Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο
|
|
- Ακακαλλις Γούναρης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο Πρόβλημα 10 a : Κλίση καμπύλης Πρόβλημα 10 b : Εμβαδόν καμπύλης Πρόβλημα 10 c : Βολές Πρόβλημα 10 d : Κινήσεις Πλανητών Πρόβλημα 10 e : Απλό μαθηματικό εκκρεμές Πρόβλημα 10 f : Ελαστικές Κρούσεις Πως μπορεί κανείς να λύσει προβλήματα Φυσικής με τη βοήθεια της Mathematica
2 Προγραμματισμός με Mathematica Η Mathematica διαθέτει µια υψηλού επιπέδου γλώσσα προγραμματισμού η οποία µας δίνει την δυνατότητα να δηµιουργούµε τις δικές µας συναρτήσεις επεκτείνοντας µε τον τρόπο αυτό τις δυνατότητες της γλώσσας αυτής. H γλώσσα προγραµµατισµού του Mathematica εκτός από την δυνατότητα να διαχειρίζεται σύµβολα και νούµερα, διαθέτει επίσης και τρεις διαφορετικές µεθοδολογίες προγραµµατισµού : τον διαδικασιακό προγραµµατισµό (procedural programming), τον συναρτησιακό προγραµµατισµό (functional programming), και τον κανονοκεντρικό προγραµµατισµό (rule-based programming). ιαδικασιακός προγραµµατισµός (procedural programming): Στον διαδικασιακό προγραµµατισµό πρέπει εµείς να περιγράψουµε, µε την µορφή εντολών, τα βήµατα που θα πρέπει να ακολουθήσει ο υπολογιστής για να επιλύσει ένα πρόβληµα. Συνήθως διαχωρίζουµε το πρόβληµα µας σε επιµέρους ανεξάρτητα προβλήµατα (functions, procedures, subroutines) τα οποία αρχικά επιλύουµε και ελέγχουµε για την ορθότητα τους και στη συνέχεια τα συνθέτουµε ώστε να πάρουµε την επίλυση του αρχικού µας προβλήµατος, µια µέθοδος γνωστή ως σχεδίαση από πάνω προς τα κάτω (top-down design). Συναρτησιακός προγραµµατισµός (functional programming): Το επίκεντρο του συναρτησιακού προγραµµατισµού είναι ο υπολογισµός εκφράσεων και όχι η εκτέλεση εντολών (ανάθεση τιµών σε µεταβλητές όπως στον διαδικασιακό προγραµµατισµό). Οι εκφράσεις στην γλώσσα του συναρτησιακού προγραµµατισµού δηµιουργούνται µε την χρήση συναρτήσεων οι οποίες δέχονται ως ορίσµατα απλές τιµές ή άλλες συναρτήσεις. Κανονοκεντρικός προγραµµατισµός (rule-based programming): Στον κανονοκεντρικό προγραµµατισµό η εκτέλεση των εντολών δεν είναι ακολουθιακή όπως στον διαδικασιακό προγραµµατισµό, αλλά βασίζεται στην ενεργοποίηση συγκεκριµένων συνθηκών. Ο όρος κανόνας (rule) στον κανονοκεντρικό προγραµµατισµό αναφέρετε στον ορισµό της συνάρτησης. Ένα κανονοκεντρικό πρόγραµµα αποτελείται από ένα σύνολο ορισµών συναρτήσεων τα οποία όµως αφορούν πάντα την ίδια συνάρτηση. Κάθε ορισµός αναφέρεται σε διαφορετική µορφή που µπορούν να έχουν τα ορίσµατα της συνάρτησης.
3 Προγραμματισμός με Mathematica
4 Προγραμματισμός με Mathematica Επαναλαμβάνοντας διαδικασίες
5 Προγραμματισμός με Mathematica Επαναλαμβάνοντας διαδικασίες
6 Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο Πρόβλημα 10 a : Κλίση καμπύλης Πρόβλημα 10 b : Εμβαδόν καμπύλης Πρόβλημα 10 c : Βολές Πρόβλημα 10 d : Κινήσεις Πλανητών Πρόβλημα 10 e : Απλό μαθηματικό εκκρεμές Πρόβλημα 10 f : Ελαστικές Κρούσεις Πως μπορεί κανείς να λύσει προβλήματα Φυσικής με τη βοήθεια της Mathematica
7 Πρόβλημα 10 a : Κλίση καμπύλης f[t_] := 3*t + 5 Plot[f[t], {t, -1,1 },GridLines->Automatic] Η κλίση μιας ευθείας γραμμής δείχνει πόσο απότομη είναι η ευθεία σε σχέση με τον οριζόντιο άξονα
8 Πρόβλημα 10 a : Κλίση καμπύλης Η κλίση της f(t) υπολογίζεται από τη σχέση f f ( t ) f ( t ) 2 1 f t t t 2 t 1 επιλέγοντας 2 οποιαδήποτε σημεία από τη γραφική παράσταση της ευθείας f(t 2 )=8, t 2 =1, f(t 1 )=5, t 1 =0
9 Ο υπολογισμός της κλίσης μπορεί να γίνει και από τη σχέση θεωρώντας t 2 =t 1 +Δt, t=t 1 f f ( t t) f ( t) t t Ο υπολογισμός της κλίσης με τη Mathematica μπορεί να γίνει θεωρώντας ένα βήμα Δt και μια συνάρτηση Slope με βάση τον παραπάνω τύπο Δt=0.1; Πρόβλημα 10 a : Κλίση καμπύλης Slope[ t _]: f [ t t] t f [ t]
10 Πρόβλημα 10 a : Κλίση καμπύλης Slope[ t _]: f [ t t] t f [ t] Μπορώ άραγε να χρησιμοποιήσω την ίδια σχέση και σε μια καμπύλη γραμμή;
11 Πρόβλημα 10 a : Κλίση καμπύλης f[t_]:=sin[t]; Δt=0.1; Plot[f[t], {t, 0, 2*Pi}] Slope[ t _]: f [ t t] t f [ t] Plot[Slope[t], {t, 0, 2 pi}] Υπάρχει κάποια σχέση μεταξύ της κλίσης καμπύλης συνάρτησης και της παραγώγου της; Ποια συνάρτηση σας θυμίζει αυτή η καμπύλη; Η καμπύλη αυτή θυμίζει το Cos(t), όπως αναμένεται αν παραγωγίζαμε την συνάρτηση Sin(t).
12 Πρόβλημα 10 a : Κλίση καμπύλης Ο κανονικός υπολογισμός της κλίσης γίνεται από την παρακάτω σχέση όπου το Δt τείνει στο 0 df dt lim t 0 f ( t t) t f ( t) Η κλίση της καμπύλης μιας συνάρτησης ταυτίζεται με την παράγωγο της Η σχέση που χρησιμοποιήσαμε μέχρι τώρα μπορεί να θεωρηθεί μια προσεγγιστική σχέση για τον υπολογισμό της κλίσης, που ανάλογα με την τιμή του Δt δίνει σωστά ή όχι αποτελέσματα. Slope[ t _]: f [ t t] t f [ t]
13 Πρόβλημα 10 a : Κλίση καμπύλης Στην άσκηση αυτή καλείστε να διερευνήσετε την ορθότητα της προσεγγιστικής σχέσης για τον υπολογισμό της κλίσης. Slope[ t _]: 1. α). Υπολογίστε την κλίση της καμπύλης g(t)=2t 3 στο σημείο t=1.0 θεωρώντας το Δt=1.0, 0.5, 0.1, 0.01, β). Με τη βοήθεια της ListPlot σχεδιάστε το διάγραμμα (Κλίσης, Δt) γ). Τι συμβαίνει στην αριθμητική τιμή της κλίσης καθώς το Δt γίνεται ολοένα και μικρότερο; δ). Δείξτε με την εντολή Show την κλίση σε 2 ακραίες τιμές (Δt=10 και Δt=0.001) σε δύο διαστήματα i). 0<t<10 και ii). 0<t<100. Τι παρατηρείτε από τη σύγκριση των δύο καμπύλων σε κάθε διάγραμμα; 2. α). Σχεδιάστε την κλίση της καμπύλης f(t)=3t+4t 5 χρησιμοποιώντας Δt= 0.1 για τις τιμές 0 < t < 5. β). Επίσης σχεδιάστε την παράγωγο της παραπάνω συνάρτησης γ). Με την εντολή Show δείξτε στο ίδιο διάγραμμα τις δύο καμπύλες δ). Πόσο καλή είναι η συμφωνία μεταξύ κλίσης και παραγώγου; ε). Επαναλάβετε την άσκηση 2 για την καμπύλη h(t)=cos(t) με Δt=0.05 και 0<t<2π. 3. Να βρείτε τα τοπικά ακρότατα της συνάρτησης U[t] := 3t 3-9t 2 + 5t -12 στο διάστημα [-2, 2] με τη βοήθεια της παραγώγου της (Τοπικό ακρότατο αλλαγή πρόσημου παραγώγου) f [ t t] t f [ t] Ο έλεγχος αυτός θα γίνει δοκιμάζοντας διάφορες τιμές για την παράμετρο Δt και βλέποντας την επίδραση στη σχέση και συγκρίνοντας τη σχέση αυτή με την παράγωγο της συνάρτησης που αποτελεί και τον ακριβή τύπο υπολογισμού της κλίσης data = Table[{1.0, Slope[1]}, {0.5, Slope[0.5]}, {0.1, Slope[0.1]}, {0.01, Slope[0.01]}, {0.001, Slope[0.001]}]; ListPlot[data, AxesLabel->{ Δt",«Slope"}, AspectRatio->1.0]
14 Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο Πρόβλημα 10 a : Κλίση καμπύλης Πρόβλημα 10 b : Εμβαδόν καμπύλης Πρόβλημα 10 c : Βολές Πρόβλημα 10 d : Κινήσεις Πλανητών Πρόβλημα 10 e : Απλό μαθηματικό εκκρεμές Πρόβλημα 10 f : Ελαστικές Κρούσεις Πως μπορεί κανείς να λύσει προβλήματα Φυσικής με τη βοήθεια της Mathematica
15 Πρόβλημα 10 b : Εμβαδόν καμπύλης a Το ολοκλήρωμα μιας συνάρτησης αποτελεί στην ουσία το εμβαδόν που περικλείεται από την συνάρτηση αυτή, τον άξονα των x και δύο κατακόρυφους άξονες στις θέσεις x=α και x=β. b ή : f ( x) dx Ένας πρακτικός τρόπος υπολογισμού του εμβαδού αυτού είναι η διαίρεση του διαστήματος [α,β] σε μικρά ίσα διαστήματα και στη συνέχεια να θεωρήσουμε το εμβαδόν σαν το άθροισμα των εμβαδών των ορθογωνίων που σχηματίζονται.
16 Πρόβλημα 10 b : Εμβαδόν καμπύλης Η ερώτηση που πηγάζει είναι γιατί να προσπαθώ να υπολογίσω αριθμητικά ολοκληρώματα από τη στιγμή που τελικά η Mathematica κάνει όλη τη δουλειά; Πέρα από τον καθαρά εκπαιδευτικό χαρακτήρα της άσκησης υπάρχουν και προβλήματα όπου δίνονται πειραματικά αποτελέσματα και δεν είναι δυνατή η εύρεση της συνάρτησης f(x), όποτε είμαστε αναγκασμένοι να καταφύγουμε σε αριθμητικές λύσεις.
17 Πρόβλημα 10 b : Εμβαδόν καμπύλης Έχουμε λοιπόν το ολοκλήρωμα της συνάρτησης f(x)=x 3 από 0 ως Και την αριθμητική του προσέγγιση Εύκολα μπορεί να δοκιμάσει κανείς και να δει ότι ανεβάζοντας τον αριθμό των βημάτων Num, η αριθμητική προσέγγιση για το ολοκλήρωμα πλησιάζει την τιμή 0.25, ολοένα και με αργότερο ρυθμό
18 Πρόβλημα 10 b : Εμβαδόν καμπύλης Εναλλακτικά μπορεί να χρησιμοποιήσει και μια διαφορετική προσέγγιση (μεσαίας τιμής) με λίγο καλύτερα αποτελέσματα
19 Πρόβλημα 10 b : Εμβαδόν καμπύλης Τι γίνεται σε περιπτώσεις όπου έχουμε εμβαδόν κάτω από τον άξονα των x;
20 Πρόβλημα 10 b : Εμβαδόν καμπύλης 1. α). Υπολογίστε με τις δύο προσεγγιστικές μεθόδους το εμβαδόν που περικλείεται από την καμπύλη f(x)=x 4 από x=1 ως x=4 θέτοντας τον αριθμό των βημάτων Ν=40. β). Υπολογίστε το αντίστοιχο ολοκλήρωμα. γ). Ποια από τις δύο προσεγγιστικές μεθόδους δίνει καλύτερο αποτέλεσμα; 2). α). Υπολογίστε με τη δεύτερη προσεγγιστική μέθοδο από t=1 ως t=4 (μεσαίας τιμής) το εμβαδόν της καμπύλης g(t)=4t 3 για Ν=30, 40, 50, 60, 70, 80, 90, 100. data2 = Table[{x, Emb2[x]}, {x, 30, 100, 10}] ListPlot[data2, AxesLabel->{ Δx",«Embadon"}, AspectRatio->1.0] β). Σχεδιάστε την αντίστοιχη καμπύλη. γ). Τι παρατηρείτε; 3). Το έργο μιας δύναμης δίνεται από το ολοκλήρωμα της δύναμης σε ένα συγκεκριμένο διάστημα. Με τη βοήθεια αυτής της σχέσης να σχεδιάσετε ένα διάγραμμα δύναμης-απομάκρυνσης για τις εξής δυνάμεις F=-Kx, F=-1/2 Kx 2, F=KCos(x) για x από -1 μέχρι 1 και Κ=100 και να υπολογίσετε το έργο κάθε δύναμης αλλά και το συνολικό έργο.
21 Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο Πρόβλημα 10 a : Κλίση καμπύλης Πρόβλημα 10 b : Εμβαδόν καμπύλης Πρόβλημα 10 c : Βολές Πρόβλημα 10 d : Κινήσεις Πλανητών Πρόβλημα 10 e : Απλό μαθηματικό εκκρεμές Πρόβλημα 10 f : Ελαστικές Κρούσεις Πως μπορεί κανείς να λύσει προβλήματα Φυσικής με τη βοήθεια της Mathematica
22 Πρόβλημα 10 c : Βολές Για το πρόγραμμα αυτό θα χρειαστεί να υπολογίσουμε τις θέσεις του σώματος κάποιες χρονικές στιγμές, τις αντίστοιχες ταχύτητες και τις αντίστοιχες επιταχύνσεις. Η εντολή που θα χρησιμοποιήσουμε είναι η Do: Η εντολή Do επαναλαμβάνει μια σειρά εντολών σύμφωνα με την τιμή μιας παραμέτρου (n) Με τη βοήθεια της Do μπορούμε να δημιουργήσουμε και μια κινούμενη απεικόνιση της βολής καθώς προβάλλει τις διαδοχικές Η παραπάνω θέσεις του εντολή κινητού χρησιμοποιώντας ισοδυναμεί τις με τιμές την x[t], σειρά y[t] που υπολογίζονται. εντολών: Από μέχρι με βήμα Plot[Sin[1.00 x], {x,0,2π}] Plot[Sin[1.25 x], {x,0,2π}] Plot[Sin[1.50 x], {x,0,2π}] Plot[Sin[1.75 x], {x,0,2π}] Plot[Sin[2.00 x], {x,0,2π}] Plot[Sin[2.25 x], {x,0,2π}] Plot[Sin[2.50 x], {x,0,2π}] Plot[Sin[2.75 x], {x,0,2π}] Plot[Sin[3.00 x], {x,0,2π}]
23 Πρόβλημα 10 c : Βολές Η Mathematica μετά την έκδοση 6.0 άλλαξε τον τρόπο λειτουργίας της εντολής Plot. Για να βγάλει αποτέλεσμα η Plot μέσα σε μια εντολή Do πρέπει να συμπεριληφθεί και η παράμετρος: DisplayFunction->Print Do[Plot[Sin[n x], {x, 0, 2 Pi} ], DisplayFunction->Print, {n,1,3,0.25}] Η εντολή Do επαναλαμβάνει μια σειρά εντολών σύμφωνα με την τιμή μιας παραμέτρου (n) Ειδικά για γραφικές απεικονίσεις μπορεί να χρησιμοποιηθεί και η Animate που δημιουργεί ένα κινούμενο σχέδιο βασισμένο στην έκφραση που της δίνεται: Animate[έκφραση, {μεταβλητή, κάτω όριο, πάνω όριο, βήμα}] Έτσι το παραπάνω παράδειγμα γράφεται: Animate[Plot[Sin[n x], {x, 0, 2 Pi} ], {n,1,3,0.25}]
24 Πρόβλημα 10 c : Βολές Οι κινούμενες απεικονίσεις στηρίζονται στην εμφάνιση των διαδοχικών θέσεων του κινητού. Οι εντολές που θα χρησιμοποιήσουμε είναι οι Graphics, Point: Η εντολή Graphics υπολογίζει τη θέση ενός σημείου με συντεταγμένες {x[t], y[t]} ενώ η εντολή Show το εμφανίζει στην οθόνη. Η εντολή PointSize[0.05] σημαίνει ότι το σημείο αυτό έχει μέγεθος ίσο με το 5% της οθόνης. Με τη βοήθεια της εντολής Do τοποθετούνται διαδοχικά σημεία στην οθόνη. Show[Graphics[{PointSize[0.05],Point[{x[t],y[t]}]}] Διάφορες γενικές ρυθμίσεις των γραφικών ρυθμίζονται με την εντολή Set. SetOptions[Graphics, AspectRatio->1, Axes->Automatic, PlotRange->{{0,20},{-25,0}}] Το εύρος των x, y καθορίζεται από την PlotRange->{{x min,x max },{y min,y max }} Η επιλογή AspectRatio->1 ορίζει την ίδια κλίμακα και στους δύο άξονες (x, y). Η επιλογή Axes->Automatic σχεδιάζει αυτόματα τους δύο άξονες (x, y).
25 Πρόβλημα 10 c : Βολές H μελέτη των βολών συνήθως αναφέρεται σε σφαιρικά αντικείμενα που εκτελούν μια σύνθετη κίνηση αποτελούμενη από δύο συνιστώσες: μια οριζόντια κίνηση παράλληλη στην επιφάνεια της γης και μια κατακόρυφη κίνηση. Σύμφωνα με την αρχή της ανεξαρτησίας των κινήσεων η κάθε κίνηση είναι ανεξάρτητη της άλλης και η θέση και η ταχύτητα του κινητού προκύπτουν για κάθε χρονική στιγμή από το διανυσματικό άθροισμα των αντίστοιχων συνιστωσών. Το σύστημα αναφοράς για τη μελέτη των βολών είναι ένα σύστημα συντεταγμένων x-y με διεύθυνση x παράλληλη στην επιφάνεια της γης και διεύθυνση y προς το κέντρο της γης. Αξονας x: y:
26 Πρόβλημα 10 c : Βολές Κίνηση στον άξονα των x: Η ταχύτητα V x είναι σταθερή αν δεν υπάρχει η αντίσταση του αέρα, οπότε α x =0. Κίνηση στον άξονα των y: Η επιτάχυνση είναι η επιτάχυνση της βαρύτητας g=9.8 m/s 2 Ας θεωρήσουμε την απλή περίπτωση όπου ένα σώμα κινείται πάνω στον άξονα-x (παράλληλα στην επιφάνεια της γης) με ταχύτητα V x =10 m/sec και V y =0. Το κινητό ξενικά από την αρχή των αξόνων (x=0, y = 0).
27 Πρόβλημα 10 c : Βολές Πρόγραμμα για τον υπολογισμό της κίνησης για ένα χρονικό διάστημα 2 sec: Clear[x,Vx, y, Vy]; ti=0;tf=2;δt=1/10; x[ti]=0; Vx[ti]=10; y[ti]=0; Vy[ti]=0; g= -9.8; Do[Vx[t+Δt]=Vx[t]; x[t+δt] = x[t] + Vx[t+Δt]*Δt; Vy[t+Δt] = Vy[t] + g*δt; y[t+δt] = y[t] + Vy[t+Δt]*Δt, {t,ti,tf,δt}] Κάθε φορά που εκτελείται η εντολή Do το πρόγραμμα υπολογίζει την νέα θέση του κινητού.
28 Πρόβλημα 10 c : Βολές Τα δεδομένα x[t] και y[t] για να γίνουν γραφική παράσταση πρώτα χρησιμοποιείται η εντολή Table (function) για να δημιουργηθεί μια λίστα δεδομένων και στη συνέχεια η εντολή ListPlot για να εμφανιστεί το γράφημα. data=table[{x[t],y[t]},{t,ti,tf,δt}]; ListPlot[data, AxesLabel {"x","y"}, PlotStyle->PointSize[0.015]] y x
29 Μπορείτε εύκολα να δημιουργήσετε μια ρεαλιστική απεικόνιση της βολής, αν είχατε διαδοχικά φωτογραφικά στιγμιότυπα της βολής SetOptions [Graphics, AspectRatio 1, Axes->Automatic, PlotRange {{0,20},{-25,0}}]; 1). Do[Show[Graphics[{PointSize[0.05], Point[{x[t],y[t]}]}], DisplayFunction Print], {t, ti,tf,δt}] ή εναλλακτικά: Πρόβλημα 10 c : Βολές 2). Animate[Show[Graphics[{PointSize[0.05], Point[{x[t], y[t]}]}]], {t, ti, tf, Δt}] To πρόγραμμα αυτό δημιουργεί μια κινούμενη απεικόνιση της βολής καθώς προβάλλει τις διαδοχικές θέσεις του κινητού χρησιμοποιώντας τις τιμές x[t], y[t] που υπολογίστηκαν προηγουμένως. H παράμετρος DisplayFunction Print χρειάζεται στις εκδόσεις της Mathematica > Η Animate υποστηρίζεται από τις εκδόσεις > της 7-25
30 Πρόβλημα 10 c : Βολές 1. Να εμφανίσετε το διάγραμμα x-y καθώς και την κινούμενη απεικόνιση για ελεύθερη πτώση με τις εξής παραμέτρους: 2. Να εμφανίσετε το διάγραμμα x-y καθώς και την κινούμενη απεικόνιση για πλάγια βολή με τις εξής παραμέτρους:
31 Πρόβλημα 10 c : Βολές Για συνιστώσες αρχική ταχύτητας V x = 10 m/sec και V y = 15 m/sec υπολογίστε τη γωνία θ και την αρχική ταχύτητα V Επειδή η Mathematica υπολογίζει τη συνάρτηση ArcSin σε ακτίνια πρέπει να πολλαπλασιάσετε με (180/π) για να βγει το αποτέλεσμα σε μοίρες. To πρόβλημα μπορεί να υπολογιστεί και αντίστροφα με δεδομένη την αρχική ταχύτητα και την γωνία θ
32 Το πρόγραμμα αυτό υπολογίζει την τροχιά του κινητού σε πλάγια βολή με δεδομένα εισόδου την αρχική ταχύτητα V και τη γωνία θ Πρόβλημα 10 c : Βολές Ενώ η τροχιά του κινητού εμφανίζεται με τις παρακάτω εντολές data = Table[{x[t],y[t]}, {t,ti,tf,δt}]; ListPlot[data, AxesLabel->{"x","y"}, PlotStyle->PointSize[0.02]] y 3. Στην συγκεκριμένη βολή το σώμα δεν φθάνει στο έδαφος. Ρυθμίζοντας το t f από τις αρχικές παραμέτρους μπορείτε να κάνετε το σώμα να φθάνει στο έδαφος; x
33 Πρόβλημα 10 c : Βολές 4. Το βεληνεκές μιας πλάγιας βολής είναι η οριζόντια απόσταση που διανύει το κινητό μέχρι να ακουμπήσει το έδαφος. Δοκιμάζοντας διάφορες γωνίες από 10 ο ως 90 ο να συμπληρώσετε τον παρακάτω πίνακα υπολογίζοντας γραφικά το βεληνεκές και βάζοντας στο t f την κατάλληλη τιμή ώστε το σώμα να φθάνει κάθε φορά στο έδαφος. Σε ποιο διάστημα γωνιών βρίσκεται το μέγιστο βεληνεκές; θ 10 o 20 o 30 o 40 o 50 o 60 o 70 o 80 o 90 o Βεληνεκές
34 Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο Πρόβλημα 10 a : Κλίση καμπύλης Πρόβλημα 10 b : Εμβαδόν καμπύλης Πρόβλημα 10 c : Βολές Πρόβλημα 10 d : Κινήσεις Πλανητών Πρόβλημα 10 e : Απλό μαθηματικό εκκρεμές Πρόβλημα 10 f : Ελαστικές Κρούσεις Πως μπορεί κανείς να λύσει προβλήματα Φυσικής με τη βοήθεια της Mathematica
35 Πρόβλημα 10 d : Κινήσεις Πλανητών O νόμος της βαρύτητας ανακαλύφθηκε από τον Νεύτωνα και εφαρμόζεται σε όλα τα αντικείμενα που έχουν μάζα. Η δύναμη αυτή είναι ελκτική και βρίσκεται πάνω στην ευθεία που ενώνει τα κέντρα των δύο μαζών. F G m A m B r 2 G= Ν m 2 /kg 2 Η περίπτωση m A >>m B είναι πιο απλή καθώς η κίνηση της μάζας m B έχει μικρή επίδραση στην κίνηση της μάζας m A. Σε αυτή την περίπτωση, είναι πιο εύκολο να χρησιμοποιήσουμε ένα σύστημα συντεταγμένων όπως η μάζα m A βρίσκεται στο κέντρο του συστήματος. Η m B είναι η μόνη μάζα που κινείται και βρίσκεται στη θέση (x, y) όπως φαίνεται στο σχήμα.
36 Πρόβλημα 10 d : Κινήσεις Πλανητών Θεωρείστε τις παρακάτω τιμές για τα φυσικά μεγέθη: η σταθερά της παγκόσμιας έλξης: G = 6.67 x N m 2 /kg 2, η μάζα του ήλιου m A = 2.0 x kg, η μάζα της γης m B = 6.0 x kg. Ο χρόνος για μια πλήρη περιφορά της γης γύρω από τον ήλιο t f : 1 έτος = 365 μέρες = 3.1 x 10 7 sec και το χρονικό βήμα, t=t f /500. Επίσης η ταχύτητα της γης χρειάζεται σαν αρχική συνθήκη. Θεωρώντας την τροχιά της γης ως κυκλική με ακτίνα r = 1.5 x m μπορεί να υπολογιστεί από τη σχέση: V y 2 t f r Ας κάνουμε ένα πρόγραμμα υπολογισμού της τροχιάς ενός πλανήτη Στο πρόγραμμα αυτό οι αρχικές συνθήκες είναι: x[0]=1.0 m και y[0]=0.0 m, και αρχική ταχύτητα Vy[0]=0.7 m/sec και Vx[0]=0. Επομένως ο πλανήτης αρχικά βρίσκεται στη δεξιά πλευρά του άξονα x και κινείται προς τα πάνω.
37 Πρόβλημα 10 d : Κινήσεις Πλανητών Στο συγκεκριμένο πρόβλημα έχουμε τις εξής σχέσεις: Και τις εξής αρχικές συνθήκες Με τη βοήθεια της εντολής Do υπολογίστε τις παρακάτω ποσότητες
38 Πρόβλημα 10 d : Κινήσεις Πλανητών Αν θέλω η Do να επαναλάβει περισσότερες από μία εντολές Το n είναι η παράμετρος που παίρνει τιμές από 0 μέχρι 600 (θα υπολογίσω τις διάφορες παραμέτρους 600 φορές) ο χρόνος ανεβαίνει κάθε φορά κατά το 1/600 της περιόδου περιφοράς της γης.
39 Πρόβλημα 10 d : Κινήσεις Πλανητών Η τροχιά του πλανήτη εμφανίζεται με την παρακάτω σειρά εντολών: data = Table[{x[n],y[n]}, {n,0,tf, Steps}]; ListPlot[data, AxesLabel->{"x","y"},AspectRatio->1.0] x y 1. Να υπολογίσετε με τη βοήθεια της εντολής Do τις παραστάσεις: V και a (όπως υπολογίσατε την r). 2. Να κάνετε τις γραφικές παραστάσεις V-r, a-r. 3. Να υπολογίσετε από το διάγραμμα τις μέγιστες τιμές ταχύτητας και επιτάχυνσης καθώς και σε ποιες θέσεις αυτές εμφανίζονται
40 Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο Πρόβλημα 10 a : Κλίση καμπύλης Πρόβλημα 10 b : Εμβαδόν καμπύλης Πρόβλημα 10 c : Βολές Πρόβλημα 10 d : Κινήσεις Πλανητών Πρόβλημα 10 e : Απλό μαθηματικό εκκρεμές Πρόβλημα 10 f : Ελαστικές Κρούσεις Πως μπορεί κανείς να λύσει προβλήματα Φυσικής με τη βοήθεια της Mathematica
41 Πρόβλημα 10 e : Απλό μαθηματικό εκκρεμές Το απλό μαθηματικό εκκρεμές αποτελείται από μια μάζα που κρέμεται από ένα αβαρές σχοινί και κινείται περιοδικά. Η δύναμη του βάρους της μάζας είναι η αιτία της κίνησης αυτής. Εκτός της δύναμης του βάρους στη μάζα ασκείται και μία ακόμα δύναμη, η τάση του νήματος T, η οποία όμως εξουδετερώνεται από την συνιστώσα του βάρους στην κατεύθυνση του νήματος ενώ η άλλη συνιστώσα του βάρους είναι τελικά η υπεύθυνη για την παλινδρομική κίνηση του εκκρεμούς. Η συνιστώσα αυτή είναι η δύναμη επαναφοράς και έχει αντίθετη F=-m g sinθ προς τις αυξήσεις της γωνίας θ. γραμμική ταχύτητα: U=Lω, γωνιακή ταχύτητα: ω=dθ/dt 2 ος νόμος του Νεύτωνα: F=ma F=mdU/dt F=mL dω/dt dω/dt =F/mL ω(t+δt)=ω(t)+dω/dt Δt= ω(t)+f/ml Δt θ(t+δt)=θ(t)+ ω(t+δt) Δt
42 Πρόβλημα 10 e : Απλό μαθηματικό εκκρεμές g=9.8; L=2.0; q[0]=0.05; w[0]=0.0; Δt=0.005;TotalTime=2.9;Steps=Round[TotalTime/Δt]; Do[w[n+1]=w[n]-(g/L)*Sin[q[n]]*Δt; q[n+1]=q[n]+w[n+1]*δt,{n,0, Steps}] qdata = Table[{n*Δt,q[n]}, {n,0,totaltime, Steps}]; qplot = ListPlot[qData, AxesLabel->{"time, t","angle, q"}] Angle, Πρόγραμμα Υπολογισμού θέσεων του εκκρεμούς time, t Η μάζα του εκκρεμούς δεν εμφανίζεται στους υπολογισμούς καθώς απαλοίφεται μετά τις αντικαταστάσεις. Αυτό σημαίνει ότι ένα εκκρεμές μάζας 300 g θα έχει την ίδια περίοδο με ένα εκκρεμές μάζας 6 kg. Η αρχική γωνιακή ταχύτητα είναι w[0]=0 καθώς το εκκρεμές αφήνεται χωρίς αρχική γωνιακή ταχύτητα. Η γωνία στο πρόγραμμα συμβολίζεται με το γράμμα q και η αρχική της τιμή είναι q[0]=0.05 ακτίνια (~3 ). Το χρονικό βήμα Δt=0.005 είναι ένας αρκετά μικρός αριθμός που όσο μικρότερος είναι τόσο περισσότερα βήματα υπολογισμού απαιτούνται αλλά η περίοδος υπολογίζεται με μεγαλύτερη ακρίβεια. Ας δούμε γραφικά πως μεταβάλλεται η Ας δούμε τα 15 τελευταία στιγμιότυπα γωνία του εκκεμούς TableForm[Table[{n*Δt,q[n]},{n,Steps-20,Steps}]] Υπάρχει ένα μέγιστο ( ) τη χρονική στιγμή t = Άρα η περίοδος του εκκρεμούς είναι seconds. Καθώς το βήμα των υπολογισμών ορίζεται από το Δt =0.005 η τελική απάντηση είναι : Τ=2.835 ± s Αν θέλουμε μεγαλύτερη ακρίβεια μπορούμε να επιλέξουμε μικρότερο Δt. L Αντίστοιχος θεωρητικός υπολογισμός : T 2 π g
43 Πρόβλημα 10 e : Απλό μαθηματικό εκκρεμές Διερεύνηση των παραμέτρων του απλού μαθηματικού εκκρεμούς 1. Μεταβολή του L: Με οδηγό τον παρακάτω πίνακα υπολογίστε την περίοδο του εκκρεμούς (βρίσκοντας ποια χρονική στιγμή η μάζα περνάει από μέγιστο για 2 η φορά). Η παράμετρος TotalTime πρέπει να ρυθμιστεί κατάλληλα ώστε το πρόγραμμα να καταγράφει τουλάχιστον 1 πλήρη περίοδο. Διατηρείστε την επιτάχυνση της βαρύτητας g=9.8 m/s 2 και το αρχικό πλάτος q[0]=0.05 ακτίνια. I. Σχεδιάστε το Τ 2 σαν συνάρτηση του L. Τι είδους καμπύλη παίρνετε; Πόση είναι η κλίση της; L II. Υπολογίστε τις αντίστοιχες θεωρητικές τιμές από τη σχέση T 2 π και στη συνέχεια τα αντίστοιχα σφάλματα π= (Τ πειρ -Τ θεωρ )/Τ θεωρ % g L (m) T πειρ (s) T θεωρ (s) π (%)
44 Πρόβλημα 10 e : Απλό μαθηματικό εκκρεμές Διερεύνηση των παραμέτρων του απλού μαθηματικού εκκρεμούς 2. Μεταβολή του g: Υπολογίστε την περίοδο του εκκρεμούς σύμφωνα με τους 2 πίνακες σε διαφορετικά ύψη από την επιφάνεια της γης και σε διαφορετικούς πλανήτες. Σε κάθε περίπτωση διατηρήστε το πλάτος 0.1 ακτίνια και το μήκος του εκκρεμούς 2.0 m. Πως μεταβάλλεται η περίοδος με την απόσταση από την επιφάνεια της γης (διάγραμμα-listplot); Σε ποιον πλανήτη το εκκρεμές ταλαντώνεται πιο αργά και σε ποιον πιο γρήγορα από τους υπόλοιπους; Πλανήτης g (m/s 2 ) Ερμής 3.61 Αφροδίτη 8.83 Άρης 3.75 Δίας 26.0 Κρόνος 11.2 Ουρανός 10.5 Ποσειδώνας 13.3 Πλούτων 0.61 Απόσταση από την επιφάνεια της γης (km) το κέντρο της γης (m) g (m/s 2 ) 0 km 6.38 x 10 6 m km 7.38 x 10 6 m km 8.38 x 10 6 m km 9.38 x 10 6 m km 1.04 x 10 7 m km 1.14 x 10 7 m km 1.24 x 10 7 m km 1.34 x 10 7 m km 1.44 x 10 7 m km 1.54 x 10 7 m km 1.64 x 10 7 m km 5.64 x 10 7 m 0.13
45 Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο Πρόβλημα 10 a : Κλίση καμπύλης Πρόβλημα 10 b : Εμβαδόν καμπύλης Πρόβλημα 10 c : Βολές Πρόβλημα 10 d : Κινήσεις Πλανητών Πρόβλημα 10 e : Απλό μαθηματικό εκκρεμές Πρόβλημα 10 f : Ελαστικές Κρούσεις Πως μπορεί κανείς να λύσει προβλήματα Φυσικής με τη βοήθεια της Mathematica
46 Πρόβλημα 10 f : Ελαστικές Κρούσεις Κρούση ονομάζεται το φαινόμενο όπου ένα σώμα συγκρούεται με ένα άλλο. Η περίπτωση της κρούσης όπου η ενέργεια διατηρείται καλείται ελαστική κρούση. Π.χ. οι μπάλες του μπιλιάρδου κάνουν σχεδόν ελαστικές κρούσεις. Για απλότητα θεωρούμε ότι τα δύο αντικείμενα είναι σφαίρες και κινούνται σε μία διάσταση όπως φαίνεται στο σχήμα. Αρχικά τα δύο σώματα βρίσκονται στις θέσεις x 1, x 2 ενώ μετά από χρόνο Δt στις θέσεις Χ 1 = x 1 +v 1 Δt, Χ 2 = x 2 +v 2 Δt Η σφαίρα 1 κινείται προς τα αριστερά και έχει αρνητική ταχύτητα ενώ η 2 η σφαίρα κινείται προς τα δεξιά και έχει θετική ταχύτητα. Όταν η απόσταση μεταξύ των δύο σφαιρών είναι ίση με τη διάμετρο των σφαιρών τότε συμβαίνει το φαινόμενο της κρούσης Dia=X 2 -X 1, t collis =(Dia-(x 2 -x 1 ))/(v 2 -v 1 ) Αρχή διατήρησης της ορμής: m 1 v 1 +m 2 v 2 =m 1 V 1 +m 2 V 2 Βασικές έννοιες κινητικής ενέργειας: ½ m 1 v 12 + ½ m 2 v 22 = ½ m 1 V 12 + ½ m 2 V 2 2 * Υπόθεση: οι σφαίρες απλώς ολισθαίνουν και δεν περιστρέφονται αλλιώς θα έπρεπε να συμπεριληφθεί και ενεργειακός όρος λόγω περιστροφής.
47 Πρόβλημα 10 f : Ελαστικές Κρούσεις Πρόγραμμα Υπολογισμού θέσεων και ταχυτήτων των δύο μαζών Με δεδομένα τις αρχικές θέσεις και ταχύτητες των δύο μαζών, είναι εύκολο να υπολογιστεί η χρονική στιγμή της κρούσης t collis. Αρχικές συνθήκες: η μάζα m 1 ηρεμεί αρχικά, v 1 =0 και βρίσκεται στην αρχή του άξονα-x, x1[0]=0 m και η μάζα m 2 κινείται προς τη m 1 με ταχύτητα v 1 =6 m/s, αρχική θέση x2[0]=-5 m. Διαδικασία: Το πρόγραμμα υπολογίζει τη θέση της κάθε μάζας σε 10 στιγμιότυπα πριν και 10 στιγμιότυπα μετά από την κρούση. x1[0]=0.;v1=0.;x2[0]=-5.;v2=6.; m1=1.; m2=1.; Dia=1.; tcollis=(dia-(x1[0]-x2[0]))/(v1-v2); NumFrames=10;Δt=tcollis/NumFrames; (* MOTION BEFORE THE COLLISION *) Do[x1[n+1]=x1[n]+v1*Δt; x2[n+1]=x2[n]+v2*δt, {n,0,numframes}] (* CHANGE IN VELCITY DUE TO COLLSION *) DeltaV2=2*(v2-v1)/(1+(m2/m1)); DeltaV1=-(m2/m1)*DeltaV2; v1=v1-deltav1; v2=v2-deltav2; (* MOTION AFTER THE COLLISION *) Do[x1[n+1]=x1[n]+v1*Δt; x2[n+1]=x2[n]+v2*δt, {n,numframes,2*numframes}] Το πρόγραμμα αυτό δεν εμφανίζει απευθείας έξοδο μετά την εκτέλεση του. Υπολογίζει τις θέσεις των δύο μαζών πριν και μετά την κρούση και οι θέσεις αυτές χρησιμοποιούνται στην αναπαράσταση της κρούσης. Για να εμφανιστούν οι ταχύτητες των δύο μαζών μετά την κρούση προσθέτω δύο ακόμη γραμμές στο τέλος του παραπάνω προγράμματος. Print["Velocity of particle 1 (after collision) =", v1] Print["Velocity of particle 2 (after collision) =", v2]
48 Πρόβλημα 10 f : Ελαστικές Κρούσεις Πρόγραμμα Απεικόνισης του φαινομένου της κρούσης Με δεδομένα τις θέσεις της κάθε μάζας σε 10 στιγμιότυπα πριν και 10 στιγμιότυπα μετά από την κρούση το πρόγραμμα απεικονίζει τα 20 στιγμιότυπα του φαινομένου. SetOptions[Graphics,AspectRatio->0.5,Axes->True, Ticks->{{-5.,-2.5,2.5,5.0},None}, PlotRange->{{-6.0,6.0},{-2.0,2.0}}]; Do[Point1=Graphics[{PointSize[0.09],Point[{x1[n],0.}]}]; Point2=Graphics[{PointSize[0.09],Point[{x2[n],0.}]}]; Show[{Point1,Point2}, {n,0,2*numframes}] Μετά την έκδοση 6.0 η Show χρειάζεται την DisplayFunction->Print ή μπορεί Ας δούμε βήμα-βήμα τι κάνει η κάθε εντολή Axes->True: Εμφάνιση αξόνων x, y Ticks->{{-5.,-2.5,2.5,5.0},None}: τοποθετεί ticks στον οριζόντιο άξονα ενώ στον κάθετο όχι AspectRatio->0.5: η κλίμακα του άξονα y ρυθμίζεται στο ½ εκείνης του x PlotRange->{{-6.0,6.0},{-2.0,2.0}}]: ρυθμίζει τα όρια των αξόνων PointSize[0.09]: το σημείο ορίζεται στο 9% του πλάτους της οθόνης. Το Point1 αντιστοιχεί στη δεξιά σφαίρα με συντεταγμένες x1[t] and y1[t]=0. Η αριστερή σφαίρα έχει συντεταγμένες x2[t], y=0 Show: εμφανίζει ταυτόχρονα τις δύο σφαίρες στην οθόνη να αντικατασταθεί από την Animate
49 Πρόβλημα 10 f : Ελαστικές Κρούσεις Διερεύνηση του προβλήματος της κρούσης 1. Επαναλάβετε την παραπάνω διαδικασία θέτοντας τις μάζες από τους παρακάτω πίνακες διατηρώντας τις υπόλοιπες παραμέτρους ίδιες. Καταγράψτε κάθε φορά την νέα απεικόνιση και καταγράψτε τις τελικές ταχύτητες των μαζών μετά την κρούση. m 1 =1 m 1 =2 m 1 =4 m 1 =8 m 1 =16 m 1 =32 m 2 =1 m 2 =1 m 2 =1 m 2 =1 m 2 =1 m 2 =1 V 1 = V 1 = V 1 = V 1 = V 1 = V 1 = V 2 = V 2 = V 2 = V 2 = V 2 = V 2 = m 1 =1 m 1 =1 m 1 =1 m 1 =1 m 1 =1 m 1 =1 m 2 =1 m 2 =2 m 2 =4 m 2 =8 m 2 =16 m 2 =32 V 1 = V 1 = V 1 = V 1 = V 1 = V 1 = V 2 = V 2 = V 2 = V 2 = V 2 = V 2 = 2. Δημιουργήστε τη γραφική παράσταση των V 1, V 2 ως (χωριστές γραφικές παραστάσεις) συνάρτηση του m 2 (ListPlot) και σχολιάστε τα αποτελέσματα. Τι συμβαίνει όταν m 1 >>m 2 ή m 2 >>m 1 ;
Ομάδα Δ. Λύνοντασ Προβλήματα Φυςικήσ με τον υπολογιςτή
Ομάδα Δ. Λύνοντασ Προβλήματα Φυςικήσ με τον υπολογιςτή Πρόβλημα 9 α : Κλίςη καμπύλησ Πρόβλημα 9 β : Εμβαδόν καμπύλησ Πωσ μπορεί κανείσ να λύςει προβλήματα με τη βοήθεια τησ Mahemaica Πρόβλημα 9 α : Κλίςη
ΦΥΣΙΚΗ Ο.Π Β Λ-Γ Λ ΧΡΗΣΤΟΣ ΚΑΡΑΒΟΚΥΡΟΣ ΙΩΑΝΝΗΣ ΤΖΑΓΚΑΡΑΚΗΣ
ΦΥΣΙΚΗ Ο.Π Β Λ-Γ Λ 25/11/2018 ΧΡΗΣΤΟΣ ΚΑΡΑΒΟΚΥΡΟΣ ΙΩΑΝΝΗΣ ΤΖΑΓΚΑΡΑΚΗΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί
ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ Ο.Π Β Λ Γ Λ ΧΡΗΣΤΟΣ ΚΑΡΑΒΟΚΥΡΟΣ ΙΩΑΝΝΗΣ ΤΖΑΓΚΑΡΑΚΗΣ
ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ Ο.Π Β Λ Γ Λ 5//08 ΧΡΗΣΤΟΣ ΚΑΡΑΒΟΚΥΡΟΣ ΙΩΑΝΝΗΣ ΤΖΑΓΚΑΡΑΚΗΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α-Α4 και δίπλα το γράμμα που αντιστοιχεί
ΚΕΦΑΛΑΙΟ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΘΕΩΡΙΑ
ΚΕΦΑΛΑΙΟ o ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΘΕΩΡΙΑ.) Τ ι γνωρίζετε για την αρχή της ανεξαρτησίας των κινήσεων; Σε πολλές περιπτώσεις ένα σώμα εκτελεί σύνθετη κίνηση, δηλαδή συμμετέχει σε περισσότερες από μία κινήσεις. Για
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΚΑΙ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ
ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ B ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΚΑΙ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ Επώνυμο: Όνομα: Τμήμα: Αγρίνιο 10-11-013 ΘΕΜΑ 1 ο Α) Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις επόμενες
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Καμπυλόγραμμες Κινήσεις Επιμέλεια: Αγκανάκης Α. Παναγιώτης, Φυσικός http://phyiccore.wordpre.com/ Βασικές Έννοιες Μέχρι στιγμής έχουμε μάθει να μελετάμε απλές κινήσεις,
Κεφάλαιο 1. Κίνηση σε μία διάσταση
Κεφάλαιο 1 Κίνηση σε μία διάσταση Κινηματική Περιγράφει την κίνηση, αγνοώντας τις αλληλεπιδράσεις με εξωτερικούς παράγοντες που ενδέχεται να προκαλούν ή να μεταβάλλουν την κίνηση. Προς το παρόν, θα μελετήσουμε
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 2014-2015
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / B ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α ΗΜΕΡΟΜΗΝΙΑ: 23-11-2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ Μ.- ΚΑΤΣΙΛΗΣ Α.- ΠΑΠΑΚΩΣΤΑΣ Τ.- ΤΖΑΓΚΑΡΑΚΗΣ Γ. ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1- Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή
ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία
1. Κίνηση Υλικού Σημείου
1. Κίνηση Υλικού Σημείου Εισαγωγή στην Φυσική της Γ λυκείου Τροχιά: Ονομάζεται η γραμμή που συνδέει τις διαδοχικές θέσεις του κινητού. Οι κινήσεις ανάλογα με το είδος της τροχιάς διακρίνονται σε: 1. Ευθύγραμμες
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : NOEMΒΡΙΟΣ 2016
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Β ΛΥΚΕΙΟΥ ΤΜΗΜΑ: Β1 ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : NOEMΒΡΙΟΣ 016 ΘΕΜΑ 1 Ο : Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης
1 ο Διαγώνισμα B Λυκείου Σάββατο 10 Νοεμβρίου 2018
1 ο Διαγώνισμα B Λυκείου Σάββατο 10 Νοεμβρίου 2018 Διάρκεια Εξέτασης 3 ώρες Ονοματεπώνυμο. ΘΕΜΑ Α: Στις ερωτήσεις Α1 ως και Α4 επιλέξτε την σωστή απάντηση: Α1. Υλικό σημείο εκτελεί ομαλή κυκλική κίνηση.
ΔΙΑΓΩΝΙΣΜΑ Αου ΤΕΤΡΑΜΗΝΟΥ ΣΤΑ ΚΕΦΑΛΑΙΑ ΤΑΛΑΝΤΩΣΕΙΣ ΚΡΟΥΣΕΙΣ 4 ο ΛΥΚΕΙΟ ΜΥΤΙΛΗΝΗΣ 11/1/16
ΔΙΑΓΩΝΙΣΜΑ Αου ΤΕΤΡΑΜΗΝΟΥ ΣΤΑ ΚΕΦΑΛΑΙΑ ΤΑΛΑΝΤΩΣΕΙΣ ΚΡΟΥΣΕΙΣ 4 ο ΛΥΚΕΙΟ ΜΥΤΙΛΗΝΗΣ 11/1/16 Θέμα Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της πρότασης και δίπλα το γράμμα που
Κεφάλαιο 2. Κίνηση κατά μήκος ευθείας γραμμής
Κεφάλαιο 2 Κίνηση κατά μήκος ευθείας γραμμής Στόχοι 1 ου Κεφαλαίου Περιγραφή κίνησης σε ευθεία γραμμή όσον αφορά την ταχύτητα και την επιτάχυνση. Διαφορά μεταξύ της μέσης και στιγμιαίας ταχύτητας καθώς
ΘΕΜΑ A: ΔΙΑΡΚΕΙΑ: 120min ΤΜΗΜΑ:. ONOMA:. ΕΠΩΝΥΜΟ: ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ 1 ο ΘΕΜΑ 2 ο ΘΕΜΑ 3 ο ΘΕΜΑ 4 ο ΣΥΝΟΛΟ ΜΟΝΑΔΕΣ
ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ ΔΙΑΡΚΕΙΑ: 1min ONOMA:. ΕΠΩΝΥΜΟ: ΗΜΕΡΟΜΗΝΙΑ: ΤΜΗΜΑ:. ΘΕΜΑ 1 ο ΘΕΜΑ ο ΘΕΜΑ 3 ο ΘΕΜΑ 4 ο ΣΥΝΟΛΟ ΜΟΝΑΔΕΣ ΘΕΜΑ A: 1. Στην ομαλά επιταχυνόμενη κίνηση: Α. η αρχική ταχύτητα είναι πάντα μηδέν,
Διαγώνισμα Φυσικής Γ Λυκείου Απλή αρμονική ταλάντωση Κρούσεις
Διαγώνισμα Φυσικής Γ Λυκείου Απλή αρμονική ταλάντωση Κρούσεις ~ Διάρκεια: 3 ώρες ~ Θέμα Α Α1. Η ορμή συστήματος δύο σωμάτων που συγκρούονται διατηρείται: α. Μόνο στην πλάγια κρούση. β. Μόνο στην έκκεντρη
5. Το διάγραμμα του σχήματος παριστάνει την ταχύτητα ενός σώματος που εκτελεί απλή αρμονική ταλάντωση σε συνάρτηση με τον χρόνο.
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 9/0/06 ΘΕΜΑ Α Στις ερωτήσεις 7 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Mια μικρή σφαίρα προσκρούει
ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΡΓΑΣΙΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2015 ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ
ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΡΓΑΣΙΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2015 ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ Οριζόντια βολή: Είναι η κίνηση (παραβολική τροχιά) που κάνει ένα σώμα το οποίο βάλλεται με οριζόντια ταχύτητα U 0 μέσα στο πεδίο βαρύτητας
ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/10/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ
ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/10/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις
ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24
ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 Εκφώνηση άσκησης 6. Ένα σώμα, μάζας m, εκτελεί απλή αρμονική ταλάντωση έχοντας ολική ενέργεια Ε. Χωρίς να αλλάξουμε τα φυσικά χαρακτηριστικά του συστήματος, προσφέρουμε στο σώμα
γραπτή εξέταση στη ΦΥΣΙΚΗ B κατεύθυνσης
η εξεταστική περίοδος από 4/0/5 έως 08//5 γραπτή εξέταση στη ΦΥΣΙΚΗ B κατεύθυνσης Τάξη: Β Λυκείου Τμήμα: Βαθμός: Ονοματεπώνυμο: Καθηγητές: Θ Ε Μ Α A Στις ερωτήσεις Α-Α4 να επιλέξετε τη σωστή απάντηση.
1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 3 Αυγούστου 2014 Απλή Αρµονική Ταλάντωση - Κρούσεις. Ενδεικτικές Λύσεις. Θέµα Α
1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 3 Αυγούστου 2014 Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α Α.1. Σε µια απλή αρµονική ταλάντωση η αποµάκρυνση και η επιτάχυνση την ίδια χρονική
2.1. Κυκλική κίνηση Κυκλική κίνηση. Ομάδα Β.
2.1.. 2.1.. Ομάδα Β. 2.1.Σχέσεις μεταξύ γραμμικών και γωνιακών μεγεθών στην ΟΚΚ. Κινητό κινείται σε περιφέρεια κύκλου ακτίνας 40m με ταχύτητα μέτρου 4m/s. i) Ποια είναι η περίοδος και ποια η συχνότητά
ΘΕΜΑ Α A1. Στις ερωτήσεις 1 9 να επιλέξετε το γράμμα που αντιστοιχεί στη σωστή απάντηση, χωρίς να αιτιολογήσετε την επιλογή σας.
ΜΑΘΗΜΑ / Προσανατολισμός / ΤΑΞΗ ΑΡΙΘΜΟΣ ΦΥΛΛΟΥ ΕΡΓΑΣΙΑΣ: ΗΜΕΡΟΜΗΝΙΑ: ΤΜΗΜΑ : ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ: ΦΥΣΙΚΗ/ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ / Γ ΛΥΚΕΙΟΥ 1 Ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ( ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ) ΘΕΜΑ Α A1. Στις ερωτήσεις
ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ
η εξεταστική περίοδος 03-4 - Σελίδα ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ Τάξη: Β Λυκείου Τμήμα: Βαθμός: Ημερομηνία: 6-0-03 Διάρκεια: 3 ώρες Ύλη: Κυκλική κίνηση - Βολή - Ορμή - Κρούση Καθηγητής:
Φυσική Προσανατολισμού Β τάξη Ενιαίου Λυκείου 1 0 Κεφάλαιο- Καμπυλόγραμμες κινήσεις : Οριζόντια βολή, Κυκλική Κίνηση. Περιέχει: 1.
Φυσική Προσανατολισμού Β τάξη Ενιαίου Λυκείου 1 0 Κεφάλαιο- Καμπυλόγραμμες κινήσεις : Οριζόντια βολή, Κυκλική Κίνηση Περιέχει: 1. Αναλυτική Θεωρία 2. Ερωτήσεις Θεωρίας 3. Ερωτήσεις Πολλαπλής Επιλογής 4.
ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ
F ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ Όταν δίνονται οι δυνάμεις οι οποίες ασκούνται σε ένα σώμα, υπολογίζουμε τη συνισταμένη των δυνάμεων και από τη σχέση (ΣF=m.α ) την επιτάχυνσή του. Αν ασκούνται σε αρχικά
ΕΡΓΑΣΙΑ 3 η. Παράδοση Οι ασκήσεις είναι βαθμολογικά ισοδύναμες
ΕΡΓΑΣΙΑ 3 η Παράδοση 9--9 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες Άσκηση 1 A) Δυο τραίνα ταξιδεύουν στην ίδια σιδηροτροχιά το ένα πίσω από το άλλο. Το πρώτο τραίνο κινείται με ταχύτητα 1 m s. Το δεύτερο
Φυσική Γ Λυκείου Θετικού Προσανατολισμού Σχ. έτος ο Διαγώνισμα Κρούσεις - Ταλαντώσεις Θέμα 1ο
1ο Διαγώνισμα Κρούσεις - Ταλαντώσεις Θέμα 1ο Στις παρακάτω προτάσεις 1.1 1.4 να γράψετε στο τετράδιο σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη ϕράση που τη συμπληρώνει σωστά.
Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης
Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι ο υπολογισμός του μέτρου της στιγμιαίας ταχύτητας και της επιτάχυνσης ενός υλικού σημείου
7. Ένα σώμα εκτελεί Α.Α.Τ. Η σταθερά επαναφοράς συστήματος είναι.
ΚΕΦΑΛΑΙΟ 1 ο : ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) 6α. Σφαίρα μάζας ισορροπεί δεμένη στο πάνω άκρο κατακόρυφου
ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ
ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Το έργο μίας από τις δυνάμεις που ασκούνται σε ένα σώμα. α. είναι μηδέν όταν το σώμα είναι ακίνητο β. έχει πρόσημο το οποίο εξαρτάται από τη γωνία
Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς.
Μ2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. 1 Σκοπός Η εργαστηριακή αυτή άσκηση αποσκοπεί στη μέτρηση της επιτάχυνσης της βαρύτητας σε ένα τόπο. Αυτή η μέτρηση επιτυγχάνεται
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / B ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 23-11-2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ Μ.- ΚΑΤΣΙΛΗΣ Α.- ΠΑΠΑΚΩΣΤΑΣ Τ.- ΤΖΑΓΚΑΡΑΚΗΣ Γ. ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον
GI_V_FYSP_4_ m/s, ξεκινώντας από το σημείο Κ. Στο σημείο Λ (αντιδιαμετρικό του Κ) βρίσκεται ακίνητο σώμα Σ 2 μάζας m2 1 kg.
Μια ράβδος μήκους R m και αμελητέας μάζας βρίσκεται πάνω σε λείο οριζόντιο επίπεδο και μπορεί να περιστρέφεται γύρω από το σημείο Ο. Στο άλλο άκρο της είναι στερεωμένο σώμα Σ, μάζας m kg το οποίο εκτελεί
Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc
4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1 1. Πότε τα σώματα θεωρούνται υλικά σημεία; Αναφέρεται παραδείγματα. Στη φυσική πολλές φορές είναι απαραίτητο να μελετήσουμε τα σώματα χωρίς να λάβουμε υπόψη τις διαστάσεις τους. Αυτό
ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 19//013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 υ (m/s) Σώμα μάζας m = 1Kg κινείται σε ευθύγραμμη τροχιά
Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 013-014 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 4/11/013 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4
ΦΥΣΙΚΗ (ΠΟΜ 114) ΛΥΣΕΙΣ ΓΙΑ ΤΗΝ ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ 2015
ΦΥΣΙΚΗ (ΠΟΜ 114) ΛΥΣΕΙΣ ΓΙΑ ΤΗΝ ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ 15 Ct 1. Η επιτάχυνση ενός σώματος που κινείται σε ευθεία γραμμή είναι a At Be, όπου Α, B, C είναι θετικές ποσότητες. Η αρχική ταχύτητα του σώματος είναι
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/6 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις
ΚΕΦΑΛΑΙΟ 1 Ο ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ
Σχολικό Έτος 016-017 1 ΚΕΦΑΛΑΙΟ 1 Ο ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ Α. ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ Οριζόντια βολή, ονομάζουμε την εκτόξευση ενός σώματος από ύψος h από το έδαφος, με οριζόντια ταχύτητα u o, όταν στο σώμα επιδρά
περιφέρειας των δίσκων, Μονάδες 6 Δ2) το μέτρο της γωνιακής ταχύτητας του δίσκου (1), Μονάδες 5
15958 Στο σχήμα φαίνονται δύο δίσκοι με ακτίνες R1= 0,2 m και R2 = 0,4 m αντίστοιχα, οι οποίοι συνδέονται μεταξύ τους με μη ελαστικό λουρί. Οι δίσκοι περιστρέφονται γύρω από σταθερούς άξονες που διέρχονται
2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση
2 Η ΠΡΟΟΔΟΣ Ενδεικτικές λύσεις κάποιων προβλημάτων Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση Ένας τροχός εκκινεί από την ηρεμία και επιταχύνει με γωνιακή ταχύτητα που δίνεται από την,
Φάσμα & Group προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι.
σύγχρονο Φάσμα & Group προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. μαθητικό φροντιστήριο 1. 25ης Μαρτίου 111 ΠΕΤΡΟΥΠΟΛΗ 50.27.990 50.20.990 2. 25ης Μαρτίου 74 Πλ. ΠΕΤΡΟΥΠΟΛΗΣ 50.50.658 50.60.845 3. Γραβιάς 85 ΚΗΠΟΥΠΟΛΗ
Δυναμική. Ομάδα Γ. Δυναμική Κατακόρυφη βολή και γραφικές παραστάσεις Κατακόρυφη βολή και κάποια συμπεράσματα.
. Ομάδα Γ. 1.2.21. Κατακόρυφη βολή και γραφικές παραστάσεις Από ένα σημείο Ο σε ύψος Η=25m από το έδαφος εκτοξεύεται κατακόρυφα προς τα πάνω ένα σώμα με αρχική ταχύτητα υ 0 =20m/s. Αν g=10m/s 2, ενώ η
ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014
ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://wwwstudy4examsgr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ
[1kgm 2, 5m/s, 3,2cm, 8rad/s][1kgm 2, 5m/s, 3,2cm, 8rad/s]
ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 5: ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ ΚΑΙ ΕΡΓΟ ΔΥΝΑΜΗΣ ΣΤΗ ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ 34. Μία κατακόρυφη ράβδος μάζας μήκους, μπορεί να περιστρέφεται στο κατακόρυφο επίπεδο γύρω από
F Στεφάνου Μ. 1 Φυσικός
F 1 ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ Όταν δίνονται οι δυνάμεις οι οποίες ασκούνται σε ένα σώμα, υπολογίζουμε τη συνισταμένη των δυνάμεων και από τη σχέση (ΣF=m.α ) την επιτάχυνσή του. Αν ασκούνται σε αρχικά
ΔΥΝΑΜΕΙΣ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ
ΔΥΝΑΜΕΙΣ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ Όταν δίνονται οι δυνάμεις οι οποίες ασκούνται σε ένα σώμα, υπολογίζουμε τη συνισταμένη των δυνάμεων και από τη σχέση (ΣF=m.α ) την επιτάχυνσή του.
ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 A ΦΑΣΗ ΦΥΣΙΚΗ
ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ημερομηνία: Πέμπτη 4 Ιανουαρίου 08 Διάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α Α4 να γράψετε στο τετράδιό
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την
Σάββατο 12 Νοεμβρίου Απλή Αρμονική Ταλάντωση - Κρούσεις. Σύνολο Σελίδων: Επτά (7) - Διάρκεια Εξέτασης: 3 ώρες. Θέμα Α.
Γ Τάξης Γενικού Λυκείου Σάββατο 1 Νοεμβρίου 016 Απλή Αρμονική Ταλάντωση - Κρούσεις Σύνολο Σελίδων: Επτά (7) - Διάρκεια Εξέτασης: 3 ώρες Ονοματεπώνυμο: Θέμα Α. Στις ημιτελείς προτάσεις Α.1 Α.4 να γράψετε
Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου
Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Θέμα 1 ο Σε κάθε μια από τις παρακάτω προτάσεις 1-5 να επιλέξετε τη μια σωστή απάντηση: 1. Όταν ένα σώμα ισορροπεί τότε: i. Ο ρυθμός μεταβολής της ταχύτητάς του
ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ
ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 26 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Κυριακή, 13 Μαΐου, 2012 Παρακαλώ διαβάστε πρώτα τα πιο κάτω, πριν απαντήσετε οποιαδήποτε ερώτηση Γενικές Οδηγίες: 1) Είναι πολύ σημαντικό
ΦΥΣΙΚΗ. α) έχουν κάθε χρονική στιγμή την ίδια οριζόντια συνιστώσα ταχύτητας, και την ίδια κατακόρυφη συνιστώσα ταχύτητας.
Β Λυκείου 14 / 04 / 2019 ΦΥΣΙΚΗ ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις A1 A4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση: Α1. Η ορμή ενός σώματος :
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ
ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΣΧΟΛ. ΕΤΟΣ 2014-125 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΑΣΚΗΣΗ 1 Μικρή σφαίρα εκτοξεύεται τη χρονική στιγμή t=0 από ορισμένο ύψος με αρχική ταχύτητα
Α. Η επιτάχυνση ενός σωματιδίου ως συνάρτηση της θέσης x δίνεται από τη σχέση ax ( ) = bx, όπου b σταθερά ( b= 1 s ). Αν η ταχύτητα στη θέση x
Εισαγωγή στις Φυσικές Επιστήμες (4 7 09) Μηχανική ΘΕΜΑ Α. Η επιτάχυνση ενός σωματιδίου ως συνάρτηση της θέσης x δίνεται από τη σχέση ax ( ) = bx, όπου b σταθερά ( b= s ). Αν η ταχύτητα στη θέση x 0 = 0
3 η εργασία Ημερομηνία αποστολής: 28 Φεβρουαρίου ΘΕΜΑ 1 (Μονάδες 7)
3 η εργασία Ημερομηνία αποστολής: 28 Φεβρουαρίου 2007 ΘΕΜΑ 1 (Μονάδες 7) Η θέση ενός σωματίου που κινείται στον άξονα x εξαρτάται από το χρόνο σύμφωνα με την εξίσωση: x (t) = ct 2 -bt 3 (1) όπου x σε μέτρα
ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΚΥΡΙΑΚΗ 23/04/2017 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ο.Π ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΘΕΜΑ Α Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιο
ΕΛΑΣΤΙΚΗ ΚΡΟΥΣΗ. =1 kg που κινείται προς τα δεξιά με ταχύτητα μέτρου u 1. =8m /s συγκρούεται κεντρικά
ΕΛΑΣΤΙΚΗ ΚΡΟΥΣΗ 1. Σφαίρα μάζας m 1 =1 kg που κινείται προς τα δεξιά με ταχύτητα μέτρου u 1 =8m /s συγκρούεται κεντρικά και ελαστικά με άλλη σφαίρα μάζας =3 kg που κινείται προς τα αριστερά με ταχύτητα
γ. Πόση επιτάχυνση θα έχει το σώμα τη στιγμή που έχει απομάκρυνση 0,3 m;
ΘΕΜΑ Γ 1. Ένα σώμα εκτελεί αρμονική ταλάντωση με εξίσωση 0,6 ημ 8 S.I.. α. Να βρείτε την περίοδο και τον αριθμό των ταλαντώσεων που εκτελεί το σώμα σε ένα λεπτό της ώρας. β. Να γράψετε τις εξισώσεις της
ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ
28 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 15 Δεκεμβρίου, 2013 Ώρα: 10:00-13:00 Οδηγίες: 1) Το δοκίμιο αποτελείται από πέντε (5) σελίδες και πέντε (5) θέματα. 2) Να απαντήσετε σε
Φροντιστήρια Εν-τάξη Σελίδα 1 από 6
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 11/09/2016 ΘΕΜΑ Α Να γράψετε στο τετραδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Ένα
1. Εισαγωγή στην Κινητική
1. Εισαγωγή στην Κινητική Σύνοψη Στο κεφάλαιο γίνεται εισαγωγή στις βασικές αρχές της Κινητικής θεωρίας. Αρχικά εισάγονται οι έννοιες των διανυσματικών και βαθμωτών μεγεθών στη Φυσική. Έπειτα εισάγονται
ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / B ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 02/12/12 ΑΠΑΝΤΗΣΕΙΣ
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 01-013 ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / B ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 0/1/1 ΘΕΜΑ A ΑΠΑΝΤΗΣΕΙΣ Στις ημιτελείς προτάσεις Α 1 -Α 4 να γράψετε στο τετράδιο σας τον αριθμό της
Γ Λυκείου. ένταση. μήκος κύματος θέρμανσης. Ε 4 =-1, J Ε 3 =-2, J Ε 2 =-5, J Ε 1 = J
22 Μαρτίου 2008 Θεωρητικό Μέρος Θέμα 1o Γ Λυκείου Στις ερωτήσεις Α και Β, μια μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής απάντησης.
ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ
7 η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Α ΦΑΣΗ) ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 7 η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 16 Δεκεμβρίου, 01 Προτεινόμενες Λύσεις Πρόβλημα-1 (15 μονάδες) Μια
ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΛΥΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 13/10/2013
ΜΘΗΜ / ΤΞΗ : ΦΥΣΙΚΗ ΛΥΚΕΙΟΥ ΣΕΙΡ: (ΛΥΣΕΙΣ) ΗΜΕΡΟΜΗΝΙ: 13/1/13 ΘΕΜ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΚΥΡΙΑΚΗ 24/04/2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ (ΑΠΟΦΟΙΤΟΙ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΔΕΚΑΠΕΝΤΕ (15) ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας
minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014
minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/014 minimath.eu Περιεχόμενα Κινηση 3 Ευθύγραμμη ομαλή κίνηση 4 Ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση 5 Δυναμικη 7 Οι νόμοι του Νεύτωνα 7 Τριβή 8 Ομαλη κυκλικη
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 019 Κινηματική ΑΣΚΗΣΗ Κ.1 Η επιτάχυνση ενός σώματος που κινείται ευθύγραμμα δίνεται από τη σχέση a = (4 t ) m s. Υπολογίστε την ταχύτητα και το διάστημα που διανύει το σώμα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική Ι 20 Οκτωβρίου 2011
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική Ι 20 Οκτωβρίου 20 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Θέμα Α: (α) Να υπολογίσετε το βαρυτικό δυναμικό σε απόσταση r από το κέντρο ευθύγραμμης ράβδου
ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ
Κανάρη 36, Δάφνη Τηλ. 1 9713934 & 1 9769376 ΘΕΜΑ Α ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Α. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση.
2 ο Διαγώνισμα Γ Λυκείου
ο Διαγώνισμα Γ Λυκείου 03-09-08 Διάρκεια Εξέτασης 3 ώρες Ονοματεπώνυμο. Αξιολόγηση : Θέμα Α Στις ερωτήσεις Α ως και Α4 επιλέξτε την σωστή απάντηση: Α. Όταν ένα κινούμενο σώμα συγκρουστεί κεντρικά και ελαστικά
ΕΙΔΗ ΔΥΝΑΜΕΩΝ ΔΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕΔΟ
ΕΙΔΗ ΔΥΝΑΜΕΩΝ ΔΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕΔΟ ΕΙΔΗ ΔΥΝΑΜΕΩΝ 1 Οι δυνάμεις μπορούν να χωριστούν σε δυο κατηγορίες: Σε δυνάμεις επαφής, που ασκούνται μόνο ανάμεσα σε σώματα που βρίσκονται σε επαφή, και σε δυνάμεις
ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β
ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ : ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β Ερώτηση. Tο γιο-γιο του σχήματος έχει ακτίνα R και αρχικά είναι ακίνητο. Την t=0 αφήνουμε ελεύθερο το δίσκο
ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ
ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΕΓΧΕΙΡΙΔΙΟ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ ΔΗΜΗΤΡΙΟΣ ΘΕΟΔΩΡΙΔΗΣ Κεφάλαιο 1.1 Ευθύγραμμη κίνηση 1. Τι ονομάζουμε κίνηση; Τι ονομάζουμε τροχιά; Ποια είδη τροχιών γνωρίζετε; Κίνηση ενός αντικειμένου
ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β
ΚΕΦΑΛΑΙΟ Ο : ΜΗΧΑΝΙΚΕΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΝΟΤΗΤΑ : ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β Ερώτηση Ένα σώμα εκτελεί απλή
Κεφάλαιο 3. Κίνηση σε δύο διαστάσεις (επίπεδο)
Κεφάλαιο 3 Κίνηση σε δύο διαστάσεις (επίπεδο) Κινηματική σε δύο διαστάσεις Θα περιγράψουμε τη διανυσματική φύση της θέσης, της ταχύτητας, και της επιτάχυνσης με περισσότερες λεπτομέρειες. Σαν ειδικές περιπτώσεις,
β. Το μέτρο της ταχύτητας u γ. Την οριζόντια απόσταση του σημείου όπου η μπίλια συναντά το έδαφος από την άκρη Ο του τραπεζιού.
1. Μια μικρή μπίλια εκσφενδονίζεται με οριζόντια ταχύτητα u από την άκρη Ο ενός τραπεζιού ύψους h=8 cm. Τη στιγμή που φθάνει στο δάπεδο το μέτρο της ταχύτητας της μπίλιας είναι u=5 m/sec. Να υπολογίσετε
[50m/s, 2m/s, 1%, -10kgm/s, 1000N]
ΚΕΦΑΛΑΙΟ 5 ο - ΜΕΡΟΣ Α : ΚΡΟΥΣΕΙΣ ΕΝΟΤΗΤΑ 1: ΚΡΟΥΣΕΙΣ 1. Σώμα ηρεμεί σε οριζόντιο επίπεδο. Βλήμα κινούμενο οριζόντια με ταχύτητα μέτρου και το με ταχύτητα, διαπερνά το σώμα χάνοντας % της κινητικής του
Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς
Εργαστηριακή Άσκηση 4 Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και του θεωρήματος μεταβολής της κινητικής ενέργειας με τη διάταξη της αεροτροχιάς Βαρσάμης Χρήστος Στόχος: Μελέτη της ευθύγραμμης
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Ο.Π / Β ΛΥΚΕΙΟΥ (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 12/11/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΟΠ / Β ΛΥΚΕΙΟΥ (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 1/11/017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ B τάξη ενιαίου λυκείου (εξεταστέα ύλη: οριζόντια βολή κυκλική κίνηση - ορμή) Κυριακή, 6 Νοεμβρίου 206 ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ/ΜΑΘΗΤΡΙΑΣ: ΤΜΗΜΑ: ΘΕΜΑ Α (διάρκεια εξέτασης: 7.200sec) Στις
ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ. Φυσική Θετικού Προσανατολισμου Β' Λυκείου
ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ Εισαγωγή Πότε έχω οριζόντια βολή; Όταν από κάποιο μικρό ύψος (Η) εκτοξεύουμε με οριζόντια ταχύτητα (υ 0 ) ένα σώμα. Πρόκειται για μια μη ευθύγραμμη κίνηση, και ο πρώτος που είχε κάποια ιδέα
ΦΥΣΙΚΗ Β Λ ΠΡΟΕΤ. Γ Λ
ΦΥΣΙΚΗ Β Λ ΠΡΟΕΤ. Γ Λ 04-01 - 018 Άρχων Μάρκος ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Α1.
Μέτρηση της επιτάχυνσης της βαρύτητας. με τη μέθοδο του απλού εκκρεμούς
Εργαστηριακή Άσκηση 5 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του απλού εκκρεμούς Βαρσάμης Χρήστος Στόχος: Μέτρηση της επιτάχυνσης της βαρύτητας, g. Πειραματική διάταξη: Χρήση απλού εκκρεμούς.
ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΘΕΜΑ Α Ι. Α1.Β Α2.Γ Α3. Α Α4. Α ΙΙ. 1.Σ 2.Σ 3.Λ 4.Σ 5. Λ
ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Ι. Α1.Β Α2.Γ Α3. Α Α4. Α ΙΙ. 1.Σ 2.Σ 3.Λ 4.Σ 5. Λ ΘΕΜΑ Β Β1. Σωστή η β) Έστω Σ το υλικό σημείο που απέχει d από το άκρο Α. Στο σχήμα
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : OKTΩΒΡΙΟΣ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : OKTΩΒΡΙΟΣ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας
ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ
ΛΥΚΕΙΟ ΑΓΙΟΥ ΠΥΡΙΔΩΝΑ ΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕ ΠΡΟΑΓΩΓΙΚΕ ΕΞΕΤΑΕΙ ΦΥΙΚΗ ΚΑΤΕΥΘΥΝΗ Β ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 31-05-2012 ΔΙΑΡΚΕΙΑ: 07.45 10.15 Οδηγίες 1. Το εξεταστικό δοκίμιο αποτελείται από 9 σελίδες.
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ B τάξη ενιαίου λυκείου (εξεταστέα ύλη: οριζόντια βολή κυκλική κίνηση - ορμή) Κυριακή, 0 Νοεμβρίου 207 ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ/ΜΑΘΗΤΡΙΑΣ: ΤΜΗΜΑ: ΘΕΜΑ Α (διάρκεια εξέτασης: 7.200sec) Στις
ΘΕΜΑ Α: ΔΙΑΡΚΕΙΑ: 180min ΤΜΗΜΑ:. ONOMA/ΕΠΩΝΥΜΟ: ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ 1 ο ΘΕΜΑ 2 ο ΘΕΜΑ 3 ο ΘΕΜΑ 4 ο ΣΥΝΟΛΟ ΜΟΝΑΔΕΣ
Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΡΚΕΙΑ: 8min ONOM/ΕΠΩΝΥΜΟ: ΗΜΕΡΟΜΗΝΙΑ: ΤΜΗΜΑ:. ΘΕΜΑ ο ΘΕΜΑ ο ΘΕΜΑ 3 ο ΘΕΜΑ 4 ο ΣΥΝΟΛΟ ΜΟΝΑΔΕΣ ΘΕΜΑ Α:. Σφαίρα μάζας m = m κινείται με ταχύτητα αλγεβρικής τιμής +υ και συγκρούεται
ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 A ΦΑΣΗ
ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ημερομηνία: Δευτέρα 7 Ιανουαρίου 09 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ημιτελείς προτάσεις Α Α4 να γράψετε στο τετράδιό
ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014
ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ
Ασκήσεις στη Κυκλική Κίνηση
1 Ασκήσεις στη Κυκλική Κίνηση 1.Δυο τροχοί ακτινών R 1=40cm και R 2=10cm συνδέονται με ιμάντα και περιστρέφονται ο πρώτος με συχνότητα f 1=4Hz, ο δε δεύτερος με συχνότητα f 2. Να βρεθεί ο αριθμός των στροφών
ΦΥΣ. 111 Τελική Εξέταση: 17-Δεκεµβρίου-2017
ΦΥΣ. 111 Τελική Εξέταση: 17-Δεκεµβρίου-2017 Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). Ονοµατεπώνυµο Αριθµός ταυτότητας Απενεργοποιήστε τα κινητά σας. Σας δίνονται
Κ ε φ. 1 Κ Ι Ν Η Σ Ε Ι Σ
Κ ε φ. 1 Κ Ι Ν Η Σ Ε Ι Σ Χρήσιμες έννοιες Κίνηση (σχετική κίνηση) ενός αντικειμένου λέγεται η αλλαγή της θέσης του ως προς κάποιο σύστημα αναφοράς. Τροχιά σώματος ονομάζουμε τη νοητή γραμμή που δημιουργεί
ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ
ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ Ευθύγραμμη Ομαλή Κίνηση Επιμέλεια: ΑΓΚΑΝΑΚΗΣ.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός https://physicscorses.wordpress.com/ Βασικές Έννοιες Ένα σώμα καθώς κινείται περνάει από διάφορα σημεία.
ΘΕΜΑΤΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΚΕΦΑΛΑΙΑ 1-2 7/12/2014
ΘΕΜΑΤΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΚΕΦΑΛΑΙΑ 1-2 7/12/2014 ΘΕΜΑ 1 Από τις ερωτήσεις 1-4 να επιλέξετε την σωστή πρόταση: Α1. Σώμα εκτελεί ομαλή κυκλική κίνηση. α) η κεντρομόλος επιτάχυνση