέμα ο Α. Να διατυπώσετε την πρόταση που είναι
Διαβάστε περισσότεραΘέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ
Α. Πότε μια αλγεβρική παράσταση λέγεται μονώνυμο και από ποια μέρη αποτελείται; Β. Πότε δύο μονώνυμα λέγονται όμοια;. Τι λέγεται πολυώνυμο; Θέμα ο Α. Να διατυπώσετε την πρόταση που είναι γνωστή ως θεώρημα
Διαβάστε περισσότεραΘέματα Γραπτών Απολυτήριων Εξετάσεων Στο Μάθημα των Μαθηματικών Περιόδου Μαΐου-Ιουνίου 2007 Σχ. Έτος ΤΑΞΗ Γ ΑΣΚΗΣΕΙΣ
Θέματα Γραπτών Απολυτήριων Εξετάσεων Στο Μάθημα των Μαθηματικών Περιόδου Μαΐου-Ιουνίου 007 Σχ. Έτος 006-007 ΤΑΞΗ Γ ΘΕΩΡΙΑ 1. α.) Να συμπληρώσετε τις ταυτότητες : 3 ( α + β ) = ( β ) = α 3 3 3 β.) Να αποδείξετε
Διαβάστε περισσότεραΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ
ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ 1. Να αναπτύξετε τις ταυτότητες: α. (α+8) β. (-) γ. (γ+k) δ. (+γ) ε. (3k-5λ) ζ. (5/κ - 4/λ) η. (/3-χ/4) θ. (χ - 3/χ) ι. (χ/3+3ψ/4) κ. (3χ+χ/) λ. (χ+8)(χ-8)
Διαβάστε περισσότεραΘΕΜΑ 1 Ο Α. i) Να χαρακτηρίσετε τις παρακάτω προτάσεις σαν σωστές (Σ) ή λάθος (Λ)
1 Ο Α. i) Να χαρακτηρίσετε τις παρακάτω προτάσεις σαν σωστές (Σ) ή λάθος (Λ) α) Για την εξίσωση 6x 3x 1 0 ισχύει α = 3, β = -6, γ = 1 β) Η εξίσωση 3 0 δέχεται σαν λύση τον αριθμό. x 3x 3 ιι) Να συμπληρώσετε
Διαβάστε περισσότεραΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΘΕΩΡΙΑ. Β. Να συμπληρώσετε στο γραπτό σας τις παρακάτω σχέσεις ώστε να προκύψουν ταυτότητες:
ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: Γ ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Τι λέγεται ταυτότητα; Β. Να συμπληρώσετε στο γραπτό σας τις παρακάτω σχέσεις ώστε να προκύψουν ταυτότητες: Γ. Να αποδείξετε
Διαβάστε περισσότεραΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ
Θέματα απολυτήριων εξετάσεων Γ Γυμνασίου σχολικού έτους 013-014 ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Γ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών
Διαβάστε περισσότεραΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ
ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Γ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων των απολυτήριων εξετάσεων
Διαβάστε περισσότεραΕρωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...
Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΤΑΞΗ Γ 119. Θέμα 1 ο. Θέμα 2 ο. Άσκηση 1 η. Άσκηση 2 η. Άσκηση 3 η
ΥΜΝΑΣΙΟ ΤΑΞΗ ΥΜΝΑΣΙΟ ΤΑΞΗ 119 α. Πότε μια αλγεβρική παράσταση λέγεται μονώνυμο και από ποια μέρη αποτελείται. Δώστε ένα παράδειγμα μονωνύμου. β. Να αποδείξετε την ταυτότητα: ( ) α + β = α + αβ + β γ. Να
Διαβάστε περισσότεραΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ
ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 009 ΤΑΞΗ: Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Α ΘΕΩΡΙΑ ΘΕΜΑ 1 Ο : α) Ποια μονώνυμα λέγονται αντίθετα; Γράψτε ένα παράδειγμα δύο αντίθετων μονωνύμων. β) Ποια αλγεβρική
Διαβάστε περισσότερα( α β )( α β ) 3. ηµ ω ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 1 + = Α. Στο διπλανό σχήµα δίνεται σηµείο Μ(x,y) τέτοιο ώστε να είναι
ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 1 ΘΕΜΑ 1 Ο Α. Για κάθε πραγµατικό αριθµό α και β να δείξετε ότι ( α + β α + αβ + β Β. Να συµπληρώσετε τα αναπτύγµατα των ταυτοτήτων ( α β ( α β 3 ( α β ( α β + ΘΕΜΑ Ο Α. Στο διπλανό σχήµα
Διαβάστε περισσότεραΑ ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους
Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ στα ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ. Α. Άλγεβρα
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ στα ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Α. Άλγεβρα 1. Τι ονομάζεται ακέραια αλγεβρική παράσταση και τι είναι μονώνυμο; Ποιες από τις παρακάτω παραστάσεις είναι μονώνυμα; 3xa,, 5, x 3, 5 x a (σελ.
Διαβάστε περισσότεραΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ
ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Γ ΓΥΜΝΑΣΙΟΥ Μαθηματικό Περιηγητή 97 ΟΔΗΓΙΕΣ ΓΙΑ ΤΟΥΣ ΜΑΘΗΤΕΣ 1. Τα θέματα και στι 3 τάξει του Γυμνασίου χωρίζονται σε δύο κατηγορίε. Στα θέματα τη θεωρία
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 016-17 1. Τι ονομάζεται αλγεβρική παράσταση; Ονομάζεται κάθε έκφραση που περιέχει πράξεις μεταξύ αριθμών και μεταβλητών.. Τι ονομάζεται αριθμητική τιμή αλγεβρικής
Διαβάστε περισσότεραΒ Γυμνασίου. Θέματα Εξετάσεων
υμνασίου Θέματα Εξετάσεων υμνασίου Θέματα Εξετάσεων υμνασίου Θέματα Εξετάσεων Θέμα 1. α. Ποια ποσά λέγονται ανάλογα και ποια σχέση τα συνδέει; β. Τι γνωρίζετε για τη γραφική παράσταση της συνάρτησης y=αx
Διαβάστε περισσότεραΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: ΠΡΟΣΟΜΟΙΩΣΗ
Προσομοιωμένο διαγώνισμα απολυτήριων εξετάσεων στα Μαθηματικά της Γ Γυμνασίου ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 01-01 ΠΡΟΣΟΜΟΙΩΣΗ Α. ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Να συμπληρώσετε
Διαβάστε περισσότερα( ) ( ( 2 ) ( 2 ) y να υπολογιστεί η α) Για ποιες τιμές του χ δεν ορίζεται η διπλανή παράσταση. Β) Να απλοποιηθεί η διπλανή παράσταση.
Ασκήσεις 1. Να υπολογιστεί η παράσταση: 5 6 6. Να αποδειχθεί ότι: ( ) ( ) (90 ) (90 ) (180 ) 1 (180 ) (180 ) ( ) ( ) ( ) ( ). Να λυθούν τα συστήματα :. Να λυθούν οι εξισώσεις: 1 y 1 5y 7 0 y 1 0 5 6 y
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου, Κεφάλαιο 1ο
1 Ερωτήσεις θεωρίας Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ 1. Τι ονομάζουμε μονώνυμο;. Τι ονομάζουμε ρητή αλγεβρική παράσταση; 3. Ποιες τιμές δεν μπορούν να πάρουν οι μεταβλητές
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ
ΠΝΗΠΤΙ ΘΜΤ ΜΘΗΜΤΙΩΝ ΥΜΝΣΙΟΥ ΘΜ 1 ίνονται οι αλγεβρικές παραστάσεις x 1 3 x x 1 10x 19 και B x x 5 x 4. α) Να κάνετε τις πράξεις και να δείξετε ότι A x 3x 9x 7 και B 3x 6x 7x 54. β) Να παραγοντοποιήσετε
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β
ΥΜΝΑΣΙΟ - 010 48 Α. Τι λέγεται τετραγωνική ρίζα ενός θετικού αριθμού α και πώς συμβολίζεται αυτή; Β. Ποιος αριθμός ονομάζεται άρρητος;. Πώς ορίζονται οι πραγματικοί αριθμοί; Α. Τι λέγεται ημίτονο μιας
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ στα ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ. Α. Άλγεβρα
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ στα ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Α. Άλγεβρα 1. Τι ονομάζεται ακέραια αλγεβρική παράσταση και τι είναι μονώνυμο; Ποιες από τις παρακάτω παραστάσεις είναι μονώνυμα; xa,, 5, x, 5 x a (σελ. 6)
Διαβάστε περισσότεραΕ Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Α Σ.
Μ Ν Σ Υ Κ Σ Ε Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Σ. 1. Να γράψετε τους τύπους του εμβαδού των : (α) τετραγώνου (β) ορθογωνίου παραλληλογράμμου (γ) παραλληλογράμμου (δ) τριγώνου (ε) ορθογωνίου τριγώνου (στ) τραπεζίου.
Διαβάστε περισσότερα2) Να λύσετε την παρακάτω εξίσωση και να εξετάσετε αν έχει τις ίδιες λύσεις με την παραπάνω εξίσωση.
ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ ΙΟΥΝΙΟΥ ΤΑΞΗ: Γ Α. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ Επιλέγετε και απαντάτε σε ένα (1) από τα δύο θέματα θεωρίας ΘΕΜΑ 1 ο Α) Να αποδείξετε την ταυτότητα ( α+β) = α + αβ + β. Β)
Διαβάστε περισσότεραΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ
ΜΕΡΟΣ Α ο ΚΕΦΑΛΑΙΟ. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών. Ονομάζεται αλγεβρική παράσταση μια παράσταση
Διαβάστε περισσότεραΜΑΝΟΣ ΔΟΥΚΑΣ ΓΙΩΡΓΟΣ ΚΟΥΡΕΜΠΑΝΑΣ
ΜΑΝΟΣ ΔΟΥΚΑΣ ΓΙΩΡΓΟΣ ΚΟΥΡΕΜΠΑΝΑΣ Ε Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Α Σ.. Να συμπληρώσετε τα κενά : i) (α μ ) ν = ii) (κ.λ) ν = iii) α μ.α ν = iv) α μ : α ν =. v) (α : β) ν =.. vi) α -ν = a vii)... viii) a...
Διαβάστε περισσότεραΕπαναληπτικές ασκήσεις για το Πάσχα.
Μαθηματικά B Γυμνασίου Επαναληπτικές ασκήσεις για το Πάσχα. Άλγεβρα. Κεφάλαιο 1 ο. 1. Να υπολογιστούν οι παρακάτω αριθμητικές παραστάσεις : 1 7 1 7 1 1 ) - 1 4 : ) -1 1 : 1 4 10 9 6. Να λυθούν οι εξισώσεις:
Διαβάστε περισσότεραΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ
ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ Θέμα 1 ο α ) Ποια παράσταση καλείται μονώνυμο; Δώστε παράδειγμα. β ) Πότε δυο μονώνυμα είναι όμοια ; Δώστε παράδειγμα όμοιων μονωνύμων. γ ) Για ποιες τιμές των μεταβλητών
Διαβάστε περισσότερα2.1 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ
1.1 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ ω µε 0 ο ω 180 ο ΘΕΩΡΙΑ 1. Τριγωνοµετρικοί αριθµοί οξειών γωνιών ορθογωνίου τριγώνου Στο διπλανό ορθογώνιο τρίγωνο θυµίζουµε ότι απέναντι κάθετη ηµω = = ΑΓ υποτείνουσα
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου
ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ
ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών
Διαβάστε περισσότεραΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ' ΓΥΜΝΑΣΙΟΥ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ ΘΕΩΡΙΑ :
ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ' ΓΥΜΝΑΣΙΟΥ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Θέμα 1 ον ΘΕΩΡΙΑ : α) Τι καλείται αριθμητική παράσταση και τι καλείται αλγεβρική παράσταση ; β) Να συμπληρώσετε
Διαβάστε περισσότεραΕρωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου
Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ αγγέλης Α Νικολακάκης Μαθηματικός ΛΙΑ ΛΟΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 0, δηλαδή το σύνολο των μονάδων των απολυτήριων
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ
ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό σας. ΚΕΦΑΛΑΙΟ 1 1. Να συμπληρώσετε
Διαβάστε περισσότεραΘΕΩΡΙΑ ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: ΘΕΜΑ 1 ο. A. Τι ονομάζουμε τετραγωνική ρίζα θετικού αριθμού α ;
ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: B ΘΕΩΡΙΑ ΘΕΜΑ 1 ο A. Τι ονομάζουμε τετραγωνική ρίζα θετικού αριθμού α ; B. Να αντιγράψετε και να συμπληρώσετε τις παρακάτω σχέσεις: i. Αν α 0,
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1
Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες
Διαβάστε περισσότεραΕπαναληπτικές Ασκήσεις
Β' Γυμν. - Επαναληπτικές Ασκήσεις 1 Άσκηση 1 Απλοποίησε τις αλγεβρικές παραστάσεις (α) 2y 2z 8ω 8ω 2y 2z (β) 1x 2y 3z 3 3 z 2z z 2 x y Επαναληπτικές Ασκήσεις Άλγεβρα - Γεωμετρία Άσκηση 2 Υπολόγισε την
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ
ΥΜΝΣΙΟ ΥΜΗΤΤΟΥ ΜΘΗΜΤΙΚ ΥΜΝΣΙΟΥ ΜΙ ΠΡΟΤΟΙΜΣΙ Ι ΤΙΣ ΞΤΣΙΣ - Σελίδα από 6 - . Η ΔΟΜΗ ΤΩΝ ΘΜΤΩΝ ΤΩΝ ΞΤΣΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και τρείς ασκήσεις. µείς θα πρέπει
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ Γ ΓΥΜΝΑΣΙΟΥ
ΕΠΑΝΑΛΗΨΗ Γ ΓΥΜΝΑΣΙΟΥ. Να αποδείξετε ότι: 4 4. Αν x, να υπολογίσετε την τιμή της παράστασης: x x. Να απλοποιήσετε τις παρακάτω παραστάσεις: 8 8 8, 7 48 4. 4. Να υπολογίσετε τα αναπτύγματα: i. x ii. α β
Διαβάστε περισσότεραWeb page: Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία
Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Άλγεβρα Κανόνας των πρόσημων: (+) (+) = + ( ) ( ) = + (+) ( ) = ( ) (+) = Συνοπτική
Διαβάστε περισσότερα1 ΘΕΩΡΙΑΣ...με απάντηση
1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.
Διαβάστε περισσότεραΤα παρακάτω θέματα αποτελούν ασκήσεις προαγωγικών εξετάσεων της Γ Γυμνασίου σε κάποια σχολεία της Ελλάδας.
Τα παρακάτω θέματα αποτελούν ασκήσεις προαγωγικών εξετάσεων της Γ Γυμνασίου σε κάποια σχολεία της Ελλάδας. 1.Δίνεται η παράσταση: A x 1 x x 1x 1 α)να αποδείξετε ότι Ax 11 β)να λύσετε την εξίσωση A 1x γ)να
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου. Μεθοδική Επανάληψη
Μαθηματικά Γ Γυμνασίου Μεθοδική Επανάληψη Στέλιος Μιχαήλογλου www.askisopolis.gr Η επανάληψη των Μαθηματικών βήμα - βήμα Άλγεβρα Κεφάλαιο 1ο: Αλγεβρικές παραστάσεις 1.1. Πράξεις με πραγματικούς αριθμούς
Διαβάστε περισσότεραΆλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται δύναμη α ν με βάση τον πραγματικό αριθμό α και εκθέτη το φυσικό αριθμό >1; H δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα φυσικό αριθμό ν, συμβολίζεται
Διαβάστε περισσότερα1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο
1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο α) Αν χ 1, χ ρίζες της εξίσωσης αχ +βχ+γ=0, 0 να δείξετε ότι S 1 και P 1 Μον. 10 β) Έστω η συνάρτηση
Διαβάστε περισσότεραΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.
ΣΥΛΛΟΓΟΣ «Η ΕΛΛΗΝΙΚΗ ΠΑΙΔΕΙΑ» ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Δίνονται τα πολυώνυμα (3x ) (5 x)(3x ) και 5x 9 i). Να κάνετε τις πράξεις στο πολυώνυμο. ii). Να βρείτε την τιμή του
Διαβάστε περισσότεραΑ Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Συνοπτική Θεωρία Ασκήσεις της Τράπεζας Θεμάτων Ερωτήσεις Σωστού-Λάθους Διαγωνίσματα Επιμέλεια: Συντακτική ομάδα mathp.gr Συντονισμός
Διαβάστε περισσότεραΜαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία
Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου
ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο 1 ο ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α1.1 Ισότητα τριγώνων Στο διπλανό σχήμα το τρίγωνο ΑΒΓ είναι ισοσκελές με ΑΒ=ΑΓ. Προεκτείνουμε τη βάση ΒΓ κατά ίσα τμήματα
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ
2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και
Διαβάστε περισσότεραΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΑ
ΡΠΤΕΣ ΠΡΟΩΙΚΕΣ ΕΞΕΤΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΪΟΥ - ΙΟΥΝΙΟΥ ΜΘΗΜΤΙΚ ΣΤ () ΘΕΩΡΙ ΘΕΜ 1: (α) Να χαρακτηρίσετε καθεμία από τις παρακάτω προτάσεις ως «Σωστή» ή «Λάθος» : 1. Η ευθεία με εξίσωση y = 3x περνάει από την αρχή
Διαβάστε περισσότεραΜαθημαηικά Γ Γυμμαζίου
Μαθημαηικά Γ Γυμμαζίου Μεθοδική Επαμάληψη Σηέλιος Μιχαήλογλου 017-18 www.askisopolis.gr Η επαμάληψη ηωμ Μαθημαηικώμ βήμα - βήμα Άλγεβρα Κεφάλαιο 1ο: Αλγεβρικές παραστάσεις www.askisopolis.gr 1.1. Πράξεις
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ 2008 ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β
ΥΜΝΑΣΙΟ 008 65 ΥΜΝΑΣΙΟ 008 66 α. Πότε μια γωνία λέγεται εγγεγραμμένη και πότε επίκεντρη; β. Ποια είναι η σχέση μεταξύ επίκεντρης και εγγεγραμμένης γωνίας, που βαίνουν στο ίδιο τόξο; γ. Πότε δύο τόξα μ
Διαβάστε περισσότεραΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα
ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ 1 ο δείγμα Α. Θεωρία Α) Πότε ένα πολύγωνο λέγεται κανονικό; Β) Να δώσετε τον ορισμό της εγγεγραμμένης γωνίας σε κύκλο (Ο, ρ). (Να γίνει σχήμα) Γ) Ποια
Διαβάστε περισσότεραΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...
Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο
Διαβάστε περισσότεραΑσκήσεις Επανάληψης Τάξη Δ Εν. 1: Διανύσματα
Ασκήσεις Επανάληψης Τάξη Δ 016-017 Εν. 1: Διανύσματα 1. Να ονομάσετε τα στοιχεία ενός διανύσματος.. Δίνεται το παραλληλόγραμμο ΑΒΓΔ, όπως φαίνεται στο σχήμα. Να χαρακτηρίσετε ΣΩΣΤΟ ή ΛΑΘΟΣ τις πιο κάτω
Διαβάστε περισσότεραΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο
ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο τέλος της πρότασης αν αυτή είναι Σωστή και Λ αν αυτή είναι Λάθος: ύο τρίγωνα είναι ίσα αν έχουν ίσες
Διαβάστε περισσότεραΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ
ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,
Διαβάστε περισσότεραΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ
ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Β ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων των προαγωγικών εξετάσεων
Διαβάστε περισσότεραΆλγεβρα ( ) = ( 1)( 3 2) ( 1) 2. i) Να αποδείξετε ότι ( ) ii) Να υπολογίσετε την αριθμητική τιμή του ( ) iii) Να λύσετε την εξίσωση P( x ) = 0
ΤΑΞΗ Γ ΓΥΜΝΑΣΙΟΥ MAΘΗΜΑΤΙΚΑ 016 ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Άλγεβρα 1) Δίνεται το πολυώνυμο ( ) = ( + 1)( 1) ( + 1)( 5 + 7) P x x x x x i) Να αποδείξετε ότι ( ) P x = 7x x 8 Να υπολογίσετε την αριθμητική τιμή
Διαβάστε περισσότερα2.4 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ 30 Ο 45 Ο 60 Ο
.4 ΤΡΙΩΝΟΜΕΤΡΙΚΟΙ ΡΙΘΜΟΙ 0 Ο 45 Ο 60 Ο ΘΕΩΡΙ. Τριγωνοµετρικοί αριθµοί 0 ο, 45 ο, 60 ο : ηµίτονο συνηµίτονο εφαπτοµένη 0 ο 45 ο 60 ο ΣΚΗΣΕΙΣ. Στο διπλανό πίνακα, σε κάθε πληροφορία της στήλης, να επιλέξετε
Διαβάστε περισσότεραΙωάννης Σ. Μιχέλης Μαθηματικός
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται αριθμητική και τι αλγεβρική παράσταση; Μία παράσταση, που περιέχει πράξεις με αριθμούς ονομάζεται αριθμητική παράσταση. Μία παράσταση, που περιέχει πράξεις
Διαβάστε περισσότεραΓυμνάσιο Μαθηματικά Τάξη B. ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΕΡΟΣ 1ο
113 1 ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΕΡΟΣ 1ο Θέματα εξετάσεων ΤΑΞΗ Β! περιόδου Μαΐου-Ιουνίου στα Μαθηματικά Τάξη B! 114 a. Να διατυπώσετε τον ορισμό της δύναμης α ν με βάση το ρητό α και εκθέτη το φυσικό αριθμό ν >
Διαβάστε περισσότεραΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8
ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,
Διαβάστε περισσότεραΓυμνάσιο Μαθηματικά Τάξη Γ
1 Θέματα εξετάσεων περιόδου Μαΐου-Ιουνίου στα Μαθηματικά Τάξη Γ ΘΕΜΑ 1 0 Η εξίσωση αχ + βχ +γ = 0 είναι βαθμού εξίσωση και λύνεται χρησιμοποιώντας τους τύπους Δ =.. χ 1 =. χ =.. Η διακρίνουσα Δ της εξίσωσης
Διαβάστε περισσότεραΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»
ΕΩΜΕΤΡΙΑ Β ΥΚΕΙΟΥ Κεφάλαιο 9ο: ΜΕΤΡΙΚΕ ΧΕΕΙ Ερωτήσεις του τύπου «ωστό-άθος» Να χαρακτηρίσετε με (σωστό) ή (λάθος) τις παρακάτω προτάσεις. 1. * Αν σε τρίγωνο ΑΒ ισχύει ΑΒ = Α + Β, τότε το τρίγωνο είναι:
Διαβάστε περισσότερα1ο Κεφάλαιο: Συστήματα
ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.
Διαβάστε περισσότεραΟδηγίες & Ενδεικτικά θέματα προαγωγικών & απολυτηρίων εξετάσεων Γυμνασίου Σελίδα 1
ΟΔΗΓIEΣ ΓΙΑ ΤΙΣ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΥΜΝΑΣΙΟΥ Α. ΘΕΩΡΙΑ Οι μαθητές υποχρεούνται σε διαπραγμάτευση ενός απλού από δύο τιθέμενα θέματα θεωρίας της διδαγμένης ύλης. Ένα θέμα από την Άλγεβρα και
Διαβάστε περισσότεραΘέματα Εξετάσεων ΕΠΑ.Λ. Ορισμένα από τα θέματα συντάχθηκαν πριν την αναδιάταξη της διδακτέας ύλης μεταξύ Α και Β Λυκείου
Θέματα Εξετάσεων ΕΠΑ.Λ. Ορισμένα από τα θέματα συντάχθηκαν πριν την αναδιάταξη της διδακτέας ύλης μεταξύ Α και Β Λυκείου Συλλογή-Επιμέλεια: Γ. Κοντογιάννης, Μαθηματικός ΜPhil Α Λυκείου Άλγεβρα Θέματα Εξετάσεων
Διαβάστε περισσότεραΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΑΛΓΕΒΡΑΣ... ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑ 1 Ο
Αµυραδάκη, Νίκαια (1-493576) ΙΑΝΟΥΑΡΙΟΣ 1 Α1. Έστω P(x) ένα πολυώνυµο του x και p ένας πραγµατικός αριθµός. Αν π(χ) είναι το πηλίκο και υ(x) το υπόλοιπο της διαίρεσης του πολυωνύµου P(x) µε το πολυώνυµο
Διαβάστε περισσότεραΜ Α Θ Η Μ Α Τ Ι Κ Α Β Γ Υ Μ Ν Α Σ Ι Ο Υ
Μ Α Θ Η Μ Α Τ Ι Κ Α Β Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Ερωτήσεις θεωρίας Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Δώστε ένα παράδειγμα σχετικό με την έννοια της μεταβλητής 2. Να αναφέρετε
Διαβάστε περισσότεραΓ Ε Ω Μ Ε Τ Ρ Ι Α - Κ Ε Φ Α Λ Α Ι Ο 2
Ε Ω Μ Ε Τ Ρ Ι - Κ Ε Φ Λ Ι Ο 2 Τριγωνομετρία ΛΟΟΣ ΕΥΘΥΡΜΜΩΝ ΤΜΗΜΤΩΝ α α β α β α β 1. ν 2, να υπολογίσετε τους λόγους :,, β β β α β 2. Σε ένα ισόπλευρο τρίγωνο με πλευρά 6 cm και ύψος, να υπολογίσετε τους
Διαβάστε περισσότεραΤριγωνομετρικοί αριθμοί παραπληρωματικών γωνιών
ΜΕΡΟΣ Β. ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΠΑΡΑΠΛΗΡΩΜΑΤΙΚΩΝ ΓΩΝΙΩΝ 491. ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΠΑΡΑΠΛΗΡΩΜΑΤΙΚΩΝ ΓΩΝΙΩΝ Τριγωνομετρικοί αριθμοί παραπληρωματικών γωνιών 8 Μ(x,y) 6 ρ 4 180-ω -10-5 5 Ο ω - -4 Οι παραπληρωματικές
Διαβάστε περισσότεραΕρωτήσεις αντιστοίχισης
Ερωτήσεις αντιστοίχισης 1. ** Να αντιστοιχίσετε κάθε ευθεία που η εξίσωσή της βρίσκεται στη του πίνακα (Ι) µε τον συντελεστή της που βρίσκεται στη, συµπληρώνοντας τον πίνακα (ΙΙ) (α, β 0). 1. ε 1 : y =
Διαβάστε περισσότεραΜαθηματικά Α Τάξης Γυμνασίου
Μαθηματικά Α Τάξης Γυμνασίου Διδακτικό Έτος 2018-2019 Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου. Κεφ. 1 ο :
Διαβάστε περισσότεραΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ 0 ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ α α (ii)
ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ 1-13 1 Ποιοι αριθμοί ονομάζονται ομόσημοι και ποιοι ετερόσημοι; 1 Δίνονται οι αριθμοί: 1,,.1,,, 9, + 3, 3 3.1 Ποιοι από αυτούς είναι θετικοί και ποιοι αρνητικοί;.
Διαβάστε περισσότεραΠροσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α.
Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 014-015 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α. ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν
Διαβάστε περισσότεραΆλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου.
Άλγεβρα Β Λυκείου Στέλιος Μιχαήλογλου wwwaskisopolisgr Το φυλλάδιο αυτό δημιουργήθηκε για να χρησιμοποιηθεί ως επέκταση του σχολικού βιβλίου και όχι αυτόνομα δ έκδοση 0--06 Συστήματα Γραμμικές Εξισώσεις
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x. Να λυθούν οι εξισώσεις: α) 3x x 3 3 5x x β) 4 3 x x x 0
Διαβάστε περισσότεραΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ
ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Β ΓΥΜΝΑΣΙΟΥ Μαθηματικό Περιηγητή 56 ΟΔΗΓΙΕΣ ΓΙΑ ΤΟΥΣ ΜΑΘΗΤΕΣ 1. Τα θέματα και στι 3 τάξει του Γυμνασίου χωρίζονται σε δύο κατηγορίε. Στα θέματα τη θεωρία
Διαβάστε περισσότεραΚαλή Επιτυχία!!! ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...
Αµυραδάκη 0, Νίκαια (10-4903576) ΝΟΕΜΒΡΙΟΣ 011 ΘΕΜΑ 1 Ο Να αποδείξετε ότι, σε ένα ορθογώνιο τρίγωνο, το τετράγωνο µιας κάθετης πλευράς του ισούται µε το γινόµενο της υποτείνουσας επί την προβολή της στην
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Γ ΓΥΜΝΑΣΙΟΥ 4) Να κάνετε τις πράξεις και μετά να βρείτε την αριθμητική τιμή του
ΕΠΑΝΑΗΠΤΙΚΕ ΑΚΗΕΙ Γ ΓΥΜΝΑΙΟΥ ΕΝΟΤΗΤΑ : Αξιοσημείωτες Ταυτότητες 1. Να βρείτε τα αναπτύγματα: 1) 3 ) 3) 5 3 3 5 3 5) 5 4) 3 5 6) ( α 3 + 3β ) 7) (7 + )(7 ) 8) (β 4 + 1)(β + 1)(β + 1)(β 1). Να κάνετε τις
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΤΑΞΗ Β 59 ΑΣΚΗΣΕΙΣ. Θέμα 1 ο. Θέμα 2 ο : Άσκηση 1 η. Άσκηση 2 η. Άσκηση 3 η
ΥΜΝΑΣΙΟ ΤΑΞΗ ΥΜΝΑΣΙΟ ΤΑΞΗ Β 59 α. Να διατυπώσετε το Πυθαγόρειο Θεώρημα. β. Να διατυπώσετε το αντίστροφο του Πυθαγορείου Θεωρήματος. γ. Στο διπλανό σχήμα, το τρίγωνο ΔΕΖ είναι ορθογώνιο ( Δ = 90º) και ΔΑ
Διαβάστε περισσότεραΆλγεβρα Α Λυκείου. Επαναληπτικά θέματα από διαγωνίσματα ΟΕΦΕ Πραγματικοί αριθμοί
wwwaskisopolisgr Άλγεβρα Α Λυκείου Επαναληπτικά θέματα από διαγωνίσματα ΟΕΦΕ 006-08 Δίνεται ότι και y Πραγματικοί αριθμοί α) i Να βρεθούν τα όρια μεταξύ των οποίων περιέχεται το ii Να βρεθούν τα όρια μεταξύ
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Οι ασκήσεις του φυλλαδίου δεν είναι ανά κεφάλαιο, αλλά τυχαία με σκοπό την τελική επανάληψη, και είναι θέματα εξετάσεων από διάφορα σχολεία του νομού Σερρών Σέρρες
Διαβάστε περισσότερα1. Αν α 3 + β 3 + γ 3 = 3αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P (x) = (α - β) x 2 + (β - γ) x + γ - α είναι
_ ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ 1. Αν α + β + γ = αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P () = (α - β) + (β - γ) + γ - α είναι το µηδενικό πολυώνυµο.. Να δειχθεί ότι το πολυώνυµο P () = (κ - ) + (λ + 6) +
Διαβάστε περισσότεραΘΕΜΑ 2 Αν Α, Β είναι ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α ) = 3Ρ(Α), Ρ(Β ) = 1/3 και () 3()
ΘΕΜΑ 1 Ένα Λύκειο έχει 400 μαθητές από τους οποίους οι 00 είναι μαθητές της Α τάξης Αν επιλέξουμε τυχαία ένα μαθητή, η πιθανότητα να είναι μαθητής της Γ τάξης είναι 0% Να βρείτε: i Το πλήθος των μαθητών
Διαβάστε περισσότεραΠ.χ. Ιδιότητα Πρόσθεση Πολλαπλασιασμός. Αντιμεταθετική α + β = β + α αβ = βα. Προσεταιριστική α + (β + γ) = (α + β) + γ α(βγ) = (αβ)γ
Η θεωρία της Γ Γυμνασίου 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) Α Οι πραγματικοί αριθμοί και οι πράξεις τους Πραγματικοί αριθμοί είναι όλοι οι αριθμοί που γνωρίσαμε στις προηγούμενες
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου
Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται
Διαβάστε περισσότεραΚύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων.
ΜΕΡΟΣ Β 1.1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ 397 1. 1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων. Σε κάθε τρίγωνο οι πλευρές και οι γωνίες του ονομάζονται κύρια στοιχεία του τριγώνου. Οι πλευρές
Διαβάστε περισσότερα1 of 79 ΘΕΜΑ 2. Δίνεται η συνάρτηση f(x) = x 2 4x + 5, x R
1 of 79 Δίνεται η συνάρτηση f(x) = x 2 4x + 5, x R α) Να αποδείξετε ότι η f γράφεται στη μορφή f(x) = (x- 2) 2 + 1. (Μονάδες 12) β) Στο σύστημα συντεταγμένων που ακολουθεί, να παραστήσετε γραφικά τη συνάρτηση
Διαβάστε περισσότεραΑΣΚΗΣΗ 3 η : H βαθµολογία των µαθητών σε ένα διαγώνισµα στα Μαθηµατικά φαίνεται στο παραπάνω ραβδόγραµµα.
6 ο ΓΥΜΝΑΣΙΟ ΚΑΡ ΙΤΣΑΣ ΓΡΑΠΤΕΣ ΑΝΑΚΕΦΑΙΛΑΙΩΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟ ΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ ΤΑΞΗ: Β ΓΥΜΝΑΣΙΟΥ ΤΜΗΜΑ:Β 4 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΕΜΠΤΗ 20 ΜΑΪΟΥ 2010 ΘΕΜΑΤΑ ΘΕΩΡΙΑ (Να γράψετε το ένα από τα
Διαβάστε περισσότεραστ) συν30 0 ΑΠΑΝΤΗΣΗ Εύκολα αντιστοιχίζουμε σύμφωνα με τον παραπάνω πίνακα α) i, β) iii, γ) i, δ) v,ε) iii,στ) v
ΜΕΡΟΣ Β. ΤΡΙΩΝΟΜΕΤΡΙΚΟΙ ΡΙΘΜΟΙ ΤΩΝ ΩΝΙΩΝ,5 ΚΙ 79. ΤΡΙΩΝΟΜΕΤΡΙΚΟΙ ΡΙΘΜΟΙ ΤΩΝ ΩΝΙΩΝ,5 ΚΙ Πίνακας τριγωνομετρικών αριθμών των γωνιών,5 και ημίτονο συνημίτονο εφαπτομένη 5 ΕΡΩΤΗΣΕΙΣ ΚΤΝΟΗΣΗΣ. Σε κάθε αριθμό
Διαβάστε περισσότεραΚαρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές
Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές Να βρείτε για καθεμιά από τις παρακάτω γραμμές αν είναι γραφική παράσταση κάποιας συνάρτησης. 4-1 1 () (1) (3) (4) (5) (6) Αν υπάρχει ευθεία
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΙΕΑΣ, ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦ
1 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΙΕΑΣ, ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦ. Δ/ΝΣΗ Α/ΘΜΙΑΣ & Β/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΝΟΤΙΟΥ ΑΙΓΑΙΟΥ Δ/ΝΣΗ Β/ΘΜΙΑΣ ΕΚΠΑ/ΣΗΣ ΔΩΔ/ΣΟΥ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ: ΜΑΙΟΥ-ΙΟΥΝΙΟΥ
Διαβάστε περισσότερα) = Απόσταση σημείου από ευθεία. Υπολογισμός Εμβαδού Τριγώνου. και A
[Επιλογή Ιαν.. Εμβαδόν Τριγώνου ΣΤΟΧΟΙ: Ο µαθητής ϖρέϖει: να είναι ικανός να υϖολογίζει την αϖόσταση σηµείου αϖό ευθεία να είναι ικανός να υϖολογίζει το εµβαδό ενός τριγώνου αϖό τις συντεταγµένες των κορυφών
Διαβάστε περισσότεραΆλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου.
Άλγεβρα Β Λυκείου Στέλιος Μιχαήλογλου wwwaskisopolisgr Το φυλλάδιο αυτό δημιουργήθηκε για να χρησιμοποιηθεί ως επέκταση του σχολικού βιβλίου και όχι αυτόνομα δ έκδοση 0--06 Συστήματα Γραμμικές Εξισώσεις
Διαβάστε περισσότερα