Analisi dinamica di un telaio shear-type a 3 piani
|
|
- Αθάμας Αλεξιάδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ss_new.nb 1 Analisi dinamica di un elaio shear-ype a 3 piani Sezione pilasri 3 x 3 Versione per la sampa ü Comandi di uilià ü Equazioni del moo In[7]:= eq@1d = m@1d x@1d''@d + k@1d Hx@1D@D xg@dl k@2d Hx@2D@D x@1d@dl + c@1d Hx@1D'@D xg'@dl c@2d Hx@2D'@D x@1d'@dl Ou[7]= k@1d H xg@d + x@1d@dl k@2d H x@1d@d + x@2d@dl + c@1d H + c@2d H + + m@1d In[8]:= eq@2d = m@2d x@2d''@d + k@2d Hx@2D@D x@1d@dl k@3d Hx@3D@D x@2d@dl + c@2d Hx@2D'@D x@1d'@dl c@3d Hx@3D'@D x@2d'@dl Ou[8]= k@2d H x@1d@d + x@2d@dl k@3d H x@2d@d + x@3d@dl + c@2d H + c@3d H + + m@2d In[9]:= Ou[9]= eq@3d = m@3d x@3d''@d + k@3d Hx@3D@D x@2d@dl + c@3d Hx@3D'@D x@2d'@dl k@3d H x@2d@d + x@3d@dl + c@3d H + + m@3d In[1]:= MM := Table@Coefficien@eq@iD, x@jd''@dd, 8i, 1, 3<, 8j, 1, 3<D In[11]:= KK := Table@Coefficien@eq@iD, x@jd@dd, 8i, 1, 3<, 8j, 1, 3<D In[12]:= CC := Table@Coefficien@eq@iD, x@jd'@dd, 8i, 1, 3<, 8j, 1, 3<D In[13]:= FF1 := Table@Coefficien@eq@iD, xg@dd, 8i, 1, 3<D In[14]:= FF2 := Table@Coefficien@eq@iD, xg'@dd, 8i, 1, 3<D In[15]:= MarixForm@MMD Ou[15]//MarixForm= i m@1d y m@2d j z k m@3d { In[16]:= MarixForm@KKD Ou[16]//MarixForm= i k@1d + k@2d k@2d y k@2d k@2d + k@3d k@3d j z k k@3d k@3d { In[17]:= MarixForm@CCD Ou[17]//MarixForm= i c@1d + c@2d c@2d y c@2d c@2d + c@3d c@3d j z k c@3d c@3d {
2 ss_new.nb 2 In[18]:= In[19]:= AA := Inverse@MMD.KK MarixForm@AAD Ou[19]//MarixForm= i j k k@1d+k@2d m@1d k@2d m@2d k@2d m@1d k@2d+k@3d m@2d k@3d m@3d k@3d m@2d k@3d m@3d In[2]:= Table@m@iD = M, 8i, 1, 3<D Ou[2]= 8M, M, M< In[21]:= Table@k@iD = K, 8i, 1, 3<D Ou[21]= 8K, K, K< In[22]:= Table@c@iD = Ci, 8i, 1, 3<D y z { Ou[22]= In[23]:= Ou[23]= In[24]:= 8Ci, Ci, Ci< AA 99 2 K M, K M MarixForm@AAD, =, 9 K M, 2 K M, K M =, 9, K M, K M == Ou[24]//MarixForm= 2 K i K M K 2 K M M j k K M M K M K M y z { ü Assegnazione valori numerici In[25]:= l = 3; In[26]:= b =.3; In[27]:= h =.3; In[28]:= Ine = b h3 12 Ou[28]=.675 In[29]:= El = Ou[29]= 3 In[3]:= 24 El Ine K = Ou[3]= l 3 In[31]:= M = 25 Ou[31]= 25
3 ss_new.nb 3 In[32]:= Ci =.2 Ou[32]= ü Analisi modale In[33]:= AA Ou[33]= , 72.,.<, 8 72., 144., 72.<, 8., 72., 72.<< In[34]:= Ou[34]= In[35]:= eigens = Eigensysem@AAD , , <, , , <, , ,.5919<, ,.5919, <<< eigv1 = eigens@@2, 3DD Ou[35]= ,.5919, < In[36]:= Ou[36]= In[37]:= Ou[37]= In[38]:= eigv2 = eigens@@2, 2DD , ,.5919< eigv3 = eigens@@2, 1DD , , < ave@1d = AppendColumns@88, <<, Table@8eigv1@@iDD, i<, 8i, 1, 3<DD Ou[38]= 88, <, , 1<, , 2<, , 3<< In[39]:= Ou[39]= In[4]:= In[41]:= plmodol@1d = LisPlo@ave@1D, PloJoined True, PloRange 88, 1.5<, 8, 3.1<<, DisplayFuncion IdeniyD plmodop@1d = LisPlo@ave@1D, PloSyle PoinSize@.3D, PloRange 88, 1.5<, 8, 3.1<<, DisplayFuncion IdeniyD; Show@plmodol@1D, plmodop@1d, DisplayFuncion $DisplayFuncionD Ou[41]= In[42]:= ave@2d = AppendColumns@88, <<, Table@8eigv2@@iDD, i<, 8i, 1, 3<DD Ou[42]= 88, <, , 1<, , 2<, , 3<<
4 ss_new.nb 4 In[43]:= Ou[43]= In[44]:= Ou[44]= In[45]:= plmodol@2d = LisPlo@ave@2D, PloJoined True, PloRange , 1.5<, 8, 3.1<<, DisplayFuncion IdeniyD plmodop@2d = LisPlo@ave@2D, PloSyle PoinSize@.3D, PloRange 88, 1.5<, 8, 3.1<<, DisplayFuncion IdeniyD Show@plmodol@2D, plmodop@2d, DisplayFuncion $DisplayFuncionD Ou[45]= In[46]:= ave@3d = AppendColumns@88, <<, Table@8eigv3@@iDD, i<, 8i, 1, 3<DD Ou[46]= 88, <, , 1<, , 2<, , 3<< In[47]:= Ou[47]= In[48]:= Ou[48]= In[49]:= plmodol@3d = LisPlo@ave@3D, PloJoined True, PloRange , 1.5<, 8, 3.1<<, DisplayFuncion IdeniyD plmodop@3d = LisPlo@ave@3D, PloSyle PoinSize@.3D, PloRange 88, 1.5<, 8, 3.1<<, DisplayFuncion IdeniyD Show@plmodol@3D, plmodop@3d, DisplayFuncion $DisplayFuncionD Ou[49]=
5 ss_new.nb 5 In[5]:= Ou[5]= In[51]:= Φ = Transpose@8eigv1, eigv2, eigv3<d , ,.5919<, , , <, ,.5919, << MarixForm@ΦD Ou[51]//MarixForm= i y j z k { In[52]:= MarixForm@KKD Ou[52]//MarixForm= i y j k z { In[53]:= kmodal = Chop@Transpose@ΦD.KK.Φ, 1 6 D Ou[53]= ,, <, 8, , <, 8,, << In[54]:= MarixForm@kmodalD Ou[54]//MarixForm= i j k y z { In[55]:= mmodal = Chop@Transpose@ΦD.MM.Φ, 1 6 D Ou[55]= 8825.,, <, 8, 25., <, 8,, 25.<< In[56]:= MarixForm@mmodalD Ou[56]//MarixForm= i 25. y 25. j z k 25. { In[57]:= Ou[57]= In[58]:= Y@D = 8y@1D@D, y@2d@d, y@3d@d< 8y@1D@D, y@2d@d, y@3d@d< CC Ou[58]= 88,, <, 8,, <, 8,, << In[59]:= cmodal = Chop@Transpose@ΦD.CC.Φ, 1 6 D Ou[59]= ,, <, 8,.31992, <, 8,, << In[6]:= fmodal1 = Chop@Transpose@ΦD.FF1, 1 6 D Ou[6]= , , < In[61]:= fmodal2 = Chop@Transpose@ΦD.FF2, 1 6 D Ou[61]= , ,.11822<
6 ss_new.nb 6 Equazioni modali In[62]:= eqdisacc = mmodal.d@y@d, 8, 2<D + kmodal.y@d + cmodal.d@y@d, 8, 1<D + fmodal1 xg@d + fmodal2 xg'@d Ou[62]= xg@d y@1d@d xg@d y@2d@d xg@d y@3d@d ü Assegnazione erremoo In[63]:= err = << afdis2; In[64]:= err1 = Block@8 =.1, =.1<, Table@8 = +, err@@idd<, 8i, 1, Lengh@errD<DD; In[65]:= Ou[65]= xg = Inerpolaion@err1D InerpolaingFuncion@88., 17.99<<, <>D Sposameno al erreno In[66]:= Plo@Evaluae@xg@DD, 8,, 17.99<D Ou[66]= Velocià al erreno
7 ss_new.nb 7 In[67]:= Plo@Evaluae@xg'@DD, 8,, 17.99<D Ou[67]= Accelerazione al erreno In[68]:= Plo@Evaluae@xg''@DD, 8,, 17.99<D Ou[68]= ü Risoluzione equazioni modali Soluzione prima equazione modale In[69]:= mod@1d = NDSolve@8eqdisacc@@1DD, y@1d@d, y@1d'@d <, y@1d, 8, 17<, MaxSeps maxpassid Ou[69]= 88y@1D InerpolaingFuncion@88., 17.<<, <>D<<
8 ss_new.nb 8 In[7]:= Plo@Evaluae@y@1D@D ê. mod@1dd, 8,, 17<, AxesLabel 8"", "yh1lhl"<d yh1lhl Ou[7]= Soluzione seconda equazione modale In[71]:= mod@2d = NDSolve@8eqdisacc@@2DD, y@2d@d, y@2d'@d <, y@2d, 8,, 17<, MaxSeps maxpassid Ou[71]= In[72]:= 88y@2D InerpolaingFuncion@88., 17.<<, <>D<< Plo@Evaluae@y@2D@D ê. mod@2dd, 8,, 17<, AxesLabel 8"", "yh2lhl"<d yh2lhl Ou[72]= Soluzione erza equazione modale In[73]:= mod@3d = NDSolve@8eqdisacc@@3DD, y@3d@d, y@3d'@d <, y@3d, 8,, 17<, MaxSeps maxpassid Ou[73]= 88y@3D InerpolaingFuncion@88., 17.<<, <>D<<
9 ss_new.nb 9 In[74]:= Plo@Evaluae@y@3D@D ê. mod@3dd, 8,, 17<, AxesLabel 8"", "yh3lhl"<d yh3lhl Ou[74]= Ricosruzione dello sao In[75]:= Ou[75]= Φ.8y@1D, y@2d, y@3d< y@1d y@2d.5919 y@3d,.5919 y@1d y@2d y@3d, y@1d.5919 y@2d y@3d< ü Sao con il solo primo modo In[76]:= pl1x1 = Plo@Evaluae@HΦ@@1, 1DD y@1d@d ê. mod@1dld, 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, AxesLabel 8"", "x1hl"<, Frame True, FrameLabel 8"", "x1hl", "sposameno 1 liv. I modo", " "<D sposameno 1 liv. I modo x 1 HL Ou[76]=
10 ss_new.nb 1 In[77]:= pl1x2 = Plo@Evaluae@HΦ@@2, 1DD y@1d@d ê. mod@1dld, 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, AxesLabel 8"", "x2hl"<, Frame True, FrameLabel 8"", "x2hl", "sposameno 2 liv. I modo", " "<D sposameno 2 liv. I modo x 2 HL Ou[77]= In[78]:= pl1x3 = Plo@Evaluae@HΦ@@3, 1DD y@1d@d ê. mod@1dld, 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, AxesLabel 8"", "x3hl"<, Frame True, FrameLabel 8"", "x3hl", "sposameno 3 liv. I modo", " "<D sposameno 3 liv. I modo x 3 HL Ou[78]=
11 ss_new.nb 11 ü Sao con i primi due modi In[79]:= pl2x1 = Plo@Evaluae@HΦ@@1, 1DD y@1d@d ê. mod@1dl + HΦ@@1, 2DD y@2d@d ê. mod@2dld, 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, AxesLabel 8"", "x1hl"<, Frame True, FrameLabel 8"", "x1hl", "sposameno 1 liv. I e II modo", " "<D sposameno 1 liv. I e II modo x 1 HL Ou[79]= In[8]:= pl2x2 = Plo@Evaluae@HΦ@@2, 1DD y@1d@d ê. mod@1dl + HΦ@@2, 2DD y@2d@d ê. mod@2dld, 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, AxesLabel 8"", "x2hl"<, Frame True, FrameLabel 8"", "x2hl", "sposameno 2 liv. I e II modo", " "<D sposameno 2 liv. I e II modo x 2 HL Ou[8]=
12 ss_new.nb 12 In[81]:= pl2x3 = Plo@Evaluae@HΦ@@3, 1DD y@1d@d ê. mod@1dl + HΦ@@3, 1DD y@2d@d ê. mod@2dld, 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, AxesLabel 8"", "x3hl"<, Frame True, FrameLabel 8"", "x3hl", "sposameno 3 liv. I e II modo", " "<D sposameno 3 liv. I e II modo x 3 HL Ou[81]= ü Sao con ui e re i modi In[82]:= pl3x1 = Plo@Evaluae@HΦ@@1, 1DD y@1d@d ê. mod@1dl + HΦ@@1, 2DD y@2d@d ê. mod@2dl + HΦ@@1, 3DD y@3d@d ê. mod@3dld, 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, AxesLabel 8"", "x1hl"<, Frame True, FrameLabel 8"", "x1hl", "sposameno 1 liv. I, II e III modo", " "<D.6 sposameno 1 liv. I, II e III modo x 1 HL Ou[82]=
13 ss_new.nb 13 In[83]:= pl3x2 = Plo@Evaluae@HΦ@@2, 1DD y@1d@d ê. mod@1dl + HΦ@@2, 2DD y@2d@d ê. mod@2dl + HΦ@@2, 3DD y@3d@d ê. mod@3dld, 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, AxesLabel 8"", "x2hl"<, Frame True, FrameLabel 8"", "x2hl", "sposameno 2 liv. I, II e III modo", " "<D.6 sposameno 2 liv. I, II e III modo x 2 HL Ou[83]= In[84]:= pl3x3 = Plo@Evaluae@HΦ@@3, 1DD y@1d@d ê. mod@1dl + HΦ@@3, 2DD y@2d@d ê. mod@2dl + HΦ@@3, 3DD y@3d@d ê. mod@3dld, 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, AxesLabel 8"", "x3hl"<, Frame True, FrameLabel 8"", "x3hl", "sposameno 3 liv. I, II e III modo", " "<D.6 sposameno 3 liv. I, II e III modo x 3 HL Ou[84]= ü Soluzione dell'equazione di parenza In[85]:= solo = NDSolve@8eq@1D, eq@2d, eq@3d, x@1d@d, x@1d'@d, x@2d@d, x@2d'@d, x@3d@d, x@3d'@d <, 8x@1D, x@2d, x@3d<, 8,, 17<, MaxSeps maxpassid Ou[85]= 88x@1D InerpolaingFuncion@88., 17.<<, <>D, x@2d InerpolaingFuncion@88., 17.<<, <>D, x@3d InerpolaingFuncion@88., 17.<<, <>D<<
14 ss_new.nb 14 In[86]:= plox1 = Plo@Evaluae@x@1D@D ê. solod, 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, AxesLabel 8"", "x1hl"<, Frame True, FrameLabel 8"", "x1hl", "sposameno 1 liv. inegrazione direa", " "<D sposameno 1 liv. inegrazione direa.6 x 1 HL Ou[86]= In[87]:= plox2 = Plo@Evaluae@x@2D@D ê. solod, 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, AxesLabel 8"", "x2hl"<, Frame True, FrameLabel 8"", "x2hl", "sposameno 2 liv. inegrazione direa", " "<D sposameno 2 liv. inegrazione direa.6 x 2 HL Ou[87]= In[88]:= plox3 = Plo@Evaluae@x@3D@D ê. solod, 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, AxesLabel 8"", "x3hl"<, Frame True, FrameLabel 8"", "x3hl", "sposameno 3 liv. inegrazione direa", " "<D sposameno 3 liv. inegrazione direa.6 x 3 HL Ou[88]=
15 ss_new.nb 15 ü Sovrapposizione In[89]:= plox1r = Plo@Evaluae@x@1D@D ê. solod, 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, Frame True, FrameLabel 8"", "x1hl", "sovrapposizione spos 1 liv.", " "<, PloSyle Dashing@8.1,.1<D, DisplayFuncion IdeniyD; In[9]:= plox2r = Plo@Evaluae@x@2D@D ê. solod, 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, Frame True, FrameLabel 8"", "x2hl", "sovrapposizione spos 2 liv.", " "<, PloSyle Dashing@8.1,.1<D, DisplayFuncion IdeniyD; In[91]:= plox3r = Plo@Evaluae@x@3D@D ê. solod, 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, Frame True, FrameLabel 8"", "x3hl", "sovrapposizione spos 3 liv.", " "<, PloSyle Dashing@8.1,.1<D, DisplayFuncion IdeniyD; Soluzione dell'equazione di parenza e soluzione con il primo modo (a linea coninua)
16 ss_new.nb 16 In[92]:= pl1x1d<, pl1x2d<, pl1x3d<<, DisplayFuncion $DisplayFuncionDD sovrapposizione spos 1 liv..6 x 1 HL sovrapposizione spos 2 liv..6 x 2 HL sovrapposizione spos 3 liv..6 x 3 HL Ou[92]= GraphicsArray
17 ss_new.nb 17 Soluzione dell'equazione di parenza e soluzione con il primo e secondo modo (a linea coninua) In[93]:= Show@GraphicsArray@88Show@plox1r, pl2x1d<, 8Show@plox2r, pl2x2d<, 8Show@plox3r, pl2x3d<<, DisplayFuncion $DisplayFuncionDD
18 ss_new.nb 18.6 sovrapposizione spos 1 liv. x 1 HL sovrapposizione spos 2 liv..6 x 2 HL sovrapposizione spos 3 liv..6 x 3 HL Ou[93]= GraphicsArray
19 ss_new.nb 19 Soluzione dell'equazione di parenza e soluzione con il primo, secondo e erzo modo (a linea coninua)
20 ss_new.nb 2 In[94]:= Show@GraphicsArray@88Show@plox1r, pl3x1d<, 8Show@plox2r, pl3x2d<, 8Show@plox3r, pl3x3d<<, DisplayFuncion $DisplayFuncionDD sovrapposizione spos 1 liv..6 x 1 HL sovrapposizione spos 2 liv..6 x 2 HL sovrapposizione spos 3 liv..6 x 3 HL Ou[94]= GraphicsArray
Moto armonico: T : periodo, ω = pulsazione A: ampiezza, φ : fase
Moo armonico: equazione del moo: d x ( ) = x ( ) soluzione: x ( ) = A s in ( + φ ) =π/ Τ T : periodo, = pulsazione A: ampiezza, φ : fase sposameno: x ( ) = X s in ( ) velocià: dx() v () = = X cos( ) accelerazione:
!Stato di tensione triassiale!stato di tensione piano!cerchio di Mohr
!Stato di tensione triassiale!stato di tensione piano!cerchio di Mohr Stato di tensione F A = F / A F Traione pura stato di tensione monoassiale F M A M Traione e torsione stato di tensione piano = F /
Esercizi sui circoli di Mohr
Esercizi sui circoli di Mohr ESERCIZIO A Sia assegnato lo stato tensionale piano nel punto : = -30 N/mm² = 30 N/mm² x = - N/mm² 1. Determinare le tensioni principali attraverso il metodo analitico e mediante
ECONOMIA MONETARIA (parte generale) Prof. Guido Ascari LEZIONE 3 LA DOMANDA DI MONETA
ECONOMIA MONETARIA (parte generale) Prof. Guido Ascari Anno 2006-2007 2007 LEZIONE 3 LA DOMANDA DI MONETA LA DOMANDA DI MONETA Teoria Macro Micro Th.Quantitativa Th.. Keynesiana => Keynes, Tobin Th. Friedman
Capitolo 4 Funzione di trasferimento
Capiolo 4 Funzione di rasferimeno Fondameni di conrolli auomaici 3/ed P. Bolzern, R. Scaolini, N. Schiavoni Fondameni di conrolli auomaici 3/ed P. Bolzern, R. Scaolini, N. Schiavoni Fondameni di conrolli
ΖΕΡΔΑΛΗΣ ΣΩΤΗΡΙΟΣ ΤΟ ΟΥΤΙ ΣΤΗ ΒΕΡΟΙΑ (1922-ΣΗΜΕΡΑ) ΘΕΣΣΑΛΟΝΙΚΗ 2005 1
(1922- ) 2005 1 2 .1.2 1.1.2-3 1.2.3-4 1.3.4-5 1.4.5-6 1.5.6-10.11 2.1 2.2 2.3 2.4.11-12.12-13.13.14 2.5 (CD).15-20.21.22 3 4 20.,,.,,.,.,,.,.. 1922., (= )., (25/10/2004), (16/5/2005), (26/1/2005) (7/2/2005),,,,.,..
ΕΥΣΤΑΘΕΙΑ ΙΑΤΟΙΧΙΣΜΟΥ ΠΛΟΙΟΥ ΚΑΙ ΥΠΟΒΑΘΡΟ ΚΑΝΟΝΙΣΜΩΝ. Σηµειώσεις για το πρόγραµµα Mathematica
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΥΣΤΑΘΕΙΑ ΙΑΤΟΙΧΙΣΜΟΥ ΠΛΟΙΟΥ ΚΑΙ ΥΠΟΒΑΘΡΟ ΚΑΝΟΝΙΣΜΩΝ Σηµειώσεις για το πρόγραµµα Mathematica ρ. Νίκος Θεµελής Νοέµβριος 009 Σκοπός των σηµειώσεων
Sollecitazioni proporzionali e non proporzionali I criteri di Gough e Pollard e di Son Book Lee I criteri di Sines e di Crossland
Fatica dei materiali Sollecitazioni proporzionali e non proporzionali I criteri di Gough e Pollard e di Son Book Lee I criteri di Sines e di Crossland 006 Politecnico di Torino Tipi di sollecitazioni multiassiali
IL LEGAME COVALENTE. Teoria degli orbitali molecolari
IL LEGAME COVALENTE Teoria degli orbitali molecolari Gli orbitali MOLECOLARI Molecola biatomica omonucleare A-B Descrizione attraverso un insieme di ORBITALI MOLECOLARI policentrici, delocalizzati Gli
Processi di Markov di nascita e morte. soluzione esprimibile in forma chiusa
Processi di Markov di nascita e morte classe di p.s. Markoviani con * spazio degli stati E=N * vincoli sulle transizioni soluzione esprimibile in forma chiusa stato k N transizioni k k+1 nascita k k-1
Stato di tensione triassiale Stato di tensione piano Cerchio di Mohr
Stato di tensione triassiale Stato di tensione iano Cerchio di Mohr Stato di tensione F A = F / A F Traione ura stato di tensione monoassiale F M A M Traione e torsione stato di tensione iano = F / A =
Lungo una curva di parametro λ, di vettore tangente. ;ν = U ν [ V µ. ,ν +Γ µ ναv α] =0 (2) dλ +Γµ να U ν V α =0 (3) = dxν dλ
TRASPORTO PARALLELO Lungo una curva di parametro λ, di vettore tangente U µ = dxµ dλ, (1) il vettore è trasportato parallelamente se soddisfa le equazioni del trasporto parallelo dove si è usato il fatto
Prima Esercitazione. Baccarelli, Cordeschi, Patriarca, Polli 1
Prima Esercitazione Cordeschi, Patriarca, Polli 1 Formula della Convoluzione + y() t = x( ) h( t ) d τ = τ τ τ x(t) Ingresso h(t) Filtro Uscita y(t) Cordeschi, Patriarca, Polli 2 Primo esercizio Si calcoli
ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:
TRIGONOMETRIA: ANGOLI ASSOCIATI
FACOLTÀ DI INGEGNERIA CORSO DI AZZERAMENTO - MATEMATICA ANNO ACCADEMICO 010-011 ESERCIZI DI TRIGONOMETRIA: ANGOLI ASSOCIATI Esercizio 1: Fissata in un piano cartesiano ortogonale xoy una circonferenza
:= x 2 + c 1 H1 - xl x 2 + c 2 H1- xl 2 x 3 17 c 1 c c 2 c c c 2 : 1 Ø 2 Ø 111 >>
3η Γραπτή Εργασία Νικόλαος Μανάρας (Α.Μ. 5229) Άσκηση. (2 µονάδες) ü a Θεωρούµε το συναρτησοειδές, J(y)=Ÿ AyH+xL 2 +xhy 'L 2 E x όπου η συνάρτηση είναι δύο φορές συνεχώς διαφορίσιµη, µε y()= και y()=.
Un calcolo deduttivo per la teoria ingenua degli insiemi. Giuseppe Rosolini da un università ligure
Un calcolo deduttivo per la teoria ingenua degli insiemi Giuseppe Rosolini da un università ligure Non è quella in La teoria ingenua degli insiemi Ma è questa: La teoria ingenua degli insiemi { < 3} è
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
Σηµειώσεις για το πρόγραµµα Mathematica
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Σηµειώσεις για το πρόγραµµα Mathematica Νίκος Θεµελής Νοέµβριος 008 Σκοπός του φυλλαδίου είναι να παρέχει βασικές γνώσεις για την χρήση
Integrali doppi: esercizi svolti
Integrali doppi: esercizi svolti Gli esercizi contrassegnati con il simbolo * presentano un grado di difficoltà maggiore. Esercizio. Calcolare i seguenti integrali doppi sugli insiemi specificati: a) +
ΕΛΛΗΝΙΚΑ Χ Ρ ΗΜ ΑΤ ΙΣ Τ ΗΡ ΙΑ CISCO EXPO 2009 G. V a s s i l i o u - E. K o n t a k i s g.vassiliou@helex.gr - e.k on t ak is@helex.gr 29 Α π ρ ι λ ί ο υ 20 0 9 Financial Services H E L E X N O C A g e
-! " #!$ %& ' %( #! )! ' 2003
-! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!
9.2 Μελετώντας τρισδιάστατα γραφικά στο επίπεδο Oi sunartήseiv Contour Plot kai DensityPlot
trisdiastatastoepipedo_.nb 9. Μελετώντας τρισδιάστατα γραφικά στο επίπεδο 9.. Oi sunartήseiv Contour Plot kai DensityPlot Me thn ContourPlot[f[x,y], {x,xmin,xmax},{y,ymin,ymax}] scediάzoume thn f[x,y]
G. Parmeggiani, 15/1/2019 Algebra Lineare, a.a. 2018/2019, numero di MATRICOLA PARI. Svolgimento degli Esercizi per casa 12
G. Parmeggiani, 5//9 Algebra Lineare, a.a. 8/9, Scuola di Scienze - Corsi di laurea: Studenti: Statistica per l economia e l impresa Statistica per le tecnologie e le scienze numero di MATRICOLA PARI Svolgimento
Σηµειώσεις για το πρόγραµµα Mathematica
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Σηµειώσεις για το πρόγραµµα Mathematica Νίκος Θεµελής Νοέµβριος 008 Σκοπός του φυλλαδίου είναι να παρέχει βασικές γνώσεις για την χρήση
Παρασκευή 1 Νοεμβρίου 2013 Ασκηση 1. Λύση. Παρατήρηση. Ασκηση 2. Λύση.
(, ) =,, = : = = ( ) = = = ( ) = = = ( ) ( ) = = ( ) = = = = (, ) =, = = =,,...,, N, (... ) ( + ) =,, ( + ) (... ) =,. ( ) = ( ) = (, ) = = { } = { } = ( ) = \ = { = } = { = }. \ = \ \ \ \ \ = = = = R
!#$%!& '($) *#+,),# - '($) # -.!, '$%!%#$($) # - '& %#$/0#!#%! % '$%!%#$/0#!#%! % '#%3$-0 4 '$%3#-!#, '5&)!,#$-, '65!.#%
" #$%& '($) *#+,),# - '($) # -, '$% %#$($) # - '& %#$0##% % '$% %#$0##% % '1*2)$ '#%3$-0 4 '$%3#-#, '1*2)$ '#%3$-0 4 @ @ @
Εγχειρίδιο οδηγιών. Χρονοθερμοστάτης WiFi 02911 Εγχειρίδιο τεχνικού εγκατάστασης
Εγχειρίδιο οδηγιών Χρονοθερμοστάτης WiFi 02911 Εγχειρίδιο τεχνικού εγκατάστασης Πίνακας περιεχομένων 1. Χρονοθερμοστάτης 02911 3 2. Πεδίο εφαρμογής 3 3. Εγκατάσταση 3 4. Συνδέσεις 4 4.1 Σύνδεση ρελέ 4
ENERGIA - POTENZA - CORRELAZIONE
ENERGIA e POENZA: ENERGIA - POENZA - CORRELAZIONE Energia in (, ) : (, ) ( ) Poenza media in (, ) : P(, ) E = d (, ) (, + Δ ) E E = = Δ Segnali periodici: Δ = = periodo Segnali di energia (es: un impulso):
ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 Ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #3: ΠΑΡΕΜΒΟΛΗ ΕΠΙΜΕΛΕΙΑ: Σ. Μισδανίτης
ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 6-7, 3 Ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #3: ΠΑΡΕΜΒΟΛΗ ΕΠΙΜΕΛΕΙΑ: Σ. Μισδανίτης. Επιλέξτε αυθαίρετα µία συνάρτηση ( x και τέσσερα ζευγάρια σημείων ( x, ( x, έτσι ώστε τα σημεία x να μην
!!"#$"%&'()%*$& !! )!+($,-./,0. !! )!"% $&)#$+($1$ !!2)%$34#$$)$ !!+(&%#(%$5$( #$%
!!"#$"%&'()%*$&!! )!+($,-./,0.!"#!! )!"% $&)#$+($1$!!2)%$34#$$)$!!+(&%#(%$5$( #$% & !"# $ $ % # &#$ '()*+, -,./ $* 0" 10#')230##445$&% ##* % 0# ' 4#, ) 0# $, 0# 6 7% % # #* # 8#10&29,:# )) )# )#
ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Έγκριση ελευθέρων βοηθημάτων της Ιταλικής Γλώσσας για το Γενικό Λύκειο σχολικού έτους
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ.
Πίνακας ρυθμίσεων στο χώρο εγκατάστασης
1/8 Κατάλληλες εσωτερικές μονάδες *HVZ4S18CB3V *HVZ8S18CB3V *HVZ16S18CB3V Σημειώσεις (*5) *4/8* 4P41673-1 - 215.4 2/8 Ρυθμίσεις χρήστη Προκαθορισμένες τιμές Θερμοκρασία χώρου 7.4.1.1 Άνεση (θέρμανση) R/W
F1. Goniometria - Esercizi
F1. Goniometria - Esercizi TRASFORMARE GRADI IN RADIANTI. 1) [ π 1, 11 π, 1 π, π ) 1 0 1 [ π 1, π, π, 1 1 π ) 0 0 0 [ π, π, 1 π, π ) 1 0 [ π, 11 1 π, 1 1 π, π ) 00 [ π 1, π, π, π ) 1 00 [ π 0, π, 1 π,
Ακαδημαϊκός Λόγος Εισαγωγή
- Nel presente studio/saggio/lavoro si andranno ad esaminare/investigare/analizzare/individuare... Γενική εισαγωγή για μια εργασία/διατριβή Per poter rispondere a questa domanda, mi concentrerò in primo
Ιταλική Γλώσσα Β1 Θεωρία: Γραμματική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ιταλική Γλώσσα Β1 Θεωρία: Γραμματική 6 η ενότητα: Riflessione lessicale allenamento e sport Μήλιος Βασίλειος Τμήμα Ιταλικής Γλώσσας και
Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.
II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai
IMPARA LE LINGUE CON I FILM AL CLA
UNIVERSITÀ DEGLI STUDI DI PADOVA - CENTRO LINGUISTICO DI ATENEO IMPARA LE LINGUE CON I FILM AL CLA Vedere film in lingua straniera è un modo utile e divertente per imparare o perfezionare una lingua straniera.
GUIDA FISCALE PER GLI STRANIERI
GUIDA FISCALE PER GLI STRANIERI A cura della Direzione Centrale Servizi ai Contribuenti in collaborazione con la Direzione Provinciale di Trento Si ringrazia il CINFORMI - Centro Informativo per l Immigrazione
LVFABPB νέο. Λειτουργίες. Εκδόσεις. 50's style retro
LVFABPB νέο Ελεύθερο Πλυντήριο Πιάτων 60 εκ, 50's, Γαλάζιο Ενεργειακή κλάση A+++ Περισσότερες πληροφορίες στο www.petco.gr EAN13: 8017709232092 4ετής εγγύηση μόνο από το επίσημο δίκτυο της PETCO AE Σύστημα
Προγραμματισμός Ι (HY120)
Προγραμματισμός Ι (HY120) #4 κυριολεκτικά & μετατροπή τύπων 1 Σπύρος Λάλης Κυριολεκτικά (literals) Συχνά θέλουμε να αρχικοποιήσουμε μεταβλητές του προγράμματος με μια συγκεκριμένη τιμή υπάρχει επίσης η
Ιταλική Γλώσσα Β1. 11 η ενότητα: Appuntamenti nel tempo libero. Ελένη Κασάπη Τμήμα Ιταλικής Γλώσσας και Φιλολογίας ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ 11 η ενότητα: Appuntamenti nel tempo libero. Ελένη Κασάπη Τμήμα Ιταλικής Γλώσσας και Φιλολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
L oscillatore armonico e il rotatore rigido
L oscillatore armonico e il rotatore rigido R. Dovesi, M. De La Pierre, C. Murace Corso di Laurea in Chimica A.A. 2012/2013 Chimica Fisica II L oscillatore classico f = k(l l 0 ) = kx x = l l 0 Soluzione:
PVWH! OILGEAR TAIFENG
!"#$EF! PVWH!"#$%&'()*+!"#$%&' 21!"#$!"#$%&'()*+,!"#$%!"#$%!"#$%&!"#!!"#$%&'!"#$%!"#$"%&'()*+,!"#$%&!!"#$%!"#$%&'#$!"#!"#$%&!"#$%&'( SE!"!"#$%&'!"#!"#$%&!!"!"#!"#$%&!"#$!"#$!"#$%&'()*+,!"#$%&!"#$%&'!"!"#$%&'!"#!"#$%&'()*+!"#$%!"#$%&'(!"#$%&'()*+,
Alterazioni del sistema cardiovascolare nel volo spaziale
POLITECNICO DI TORINO Corso di Laurea in Ingegneria Aerospaziale Alterazioni del sistema cardiovascolare nel volo spaziale Relatore Ing. Stefania Scarsoglio Studente Marco Enea Anno accademico 2015 2016
Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1
Sarò signor io sol Canzon, ottava stanza Domenico Micheli Soprano Soprano 2 Alto Alto 2 Α Α Sa rò si gnor io sol del mio pen sie io sol Sa rò si gnor io sol del mio pen sie io µ Tenor Α Tenor 2 Α Sa rò
STL7233L νέο. Λειτουργίες. Πλήρως Εντοιχιζόμενο Πλυντήριο Πιάτων 60 εκ Ενεργειακή κλάση A+++ Περισσότερες πληροφορίες στο
STL7233L νέο Πλήρως Εντοιχιζόμενο Πλυντήριο Πιάτων 60 εκ Ενεργειακή κλάση A+++ Περισσότερες πληροφορίες στο www.petco.gr EAN13: 8017709232429 4ετής εγγύηση μόνο από το επίσημο δίκτυο της PETCO AE Σύστημα
DEFINIZIONE DELLE FUNZIONI TRIGONOMETRICHE IN UN TRIANGOLO RETTANGOLO
DEFINIZIONE DELLE FUNZIONI TRIGONOMETRICHE IN UN TRIANGOLO RETTANGOLO Il triangolo ABC ha n angolo retto in C e lati di lnghezza a, b, c (vedi fig. ()). Le fnzioni trigonometriche dell angolo α sono definite
OILGEAR TAIFENG. (ml/rev) (bar) (bar) (L/min) (rpm) (kw)
PVWW!"#$ PVWW!"#$%&'()*+!"#$% 12!"#$%&'()*!!"#$%&'(!"#$!"#$%&'()*+!"#$%!!"#!$%&'()*+!"#$%!"!"#$%&'!"#$%&'!"#!"#$%!" SE!"!"#$%&'!"#!"#$%&'!"#$%&'!"#$!"#$!"#$%&'!"#$%&'!"#$%&!"#$%&'!"!"#$%&!"#$%&!"!"#$%!"#$%!"#$%&'(!"#$%&'!!"#!"#!"#$%&!"#$%&'(
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
3/5/016 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΣΥΡΜΑΤΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Παραδείγματα Κεραιών Αθανάσιος Κανάτας Καθηγητής Παν/μίου Πειραιώς Δίπολο Hetz L d
ST2FABBL νέο. Λειτουργίες. Εκδόσεις. 50's style retro
ST2FABBL νέο Εντοιχιζόμενο Πλυντήριο Πιάτων 60 εκ, 50's, Μαύρο Ενεργειακή κλάση A+++ Περισσότερες πληροφορίες στο www.petco.gr EAN13: 8017709232382 4ετής εγγύηση μόνο από το επίσημο δίκτυο της PETCO AE
Ιταλική Γλώσσα Β1. 12 η ενότητα: Giorno e notte estate. Ελένη Κασάπη Τμήμα Ιταλικής Γλώσσας και Φιλολογίας ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ 12 η ενότητα: Giorno e notte estate. Ελένη Κασάπη Τμήμα Ιταλικής Γλώσσας και Φιλολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
άπο πρώτη ς Οκτωβρίου 18 3"] μέ/ρι τοΰ Πάσ/α 1838 τυροωμιάσατ ο Π 1 Ν Α S Τ Ω Ν Ε Ν Τ Ω Ι Β. Ο Θ Ω Ν Ε Ι Ω Ι Π Α Ν Ε Π Ι Σ Ί Ή Μ Ε Ι Ω Ι
Π 1 Ν Α S Τ Ω Ν Ε Ν Τ Ω Ι Β. Ο Θ Ω Ν Ε Ι Ω Ι Π Α Ν Ε Π Ι Σ Ί Ή Μ Ε Ι Ω Ι ΚΑΤΑ ΤΗΝ ΧΕΙ Μ Ε Ρ IN Η Ν Ε Ξ AM ΗΝ IΑΝ άπο πρώτη ς Οκτωβρίου 18 3"] μέ/ρι τοΰ Πάσ/α 1838 Π Α Ρ Α Δ Ο Θ Η Σ Ο Μ Ε Ν Ω Ν ΜΑΘΗΜΑΤΩΝ.
Διαφορικά Αόριστα Ολοκληρώµατα Κανόνες Ολοκλήρωσης. Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης
10 η Διάλεξη Διαφορικά Αόριστα Ολοκληρώµατα Κανόνες Ολοκλήρωσης 18 Οκτωβρίου 2016 Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ, ΤΟΜΟΣ Ι - Finney R.L. / Weir M.D. / Giordano
LA CONDUZIONE ELETTRICA NEI METALLI
ELETTRODINAMICA ELETTRODINAMICA ELETTRODINAMICA ELETTRODINAMICA LA CONDUZIONE ELETTRICA NEI METALLI CONDUZIONE ELETTRICA CONDUZIONE ELETTRICA!"!##$"%"#&"!'#"($ $ )"$ *$ %""!"&"!##)!"'$'"#&"+!%!%"(!#"(
EE434 ASIC & Digital Systems Arithmetic Circuits
EE434 ASIC & Digital Systems Arithmetic Circuits Spring 25 Dae Hyun Kim daehyun@eecs.wsu.edu Arithmetic Circuits What we will learn Adders Basic High-speed 2 Adder -bit adder SSSSSS = AA BB CCCC CCCC =
MACCHINE A FLUIDO 2 CORRELAZIONE RENDIMENTO TURBINA A GAS S.F. SMITH
MACCHINE A FLUIDO CORRELAZIONE RENDIMENTO TURBINA A GAS S.F. SMITH MACCHINE A FLUIDO STADIO R.5 * 4 4 fs f 4 ( ) L MACCHINE A FLUIDO STADIO R.5 ϑ S ϑr a tan ( ) ξ.5 ( ϑ / 9) / 4 ( ) 3 MACCHINE A FLUIDO
! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.
! " #$%&'()' *('+$,&'-. /0 1$23(/%/4. 1$)('%%'($( )/,)$5)/6%6 7$85,-9$(- /0 :/986-$, ;2'$(2$ 1'$-/-$)('')5( /&5&-/ 5(< =(4'($$,'(4 1$%$2/996('25-'/(& ;/0->5,$ 1'$-/%'')$(($/3?$%9'&-/?$( 5(< @6%-'9$
!"# '1,2-0- +,$%& &-
"#.)/-0- '1,2-0- "# $%& &'()* +,$%& &- 3 4 $%&'()*+$,&%$ -. /..-. " 44 3$*)-),-0-5 4 /&30&2&" 4 4 -&" 4 /-&" 4 6 710& 4 5 *& 4 # 1*&.. #"0 4 80*-9 44 0&-)* %&9 4 %&0-:10* &1 0)%&0-4 4.)-0)%&0-44 )-0)%&0-4#
Stucco Natural / Stucco Mítiko. Στόκος με βάση τον ασβέστη.
Stucco Natural / Stucco Mítiko Στόκος με βάση τον ασβέστη. 5Kg Stucco Mítiko + 480ml Esencia 05 Stuco Natural / Stucco Mítiko Στόκος, για εσωτερική χρήση που χαρίζει ένα πολυτελές παλαιωμένο αποτέλεσμα,
( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain
Continm Mechanics. Official Fom Chapte. Desciption of Motion χ (,) t χ (,) t (,) t χ (,) t t Chapte. Defomation an Stain s S X E X e i ij j i ij j F X X U F J T T T U U i j Uk U k E ( F F ) ( J J J J)
Il testo è stato redatto a cura di: Daniele Ferro (Tecnico della prevenzione - S.Pre.S.A.L. - ASL 12 Biella)
Lo Sportello Sicurezza di Biella, di cui fanno parte l I.N.A.I.L., la D.P.L. e l A.S.L. 12, nell ambito delle iniziative tese a promuovere la cultura della salute e della sicurezza ha realizzato, questo
!"!"!!#" $ "# % #" & #" '##' #!( #")*(+&#!', & - #% '##' #( &2(!%#(345#" 6##7
!"!"!!#" $ "# % #" & #" '##' #!( #")*(+&#!', '##' '# '## & - #% '##'.//0 #( 111111111111111111111111111111111111111111111111111 &2(!%#(345#" 6##7 11111111111111111111111111111111111111111111111111 11111111111111111111111111111111111111111111111111
MATRICES DE TRANSFORMACION DE COORDENADAS. 3D. ü INCLUDES. ü Cálculo de las componentes de la Matriz de rotación de tensiones (3-3)
MATRICES DE TRANSFORMACION DE COORDENADAS. 3D ü INCLUDES In[298]:= In[301]:= In[302]:= In[303]:= Off@General::"spell"D; Off@General::"spell1"D; Off@Set::"wrsm"D; Needs@"LnearAlgebra`MatrxManpulaton`"D
MÉTHODES ET EXERCICES
J.-M. MONIER I G. HABERER I C. LARDON MATHS PCSI PTSI MÉTHODES ET EXERCICES 4 e édition Création graphique de la couverture : Hokus Pokus Créations Dunod, 2018 11 rue Paul Bert, 92240 Malakoff www.dunod.com
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ. ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΕΡΙΒΑΛΛΟΝΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ (MSc)
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΕΡΙΒΑΛΛΟΝΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ (MSc) ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΠΣΕ60 Ακαδημαϊκό Έτος: 207-208 η Γραπτή Εργασία Επιβλέπων
ΚλασικΩ ΣΥ Λ Λ Ο)1ΓJf-I
ΚλασικΩ ΣΥ Λ Λ Ο)1ΓJfI Η ΜΟΥΣΚΗ 33: ΡΟΣΝδιάσημες εισαγωγές Ο Κουρέας της Σεβίλης. Η Κλέφτρα Κίσσα Γουλιέλμος Τέλος. Η ταλίδα στο Αλγέρι. Σεμίραμις Αρια: Nacqui all' affano e al piano, από τη "Σταχτοπούτα"
ΚΥΚΛΟΙ ΚΑΤΕΡΓΑΣΙΑΣ. κατά τον άξονα Ζ.
ΚΥΚΛΟΙ ΚΑΤΕΡΓΑΣΙΑΣ Οι κύκλοι κατεργασίας χρησιµοποιούνται για ξεχόνδρισµα - φινίρισµα ενός προφίλ χωρίς να απαιτείται να προγραµµατίζουµε εµείς τα διαδοχικά πάσα της κατεργασίας. Έτσι, στο πρόγραµµα περικλείουµε
LVS4334XIN. Πλυντήριο πιάτων 60 εκ., ελεύθερο, εμφανή χειριστήρια, inox/γκρι μεταλλικό Κλάση Α+++A Περισσότερες πληροφορίες στο
Πλυντήριο πιάτων 60 εκ., ελεύθερο, εμφανή χειριστήρια, inox/γκρι μεταλλικό Κλάση Α+++A Περισσότερες πληροφορίες στο www.petco.gr EAN13: 8017709244224 4ετής εγγύηση μόνο από το επίσημο δίκτυο της PETCO
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs
Stati tensionali e deformativi nelle terre
Stati tensionali e deformativi nelle terre Approccio Rigoroso Meccanica mei discontinui Solido particellare Fluido continuo Approccio Ingegneristico Meccanica continuo Solido & Fluido continui sovrapposti
! "# " #!$ &'( )'&* $ ##!$2 $ $$ 829 #-#-$&2 %( $8&2(9 #."/-0"$23#(&&#
! "# " #!$ %""! &'( )'&* $!"#$% &$'#( )*+#'(,#* /$##+(#0 &1$( #& 23 #(&&# +, -. % ($4 ($4 ##!$2 $567 56 $$ 829 #-#-$&2 %( $8&2(9 #."/-0"$23#(&&# 6 < 6 6 6 66 6< <
2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < <
K+P K+P PK+ K+P - _+ l Š N K - - a\ Q4 Q + hz - I 4 - _+.P k - G H... /.4 h i j j - 4 _Q &\\ \\ ` J K aa\ `- c -+ _Q K J K -. P.. F H H - H - _+ 4 K4 \\ F &&. P H.4 Q+ 4 G H J + I K/4 &&& && F : ( -+..
Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ ]
Οριακή Κατάσταση Αστοχίας έναντι Κάμψης με ή χωρίς ορθή δύναμη ΓΙΑΝΝΟΠΟΥΛΟΣ ΠΛΟΥΤΑΡΧΟΣ Δρ. Πολ. Μηχανικός Αν. Καθηγητής Ε.Μ.Π. Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ 1992-1-1
Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΣΚΥΡΟΔΕΜΑ ΙΙ. http://www.luckyweek.eu/civil.teipir
Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΣΚΥΡΟΔΕΜΑ ΙΙ http://www.luckyweek.eu/civil.teipir Άσκηση Σελίδα Υποστύλωμα Δοκός Πλακοδοκός Άλλο Κάμψη Διάτμηση Λυγισμός Στρέψη Ροπή Σχεδιασμού 01 03 02 07
!!" # $!!" %% &% $ : () *"++,- ; 4 % < & & / % % & / % 1 " #. % % 6
!!" # $!!" %% &% ' $ () *"++,- % &. % % & %/ % % / # % 2 3 / / ' / / / 45 ( & % / % 6 / / 3 / / 3 / 7 /7 7 $ 8"7 87 9" $ : () *"++,- ; 4 % < & & / % % & / % " #. % % 6 5/ %!!". 5 5 ' = % = % % #% 5 5 //
L'ELEGANZA NEI PUNTI NOTEVOLI DI UN TRIANGOLO
L'ELEGANZA NEI PUNTI NOTEVOLI DI UN TRIANGOLO Prof. Fbio Bred Abstrct. Lo scopo di questo rticolo è dimostrre le elegntissime formule crtesine dei quttro punti notevoli del tringolo. Il bricentro, l'incentro,
Problemas resueltos del teorema de Bolzano
Problemas resueltos del teorema de Bolzano 1 S e a la fun ción: S e puede af irm a r que f (x) está acotada en el interva lo [1, 4 ]? P or no se r c ont i nua f (x ) e n x = 1, la f unció n no e s c ont
Formulario Básico ( ) ( ) ( ) ( ) ( 1) ( 1) ( 2) ( 2) λ = 1 + t t. θ = t ε t. Mecánica de Medios Continuos. Grado en Ingeniería Civil.
Mecánica e Meios Continos. Gao en Ingenieía Ciil. Fomlaio Básico Tema. Descipción el moimiento χ (,) t χ (,) t (,) t χ (,) t t t Tema. Defomación s S X E X e i ij j i ij j F X X U F J T T T U U i j Uk
Vers un assistant à la preuve en langue naturelle
Vers un assistant à la preuve en langue naturelle Thévenon Patrick To cite this version: Thévenon Patrick. Vers un assistant à la preuve en langue naturelle. Autre [cs.oh]. Université de Savoie, 2006.
,, #,#, %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, )
!! "#$%&'%( (%)###**#+!"#$ ',##-.#,,, #,#, /01('/01/'#!2#! %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) 6###+! 4! 4! 4,*!47! 4! (! 8!9%,,#!41! 4! (! 4!5),!(8! 4! (! :!;!(7! (! 4! 4!!8! (! 8! 4!!8(!44!
!!" # "!! $$ %$ ' : () *"++,- ; 4 $ < % % / $ $ % /
!!" # "!! $$ %$ & ' () *"++,- $ %. $ $ % $/ $ $ / # $ 2 3 / / & / / / 45 ( % $ / $ 6 / / 3 / / 3 / 7 /7 7 ' 8"7 87 9" ' : () *"++,- ; 4 $ < % % / $ $ % / & = $ = $ $ 4 #$ 5/ > = $ 5 5 // $!!".. 5 5 $ =
PoS(PSF07)002 !"# $%"&!'( &")(#""* "+#,'("# ! " #$% ! " #$ ! " ,,. 12!34 " ! " ! γ " " #$ % &'# ( #$ γ )* +, &'# &'# -. /$01#!
! #$%!#! #$ $%&!'(! #$% &(# &'(+,-,,. #$% +#%%+ &/0 12!34 #$% +#,'(#! #$%! #$ % &'# ( #$ +, &'# &'# -. /$01#! 2 #$ 5.60.780+ 2$ 9 2 #&'&# & 3 #$45.6 0 3 / : / : :;#:;< ' #5. 3 #$ 3 Γ# 5 / # 5 ( (# ρ( ρ(
m 1, m 2 F 12, F 21 F12 = F 21
m 1, m 2 F 12, F 21 F12 = F 21 r 1, r 2 r = r 1 r 2 = r 1 r 2 ê r = rê r F 12 = f(r)ê r F 21 = f(r)ê r f(r) f(r) < 0 f(r) > 0 m 1 r1 = f(r)ê r m 2 r2 = f(r)ê r r = r 1 r 2 r 1 = 1 m 1 f(r)ê r r 2 = 1 m
ROVER (MG ROVER GROUP LTD)
100 114 D 38 52 01/92 + 0822-8962 237,40 0811-8962 134,20 115 D TUD 5 42 57 12/94 + 0822-8963 237,40 0811-8963 134,20 1500 (Triumph) 1.5 42 62 10/70-12/74 0800-0175 11,00 1.5 49 66 01/72-12/74 0800-0175
ΟΙΚΟΝΟΜΙΚΗ ΤΩΝ ΔΙΚΤΥΩΝ ΚΑΙ ΤΗΣ ΠΛΗΡΟΦΟΡΗΣΗΣ (ECΟ465) ΥΛΙΣΜΙΚΟ/ΛΟΓΙΣΜΙΚΟ ΕΙΚΟΝΙΚΑ ΔΙΚΤΥΑ
ΟΙΚΟΝΟΜΙΚΗ ΤΩΝ ΔΙΚΤΥΩΝ ΚΑΙ ΤΗΣ ΠΛΗΡΟΦΟΡΗΣΗΣ (ECΟ465) ΥΛΙΣΜΙΚΟ/ΛΟΓΙΣΜΙΚΟ ΕΙΚΟΝΙΚΑ ΔΙΚΤΥΑ 1 ΕΞΩΤΕΡΙΚΟΤΗΤΕΣ ΔΙΚΤΥΟΥ o Μια μεγάλη πλειοψηφία προϊόντων χαρακτηρίζεται από εξωτερικότητες δικτύου. ΟΡΙΣΜΟΣ. Ένα
Ε.Ο.Αθηνών Λαµίας 97, Τ.Κ. 143 42,Ν.Φιλαδέλφεια Τηλ. 210-2510500, Fax 210 2510338 e-mail: dimos@patronas.co. Θερµοστάτης PJEZSNH000.
Ε.Ο.Αθηνών Λαµίας 97, Τ.Κ. 143 42,Ν.Φιλαδέλφεια Τηλ. 210-2510500, Fax 210 2510338 e-mail: dimos@patronas.co Θερµοστάτης PJEZSNH000 Οδηγίες χρήσης Ηλεκτρολογικό σχέδιο 4-5 : ρελέ µηχανής 6 (L) : Φάση (230V)
cognome -nome data di nascita Città C.S.B. cellulare e-mail ctg- specialità
Migliore Media Match Serie max Migliore Media Generale 23 Novembre 1966 Modica(RG) La Biglia - Modica(RG) autoricambieuropa@tiscali.it 0644 Cagliari Tempio del biliardo- Cagliari Seconda - Carambola "tre
! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"
! "#" "" $ "%& ' %$(%&!"#$ % &'(!!")!*!&+,! %$( -.$'!" /01&$23& &4+ $$ /$ & & / ( #(&4&4!"#$ %40 &'(!"!!&+ 5,! %$( - &$ $$$".$'!" 4(02&$ 4 067 4 $$*&(089 - (0:;
ΕΝΘΥΜΗΣΕΙΣ ΛΕΙΤΟΥΡΓΙΚΩΝ ΒΙΒΛΙΩΝ ΙΕΡΟΥ ΝΑΟΥ ΚΟΙΜΗΣΕΩΣ ΘΕΟΤΟΚΟΥ ΑΝΩ ΣΚΟΤΙΝΑΣ
ΕΝΘΥΜΗΣΕΙΣ ΛΕΙΤΟΥΡΓΙΚΩΝ ΒΙΒΛΙΩΝ ΙΕΡΟΥ ΝΑΟΥ ΚΟΙΜΗΣΕΩΣ ΘΕΟΤΟΚΟΥ ΑΝΩ ΣΚΟΤΙΝΑΣ Η Ανω Σκοτίνα βρίσκεται στο βορειοανατολικό τμήμα του Ολυμπου. Σήμερα είναι ένα εγκαταλειμμένο χωριό, το οποίο κατοικείται τους
C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,
1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =
Profesor Blaga Mirela-Gabriela DREAPTA
DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)
MECHANICAL PROPERTIES OF MATERIALS
MECHANICAL PROPERTIES OF MATERIALS! Simple Tension Test! The Stress-Strain Diagram! Stress-Strain Behavior of Ductile and Brittle Materials! Hooke s Law! Strain Energy! Poisson s Ratio! The Shear Stress-Strain
ΤΟΙΧΟΥ BIGFOW Am ΤΙΜΗ RAS-10KH3 314,00 9.900-10.300 280 X 780 X 215 / 570 X 700 X 215 1/4, 3/8 4,1 220 5X1,5 IN A 38 35 28 48 RAC-10KH3 346,00 660,00 RAS-14KH3 322,00 12.000-13.200 280 X 780 X 215 / 570
... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK
RS-3C WIWM050 014.1.9 P1 :8... 1... 014.0.1 1 A... 014.0. 1... RS-3C()...01.08.03 A.. RS-3C()...01.08.03 3... RS-3C()... 003.11.5 4... RS-3C ()... 00.10.01 5... RS-3C().008.07.16 5 A.. RS-3C().0 1.08.
Οριακή Κατάσταση. με ή χωρίς ορθή δύναμη
ΤΕΕ Θράκης Κομοτηνή 10.10.2009 Σχεδιασμός φορέων από σκυρόδεμα με βάση τον Ευρωκώδικα 2 Μέρος 1-1 (EN 1992-1-1) Οριακή Κατάσταση Αστοχίας έναντι Κάμψης με ή χωρίς ορθή δύναμη Γιαννόπουλος Πλούταρχος Δρ.
Παράδειγμα 1. Διαστασιολόγηση δοκού Ο/Σ
Τ.Ε.Ι. K.M. Τμήμα ΠΓ&ΜΤΓ Κατασκευές Οπλισμένου Σκυροδέματος Ι Διδάσκων: Παναγόπουλος Γιώργος Παράδειγμα 1. Διαστασιολόγηση δοκού Ο/Σ Δίνεται η κάτοψη του σχήματος που ακολουθεί και ζητείται να εξεταστεί
Karta Katalogowa CATALOGUE CARD
2001-11-12 KK-01/02 Edycja 6 Strona 1 z 8 Karta Katalogowa CATALOGUE CARD 7UÑMID]RZHVLOQLNLLQGXNF\MQH ZLHORELHJRZH ]ZLUQLNLHPNODWNRZ\P 7KUHHSKDVHLQGXFWLRQ PXOWLSOHVSHHGPRWRUV ZLWKVTXLUUHOFDJHURWRU )$%5
Αποτελέσματα έρευνας σε συνδικαλιστές
From law to practice-praxis Αποτελέσματα έρευνας σε συνδικαλιστές Το πρόγραμμα συγχρηματοδοτείται από την ΕΕ Συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση Γνωρίζετε τι προβλέπει η Οδηγία 2002/14; Sa che cosa