Τεχνητή Νοημοσύνη. 9η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
|
|
- Νεφέλη Θεοδοσίου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Τεχνητή Νοημοσύνη 9η διάλεξη ( ) Ίων Ανδρουτσόπουλος 1
2 Οι διαφάνειες αυτής της διάλεξης βασίζονται εν μέρει στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel και P. Norvig, 2η έκδοση, Prentice Hall, 2003.
3 Τι θα ακούσετε σήμερα Εξαγωγή συμπερασμάτων με προτάσεις Horn προτασιακής λογικής. Πρωτοβάθμια κατηγορηματική λογική. Συντακτικό. Παράσταση γνώσεων με ΠΚΛ.
4 Προτάσεις Horn προτασιακής λογικής Πρόταση Horn ΠΛ: (l 1... l k ) Κάθε l i είναι σύμβολο (π.χ. P) ή άρνηση συμβόλου (π.χ. P). Το πολύ ένα από τα l i δεν είναι άρνηση συμβόλου («θετικό»). Π.χ. ( L 1,1 Breeze B 1,1 ), ( W 1,1 W 1,2 ), Β 1,1 Μετατρέπεται ισοδύναμα σε μορφή (( ) l i ) ((L 1,1 Breeze) B 1,1 ), ((W 1,1 W 1,2 ) False), (True Β 1,1 ) Αν δεν έχει κανένα αρνητικό σύμβολο, «γεγονός» (fact). Αν δεν έχει θετικό σύμβολο, «περιορισμός ακεραιότητας». Δε θα ασχοληθούμε με περιορισμούς ακεραιότητας. Αν έχει (ένα) θετικό σύμβολο, «οριστική πρόταση» (definite clause). (Τα γεγονότα είναι και αυτά οριστικές προτάσεις.) ΒΓ προτάσεων Horn ΠΛ: Περιέχει μόνο προτάσεις Horn ΠΛ. Άρα χρησιμοποιούμε υποσύνολο της προτασιακής λογικής.
5 Εξαγωγή συμπερασμάτων με προτάσεις Horn ΠΛ Η εξαγωγή συμπερασμάτων μπορεί να γίνει σε χρόνο γραμμικό προς το μέγεθος της ΒΓ. Πιο εύκολη από ό,τι αν χρησιμοποιούμε την πλήρη προτασιακή λογική και τον κανόνα της ανάλυσης. Όμως χρησιμοποιούμε υποσύνολο της προτασιακής λογικής. Εξαγωγή συμπερασμάτων προς τα εμπρός (forward chaining). Διαδοχική «πυροδότηση» (κατά την κατεύθυνση των βελών) κανόνων των οποίων οι υποθέσεις αληθεύουν (με Modus Ponens), μέχρι να καταλήξουμε στο επιθυμητό συμπέρασμα. Εξαγωγή συμπερασμάτων προς τα πίσω (backward chaining). Χρήση κανόνων κατά την αντίστροφη κατεύθυνση των βελών, ξεκινώντας από το συμπέρασμα μέχρι να καταλήξουμε σε υποθέσεις που γνωρίζουμε (υπάρχουν στη ΒΓ). Η βάση του λογικού προγραμματισμού. Π.χ. τα προγράμματα Prolog είναι συλλογές προτάσεων Horn (αλλά πρωτοβάθμιας κατηγορηματικής λογικής).
6 Γράφοι σύζευξης-διάζευξης (AND-OR) ΒΓ σε μορφή προτάσεων Horn ΠΛ: ισοδύναμος γράφος AND-OR: προς τα πίσω προς τα εμπρός
7 Εξαγωγή συμπεράσματος προς τα εμπρός Θέλουμε να δούμε αν μπορούμε να συμπεράνουμε Q από τη ΒΓ. Αριθμός συνθηκών του κανόνα που απομένει να ικανοποιηθούν. Γεγονότα που έχουμε στη ΒΓ, χωρίς να έχουμε διερευνήσει τις συνέπειές τους.
8 Συνέχεια εξαγωγής συμπεράσματος προς τα εμπρός Προστίθεται στη ΒΓ.
9 Συνέχεια εξαγωγής συμπεράσματος προς τα εμπρός Το γεγονός που θέλαμε να συμπεράνουμε. Έχουμε ήδη διερευνήσει τις συνέπειές του (π.χ. κλειστό σύνολο).
10 Εξαγωγή συμπερασμάτων (με ΒΓ προτάσεων Horn προτασιακής λογικής) προς τα εμπρός Γεγονότα που έχουμε στη ΒΓ χωρίς να έχουμε διερευνήσει τις συνέπειές τους (μέτωπο). inferred[p]: Δείχνει αν έχουμε συμπεράνει το γεγονός p ή όχι. Πυροδότηση κανόνα.
11 Χαρακτηριστικά του PL-FC-Entails? Τερματίζει. Η ατζέντα μικραίνει κατά ένα σε κάθε επανάληψη του while. Μεγαλώνει όταν πυροδοτείται ένας κανόνας. Κάθε κανόνας πυροδοτείται το πολύ μία φορά (όταν μηδενιστεί ο μετρητής του) και έχουμε πεπερασμένο αριθμό κανόνων. Άρα τελικά η ατζέντα αδειάζει και ο αλγόριθμος τερματίζει. Χρονική πολυπλοκότητα: γραμμική ως προς το μέγεθος της ΒΓ. Η απόδειξη παραλείπεται. Ορθότητα: Χρησιμοποιούμε μόνο Modus Ponens, που είναι ορθός κανόνας εξαγωγής συμπερασμάτων. Πληρότητα (αν ΒΓ q, τότε ΒΓ i q, για q γεγονός). Η απόδειξη παραλείπεται.
12 Μειονεκτήματα προτασιακής λογικής Δύσκολη παράσταση γενικεύσεων. Π.χ. «Υπάρχει ρεύμα αέρος σε ένα τετράγωνο ανν υπάρχει όρυγμα σε διπλανό τετράγωνο». Χρειαζόμαστε μια διαφορετική πρόταση για κάθε τετράγωνο: (B 2,2 (P 2,1 P 2,3 P 1,2 P 3,2 )) (B 3,2 (P 3,1 P 3,3 P 2,2 P 4,2 )) κ.ο.κ. Ενώ εύκολη παράσταση στην πρωτοβάθμια κατηγορηματική λογική (ΠΚΛ). Ένας μόνο τύπος για όλα τα μη ακραία τετράγωνα: x y ( B(x, y) ( P(x, y-1) P(x, y+1) P(x-1, y) P(x+1, y) ) ) Και ειδικοί τύποι για τα ακραία τετράγωνα.
13 Παραδείγματα τύπων ΠΚΛ Σε όλες τις γάτες αρέσει το γάλα. x (IsCat(x) Likes(x, Milk)) Υπάρχει μια γάτα που της αρέσει το γάλα. Συμβουλή: μην παραλείπετε ποτέ παρενθέσεις! x (IsCat(x) Likes(x, Milk)) Προσοχή: ο τύπος x (IsCat(x) Likes(x, Milk)) λέει «Υπάρχει ένα x που: (i) δεν είναι γάτα ή (ii) αν είναι γάτα του αρέσει το γάλα». Η Ψίτα συμπαθεί όλους τους σκύλους. x (IsDog(x) Likes(Psita, x)) Προσοχή: ο τύπος x (IsDog(x) Likes(Psita, x)) λέει «Τα πάντα είναι σκύλοι και αρέσουν στην Ψίτα». Υπάρχει μια γάτα που συμπαθεί όλους τους σκύλους. x (IsCat(x) y (IsDog(y) Likes(x, y)))
14 Παραδείγματα τύπων ΠΚΛ συνέχεια Ο Μίλος αντιπαθεί όλες τις γάτες. x (IsCat(x) Likes(Milos, x)) Όλοι οι σκύλοι αντιπαθούν όλες τις γάτες. x (IsDog(x) y (IsCat(y) Likes(x, y))) ή ισοδύναμα: x y ((IsDog(x) IsCat(y)) Likes(x, y)) Κάθε άνθρωπος συμπαθεί τον πατέρα του. x y ((IsHuman(x) IsFatherOf(y, x)) Likes(x, y)) ή: x (IsHuman(x) Likes(x, FatherOf(x)))
15 Παραδείγματα τύπων ΠΚΛ συνέχεια Κάθε σκύλος που γαβγίζει φοβάται μια (πιθανώς διαφορετική ή την ίδια) γάτα. x ((IsDog(x) Barks(x)) y (IsCat(y) IsAfraidOf(x, y))) Κάθε γάτα συμπαθεί ακριβώς έναν (πιθανώς διαφορετικό ή τον ίδιο όλες) σκύλο. y (IsCat(y) x (IsDog(x) Likes(y, x) z ((IsDog(z) Likes(y, z)) z = x)))
16 Συντακτικό ΠΚΛ τύπος ατομικός_τύπος (τύπος σύνδεσμος τύπος) ποσοδείκτης μεταβλητή τύπος τύπος ατομικός_τύπος σύμβολο_σχέσης(όρος,...) όρος = όρος όρος σταθερά μεταβλητή σύμβολο_συνάρτησης(όρος,...) σύνδεσμος ποσοδείκτης σταθερά A X 1 John Mary... μεταβλητή a x s... Τα σύνολα των σταθερών, μεταβλητών, συμβόλων σχέσεων, συμβόλων συναρτήσεων θεωρούμε ότι είναι ανά δύο ξένα. σύμβολο_σχέσης IsFatherOf HasColor IsKing... σύμβολο_συνάρτησης FatherOf LeftLeg...
17 Βιβλιογραφία Russel & Norvig: υπόλοιπο ενότητας 7.5 (χωρίς την υπο-ενότητα «Πληρότητα της ανάλυσης»), ενότητα 8.3. Όσοι ενδιαφέρονται μπορούν να διαβάσουν προαιρετικά (εκτός εξεταστέας ύλης) και τα τμήματα του κεφ. 7 που εξαιρέθηκαν. Όσοι ενδιαφέρονται αξίζει επίσης να διαβάσουν προαιρετικά (εκτός εξεταστέας ύλης) και το (υπόλοιπο) του κεφ. 17. (Κάποια τμήματα ίσως τα βρείτε δύσκολα. Αρκεί να κατανοήσετε τις κεντρικές έννοιες.) Βλαχάβας κ.ά: εισαγωγή ενότητας 9.2 (χωρίς την υπο-ενότητα 9.2.1). 17
Τεχνητή Νοημοσύνη. 10η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 10η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Τι θα ακούσετε σήμερα Σημασιολογία πρωτοβάθμιας κατηγορηματικής λογικής. Υπενθύμιση: συντακτικό ΠΚΛ τύπος ατομικός_τύπος
Τεχνητή Νοημοσύνη. 8η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 8η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel
Τεχνητή Νοημοσύνη. 7η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 7η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel
Τεχνητή Νοημοσύνη. 12η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 12η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας
Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/
Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας
Ασκήσεις μελέτης της 11 ης διάλεξης
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2015 16 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 11 ης διάλεξης 11.1 (α) Μετατρέψτε σε κανονική συζευκτική μορφή (CNF)
Τεχνητή Νοημοσύνη. 3η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 3η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας
Ασκήσεις μελέτης της 8 ης διάλεξης
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2017 18 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 8 ης διάλεξης 8.1. (i) Έστω ότι α και β είναι δύο τύποι της προτασιακής
Τεχνητή Νοημοσύνη. 5η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 5η διάλεξη (2017-18) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας
Τεχνητή Νοημοσύνη. 16η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 16η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται σε ύλη του βιβλίου Artificial Intelligence A Modern Approach των
Τεχνητή Νοημοσύνη. 4η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 4η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται κυρίως στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β.
4. Ο,τιδήποτε δεν ορίζεται με βάση τα (1) (3) δεν είναι προτασιακός τύπος.
Κεφάλαιο 10 Μαθηματική Λογική 10.1 Προτασιακή Λογική Η γλώσσα της μαθηματικής λογικής στηρίζεται βασικά στις εργασίες του Boole και του Frege. Ο Προτασιακός Λογισμός περιλαμβάνει στο αλφάβητό του, εκτός
ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 2015-2016 Τεχνητή Νοημοσύνη Λογικοί Πράκτορες Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος http://ai.uom.gr/aima/ 2 Πράκτορες βασισμένοι
Τεχνητή Νοημοσύνη ( )
Εβδομάδα Διάλεξη Ενδεικτικά θέματα διαλέξεων Ενδεικτικά θέματα εργαστηρίων/φροντιστηρίων 1 1 1 2 2 3 2 4 3 5 3 6 4 7 4 8 5 9 Τεχνητή Νοημοσύνη (2017-18) Γενικές πληροφορίες για το μάθημα. Εισαγωγή στην
Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 6η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας
Τεχνητή Νοημοσύνη. 14η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 14η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται σε ύλη του βιβλίου Artificial Intelligence A Modern Approach των
Λογικός Προγραμματισμός
Λογικός Προγραμματισμός Αναπαράσταση γνώσης: Λογικό Σύστημα. Μηχανισμός επεξεργασίας γνώσης: εξαγωγή συμπεράσματος. Υπολογισμός: Απόδειξη θεωρήματος (το συμπέρασμα ενδιαφέροντος) από αξιώματα (γνώση).
Τεχνητή Νοημοσύνη. 21η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 21η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: «Artificial Intelligence A Modern Approach» των. Russel
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 2ο μέρος σημειώσεων: Συστήματα Αποδείξεων για τον ΠΛ, Μορφολογική Παραγωγή, Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης
Τεχνητή Νοημοσύνη. 17η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 17η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται: στο βιβλίο Artificia Inteigence A Modern Approach των S. Russe και
Τεχνητή Νοημοσύνη. 11η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 11η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., κ.ά., 3η έκδοση, Β.
Υπολογισμός στο Λογικό Προγραμματισμό. Πώς υπολογίζεται η έξοδος ενός Λογικού Προγράμματος;
Υπολογισμός στο Λογικό Προγραμματισμό Πώς υπολογίζεται η έξοδος ενός Λογικού Προγράμματος; Herbrand Universe H L Είναι τα δεδομένα που μεταχειρίζεται ένα Λογικό Πρόγραμμα, προκειμένου να απαντήσει μια
Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5)
Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στον Κατηγορηματικό Λογισμό Σύνταξη Κανόνες Συμπερασμού Σημασιολογία ΕΠΛ 412 Λογική στην
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων
K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Στοιχεία προτασιακής λογικής Περιεχόμενα
Τεχνητή Νοημοσύνη. 5η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 5η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας
Περιεχόμενα 1 Πρωτοβάθμια Λογική Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων ) / 60
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Λογική. Προτασιακή Λογική. Λογική Πρώτης Τάξης
Λογική Προτασιακή Λογική Λογική Πρώτης Τάξης Λογική (Logic) Αναλογίες διαδικασίας επίλυσης προβλημάτων υπολογισμού και προβλημάτων νοημοσύνης: Πρόβλημα υπολογισμού 1. Επινόηση του αλγορίθμου 2. Επιλογή
ΚΑΤΗΓΟΡΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι
ΚΑΤΗΓΟΡΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι Για τον προτασιακό λογισμό παρουσιάσαμε την αποδεικτική θεωρία (natural deduction/λογικό συμπέρασμα) τη σύνταξη (ορίζεται με γραμματική χωρίς συμφραζόμενα και εκφράζεται με συντακτικά
Τεχνητή Νοημοσύνη Ι. Ενότητα 7:Προτασιακή Λογική. Πέππας Παύλος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών
Τεχνητή Νοημοσύνη Ι Ενότητα 7:Προτασιακή Λογική Πέππας Παύλος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Προτασιακή Λογική Σκοποί ενότητας 2 Περιεχόμενα ενότητας Προτασιακή
Πληρότητα της μεθόδου επίλυσης
Πληρότητα της μεθόδου επίλυσης Λήμμα: Αν κάθε μέλος ενός συνόλου όρων περιέχει ένα αρνητικό γράμμα, τότε το σύνολο είναι ικανοποιήσιμο. Άρα για να είναι μη-ικανοποιήσιμο, θα πρέπει να περιέχει τουλάχιστον
Στοιχεία Προτασιακής Λογικής
Στοιχεία Προτασιακής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μαθηματικές Προτάσεις
Υποδ: Χρησιμοποιήστε τον ορισμό της λογικής συνεπαγωγής (λογικής κάλυψης).
Κανόνας Ανάλυσης 1 Μυθικός Αθάνατος 3 Μυθικός Θηλαστικό ------------------------------ 7 Αθάνατος Θηλαστικό 4 Αθάνατος έχεικέρας -------------------------------- 8 Θηλαστικό έχεικέρας 5 Θηλαστικό έχεικέρας
ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 9: Προτασιακή λογική. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 9: Προτασιακή λογική Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου
ΗΥ180: Λογική Διδάσκων: Δημήτρης Πλεξουσάκης. Φροντιστήριο 8 Επίλυση για Horn Clauses Λογικός Προγραμματισμός Τετάρτη 9 Μαΐου 2012
ΗΥ180: Λογική Διδάσκων: Δημήτρης Πλεξουσάκης Φροντιστήριο 8 Επίλυση για Horn Clauses Λογικός Προγραμματισμός Τετάρτη 9 Μαΐου 2012 Πληρότητα της μεθόδου επίλυσης Λήμμα: Αν κάθε μέλος ενός συνόλου όρων περιέχει
Τεχνητή Νοημοσύνη. 18η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 18η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται: στο βιβλίο Machine Learning του T. Mitchell, McGraw- Hill, 1997,
Λογικοί πράκτορες. Πράκτορες βασισµένοι στη γνώση
Λογικοί πράκτορες Πράκτορες βασισµένοι στη γνώση Βάση γνώσης (knowledge base: Σύνολο προτάσεων (sentences Γλώσσα αναπαράστασης της γνώσης Γνωστικό υπόβαθρο: «Αµετάβλητο» µέρος της ΒΓ Βασικές εργασίες:
Μηχανισμός Εξαγωγής Συμπερασμάτων
Μηχανισμός Εξαγωγής Συμπερασμάτων Μηχανισμός Εξαγωγής Συμπερασμάτων Ο βασικός μηχανισμός εξαγωγής συμπερασμάτων στην κατηγορηματική λογική είναι η απόδειξη. Υπάρχει ένα πλήθος κανόνων συμπερασμού. Αυτοί
Μαθηματική Λογική και Λογικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών
Υποθετικές προτάσεις και λογική αλήθεια
Υποθετικές προτάσεις και λογική αλήθεια Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Περίληψη Στην εργασία αυτή επιχειρείται μια ερμηνεία της λογικής αλήθειας
Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης
Σημειώσεις Λογικής I Εαρινό Εξάμηνο 2011-2012 Καθηγητής: Λ. Κυρούσης 2 Τελευταία ενημέρωση 28/3/2012, στις 01:37. Περιεχόμενα 1 Εισαγωγή 5 2 Προτασιακή Λογική 7 2.1 Αναδρομικοί Ορισμοί - Επαγωγικές Αποδείξεις...................
Μαθηματική Λογική και Λογικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών
Στοιχεία Προτασιακής Λογικής
Στοιχεία Προτασιακής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μαθηματικές Προτάσεις (Μαθηματική)
Επανάληψη. ΗΥ-180 Spring 2019
Επανάληψη Έχουμε δει μέχρι τώρα 3 μεθόδους αποδείξεων του Προτασιακού Λογισμού: Μέσω πίνακα αληθείας για τις υποθέσεις και το συμπέρασμα, όπου ελέγχουμε αν υπάρχουν ερμηνείες που ικανοποιούν τις υποθέσεις
ΚΕΦΑΛΑΙΟ 8 Η ΓΛΩΣΣΑ PASCAL
8.1. Εισαγωγή ΚΕΦΑΛΑΙΟ 8 Η ΓΛΩΣΣΑ PACAL Πως προέκυψε η γλώσσα προγραμματισμού Pascal και ποια είναι τα γενικά της χαρακτηριστικά; Σχεδιάστηκε από τον Ελβετό επιστήμονα της Πληροφορικής Nicklaus Wirth to
Μαθηματική Λογική και Λογικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών
Ασκήσεις μελέτης της 19 ης διάλεξης
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 19 ης διάλεξης 19.1. Δείξτε ότι το Perceptron με (α) συνάρτηση ενεργοποίησης
Σημασιολογική Ανάλυση
Σημασιολογική Ανάλυση 2015 16 Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/in/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται εν μέρει σε ύλη των βιβλίων: «Speech and Language Prcessing» των D. Jurafsky
HY Λογική Διδάσκων: Δ. Πλεξουσάκης
HY-180 - Λογική Διδάσκων: Δ. Πλεξουσάκης Πληρότητα της μεθόδου επίλυσης Λήμμα: Αν κάθε μέλος ενός συνόλου όρων περιέχει ένα αρνητικό γράμμα, τότε το σύνολο είναι ικανοποιήσιμο. Άρα για να είναι μη-ικανοποιήσιμο,
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 5: Αναπαράσταση Γνώσης με Λογική
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Τεχνητή Νοημοσύνη Ενότητα 5: Αναπαράσταση Γνώσης με Λογική Αν. καθηγητής Στεργίου Κωνσταντίνος kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Γνώση. Γνώση (knowledge) είναι ο κοινός παράγοντας (π.χ. κανόνες) που περιγράφει συνοπτικά τις συσχετίσεις μεταξύ των δεδομένων ενός προβλήματος.
Γνώση Η γνώση είναι διαφορετική από τα δεδομένα Γνώση (knowledge) είναι ο κοινός παράγοντας (π.χ. κανόνες) που περιγράφει συνοπτικά τις συσχετίσεις μεταξύ των δεδομένων ενός προβλήματος. Η γνώση για κάποιο
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 2:Στοιχεία Μαθηματικής Λογικής Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Κεφάλαιο 2 Λογικός προγραμματισμός Υπολογισμός με λογική
Κεφάλαιο 2 Λογικός προγραμματισμός Υπολογισμός με λογική Σύνοψη Το κεφάλαιο αυτό χωρίζεται σε δύο ενότητες. Στην πρώτη ενότητα επιχειρείται μια ιστορική αναδρομή στη λογική και τον λογικό προγραμματισμό,
ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική)
ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική) Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 2 η Εργασία: Γενική Εικόνα Ικανοποιητική βαθμολογική εικόνα
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Γλωσσική Τεχνολογία, 2014 15 Διδάσκων: Ι. Ανδρουτσόπουλος
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Γλωσσική Τεχνολογία, 2014 15 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 4 ης ενότητας (σημασιολογική ανάλυση) 4.1. Παραστήστε σε πρωτοβάθμια
Γνώση. Γνώση (knowledge) είναι ο κοινός παράγοντας (π.χ. κανόνες) που περιγράφει συνοπτικά τις συσχετίσεις μεταξύ των δεδομένων ενός προβλήματος.
Γνώση Η γνώση είναι διαφορετική από τα δεδομένα Γνώση (knowledge) είναι ο κοινός παράγοντας (π.χ. κανόνες) που περιγράφει συνοπτικά τις συσχετίσεις μεταξύ των δεδομένων ενός προβλήματος. Η γνώση για κάποιο
Κανονικές μορφές - Ορισμοί
HY-180 Περιεχόμενα Κανονικές μορφές (Normal Forms) Αλγόριθμος μετατροπής σε CNF-DNF Άρνηση (Negation) Βασικές Ισοδυναμίες με άρνηση Νόμος De Morgan Πίνακες Αληθείας Κανονικές μορφές - Ορισμοί Ορισμός:
Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 4 ης διάλεξης 4.1. (α) Αποδείξτε ότι αν η h είναι συνεπής, τότε h(n
Στοιχεία Κατηγορηματικής Λογικής
Στοιχεία Κατηγορηματικής Λογικής Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Κατηγορηματική
ΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση μεγιστοποιήσει την πιθανότητά
ΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση: Έστω ότι έχουμε τους παίκτες Χ και Υ. Ο κάθε παίκτης, σε κάθε κίνηση που κάνει, προσπαθεί να μεγιστοποιήσει την πιθανότητά του να κερδίσει. Ο Χ σε κάθε κίνηση που κάνει
Ε ανάληψη. Παιχνίδια τύχης. Παιχνίδια ατελούς ληροφόρησης. Λογικοί ράκτορες. ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. αναζήτηση expectiminimax
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Προτασιακή Λογική Propositional Logic Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Παιχνίδια τύχης αναζήτηση expectiminimax Παιχνίδια ατελούς
Προτασιακός Λογισμός (HR Κεφάλαιο 1)
Προτασιακός Λογισμός (HR Κεφάλαιο 1) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνταξη Λογικός Συμπερασμός Σημασιολογία Ορθότητα και Πληρότητα Κανονικές Μορφές Προτάσεις Horn ΕΠΛ 412 Λογική
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Λογικοί Πράκτορες Προτασιακή Λογική Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Παιχνίδια τύχης αναζήτηση expectiminimax Παιχνίδια ατελούς
Βρόχοι. Εντολή επανάληψης. Το άθροισμα των αριθμών 1 5 υπολογίζεται με την εντολή. Πρόβλημα. Πώς θα υπολογίσουμε το άθροισμα των ακέραιων ;
Εντολή επανάληψης Το άθροισμα των αριθμών 1 5 υπολογίζεται με την εντολή Πρόβλημα Πώς θα υπολογίσουμε το άθροισμα των ακέραιων 1 5000; Ισοδύναμοι υπολογισμοί του Ισοδύναμοι υπολογισμοί του Ισοδύναμοι υπολογισμοί
Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4)
Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4) Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Η διαδικαστική γλώσσα προγραμματισμού WHILE Τριάδες Hoare Μερική και Ολική Ορθότητα Προγραμμάτων Κανόνες
Στοιχεία Κατηγορηματικής Λογικής
Στοιχεία Κατηγορηματικής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Κατηγορηματική Λογική
Κεφάλαιο 5 Αξιωματική Σημασιολογία και Απόδειξη Ορθότητας Προγραμμάτων
Κεφάλαιο 5 Αξιωματική Σημασιολογία και Απόδειξη Ορθότητας Προγραμμάτων Προπτυχιακό μάθημα Αρχές Γλωσσών Προγραμματισμού Π. Ροντογιάννης 1 Εισαγωγή Τα προγράμματα μιας (κλασικής) γλώσσας προγραμματισμού
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Ενότητα 1: Εισαγωγή. Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Ενότητα 1: Εισαγωγή Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons
Μορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 28/02/2019 Ζωγραφιστού Δήμητρα
Μορφολογική Παραγωγή 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 28/02/2019 Ζωγραφιστού Δήμητρα Συστήματα Αποδείξεων στον ΠΛ(1/2) Συχνά μας ενδιαφέρει να μπορούμε να διαπιστώσουμε αν μία εξαγωγή
Στοιχεία Κατηγορηματικής Λογικής
Στοιχεία Κατηγορηματικής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Κατηγορηματική Λογική
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Λογική Αποσαφήνιση και τυποποίηση της διαδικασίας της ανθρώπινης σκέψης Η μαθηματική
HY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Παρασκευή, 16/02/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 17-Feb-18
4.3 Ορθότητα και Πληρότητα
4.3 Ορθότητα και Πληρότητα Συστήματα αποδείξεων όπως η μορφολογική παραγωγή και η κατασκευή μοντέλων χρησιμοποιούνται για να δείξουμε την εγκυρότητα εξαγωγών συμπερασμάτων. Ένα σύστημα αποδείξεων μπορεί
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Πέµπτη, 02/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/2/2017
HY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Πέμπτη, 01/03/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 02-Mar-18
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αναπαράσταση με Κανόνες Η γνώση αναπαρίσταται με τρόπο που πλησιάζει την ανθρώπινη
HY 180 Λογική Διδάσκων: Δ. Πλεξουσάκης Φροντιστήριο 5
HY 180 Λογική Διδάσκων: Δ. Πλεξουσάκης Φροντιστήριο 5 Α) ΘΕΩΡΙΑ Η Μορφολογική Παραγωγή ανήκει στα συστήματα παραγωγής, δηλαδή σε αυτά που παράγουν το συμπέρασμα με χρήση συντακτικών κανόνων λογισμού. Η
HY118-Διακριτά Μαθηματικά. Προτασιακός Λογισμός. Προηγούμενη φορά. Βάσεις της Μαθηματικής Λογικής. 02 Προτασιακός Λογισμός
HY118-Διακριτά Μαθηματικά Πέμπτη, 08/02/2018 Το υλικό των Αντώνης διαφανειών Α. Αργυρός έχει βασιστεί σε διαφάνειες του e-mail: Kees argyros@csd.uoc.gr van Deemter, από το University of Aberdeen Προηγούμενη
ΗΥ Λογική. Διδάσκων: Δημήτρης Πλεξουσάκης Καθηγητής
ΗΥ 180 - Λογική Διδάσκων: Καθηγητής E-mail: dp@csd.uoc.gr Ώρες διδασκαλίας: Δευτέρα, Τετάρτη 4-6 μμ, Αμφ. Β Ώρες φροντιστηρίου: Πέμπτη 4-6 μμ, Αμφ. Β Ώρες γραφείου: Δευτέρα, Τετάρτη 2-4 μμ, Κ.307 Web site:
Αναπαράσταση Γνώσης και Συλλογιστικές
ναπαράσταση Γνώσης και Συλλογιστικές Γενικά Προτασιακή λογική Λογική πρώτης τάξης Λογικός προγραµµατισµός Επεκτάσεις της Λογικής Πρώτης Τάξης Συστήµατα Κανόνων Επίλογος ναπαράσταση γνώσης ναπαράσταση γνώσης
Υπολογιστική Λογική και Λογικός Προγραμματισμός
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Υπολογιστική Λογική και Λογικός Προγραμματισμός Ενότητα 2: Λογική: Εισαγωγή, Προτασιακή Λογική. Νίκος Βασιλειάδης, Αναπλ. Καθηγητής Άδειες
HY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Πέμπτη, 08/02/2018 Το υλικό των Αντώνης διαφανειών Α. Αργυρός έχει βασιστεί σε διαφάνειες του e-mail: Kees argyros@csd.uoc.gr van Deemter, από το University of Aberdeen 08-Feb-18
Επικοινωνία Ανθρώπου Υπολογιστή. Β3. Κατανόηση φυσικής γλώσσας
Επικοινωνία Ανθρώπου Υπολογιστή Β3. Κατανόηση φυσικής γλώσσας (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ Οι διαφάνειες αυτής της διάλεξης βασίζονται εν μέρει σε ύλη του βιβλίου «Speech
Αναπαράσταση Γνώσης και Συλλογιστικές
ναπαράσταση Γνώσης και Συλλογιστικές! Γενικά Προτασιακή λογική Λογική πρώτης τάξης Λογικός προγραµµατισµός Επεκτάσεις της Λογικής Πρώτης Τάξης Συστήµατα Κανόνων Επίλογος ναπαράσταση γνώσης " ναπαράσταση
Μορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 08/03/2018 Ζωγραφιστού Δήμητρα
Μορφολογική Παραγωγή 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 08/03/2018 Ζωγραφιστού Δήμητρα Συστήματα Αποδείξεων στον ΠΛ(1/2) Συχνά μας ενδιαφέρει να μπορούμε να διαπιστώσουμε αν μία εξαγωγή
Μαθηματική Λογική και Απόδειξη
Μαθηματική Λογική και Απόδειξη Σύντομο ιστορικό σημείωμα: Η πρώτη απόδειξη στην ιστορία των μαθηματικών, αποδίδεται στο Θαλή το Μιλήσιο (~600 π.χ.). Ο Θαλής απέδειξε, ότι η διάμετρος διαιρεί τον κύκλο
Τεχνητή Νοημοσύνη. 19η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 19η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτές βασίζονται σε ύλη των βιβλίων: Artificia Inteigence A Modern Approach των S. Russe και P.
Μαθηματική Λογική και Λογικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών
Κατηγορηµατική Λογική Προτασιακή Λογική: πλαίσιο διατύπωσης και µελέτης επιχειρηµάτων για πεπερασµένο πλήθος «λογικών αντικειµένων». «Λογικό αντικείµε
Στοιχεία Κατηγορηµατικής Λογικής ιδάσκοντες: Φ. Αφράτη, Σ. Ζάχος,. Σούλιου Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Κατηγορηµατική
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Φροντιστήριο 4: Μορφολογική Παραγωγή. Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Φροντιστήριο 4: Μορφολογική Παραγωγή Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης
Διακριτά Μαθηματικά Γιάννης Εμίρης Τμήμα Πληροφορικής & Τηλεπικοινωνιών http://eclass.uoa.gr/ Οκτώβριος 2017 Οργάνωση Μαθήματος Προτασιακή Λογική, Αποδείξεις Κατηγορήματα και ποσοδείκτες Συνεπαγωγή Αποδείξεις
HY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Τρίτη, 20/02/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 20-Feb-18
Εισαγωγή στις Βάσεις Δεδομζνων II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ Εισαγωγή στις Βάσεις Δεδομζνων II Ενότητα: Λογική και Θεωρία Συνόλων Διδάσκων: Πηγουνάκης Κωστής ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης
Διακριτά Μαθηματικά Γιάννης Εμίρης Τμήμα Πληροφορικής & Τηλεπικοινωνιών http://eclass.uoa.gr/ Οκτώβριος 2018 Οργάνωση και περιεχόμενα Μαθήματος Προτασιακή Λογική, Αποδείξεις Κατηγορήματα και ποσοδείκτες
ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική)
ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική) Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 2 η Εργασία: Γενική Εικόνα Αρκετά καλή βαθμολογική εικόνα (
Λογική. Δημήτρης Πλεξουσάκης. Ασκήσεις 2ου Φροντιστηρίου: Προτασιακός Λογισμός: Κανονικές Μορφές, Απλός Αλγόριθμος Μετατροπής σε CNF/DNF, Άρνηση
Λογική Δημήτρης Πλεξουσάκης Ασκήσεις 2ου Φροντιστηρίου: Προτασιακός Λογισμός: Κανονικές Μορφές, Απλός Αλγόριθμος Μετατροπής σε CNF/DNF, Άρνηση Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης a. Το παρόν εκπαιδευτικό
Βασικοί τύποι δεδομένων (Pascal) ΕΠΑ.Λ Αλίμου Γ Πληροφορική Δομημένος Προγραμματισμός (Ε) Σχολ. Ετος Κων/νος Φλώρος
Βασικοί τύποι δεδομένων (Pascal) ΕΠΑ.Λ Αλίμου Γ Πληροφορική Δομημένος Προγραμματισμός (Ε) Σχολ. Ετος 2012-13 Κων/νος Φλώρος Απλοί τύποι δεδομένων Οι τύποι δεδομένων προσδιορίζουν τον τρόπο παράστασης των
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Αποφασισιµότητα. HY118- ιακριτά Μαθηµατικά. Βασικές µέθοδοι απόδειξης. 07 -Αποδείξεις. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο 2017
HY118- ιακριτά Μαθηµατικά Πέµπτη, 02/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/2/2017
Προτασιακή Λογική. Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΙ Ηπείρου Γκόγκος Χρήστος
Προτασιακή Λογική (Propositional Logic) Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΙ Ηπείρου Γκόγκος Χρήστος - 2015 Λογική Λογική είναι οι κανόνες που διέπουν τη σκέψη. Η λογική αφορά τη μελέτη των διαδικασιών