ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ
|
|
- Ἀλκαῖος Βλαχόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ 2 η Σειρά Ασκήσεων Άσκηση 1: Ζητείται όπως δώσετε τέσσερις εντολές του Matlab με τις οποίες μπορούν να προστεθούν τα στοιχεία του μητρώου k (διαστάσεων 2x2) στα υπάρχοντα στοιχεία στις αντίστοιχες θέσεις που είναι ελαφρώς σκιασμένες (3 η -4 η γραμμή και 7 η -8 η στήλη, 7 η -8 η γραμμή και 7 η -8 η στήλη,) του μητρώου Κ, το οποίο έχει διαστάσεις 10x10, όπως φαίνεται στο πιο κάτω σχήμα, και τα στοιχεία του μητρώου k (το οποίο έχει διαστάσεις 2x2) πολλαπλασιασμένα επί (-1) στα υπάρχοντα στοιχεία στις αντίστοιχες θέσεις που είναι πιο έντονα σκούρα σκιασμένες (3 η -4 η γραμμή και 7η-8η στήλη, 7 η -8 η γραμμή και 3 η -4 η στήλη): K10x10 k2x2 1/5
2 Άσκηση 2: Συμπληρώστε στον πιο κάτω πίνακα τις τιμές των πιο κάτω μεταβλητών a, b, c, x, y και z που θα έχουν μετά την εκτέλεση των πιο κάτω εντολών του Matlab: clear a = 2 ; b = 5 ; c = 9 ; x = a ; y = b ; z = c ; [a,b,c] = myfun1(a,b,c); Η συνάρτηση myfun1() ορίζεται ως εξής: function [a b c] = myfun1(x, y, z) a = 2 * x ; b = 3 * y ; c = 4 * z ; Μεταβλητή: a b c x y z Τιμή: Πέτρος _Κωμοδρόμος, Επίκ. Καθ. 2/5 Ιστοσελίδα:
3 Άσκηση 3: ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ, η Σειρά Ασκήσεων Ποια θα είναι η τιμή που θα επιστρέψει η πιο κάτω συνάρτηση myfun2() εάν κληθεί με παράμετρο 0, 3 και -3, αντίστοιχα; Δώστε την απάντησή σας στον πιο κάτω πίνακα. Η συνάρτηση myfun2() ορίζεται ως εξής: function x = myfun2(x) if x > 1 x = x + myfun2(x-1); elseif x < -1 x = x + myfun2(x+1); Τι νομίζετε ότι υπολογίζει η συγκεκριμένη συνάρτηση; Παράμετρος: myfun2(0) myfun2(3) myfun2(-3) Επιστρεφόμενη τιμή: Η συνάρτηση υπολογίζει και επιστρέφει το άθροισμα των αριθμών που είναι ίσοι ή μικρότεροι (σε απόλυτη τιμή) της παραμέτρου μέχρι το μηδέν. Άσκηση 4: Ζητείται να γράψετε μια συνάρτηση (function), με το όνομα myfactorial, η οποία θα παίρνει σαν παράμετρο ένα αριθμό (θεωρείστε δεδομένο ότι είναι θετικός ακέραιος αριθμός) και θα επιστρέφει ως αποτέλεσμα το παραγοντικό αυτού του αριθμού, ΧΩΡΙΣ να χρησιμοποιήσετε οποιαδήποτε επαναληπτική δομή ελέγχου (π.χ. for ή while), αλλά χρησιμοποιώντας αναδρομικότητα (κλήση μέσα από τη μέθοδο της ίδιας της μεθόδου). Η κλήση της μεθόδου θα μπορεί να είναι π.χ. ως εξής: fprintf('\n To paragontiko toy %d einai iso me %d', 4, myfactorial(4)) Με αποτέλεσμα την πιο κάτω εκτύπωση: To paragontiko toy 4 einai iso me 24 3/5
4 Άσκηση 5: ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ, η Σειρά Ασκήσεων Θεωρείστε ότι έχετε τις καταγραφές ενός επιταχυνσιογράφου σε ένα αρχείο με το όνομα kobe3d σε 4 στήλες, με την 1 η στήλη να παρέχει το χρόνο σε δευτερόλεπτα, και τη 2 η, 3 η και 4 η στήλη να παρέχουν τις επιταχύνσεις του εδάφους στη Χ, Υ και Ζ (κατακόρυφη) διεύθυνση, αντίστοιχα. (α) Ζητείται να γράψετε τις εντολές σε Matlab που απαιτούνται για να φορτώσετε τις τιμές του αρχείου αυτού και να σχεδιάσετε στο σχήμα (figure) 7, το οποίο θα πρέπει να χωρίσετε σε 3 υποσχήματα (subplot), ως 1 στήλη και 3 γραμμές, την χρονοϊστορία των επιταχύνσεων του εδάφους στη Χ διεύθυνση στο πάνω υποσχήμα, την χρονοϊστορία των επιταχύνσεων του εδάφους στη Υ διεύθυνση στο μεσαίο υποσχήμα και την χρονοϊστορία των επιταχύνσεων του εδάφους στη Ζ διεύθυνση στο κάτω υποσχήμα του σχήματος 7. (β) Επίσης, ζητείται όπως γράψετε τις εντολές που απαιτούνται για να προσδιορίσετε τη μέγιστη (απόλυτη) τιμή της κατακόρυφης εδαφικής επιτάχυνσης (στη Ζ διεύθυνση) και να την τυπώσετε μαζί με τις αντίστοιχες τιμές των εδαφικών επιταχύνσεων στη Χ και Υ διεύθυνση, κατά τη χρονική στιγμή που παρατηρείται η μέγιστη (απόλυτη) τιμή της κατακόρυφης εδαφικής επιτάχυνσης. Άσκηση 6: Ζητείται να γράψετε τις κατάλληλες εντολές σε Matlab έτσι ώστε να φορτωθεί το επιταχυνσιογράφημα kobeaccel, το οποίο περιέχει σε 2 στήλες τις χρονικές στιγμές των καταγραφών, στην 1 η στήλη, και τις τιμές των επιταχύνσεων του εδάφους (σε m/s/s), στη 2 η στήλη, όπως πιο κάτω: Αφού φορτώσετε το επιταχυνσιογράφημα, θα πρέπει να το σχεδιάσετε, δηλαδή τις επιταχύνσεις του εδάφους (κατακόρυφος άξονας) συναρτήσει του χρόνου (οριζόντιος άξονας) στο πάνω μέρος του σχήματος 3, διαχωρίζοντάς το σε 2 γραμμές, όπως φαίνεται στην επόμενη εικόνα. Στη συνέχεια, θα πρέπει αφού βαθμονομήσετε τις επιταχύνσεις του εδάφους, με κατάλληλο πολλαπλασιασμό/διαίρεση, έτσι ώστε η μέγιστη επιτάχυνση του εδάφους (PGA Peak Ground Acceleration) να ισούται με 0.3 g, όπου g = 9.81 m/s/s είναι η επιτάχυνση της βαρύτητας, να σχεδιάζετε, στο κάτω μέρος του σχήματος 3, τις βαθμονομημένες τιμές της επιταχύνσεως του εδάφους συναρτήσει του χρόνου, όπως φαίνεται στην επόμενη εικόνα. Πέτρος _Κωμοδρόμος, Επίκ. Καθ. 4/5 Ιστοσελίδα:
5 5/5
ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ. Ενδιάμεση Πρόοδος. 10:30-11:30 π.μ. (60 λεπτά), Δευτέρα, 20 Μαρτίου, 2017
Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ μήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος Ενδιάμεση Πρόοδος Ακαδημαϊκό Έτος 2016-17, Εαρινό Εξάμηνο 10:30-11:30 π.μ.
ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα
ΠΠΜ : Ανάλυση Κατασκευών με Μητρώα, 08 - η Πρόοδος ΠΠΜ : Ανάλυση Κατασκευών με Μητρώα η Ενδιάμεση Πρόοδος Ακαδημαϊκό Έτος 07 8, Εαρινό Εξάμηνο Πέμπτη, Φεβρουαρίου, 08, 9:00-0:00 π.μ. (60 λεπτά) Όνομα:
Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ. Ενδιάμεση Πρόοδος. 6:00-8:00 μ. μ.
ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ, 016 - Ενδιάμεση Πρόοδος Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών
Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ. Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο
ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ, 2016- Τελική Εξέταση Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών
ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα
ΠΠΜ 1: Ανάλυση Κατασκευών με Μητρώα, 017-1 η Πρόοδος ΠΠΜ 1: Ανάλυση Κατασκευών με Μητρώα 1 η Ενδιάμεση Πρόοδος Ακαδημαϊκό Έτος 016 17, Εαρινό Εξάμηνο Δευτέρα, 0 Φεβρουαρίου, 017, 9:00-10:00 π.μ. (60 λεπτά)
ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα. 2 η Πρόοδος. 9:00-10:10 μ.μ. (70 λεπτά) Πέμπτη, 30 Μαρτίου, 2017
ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα, 2017-2 η Πρόοδος Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος Ακαδημαϊκό Έτος
ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ
Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ 1 η Άσκηση 6 η Σειρά Ασκήσεων Θεωρώντας ότι έχετε διαθέσιμα ΜΟΝΟ
ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα
ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα, 2018-2 η Πρόοδος ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα Ακαδημαϊκό Έτος 2017 18, Εαρινό Εξάμηνο 2 η Πρόοδος 9:00-10:10 μ.μ. (70 λεπτά) Πέμπτη, 29 Μαρτίου, 2018 Όνομα:
Ενδιάμεση Πρόοδος. 10:30-11:30 π.μ. (60 λεπτά), Δευτέρα, 19 Μαρτίου, 2018
Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή μήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ Ενδιάμεση Πρόοδος Ακαδημαϊκό Έτος 2017-18, Εαρινό Εξάμηνο 10:30-11:30 π.μ.
METΡΗΣΗ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΜΕ ΤΟ ΑΠΛΟ ΕΚΚΡΕΜΕΣ
ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τ. Ε. Ι. Σ Ε Ρ Ρ Ω Ν ΕΞΕΤΑΣΕΙΣ ΕΡΓΑΣΤΗΡΙΟΥ ΦΥΣΙΚΗΣ ΟΝΟΜΑTΕΠΩΝΥΜΟ ΑΡΙΘΜΟΣ ΜΗΤΡΩΟΥ METΡΗΣΗ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΜΕ ΤΟ ΑΠΛΟ ΕΚΚΡΕΜΕΣ Χρησιμοποιώντας
17. Εισαγωγή σε αριθμητικές μεθόδους για μηχανικούς και αλγορίθμους
ΠΠΜ 500: Εφαρμογές Μηχανικής με Ανάπτυξη Λογισμικού 17. Εισαγωγή σε αριθμητικές μεθόδους για μηχανικούς και αλγορίθμους Εαρινό εξάμηνο 2012 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros
Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 401: Ανάπτυξη Λογισμικού Εφαρμογών Μηχανικής, :00-10:00 π.μ.
Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 401: Ανάπτυξη Λογισμικού Εφαρμογών Μηχανικής, 2016 Ακαδημαϊκό Έτος 2018-19, Χειμερινό Εξάμηνο 1 η Ενδιάμεση
4. Εισαγωγή στο Matlab
ΠΠΜ 500: Εφαρμογές Μηχανικής με Ανάπτυξη Λογισμικού 4. Εισαγωγή στο Matlab Εαρινό εξάμηνο 2006 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www. www.eng. eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή στο Matlab
ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα
ΠΠΜ 1: Ανάλυση Κατασκευών με Μητρώα, 019 - Τελική εξέταση ΠΠΜ 1: Ανάλυση Κατασκευών με Μητρώα Ακαδημαϊκό Έτος 018 19, Εαρινό Εξάμηνο Τελική Εξέταση 8:30-10:30 μ.μ. (10 λεπτά), Δευτέρα, 13 Μαΐου, 019 Όνομα:
ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα. ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα. Ανάπτυξη Προγράμματος Ανάλυσης Επίπεδων Δικτυωμάτων
ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα, 2017 Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα ΠΠΜ 221: Ανάλυση Κατασκευών
1. Λογικά λάθη ονομάζονται αυτά που οφείλονται σε σφάλματα κατά την υλοποίηση του αλγόριθμου.
ΑΕσΠΠ-Κεφ 10.Υποπρογράμματα 1 1. Λογικά λάθη ονομάζονται αυτά που οφείλονται σε σφάλματα κατά την υλοποίηση του αλγόριθμου. ΣΩΣΤΟ ΛΑΘΟΣ 2. Συντακτικά λάθη ονομάζονται αυτά που οφείλονται σε αναγραμματισμούς
TO ΥΠΟΠΡΟΓΡΑΜΜΑ ΣΥΝΑΡΤΗΣΗ
Μάθημα 7 - Υποπρογράμματα Εργαστήριο 11 Ο TO ΥΠΟΠΡΟΓΡΑΜΜΑ ΣΥΝΑΡΤΗΣΗ Βασικές Έννοιες: Υποπρόγραμμα, Ανάλυση προβλήματος, top down σχεδίαση, Συνάρτηση, Διαδικασία, Παράμετρος, Κλήση συνάρτησης, Μετάβαση
7. α) Να λύσετε την ανίσωση x 5 <4. β) Αν κάποιος αριθμός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήματος (α). x 1. Δίνονται οι ανισώσεις: 3x 1
ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΗΛΕΚΤΡΟΝΙΚΑ ΙΙ» ΗΜΕΡΟΜΗΝΙΑ: 05/02/2013
ΘΕΜΑ ο (.5 μονάδες) Για τον ενισχυτή του παρακάτω σχήματος δίνονται: Β 90 kω, C kω, Ε E kω, kω, V CC V, V B 0.70 V και Ι Β 0 μα. Επίσης, για τα δύο τρανζίστορ του ενισχυτή δίνονται: β h e h e 00 και h
δήλωσης δεδοµένων και σε παραβίαση των συντακτικών κανόνων της γλωσσάς.
ΑΕσΠΠ-Κεφ 10.Υποπρογράµµατα 1 1. Λογικά λάθη ονοµάζονται αυτά που οφείλονται σε σφάλµατα κατά την υλοποίηση του αλγόριθµου. ΣΩΣΤΟ ΛΑΘΟΣ 2. Συντακτικά λάθη ονοµάζονται αυτά που οφείλονται σε αναγραµµατισµούς
3. α) Να λύσετε την εξίσωση x 2 = 3. β) Να σχηματίσετε εξίσωση δευτέρου βαθμού με ρίζες, τις ρίζες της εξίσωσης του α) ερωτήματος.
. Δίνεται η εξίσωση λ + 4(λ ) = 0, με παράμετρο λ R α) Να βρείτε τη διακρίνουσα της εξίσωσης. β) Να αποδείξετε ότι η παραπάνω εξίσωση έχει ρίζες πραγματικές για κάθε λ R. γ) Αν, είναι οι ρίζες της παραπάνω
κατά την οποία το μέτρο της ταχύτητας του κέντρου μάζας του τροχού είναι ίσο με
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 06/0/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΛ ΤΡΙΤΗ 11 ΙΟΥΝΙΟΥ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΛ ΤΡΙΤΗ 11 ΙΟΥΝΙΟΥ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο
1. Nα λυθούν οι ανισώσεις. 2. Nα λυθούν οι ανισώσεις. 3. Nα βρεθούν οι κοινές λύσεις των ανισώσεων: 4. Nα βρεθούν οι κοινές λύσεις των ανισώσεων:
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΝΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 4 ο ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ. Nα λυθούν οι ανισώσεις α) 4 β) 4. Nα λυθούν οι ανισώσεις ( )( ) α) + > - (+) β). Nα βρεθούν οι κοινές λύσεις των ανισώσεων: ( ) ( ) 8 4 8 και
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 05/01/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 05/01/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω
4 ο Εργαστήριο Τυχαίοι Αριθμοί, Μεταβλητές Συστήματος
4 ο Εργαστήριο Τυχαίοι Αριθμοί, Μεταβλητές Συστήματος Μεταβλητές Συστήματος Η Processing χρησιμοποιεί κάποιες μεταβλητές συστήματος, όπως τις ονομάζουμε, για να μπορούμε να παίρνουμε πληροφορίες από το
Ανισώσεις. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 /
Ανισώσεις Κώστας Γλυκός Τράπεζα θεμάτων ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 5 / 1 0 / 0 1 6 εκδόσεις τηλ. Οικίας : 10-610.178 κινητό : 697-300.88.88
Προγραμματισμός ΙI (Θ)
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Προγραμματισμός ΙI (Θ) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Μάρτιος 2017 Δρ. Δημήτρης Βαρσάμης Μάρτιος 2017
ΠΠΜ 320: Δυναμική Ανάλυση των Κατασκευών
Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 320: Δυναμική Ανάλυση των Κατασκευών Ακαδημαϊκό Έτος 2005-6, Χειμερινό Εξάμηνο Τελική Εξέταση 8:30-11:30
1 ο Διαγώνισμα Α Λυκείου Σάββατο 18 Νοεμβρίου 2017
1 ο Διαγώνισμα Α Λυκείου Σάββατο 18 Νοεμβρίου 017 Διάρκεια Εξέτασης 3 ώρες Ονοματεπώνυμο. ΘΕΜΑ Α: Στις ερωτήσεις Α1 ως και Α4 επιλέξτε την σωστή απάντηση: Α1. Αν υ η ταχύτητα ενός κινητού και α η επιτάχυνσή
ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού
ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού 97 98 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ 1. Να λυθεί η εξίσωση: 1 1 1 ( x+ )(x ) = x 3 3 9. Αν η εξίσωση (x - 3) λ + 3 = λ x έχει ρίζα τον αριθμό, να υπολογιστεί
9:00-10:00 π.μ. (60 λεπτά) Παρασκευή, 14 Οκτωβρίου, 2016
Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 401: Ανάπτυξη Λογισμικού Εφαρμογών Μηχανικής, 2016 Ακαδημαϊκό Έτος 2016-17, Χειμερινό Εξάμηνο 1 η Ενδιάμεση
Συστήματα Αναμονής (Queuing Systems)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ - ΕΜΠ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης & Βέλτιστου Σχεδιασμού Δικτύων Τηλεματικής
ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΠΤΑ (7)
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΤΡΙΤΗ 11 ΙΟΥΝΙΟΥ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΠΤΑ (7) ΘΕΜΑ Α Α1. Να χαρακτηρίσετε
Θέση- μετατόπιση -Ταχύτητα
Φύλλο εργασίας ΜΑΘΗΜΑ 1 Θέση- μετατόπιση -Ταχύτητα 1.Το σώμα Σ του σχήματος κινείται πάνω στον οριζόντιο άξονα x x. Με σημείο αναφοράς το Α το σώμα Σ βρίσκεται στη θέση x=, ενώ με σημείο αναφοράς το Β
Νέο υλικό. www.cs.uoi.gr/~develeg. Matlab2.pdf - Παρουσίαση μαθήματος 2. Matlab-reference.pdf Σημειώσεις matlab στα ελληνικά (13 σελίδες).
Matlab Μάθημα Νέο υλικό www.cs.uoi.gr/~develeg Matlab.pdf - Παρουσίαση μαθήματος. Matlab-reference.pdf Σημειώσεις matlab στα ελληνικά (3 σελίδες). Επαναληπτικές δομές Όταν εκτελείται μια πράξη σε ένα διάνυσμα,
Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ. Ενδιάμεση Πρόοδος. 6:00-8:00 μ. μ.
Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ Ακαδημαϊκό Έτος 2018-19, Χειμερινό Εξάμηνο Ενδιάμεση Πρόοδος 6:00-8:00
Σκοπός. Εργαστήριο 6 Εντολές Επανάληψης
Εργαστήριο 6 Εντολές Επανάληψης Η δομή Επιλογής στη PASCAL H δομή Επανάληψης στη PASCAL. Ρεύμα Εισόδου / Εξόδου.. Ρεύμα Εισόδου / Εξόδου. To πρόγραμμα γραφικών gnuplot. Γραφικά στη PASCAL. Σκοπός 6.1 ΕΠΙΔΙΩΞΗ
ΜΑΘΗΜΑ 5: ΑΝΑΚΛΑΣΗ (συνέχεια)
ΜΑΘΗΜΑ 5: ΑΝΑΚΛΑΣΗ (συνέχεια) Δραστηριότητα 1 Εξερευνώντας τις παραμέτρους της ανάκλασης. 1. Να επιλέξεις το λογισμικό Μαθαίνω Γεωμετρία και Μετρώ. 2. Από το μενού δραστηριοτήτων, να επιλέξεις το «Συμμετρία».
Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΚΥΡΙΑΚΗ 23/04/2017 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΕΠΠ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΟΔΗΓΙΕΣ ΑΥΤΟΔΙΟΡΘΩΣΗΣ ΘΕΜΑ Α Α1. 2 μονάδες για κάθε σωστό χαρακτηρισμό.
Νόμοι των Δυνάμεων 1ος & 3ος Νόμος Νεύτωνα
Νόμοι των Δυνάμεων 1ος & 3ος Νόμος Νεύτωνα 1. Το κιβώτιο του σχήματος ισορροπεί πάνω σε οριζόντιο επίπεδο. Η μάζα του είναι m =5kg. Α. Σχεδίασε τις δυνάμεις που δέχεται το κιβώτιο, από την γη και από το
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΜΟΣ Εντολές επιλογής και αποφάσεων 1 ο Φύλλο Εργασιών Εισαγωγικές ασκήσεις για την εντολή if ΑΠΑΝΤΗΣΕΙΣ
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΜΟΣ Κεφάλαιο 10 : Εντολές επιλογής και αποφάσεων 1 ο Φύλλο Εργασιών Εισαγωγικές ασκήσεις για την εντολή if ΑΠΑΝΤΗΣΕΙΣ 1. Ποιες από τις παρακάτω εντολές είναι σωστές; α) if A + B
Εντολή Δεδομένα Περιεχόμενα μετά την εκτέλεση 1 read(x) 122 x= 2 read(a,b,c) 133 244 355 a= b= c= 3 read(d,e) 166 277 3888
ΕΡΩΤΗΣΕΙΣ 1. Να αναφέρετε μερικά από τα ιδιαίτερα χαρακτηριστικά της Pascal. 2. Ποιο είναι το αλφάβητο της Pascal; 3. Ποια είναι τα ονόματα-ταυτότητες και σε τι χρησιμεύουν; 4. Σε τι χρησιμεύει το συντακτικό
i) Αν (,, ) είναι μια πυθαγόρεια τριάδα και είναι ένας θετικός ακέραιος, να αποδείξετε ότι και η τριάδα (,,
1. i) Να αποδείξετε την ταυτότητα 1 ( ) ( ) ( ) + + = + +. ii) Να αποδείξετε ότι για όλους τους,, ισχύει Πότε ισχύει ισότητα; + + + +.. Λέμε ότι μια τριάδα θετικών ακεραίων (,, ) είναι όταν είναι πλευρές
ΚΕΦΑΛΑΙΟ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ
55 ΚΕΦΑΛΑΙΟ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ Α. ΠΡΟΣΘΕΣΗ ΔΥΝΑΜΕΩΝ ΝΟΜΟΣ ΤΟΥ HOOKE 1. Να σχεδιάσετε δύο αντίρροπες δυνάμεις F 1=5N και F 2=15N με κλίμακα 1cm/2,5N και να βρείτε την συνισταμένη τους. (Απ.: 10
Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση
Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Υποδειγματικά Λυμένες Ασκήσεις Άλυτες Ασκήσεις ΛΑ Να βρείτε
Η άσκηση μπορεί να γίνει με συνεργασία το πολύ δυο φοιτητών, οι οποίοι θα λάβουν τον ίδιο βαθμό στην εργασία.
Άσκηση #4 Η άσκηση μπορεί να γίνει με συνεργασία το πολύ δυο φοιτητών, οι οποίοι θα λάβουν τον ίδιο βαθμό στην εργασία. Βαθμολογούνται: 1. Η αποτελεσματική επίλυση του προβλήματος. Δηλ σωστή υλοποίηση
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 4
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 4 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη και Τεχνολογία Μια Εισαγωγή ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση ονομάζεται ένα τμήμα κώδικα (ή υποπρόγραμμα) το
Να γράψετε τους αριθμούς 1, 2, 3 από τη Στήλη Α και δίπλα το γράμμα α, β, γ, δ, ε από τη Στήλη Β που δίνει τη σωστή αντιστοιχία.
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 2016-2017 ΜΑΘΗΜΑ / ΤΑΞΗ : Προγραμματισμός Υπολογιστών / Γ ΕΠΑ.Λ. ΗΜΕΡΟΜΗΝΙΑ: 22-1-2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΓΙΑΝΝΗΣ ΜΙΧΑΛΕΑΚΟΣ- ΑΝΝΑ ΚΑΤΡΑΚΗ ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις
Ημερομηνία: Παρασκευή 5 Ιανουαρίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ 3/1/017 ΕΩΣ 05/01/018 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Ημερομηνία: Παρασκευή 5 Ιανουαρίου 018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ημιτελείς
ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ
ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 29 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ A ΛΥΚΕΙΟΥ Κυριακή, 29 Μαρτίου 2015 Ώρα: 10:00-13:00 Οδηγίες 1) Το δοκίµιο αποτελείται από οκτώ (8) σελίδες και δέκα (10) θέµατα. 2) Να απαντήσετε
ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΟΜΕΝΗ ΚΙΝΗΣΗ. Κινητική του υλικού σηµείου Ερωτήσεις Ασκήσεις
ΕΡΓΑΣΙΑ ΣΤΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΟΜΕΝΗ ΚΙΝΗΣΗ Κινητική του υλικού σηµείου Ερωτήσεις Ασκήσεις Α. Ερωτήσεις Πολλαπλής Επιλογής Να γράψετε στο φύλλο των απαντήσεών
ΠΟΛΥΩΝΥΜΑ. Λυμένα Παραδείγματα
ΠΟΛΥΩΝΥΜΑ Λυμένα Παραδείγματα. Να βρεθούν οι τιμές του λ R για τις οποίες το πολυώνυμο Ρ () = (4λ -9) +(λ -λ-) +λ- είναι το μηδενικό. Το Ρ () θα είναι το μηδενικό πολυώνυμο, για εκείνες τις τιμές του λ
Καλές επιτυχίες παιδιά στα υπόλοιπα μαθήματά σας και καλές γιορτές!!!!
Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 401: Ανάπτυξη Λογισμικού Εφαρμογών Μηχανικής, 2018 Ακαδημαϊκό Έτος 2018-19, Χειμερινό Εξάμηνο Τελική Εξέταση
Εργαστήριο Γραμμικής Άλγεβρας. H Matlab ως γλώσσα προγραμματισμού
Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής με Εφαρμογές στη Βιοϊατρική Εργαστήριο Γραμμικής Άλγεβρας H Matlab ως γλώσσα προγραμματισμού Προγραμματιστικές δομές Έλεγχος ροής if if
Θεωρητικό Μέρος. int rec(int n) { int n1, n2; if (n <= 5) then return n; else { n1 = rec(n-5); n2 = rec(n-3); return (n1+n2); } }
Πανεπιστήµιο Ιωαννίνων, Τµήµα Πληροφορικής 2 Νοεµβρίου 2005 Η/Υ 432: οµές εδοµένων Χειµερινό Εξάµηνο Ακαδηµαϊκού Έτους 2005-2006 Παναγιώτα Φατούρου Ηµεροµηνία Παράδοσης 1 ο Σετ Ασκήσεων Θεωρητικό Μέρος:
Αξιοποίηση Η/Υ και Πληροφορικής στην Μηχανική
ΠΠΜ100 & ΜΜΠ100: Εισαγωγή στην Μηχανική Αξιοποίηση Η/Υ και Πληροφορικής στην Μηχανική ιάλεξη 4 η 2 Οκτωβρίου Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Περιεχόµενα ιάλεξη #1:
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ
ΘΕΜΑ ο Δίνεται η συνάρτηση f με τύπο : f( x) α. Να βρείτε το πεδίο ορισμού της. x x x x β. Να βρείτε τα σημεία τομής της με τους άξονες αν υπάρχουν. γ. Αν α, β ρίζες της εξίσωσης: ΘΕΜΑ ο Δίνεται η συνάρτηση
Μελέτη και έλεγχος της διατήρησης της μηχανικής ενέργειας στην ελεύθερη πτώση σώματος. (Ανάλυση video μέσω του Σ.Σ.Λ.Α, LoggerPro της Vernier)
Μελέτη και έλεγχος της διατήρησης της μηχανικής ενέργειας στην ελεύθερη πτώση σώματος. (Ανάλυση video μέσω του Σ.Σ.Λ.Α, LoggerPro της Vernier) Στόχοι Να μελετήσουμε τις μεταβολές της κινητικής και της
Ημερομηνία: Κυριακή 30 Οκτωβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΤΑΞΗ: ΜΑΘΗΜΑ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Ημερομηνία: Κυριακή 30 Οκτωβρίου 016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθμό
Εργαστήρια Αριθμητικής Ανάλυσης Ι. 4 ο Εργαστήριο. Διανύσματα-Πίνακες 1 ο Μέρος
Εργαστήρια Αριθμητικής Ανάλυσης Ι 4 ο Εργαστήριο Διανύσματα-Πίνακες 1 ο Μέρος 2017 Εισαγωγή Όπως έχουμε προαναφέρει σε προηγούμενα εργαστήρια. Ο βασικός τύπος δεδομένων στο Matlab είναι οι πίνακες. Ένα
1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI).
1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI). Να βρείτε: α. το πλάτος της απομάκρυνσης, της ταχύτητας και της επιτάχυνσης. β.
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÅÐÉËÏÃÇ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 15 ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 1 Μαΐου 15 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθµό
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ ΣΤΟ ΚΕΦΑΛΑΙΟ ΔΥΝΑΜΕΙΣ
1 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ ΣΤΟ ΚΕΦΑΛΑΙΟ ΔΥΝΑΜΕΙΣ 1 η ΕΡΩΤΗΣΗ: Τι ονομάζουμε γήινο βάρος ενός σώματος; 2 η ΕΡΩΤΗΣΗ: Ποιες είναι οι χαρακτηριστικές ιδιότητες του βάρους ενός σώματος; 3 η ΕΡΩΤΗΣΗ:
α. 2 β. 4 γ. δ. 4 2 Μονάδες 5
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΟΠ Β Λ (ΠΡΟΕΤΟΙΜΑΣΙΑ) - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 04/01/017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις
Α. Η επιτάχυνση ενός σωματιδίου ως συνάρτηση της θέσης x δίνεται από τη σχέση ax ( ) = bx, όπου b σταθερά ( b= 1 s ). Αν η ταχύτητα στη θέση x
Εισαγωγή στις Φυσικές Επιστήμες (4 7 09) Μηχανική ΘΕΜΑ Α. Η επιτάχυνση ενός σωματιδίου ως συνάρτηση της θέσης x δίνεται από τη σχέση ax ( ) = bx, όπου b σταθερά ( b= s ). Αν η ταχύτητα στη θέση x 0 = 0
K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων
K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού
A Λυκείου 9 Μαρτίου 2013
Θεωρητικό Μέρος A Λυκείου 9 Μαρτίου 2013 Θέμα 1 ο Στις ερωτήσεις A1, A2, A3, A4 και Β μία μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής
α. 0cm. β. 10cm. γ. 20cm. δ. 40cm.
ΘΕΜΑ A Α. Ερωτήσεις πολλαπλής επιλογής. Δύο όμοιες πηγές κυμάτων Α και Β στην επιφάνεια μιας ήρεμης λίμνης βρίσκονται σε φάση και παράγουν υδάτινα αρμονικά κύματα. Η καθεμιά παράγει κύμα (πρακτικά) αμείωτου
Δυναμική. Ομάδα Γ. Δυναμική Κατακόρυφη βολή και γραφικές παραστάσεις Κατακόρυφη βολή και κάποια συμπεράσματα.
. Ομάδα Γ. 1.2.21. Κατακόρυφη βολή και γραφικές παραστάσεις Από ένα σημείο Ο σε ύψος Η=25m από το έδαφος εκτοξεύεται κατακόρυφα προς τα πάνω ένα σώμα με αρχική ταχύτητα υ 0 =20m/s. Αν g=10m/s 2, ενώ η
Τεχνικός Εφαρμογών Πληροφορικής
Τεχνικός Εφαρμογών Πληροφορικής ΓΛΩΣΣΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΙΣ Εξάμηνο: 2014Β Διδάσκουσα: Ηλεκτρονική Τάξη: Κανελλοπούλου Χριστίνα_ΠΕ19 Πληροφορικής Περιεχόμενα Συναρτήσεις Συναρτήσεις Οι συναρτήσεις
5. Σε ορθογώνιο σύστημα αξόνων να σχεδιαστούν οι ευθείες που έχουν εξισώσεις τις: β. y = 4 δ. x = y
. Δύο φίλοι, ο Μάρκος και ο Βασίλης, έχουν άθροισμα ηλικιών 7 χρόνια, και ο Μάρκος είναι μεγαλύτερος από το Βασίλη. Μπορείτε να υπολογίσετε την ηλικία του καθενός; Να δικαιολογήσετε την απάντησή σας. β.
Εισαγωγή στην Αριθμητική Ανάλυση
Εισαγωγή στην Αριθμητική Ανάλυση Εισαγωγή στη MATLAB ΔΙΔΑΣΚΩΝ: ΓΕΩΡΓΙΟΣ ΑΚΡΙΒΗΣ ΒΟΗΘΟΙ: ΔΗΜΗΤΡΙΑΔΗΣ ΣΩΚΡΑΤΗΣ, ΣΚΟΡΔΑ ΕΛΕΝΗ E-MAIL: SDIMITRIADIS@CS.UOI.GR, ESKORDA@CS.UOI.GR Τι είναι Matlab Είναι ένα περιβάλλον
ΘΕΜΑ Β-1. Β. Να δικαιολογήσετε την επιλογή σας.
ΘΕΜΑ Β-1 Β1. Από την ταράτσα του λευκού πύργου ύψους h = 15 m αφήνεται να πέσει ελεύθερα ένα μικρό σώμα και τελικά φτάνει στο έδαφος σε χρονικό διάστημα Δt = s. Α. Να επιλέξετε τη σωστή απάντηση Αν η επιτάχυνση
Συναρτήσεις. Εισαγωγή
Συναρτήσεις Εισαγωγή Η χρήση συναρτήσεων στα προγράμματα της γλώσσας C είναι πολύ σημαντική καθώς μας επιτρέπει τη διάσπαση ενός προβλήματος σε μικρότερα υποπροβλήματα τα οποία μπορούμε να επιλύσουμε πιο
Προβλήματα που αφορούν εντολές ελέγχου της ροής ενός προγράμματος.
Κεφάλαιο ΙΙ Προβλήματα που αφορούν εντολές ελέγχου της ροής ενός προγράμματος. Στο παρόν κεφάλαιο παρουσιάζονται προβλήματα τα οποία αφορούν κυρίως τις εντολές της C οι οποίες ελέγχουν την ροή εκτέλεσης
Δυναμική Ανάλυση Κατασκευών - Πειράματα Μονοβαθμίων Συστημάτων (ΜΒΣ) σε Σεισμική Τράπεζα
ΠΠΜ 5: Ανάλυση Κατασκευών με Η/Υ, Πειράματα ΜΒΣ σε Σεισμική Τράπεζα Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 5: Ανάλυση Κατασκευών με Η/Υ Δυναμική
9. Προγραμματισμός Δυναμικής Ανάλυσης ΠΒΣ
ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 9. Προγραμματισμός Δυναμικής Ανάλυσης ΠΒΣ Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση
Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος
9/6/5 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 5 Δίνεται ο πίνακας A 5. Αν διαγωνοποιείται να τον διαγωνοποιήσετε και στη συνέχεια να k υπολογίσετε το A όπου k θετικός
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/10/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/1/1 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σε σώμα μάζας m = 1Kg ασκείται η δύναμη F
7 η ΕΝΟΤΗΤΑ Δομές επανάληψης (συνέχεια) Εντολές εισόδου/εξόδου (συνέχεια)
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΜΕΘΟΔΟΙ ΕΠΙΛΥΣΗΣ ΜΕ Η/Υ 7 η ΕΝΟΤΗΤΑ Δομές επανάληψης (συνέχεια) Εντολές εισόδου/εξόδου (συνέχεια) Ν.Δ. Λαγαρός Μ. Φραγκιαδάκης Α. Στάμος Άδεια Χρήσης Το παρόν εκπαιδευτικό
Εισαγωγή στην C. Μορφή Προγράµµατος σε γλώσσα C
Εισαγωγή στην C Μορφή Προγράµµατος σε γλώσσα C Τµήµα Α Με την εντολή include συµπεριλαµβάνω στο πρόγραµµα τα πρότυπα των συναρτήσεων εισόδου/εξόδου της C.Το αρχείο κεφαλίδας stdio.h είναι ένας κατάλογος
Τηλ./Fax: , Τηλ: Λεωφόρος Μαραθώνος &Χρυσοστόµου Σµύρνης 3, 1
. 1. Η απλή αρµονική ταλάντωση είναι κίνηση: α. ευθύγραµµη οµαλή β. ευθύγραµµη οµαλά µεταβαλλόµενη γ. οµαλή κυκλική δ. ευθύγραµµη περιοδική. Η φάση της αποµάκρυνσης στην απλή αρµονική ταλάντωση: α. αυξάνεται
ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΗΛΕΚΤΡΟΝΙΚΑ ΙΙ» ΗΜΕΡΟΜΗΝΙΑ: 23/06/2016 ΜΟΝΟ ΓΙΑ ΤΟΥΣ ΕΠΙ ΠΤΥΧΙΩ ΦΟΙΤΗΤΕΣ
ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΗΛΕΚΤΡΟΝΙΚΑ ΙΙ» ΗΜΕΡΟΜΗΝΙΑ: /6/6 ΘΕΜΑ ο (5 μονάδες Για τον ενισχυτή του παρακάτω σχήματος δίνονται: =, = 6 kω, = kω και = = Ε = = kω, ενώ για το τρανζίστορ δίνονται: = 78, β
Ινστιτούτο Επαγγελµατική Κατάρτιση Κορυδαλλού "ΤΕΧΝΙΚΟΣ ΣΥΣΤΗΜΑΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ" (Ερωτήσεις Πιστοποίησης στην γλώσσα προγραµµατισµού C)
Ινστιτούτο Επαγγελµατική Κατάρτιση Κορυδαλλού "ΤΕΧΝΙΚΟΣ ΣΥΣΤΗΜΑΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ" (Ερωτήσεις Πιστοποίησης στην γλώσσα προγραµµατισµού C) ΚΑΤΑΛΟΓΟΣ ΕΡΩΤΗΣΕΩΝ ΕΡΩΤΗΣΕΙΣ ΕΙ ΙΚΩΝ ΓΝΩΣΕΩΝ (γλώσσα προγραµµατισµού
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 05/01/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 05/01/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ 21/01/2011 ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ /0/0 ΘΕΜΑ ο (5 μονάδες) Για τον ενισχυτή του παρακάτω σχήματος δίνονται: 0 Ω, Ε kω, Β 00 kω, 4 kω, L kω, e 5 kω και 00 (α) Να προσδιορίσετε την ενίσχυση τάσης (A
Τ και τιµή του Β θετική µετατρέπεται ισοδύναµα στην εντολή Όσο ως εξής:
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 12 ΙΑΝΟΥΑΡΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012
ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011 2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012 ΜΑΘΗΜΑ : Μαθηματικά ΒΑΘΜΟΣ ΤΑΞΗ : Β ΑΡΙΘΜΗΤΙΚΩΣ : ΔΙΑΡΚΕΙΑ : 2 ώρες ΟΛΟΓΡΑΦΩΣ : ΗΜΕΡΟΜΗΝΙΑ : 15.06.2012 ΥΠ. ΚΑΘΗΓΗΤΗ/ΤΡΙΑΣ:
ΟΝΟΜΑTΕΠΩΝΥΜΟ: Α.Μ. (13ψηφία): ΦΥΛΛΑΔΙΟ ΘΕΜΑΤΩΝ 2/2. Μέρος A. Πολλαπλές επιλογές (20%) Σειριακός αριθμός: 100 Πληροφορική I Εξέταση Φεβρουαρίου 2019
Σειριακός αριθμός: 100 Πληροφορική I Εξέταση Φεβρουαρίου 2019 ΟΝΟΜΑTΕΠΩΝΥΜΟ: Α.Μ. (13ψηφία: Απαντήσεις Πολλαπλής Επιλογής ΕΔΩ: 1 2 3 4 5 ΦΥΛΛΑΔΙΟ ΘΕΜΑΤΩΝ 2/2 Μέρος A. Πολλαπλές επιλογές (20% 1. Τι υπολογίζει
Μεθόδων Επίλυσης Προβλημάτων
ΕΠΛ 032.3: 3: Προγραμματισμός Μεθόδων Επίλυσης Προβλημάτων Αχιλλέας Αχιλλέως, Τμήμα Πληροφορικής, Πανεπιστήμιο Κύπρου Email: achilleas@cs.ucy.ac.cy Κεφάλαιο 13 Πίνακες & Συναρτήσεις Εισαγωγή Στις προηγούμενες
γραπτή εξέταση στο μάθημα
3η εξεταστική περίοδος από 9/03/5 έως 9/04/5 γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ Τάξη: Α Λυκείου Τμήμα: Βαθμός: Ονοματεπώνυμο: Καθηγητής: Θ Ε Μ Α Α Στις ερωτήσεις Α-Α4 να επιλέξετε τη σωστή απάντηση.
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΣΣΧΧ.. ΕΕΤΤΟΟΣΣ 22001100-22001111 Επιμέλεια : Ομάδα Διαγωνισμάτων από Το στέκι των πληροφορικών Θέμα Α Α1. Δίνονται οι παρακάτω
Διαγώνισμα 5 Ζήτημα ο 1
Διαγώνισμα 5 Ζήτημα ο (σε κάθε ερώτημα του ζητήματος μια είναι η σωστή).θεωρειστε ένα σύστημα κατακόρυφου ελατηρίου- σώματος το οποίο μπορεί να κάνει ταλάντωση. Θεωρείστε ότι υπάρχει απόσβεση. Αρχικά το
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6)
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΠΑΡΑΣΚΕΥΗ 22 ΣΕΠΤΕΜΒΡΙΟΥ 2017 ΘΕΜΑ Α ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:
Σκοπός. Εργαστήριο 6 Εντολές Επανάληψης Τα Εργαστηριακά Προγράμματα. Η δομή Επιλογής στη PASCAL. H δομή Επανάληψης στη PASCAL. Η εντολή επανάληψης for
Εργαστήριο 6 Εντολές Επανάληψης Τα Εργαστηριακά Προγράμματα Η δομή Επιλογής στη PASCAL H δομή Επανάληψης στη PASCAL Η εντολή επανάληψης for Σκοπός Η εντολή επανάληψης while. 1 ΕΡΓΑΣΤΗΡΙΟ 6 Εισαγωγή στο
β) Αν κάποιος αριθµός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι 1 1 1 9 < α
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1
Περι-Φυσικής. Θέµα Α. ιαγώνισµα - υναµική στο Επίπεδο. Ονοµατεπώνυµο: (α) κινούνται µε την ίδια ταχύτητα. (ϐ) είναι ακίνητα. (γ) έχουν την ίδια µάζα.
ιαγώνισµα - υναµική στο Επίπεδο Ηµεροµηνία : Γενάρης 2014 ιάρκεια : 3 ώρες Ονοµατεπώνυµο: Βαθµολογία % Θέµα Α Στις ερωτήσεις Α.1 Α.4 επιλέξτε την σωστή απάντηση [4 5 = 20 µονάδες] Α.1. ύο σώµατα έχουν
Παράδειγμα 2. Λύση & Επεξηγήσεις. Τέλος_επανάληψης Εμφάνισε "Ναι" Τέλος Α2
Διδακτική πρόταση ΕΝΟΤΗΤΑ 2η, Θέματα Θεωρητικής Επιστήμης των Υπολογιστών Κεφάλαιο 2.2. Παράγραφος 2.2.7.4 Εντολές Όσο επανάλαβε και Μέχρις_ότου Η διαπραγμάτευση των εντολών επανάληψης είναι σημαντικό
ΦΥΣΙΚΗ Β Λ ΠΡΟΕΤ. Γ Λ
ΦΥΣΙΚΗ Β Λ ΠΡΟΕΤ. Γ Λ 04-01 - 018 Άρχων Μάρκος ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Α1.