Πριν τον Αινστάιν. Νόμος του Νεύτωνα. Σχετικότητα στη Μηχανική. Μετασχηματισμοί Γαλιλαίου. Αδρανειακά Συστήματα.
|
|
- Εὔα É Παπαδάκης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Πριν τον Αινστάιν. Νόμος του Νεύτωνα. Αδρανειακά Συστήματα. Σχετικότητα στη Μηχανική. Οι νόμοι της Μηχανικής αναλλοίωτοι στα αδρανειακά συστήματα. Μετασχηματισμοί Γαλιλαίου.
2 Η μηχανική στo τέλος του 9 ου αιώνα. Κριτική του Ernst Mah στις αρχές της μηχανικής. Όλες οι αρχές της Φυσικής πρέπει να προκύπτουν από την εμπειρία και να μην θεωρούνται αυταπόδεικτες. Δεν υπάρχει απόλυτος χώρος. (Η υπόθεση ότι υπάρχει ένα σύστημα αναφοράς που είναι ακίνητο και όλες οι κινήσεις στο σύμπαν να μετριούνται προς αυτό.) Η έννοια του χώρου προκύπτει από τη σύγκριση των αποστάσεων των σωμάτων, σε σχέση με έναν χάρακα. Δεν υπάρχει απόλυτος χρόνος. Ο χρόνος προκύπτει από τους νόμους της μηχανικής πχ. ευθύγραμμη κίνηση ή από τη σύγκριση με περιοδικές κινήσεις π.χ. κίνηση της γύρω από τον ήλιο, περιστροφή της γης γύρω από τον άξονα της.
3 Αδρανειακά Συστήματα Αναφοράς Συστήματα που κινούνται με μηδενική επιτάχυνση. Δεν ασκούνται δυνάμεις από το σύστημα στο σώμα. Τα πειράματα που πραγματοποιεί ο κινούμενος παρατηρητής δεν επηρεάζονται από την κίνηση.
4 Μη αδρανειακά Συστήματα Συστήματα αναφοράς που επιταχύνονται. (Γραμμική επιτάχυνση, Περιστροφή) Το σύστημα ασκεί δυνάμεις στο σώμα το οποίο επιταχύνεται. (Ακίνητος Παρατηρητής). Ο παρατηρητής που κινείται αντιλαμβάνεται ότι ασκούνται δυνάμεις (Αδρανειακές δυνάμεις) οι οποίες ισορροπούνται από τις δυνάμεις που ασκεί το σύστημα. Με τον τρόπο αυτό ο παρατηρητής αντιλαμβάνεται ότι σύστημα επιταχύνεται.
5 Σχετικότητα στη Μηχανική Οι νόμοι της Μηχανικής διατηρούν την μορφή τους στα Αδρανειακά Συστήματα Αναφοράς. Ή οι νόμοι της Μηχανικής παραμένουν Αναλλοίωτοι στα Αδρανειακά Συστήματα Αναφοράς. Η παραπάνω σχέση ονομάζεται σχετικότητα του Poinare.
6 Ηλεκτρομαγνητική Θεωρία Εξισώσεις Μάξγουελ. Προβλέπουν σταθερή ταχύτητα φωτός στο κενό / ε μ 0 Δεν ακολουθούν τους μετασχηματισμούς Γαλιλαίου 0 Αιθέρας, ακίνητο "υλικό" που γεμίζει τον χώρο. Από τον Νεύτωνα μέχρι τον Λόρεντζ, πολλές υποθέσεις αντιφατικές.
7 Παράδειγμα επαγωγής. Το αποτέλεσμα είναι το ίδιο αν κινείται ο μαγνήτης με ταχύτητα υ είτε κινείται ο δακτύλιος!
8 Βασικά πειράματα. Αν η ταχύτητα του φωτός εξαρτιόνταν από την ταχύτητα του συστήματος, τότε θα μπορούσαμε να μετρήσουμε την διαφορά. Πείραμα Mihelson Morley. Το γρηγορότερο όχημα που διαθέτουμε είναι η Γη, που κινείται με 30km το δευτερόλεπτο γύρω από τον ήλιο. Το αποτέλεσμα: Η ταχύτητα του φωτός δεν εξαρτάται από την κίνηση της γης. Ο Lorentz επιμένει: Η συσκευή συστέλεται κατά τη διεύθυνση της κίνησης.
9 Οι προτάσεις του Αινστάιν. Ισοδυναμία των αδρνειακών συστημάτων Αν κάνουμε οποιοδήποτε πείραμα σε ένα σύστημα που κινείται με σταθερή ταχύτητα, το αποτέλεσμα είναι το ίδιο με εκείνο σε σύστημα που θεωρούμε ακίνητο. Αυτό διατυπώνεται διαφορετικά: Όλοι οι νόμοι της φυσικής διατηρούν τη μορφή τους, (είναι αναλλοίωτοι) στα αδρανειακά συστήματα. Αλλοιώς : Ισοδυναμία των αδρνειακών συστημάτων.
10 Ταχύτητα του φωτός Η ταχύτητα του φωτός στο κενό είναι σταθερή και ανεξάρτητη από την κίνηση του συστήματος αναφοράς.
11 Μετατόπιση Doppler στο Κοσμικό Μικροκυματικό Υπόβαθρο Λόγω της κίνησης τηςγης στον γαλαξία, η μετρηση του Κ.Μ.Υ παρουσιάζει μετατόπιση Doppler. Η κατεύθυνση είναι από τη μπλέ περιοχή στην κόκκονη. Η διαφορά θερμοκρασίας είναι μερικά χιλιοστά του βαθμού K.
12 Εισαγωγή στη Eιδική Θεωρία της Σχετικότητας Διδακτικοί στόχοι. Οι Νόμοι της Μηχανικής σε Κινούμενο Σύστημα. Πότε Δύο Γεγονότα είναι Ταυτόχρονα. Η Μέτρηση του Χρόνου και του Μήκους. Οι Δύο Νόμοι της Σχετικότητας. Μετασχηματισμός Χρόνου και Μήκους. Απλά Προβλήματα Στην Ε.Θ.Σ. 3/5/05 Φυσική Γ. Βούλγαρης
13 Χώρος και Χρόνος Σύστημα αναφοράς. Κάθε σημείο (Χ,Υ) αντιστοιχεί στη θέση του σώματος σε σχέση με την αρχή των αξόνων. Όμως πρέπει σε κάθε σημείο να προσδιορίσουμε και τον χρόνο. Για να είναι ο ίδιος σε κάθε σημείο πρέπει να συγχρονίσουμε κάθε ρολόι, με το ρολόι της αρχής. για να συγχρονιστούν στελνουμε μια ακτίνα φωτός σε κάθε ρολόι. Η διaφορά του χρόνου πρέπει να είναι : r ij / 3/5/05 Φυσική Γ. Βούλγαρης
14 O Αιθέρας και το Πείραμα των Mihelson - Morley 3/5/05 Φυσική Γ. Βούλγαρης 3
15 Ταυτόχρονα γεγονότα. Το βαγόνι κινείται με ταχύτητα υ. Οι δύο κεραυνοί πέφτουν όταν τα σημεία Α και Β, συμπίπτουν με τα Α, Β. t AO BO t Ο Ακίνητος παρατηρητής που βρίσκεται στο Ο, βλέπει τις δύο λάμψεις να φθάνουν ταυτόχρονα. 3/5/05 Φυσική Γ. Βούλγαρης 4
16 3/5/05 Φυσική Γ. Βούλγαρης 5 Ταυτόχρονα; Η διαδρομή του φωτός από το Α μέχρι το Ο, είναι μεγαλύτερη από εκείνη που ξεκινά από το Β και φθάνει το Ο. t t d t d t t d t t d t υ υ υ υ
17 Παρατηρητής στο βαγόνι Ο Κινούμενος κάνει ένα πείραμα: Στέλνει μία ακτίνα στην οροφή και μετρά τον χρόνο ανάμεσα στην εκπομπή και λήψη της. Το αποτέλεσμα είναι το ίδιο αν το βαγόνι κινείται είτε είναι ακίνητο. 3/5/05 Φυσική Γ. Βούλγαρης 6
18 Παρατηρητής στο έδαφος Ο Ακίνητος διαπιστώνει ότι η εκπομπή και η λήψη γίνονται σε διαφορετικές θέσεις. 3/5/05 Φυσική Γ. Βούλγαρης 7
19 3/5/05 Φυσική Γ. Βούλγαρης 8 d t Δ Από το σχήμα υπολογίζουμε τη διαδρομή της φωτεινής ακτίνας, όπως τη βλέπει ο Ακίνητος, και από αυτήν τον χρόνο Δt. υ - Δt Δt Υπολογίζουμε το χρόνο που μετρά ο Κινούμενος: 4 4 d t d t t d t υ Δ Δ υ υδ Δ
20 Συμπέρασμα: Ο χρόνος που μετρά ο Ακίνητος, είναι μεγαλύτερος από τον χρόνο, του Κινούμενου παρατηρητή. Αυτό συμβαίνει γιατί:. Η ταχύτητα του φωτός είναι σταθερή.. Η εκπομπή και η λήψη, γίνονται σε διαφορετικά σημεία κατά τον Ακίνητο. 3/5/05 Φυσική Γ. Βούλγαρης 9
21 Μετασχηματισμός Μήκους υ Γη l 0 Αστέρι Γήινος: t l 0 l0 t l t l l 0 t t Εξωγήινος: t l l l 0 3/5/05 Φυσική Γ. Βούλγαρης 0
22 Παράγοντας γ γ υ / γ β=υ/ γ=/ (-β ) 00 Gamma f(x)=/sqrt(-x^) 0,0000, ,80000, ,90000,946 0, ,056 0, , , ,0888 0, ,05 0,99900,3667 0, ,745 0, , / 3/5/05 Φυσική Γ. Βούλγαρης
23 Μετασχηματισμός Lorentz Οι Μετασχηματισμοί Lorents: S x' y' z' z γx υt x γx' υt' y S' υ t' γ t x x, y, z,t x', y', z',t' γ υ Οι Αντίστροφοι Μετασχηματισμοί Lorentz: S' y z y' z' S υ t γ t' x' 3/5/05 Φυσική Γ. Βούλγαρης
24 3/5/05 Φυσική Γ. Βούλγαρης Μετασχηματισμός Ταχύτητας. x z z x y y x x x x z z x y y x x x Ορθός. Αντίστροφος.
25 Μετασχηματισμός Ταχύτητας Ταχύτητα Σημείου στο Κινούμενο Σύστημα. -0. / Ταχύτητα Σημείου στο Ακίνητο Σύστημα. '/ /5/05 Φυσική Γ. Βούλγαρης 3
26 Σχετικιστική Ορμή Η Σχετικιστική Ορμή πρέπει να διατηρείται σε όλες τις κρούσεις. Η Σχετικιστική Ορμή πρέπει να τείνει στο κλασικό ορισμό της για ταχύτητες μικρές ως προς την ταχύτητα του φωτός. p m γm
27 Σχετικιστική δύναμη F F dp dt ma m m 0
28 Σχετικιστική Ενέργεια m m K m m m K
Ειδική Θεωρία Σχετικότητας
Ειδική Θεωρία Σχετικότητας Σύνολο διαφανειών 8/3/07 Γ. Βούλγαρης Πριν τον Αινστάιν. Νόμος το Νεύτωνα. Αδρανειακά Σστήματα. Σχετικότητα στη Μηχανική. Οι νόμοι της Μηχανικής αναλλοίωτοι στα αδρανειακά σστήματα.
Γενική Φυσική. Ενότητα 4: Εισαγωγή στην ειδική θεωρία της σχετικότητας. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών
Γενική Φυσική Ενότητα 4: Εισαγωγή στην ειδική θεωρία της σχετικότητας Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών Εισαγωγή στη Eιδική Θεωρία της Σχετικότητας - Διδακτικοί στόχοι Οι Νόμοι
ΣΧΕΤΙΚΟΤΗΤΑ Μετασχηματισμοί Γαλιλαίου. (Κλασική θεώρηση) αφού σύμφωνα με τα πειράματα Mickelson-Morley είναι c =c.
ΣΧΕΤΙΚΟΤΗΤΑ Μετασχηματισμοί Γαλιλαίου. (Κλασική θεώρηση) y y z z t t Το οποίο οδηγεί στο ότι - υ.(άτοπο), αφού σύμφωνα με τα πειράματα Mikelson-Morley είναι. Επίσης y y, z z, t t Το οποίο ( t t ) είναι
Στοιχείατης. τηςθεωρίαςτης Σχετικότητας. Άλµπερτ Αϊνστάιν 1905
Στοιχείατης τηςθεωρίαςτης Σχετικότητας Άλµπερτ Αϊνστάιν 1905 Έννοια Συστήµατος Αναφοράς Ένα σταθερό σύστηµα (x,y,z) και t βάσει του οποίου περιγράφουµε ένα φυσικό γεγονός. Συνήθως σύστηµα Εργαστηρίου.
Κεφάλαιο 1 : Μετασχηματισμοί Γαλιλαίου.
Κεφάλαιο : Μετασχηματισμοί Γαλιλαίου.. Γεγονότα, συστήματα αναφοράς και η αρχή της Νευτώνειας Σχετικότητας. Ως φυσικό γεγονός ορίζεται ένα συμβάν το οποίο λαμβάνει χώρα σε ένα σημείο του χώρου μια συγκεκριμένη
ΑΠΟ ΤΟ ΝΕΥΤΩΝΑ ΣΤΟΝ ΑΪΝΣΤΑΪΝ ΙΑΤΡΑΚΗΣ ΙΩΑΝΝΗΣ «ΗΜΕΡΙ Α ΣΥΓΧΡΟΝΗΣ ΦΥΣΙΚΗΣ»
ΑΠΟ ΤΟ ΝΕΥΤΩΝΑ ΣΤΟΝ ΑΪΝΣΤΑΪΝ ΙΑΤΡΑΚΗΣ ΙΩΑΝΝΗΣ «ΗΜΕΡΙΑ ΣΥΓΧΡΟΝΗΣ ΦΥΣΙΚΗΣ» ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ z z y y ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΓΑΛΙΛΑΙΟΥ Αδρανειακό σύστηµααναφοράςείναι αυτό στο οποίο ενα σώµαπουδεν του ασκούνται
Κεφάλαιο 2 : Η Αρχή της Σχετικότητας του Einstein.
Κεφάλαιο : Η Αρχή της Σχετικότητας του Einstein..1 Ο απόλυτος χώρος και ο αιθέρας. Ας υποθέσουμε ότι ένας παρατηρητής μετρά την ταχύτητα ενός φωτεινού σήματος και την βρίσκει ίση με 10 m/se. Σύμφωνα με
Φυσικό Τμήμα Παν/μιο Ιωαννίνων - Ειδική Σχετικότητα - Λυμένα Προβλήματα - ΙII
2.11.2011 Άσκηση 1: Θεωρήστε δύο αδρανειακά συστήματα αναφοράς O, O ' και ας υποθέσουμε ότι το δεύτερο κινείται με ταχύτητα V κατά τη διεύθυνση του άξονα των χ σε σχέση με το πρώτο. Τη χρονική στιγμή που
Σύγχρονη Φυσική 1, Διάλεξη 4, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Η Αρχές της Ειδικής Θεωρίας της Σχετικότητας και οι μετασχηματισμοί του Lorentz
1 Η Αρχές της Ειδικής Θεωρίας της Σχετικότητας και οι μετασχηματισμοί του Lorentz Σκοποί της τέταρτης διάλεξης: 25.10.2011 Να κατανοηθούν οι αρχές με τις οποίες ο Albert Einstein θεμελίωσε την ειδική θεωρία
ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ ΦΑΙΝΟΜΕΝΟ DOPPLER
ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ ΦΑΙΝΟΜΕΝΟ DOPPLER Μαγνητικό πεδίο γης Μετασχηματισμοί Λόρεντζ Φαινόμενο Doppler για τον ήχο Φαινόμενο Doppler για ηλεκτρομαγνητικά κύματα Κύριες εφαρμογές φαινομένου Doppler ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ
ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ευστάθιος Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, ΣΧΕΤΙΚΗ ΚΙΝΗΣΗ Ομαλή Σχετική Μεταφορική Κίνηση Μετασχηματισμοί Γαλιλαίου
ΦΥΣΙΚΗ Ι ΤΜΗΜΑ Α Ευστάθιος Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, 06 0 07 ΣΧΕΤΙΚΗ ΚΙΝΗΣΗ Ομαλή Σχετική Μεταφορική Κίνηση Μετασχηματισμοί Γαλιλαίου ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΣΧΕΤΙΚΟΤΗΤΑΣ Μετασχηματισμός Loenz Πείραμα Mihelson
ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ
ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς 1. Μετασχηματισμοί συντεταγμένων και συμμετρίες. 1α. Στροφές στο επίπεδο. Θεωρείστε δύο καρτεσιανά συστήματα συντεταγμένων στο επίπεδο, στραμμένα
Διαγώνισμα Φυσικής Α! Λυκείου. Νόμοι του Νεύτωνα. Φροντιστήριο ΦΑΣΜΑ. Ζήτημα 1 ο. A) Ποιά από τις παρακάτω προτάσεις είναι σωστή ;
1 Διαγώνισμα Φυσικής Α! Λυκείου Νόμοι του Νεύτωνα Ζήτημα 1 ο A) Ποιά από τις παρακάτω προτάσεις είναι σωστή ; 1 Το αποτέλεσμα της δύναμης που ασκείται σε ένα σώμα εξαρτάται : α) Μόνο από το μέτρο της δύναμης
Εισαγωγή στη Σχετικότητα και την Κοσμολογία ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΟΣ
Εισαγωγή στη Σχετικότητα και την Κοσμολογία Διδάσκων: Θεόδωρος Τομαράς, Πανεπιστήμιο Κρήτης ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΟΣ Εβδομάδα 1 Σχετικότητα 1.1 Η ανεπάρκεια της μηχανικής του Νεύτωνα V1.1.1 Σύντομη εισαγωγή
ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΕΥ η ΕΡΓΑΣΙΑ
15/10/2004 ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΕΥ34 2004-05 1 η ΕΡΓΑΣΙΑ Προθεσμία παράδοσης 15/11/2004 ΑΣΚΗΣΕΙΣ 1) Επιβάτης τραίνου, το οποίο κινείται προς τα δεξιά με ταχύτητα υ = 0.6c στη διεύθυνση του άξονα
ΠΑΝΑΓΙΩΤΗΣ ΣΑΓΩΝΑΣ ΝΟΤΗΣ ΣΚΑΛΤΣΑΣ ΑΓΓΕΛΟΣ ΛΑΖΑΡΗΣ ΓΙΩΡΓΟΣ ΤΣΙΟΥΛΟΣ ΜΑΝΝΕΤΑΣ ΧΡΗΣΤΟΣ
ΠΑΝΑΓΙΩΤΗΣ ΣΑΓΩΝΑΣ ΝΟΤΗΣ ΣΚΑΛΤΣΑΣ ΑΓΓΕΛΟΣ ΛΑΖΑΡΗΣ ΓΙΩΡΓΟΣ ΤΣΙΟΥΛΟΣ ΜΑΝΝΕΤΑΣ ΧΡΗΣΤΟΣ Η ταχύτητα ενός κινούμενου σώματος δε γίνεται με τον ίδιο τρόπο αντιληπτή από όλους τους παρατηρητές. Ένας άνθρωπος καθιστός
Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο Τ Ο Μ Ε Α Σ Φ Υ Σ Ι Κ Η Σ
Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο Σ Χ Ο Λ Η Ε Φ Α Ρ Μ Ο Σ Μ Ε Ν Ω Ν Μ Α Θ Η Μ Α Τ Ι Κ Ω Ν Κ Α Ι Φ Υ Σ Ι Κ Ω Ν Ε Π Ι Σ Τ Η Μ Ω Ν Τ Ο Μ Ε Α Σ Φ Υ Σ Ι Κ Η Σ Κανονική εξέταση στο µάθηµα ΕΙ
β) Ε Φ Α Ρ Μ Ο Γ Η 1 2 α)
Ε ΦΑΡΜΟΓΗ 1 Ένα σώμα μάζας m 800g ισορροπεί ακίνητο πάνω σε λείο οριζόντιο δάπεδο, συνδεδεμένο στο ελεύθερο άκρο οριζόντιου ιδανικού ελατηρίου σταθεράς K 00N / m. Το άλλο άκρο του ελατηρίου είναι στερεωμένο
Doppler, ηλεκτρομαγνητικά κύματα και μερικές εφαρμογές τους!
1 Doppler, ηλεκτρομαγνητικά κύματα και μερικές εφαρμογές τους! Με αφορμή τις συχνές ερωτήσεις μαθητών για το Doppler και το φως και κυρίως λόγω της επιμονής ενός άριστου μαθητή που από την Β Λυκείου ενθουσιάζονταν
Η ΕΙ ΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ 1. Ιστορική Εισαγωγή. Σύγγραµµα και Σηµειώσεις
Η ΕΙ ΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ 1. Ιστορική Εισαγωγή ιδάσκων: Κώστας Χριστοδουλίδης Γραφείο: Κτήριο Φυσικής, 1ος όροφος, Γραφείο 104 Ηλ. Ταχ.: cchrist@central.ntua.gr Ιστοσελίδα: http://www.physics.ntua.gr/~cchrist/
Στοιχεία Σχετικότητας, χρήσιμα στο μάθημα της Ατομικής Φυσικής Ε. Γ. Βιτωράτος. Τμήμα Φυσικής, Πανεπιστήμιο Πατρών (2005)
Ε. Γ. Βιτωράτος. Τμήμα Φυσικής, Πανεπιστήμιο Πατρών (5) ΠΑΡΑΡΤΗΜΑ Ι (ΣΧΕΤΙΚΟΤΗΤΑ) Λέμε πως η φυσική είναι μια επιστήμη που ασχολείται με τον εντοπισμό και την ερμηνεία των φυσικών φαινομένων. Συνάμα όμως
Σύγχρονη Φυσική 1, Διάλεξη 3, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Η θεωρία του αιθέρα καταρρίπτεται από το πείραμα των Michelson και Morley
1 Η θεωρία του αιθέρα καταρρίπτεται από το πείραμα των Mihelson και Morley 0.10.011 Σκοποί της τρίτης διάλεξης: Να κατανοηθεί η ιδιαιτερότητα των ηλεκτρομαγνητικών κυμάτων (π. χ. φως) σε σχέση με άλλα
Στοιχεία της θεωρίας της Σχετικότητας. Άλμπερτ Αϊνστάιν 1905
Στοιχεία της θεωρίας της Σχετικότητας Άλμπερτ Αϊνστάιν 1905 Αξιώματα Ειδικής Θεωρίας της Σχετικότητας, Αϊνστάιν (1905) μοναδική γοητεία εξαιτίας της απλότητας και κομψότητας των δύο αξιωμάτων πάνω στα
ΔΥΝΑΜΙΚΗ 3. Νίκος Κανδεράκης
ΔΥΝΑΜΙΚΗ 3 Νίκος Κανδεράκης Νόμος της βαρύτητας ή της παγκόσμιας έλξης Δύο σώματα αλληλεπιδρούν με βαρυτικές δυνάμεις Η δύναμη στο καθένα από αυτά: Είναι ανάλογη με τη μάζα του m Είναι ανάλογη με τη μάζα
Κεφάλαιο 11 Στροφορμή
Κεφάλαιο 11 Στροφορμή Περιεχόμενα Κεφαλαίου 11 Στροφορμή Περιστροφή Αντικειμένων πέριξ σταθερού άξονα Το Εξωτερικό γινόμενο-η ροπή ως διάνυσμα Στροφορμή Σωματιδίου Στροφορμή και Ροπή για Σύστημα Σωματιδίων
Κίνηση φορτισμένου σωματιδίου σε χώρο, όπου συνυπάρχουν ηλεκτρικό και μαγνητικό πεδίο ομογενή και χρονοανεξάρτητα
Κίνηση φορτισμένου σωματιδίου σε χώρο, όπου συνυπάρχουν ηλεκτρικό και μαγνητικό πεδίο ομογενή και χρονοανεξάρτητα Μέρος α : Εξισώσεις κίνησης και συμπεράσματα) Α. Τι βλέπει ένας αδρανειακός παρατηρητής
Φυσική ΜΙΘΕ ΔΥΝΑΜΙΚΗ - 1. Νίκος Κανδεράκης
Φυσική ΜΙΘΕ ΔΥΝΑΜΙΚΗ - 1 Νίκος Κανδεράκης Αριστοτελική Φυσική Γιατί πέφτουν τα (βαριά) σώματα; Πηγαίνουν στη φυσική τους θέση. Βάρος: η τάση του βαρέως σώματος να κινηθεί προς το κέντρο της Γης. Μέτρο
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα ΦΥΣ102 1 Δύναμη είναι: Η αιτία που προκαλεί μεταβολή
ΣΧΕΤΙΚΟΤΗΤΑ ΚΑΙ ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ
ΜΑΘΗΜΑ 5: ΣΧΕΤΙΚΟΤΗΤΑ ΚΑΙ ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ Salviati: Εκεί που δεν μας βοηθούν οι αισθήσεις πρέπει να παρέμβει η λογική, γιατί μόνο αυτή θα επιτρέψει να εξηγήσουμε τα φαινόμενα ΓΑΛΙΛΑΪΚΟΙ ΔΙΑΛΟΓΟΙ Η μαθηματική
ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Θέμα Α Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθμό της
ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΕΥΘΥΓΡΑΜΜΑ ΟΜΑΛΑ ΜΕΤΑΒΑΛΛΟΜΕΝΗ ΚΙΝΗΣΗ
Επώνυμο: Όνομα: Αγρίνιο: Τμήμα: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΕΥΘΥΓΡΑΜΜΑ ΟΜΑΛΑ ΜΕΤΑΒΑΛΛΟΜΕΝΗ ΚΙΝΗΣΗ ΘΕΜΑ 1 ο Α) Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις επόμενες προτάσεις
5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ
Α Τόγκας - ΑΜ333: Ειδική Θεωρία Σχετικότητας Σχετικιστική μάζα 5 Σχετικιστική μάζα Όπως έχουμε διαπιστώσει στην ειδική θεωρία της Σχετικότητας οι μετρήσεις των χωρικών και χρονικών αποστάσεων εξαρτώνται
Παναγιώτης Κουνάβης Αναπληρωτής Καθηγητής Tμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών ΕΦΑΡΜΟΣΜΕΝΗ ΦΥΣΙΚΗ ΣΥΓΧΡΟΝΗ ΦΥΣΙΚΗ
Παναγιώτης Κουνάβης Αναπληρωτής Καθηγητής Tμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών ΕΦΑΡΜΟΣΜΕΝΗ ΦΥΣΙΚΗ Μηχανική-Θερμοδυναμική Βασικός Ηλεκτρομαγνητισμός 1ο εξάμηνο 4 ώρες/εβδομάδα ΣΥΓΧΡΟΝΗ
ΓΙΩΡΓΟΣ ΒΑΛΑΤΣΟΣ ΦΥΣΙΚΟΣ Msc
ΤΑΛΑΝΤΩΣΕΙΣ Γ ΓΥΜΝΑΣΙΟΥ 1 Να συμπληρώσετε τα κενά στις επόμενες προτάσεις: α. Το χρονικό διάστημα μέσα στο οποίο πραγματοποιείται μία πλήρης ταλάντωση ονομάζεται.. και το πηλίκο του αριθμού των ταλαντώσεων
Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Σύγχρονη Φυσική
Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Σύγχρονη Φυσική Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Μια σύντομη επισκόπηση της σύγχρονης φυσικής Σχετικότητα
ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / B ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 02/12/12 ΑΠΑΝΤΗΣΕΙΣ
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 01-013 ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / B ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 0/1/1 ΘΕΜΑ A ΑΠΑΝΤΗΣΕΙΣ Στις ημιτελείς προτάσεις Α 1 -Α 4 να γράψετε στο τετράδιο σας τον αριθμό της
Ο ΧΩΡΟΣ ΚΑΙ Ο ΧΡΟΝΟΣ
Ο ΧΩΡΟΣ ΚΑΙ Ο ΧΡΟΝΟΣ. Γενικές αρχές. Η αντιληπτική μας ικανότητα του Φυσικού Χώρου, μας οδηγεί στον προσδιορισμό των σημείων του, μέσω τριών ανεξαρτήτων παραμέτρων. Είναι, λοιπόν, αποδεκτή η απεικόνισή
Ο Μετασχηµατισµός του Λόρεντς για τις Συντεταγµένες Θέσης Ενός Συµβάντος
3 ΣΧΕΤΙΚΙΣΤΙΚΗ ΚΙΝΗΜΑΤΙΚΗ Ο Μετασχηµατισµός του Λόρεντς για τις Συντεταγµένες Θέσης Ενός Συµβάντος Έστω ένα αδρανειακό σύστηµα S, και ένα δεύτερο, S, το οποίο κινείται µε ταχύτητα ως προς το πρώτο Επιλέγουµε
ΕΙΔΙΚΗ ΣΧΕΤΙΚΟΤΗΤΑ. Νίκος Κανδεράκης
ΕΙΔΙΚΗ ΣΧΕΤΙΚΟΤΗΤΑ Νίκος Κανδεράκης Η Φυσική πριν τον Einstein Απόλυτος χρόνος και χώρος στη Νευτώνεια Φυσική Χρόνος «Ο απόλυτος, αληθής και μαθηματικός χρόνος, από την ίδια του τη φύση, ρέει ομοιόμορφα
Bmax. Αν c η ταχύτητα του φωτός στο κενό - αέρα, το ηλεκτρικό πεδίο του ίδιου ηλεκτρομαγνητικού κύματος περιγράφεται από τη σχέση
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 11 ΣΕΠΤΕΜΒΡΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:
3α. ΣΧΕΤΙΚΙΣΤΙΚΗ ΚΙΝΗΜΑΤΙΚΗ ΠΑΡΑ ΕΙΓΜΑΤΑ «ΠΑΡΑ ΟΞΑ» ΑΣΚΗΣΕΙΣ
3α. ΣΧΕΤΙΚΙΣΤΙΚΗ ΚΙΝΗΜΑΤΙΚΗ ΠΑΡΑ ΕΙΓΜΑΤΑ «ΠΑΡΑ ΟΞΑ» ΑΣΚΗΣΕΙΣ Παράδειγµα: Το τρένο του Άινστάιν Ένα τρένο κινείται ως προς έναν αδρανειακό παρατηρητή Ο µε σταθερή ταχύτητα V. Στο µέσο ακριβώς του τρένου
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΑ 5 ΚΑΙ 1 (ΚΡΟΥΣΕΙΣ - ΤΑΛΑΝΤΩΣΕΙΣ) ΚΥΡΙΑΚΗ 15 ΝΟΕΜΒΡΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 3
ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΑ 5 ΚΑΙ 1 (ΚΡΟΥΣΕΙΣ - ΤΑΛΑΝΤΩΣΕΙΣ) ΚΥΡΙΑΚΗ 15 ΝΟΕΜΒΡΙΟΥ 015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 3 ΘΕΜΑ A Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς
Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ
0 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΑΣΚΗΣΕΙΣ Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ 0 1 Στρατηγική επίλυσης προβλημάτων Α. Κάνε κατάλληλο σχήμα,τοποθέτησε τα δεδομένα στο σχήμα και ονόμασε
Hamiltonian φορμαλισμός
ΦΥΣ - Διαλ.0 Hamltonan φορμαλισμός q = H H Οι εξισώσεις Hamlton είναι:, p = p q Ø (p,q) ονομάζονται κανονικές μεταβλητές Ø Η είναι συνάρτηση που ονομάζεται Hamltonan Ø Κανονικές μεταβλητές ~ θέση και ορμή
ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ LORENTZ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ LORENTZ 1. Βασικά Αξιώματα Ειδικής Θεωρίας Σχετικότητας - Μετασχηματισμοί Lorentz Σύμφωνα με την Κλασσική Μηχανική το Newton μια σταθερή
1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα).
Θέμα ο. ια το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και M= M = M, υπολογίστε την επιτάχυνση της µάζας. ίνεται το g. (0) Λύση.
9. Σχετικιστική δυναµική
9. Σχετικιστική δναµική Βιβλιογραφία C. Kittel, W. D. Knight, M. A. Rudeman, A. C. Helmholz και B. J. Moye, Μηχανική. Πανεπιστηµιακές Εκδόσεις Ε.Μ.Π., 998. Κεφ., 3. 9. ιατήρηση της ορµής, σχετικιστική
ΜΑΘΗΜΑ /ΤΑΞΗ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥMΟ: ΗΜΕΡΟΜΗΝΙΑ: 28/2/2016
ΜΑΘΗΜΑ /ΤΑΞΗ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥMΟ: ΗΜΕΡΟΜΗΝΙΑ: 8//06 ΕΞΕΤΑΣΤΕΑ ΥΛΗ: ΣΤΕΡΕΟ ΚΑΙ Doppler ΘΕΜΑ Α Α Μικρότερη συχνότητα ακούει ένας παρατηρητής σε σχέση με την πραγματική συχνότητα
12 ο Λύκειο Πάτρας t (s)
ΑΣΚΗΣΕΙΣ Α. Ευθύγραμμη Ομαλή Κίνηση 1) Κινητό που κινείται σε άξονα χχ ξεκινά τη χρονική στιγμή t 0 = 0 και έχει εξίσωση κίνησης χ = 0 4t (S.I.). Να βρεθούν: α) Η αρχική θέση και η ταχύτητά του β) Ποια
5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ
Α Τόγκας - ΑΜ333: Ειδική Θεωρία Σχετικότητας Σχετικιστική μάζα 5 Σχετικιστική μάζα Όπως έχουμε διαπιστώσει στην ειδική θεωρία της Σχετικότητας οι μετρήσεις των χωρικών και χρονικών αποστάσεων εξαρτώνται
Φυσικό Τμήμα Παν/μιο Ιωαννίνων - Ειδική Σχετικότητα - Λυμένα Προβλήματα - ΙI
.11.011 Άσκηση 1: Χρησιμοποιήστε την διωνυμική σχέση 1x N = i=0 N! i! N i! xi για να υπολογίστε το 1 V /c για (α) V = 0.01c και (β) V = 0.9998c (α) Η διωνυμική σχέση είναι ιδανική για προσεγγίσεις όταν
, όπου υδ η ταχύτητα διάδοσης των κυμάτων και r1, r2 οι αποστάσεις του σημείου Σ από τις δύο πηγές. Επομένως:
ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΠΟΥ ΥΠΗΡΕΤΟΥΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 8 ΣΕΠΤΕΜΒΡΙΟΥ 06 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Ι ΚΑΙ ΘΕΤΙΚΩΝ
6-1 ΕΙΣΑΓΩΓΗ. Αν και - ακόμη και σήμερα - η γενική θεωρία δεν έχει επιβεβαιωθεί πλήρως, οι δρόμοι που άνοιξε επηρέασαν βαθιά τη σύγχρονη φυσική.
EΞΩΦΥΛΛΟ 185 6-1 ΕΙΣΑΓΩΓΗ Στις αρχές του έτους 1905 ένας άγνωστος εικοσιεξάχρονος υπάλληλος της Ελβετικής Υπηρεσίας Ευρεσιτεχνιών, ο Albert Einstein, δημοσίευσε τρεις εργασίες τεράστιας σημασίας. Η πρώτη
Μέρος A: Νευτώνιες τροχιές (υπό την επίδραση συντηρητικών δυνάμεων) (3.0 μονάδες)
Theory LIGO-GW150914 (10 μονάδες) Q1-1 Το 015, το παρατηρητήριο βαρυτικών κυμάτων LIGO ανίχνευσε για πρώτη φορά τη διέλευση των βαρυτικών κυμάτων (gravitational waves ή GW) διαμέσου της Γης. Το συμβάν
3 η εργασία Ημερομηνία αποστολής: 28 Φεβρουαρίου ΘΕΜΑ 1 (Μονάδες 7)
3 η εργασία Ημερομηνία αποστολής: 28 Φεβρουαρίου 2007 ΘΕΜΑ 1 (Μονάδες 7) Η θέση ενός σωματίου που κινείται στον άξονα x εξαρτάται από το χρόνο σύμφωνα με την εξίσωση: x (t) = ct 2 -bt 3 (1) όπου x σε μέτρα
Φυσική Ι Ακαδημαϊκή Χρονιά Α. Καραμπαρμπούνης
Φυσική Ι Ακαδημαϊκή Χρονιά 2014-15 15 Α. Καραμπαρμπούνης Δυναμική Δυναμική ενός σώματος Νόμος αδράνειας Μάζα 1 ος ν. Νεύτωνα Ορμή διατήρηση ορμής 2 ος και 3 ος νόμος Νεύτωνα Τριβή Συστήματα μεταβλητής
ΛΥΚΕΙΟ ΠΑΛΟΥΡΙΩΤΙΣΣΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑÏΟΥ- ΙΟΥΝΙΟΥ 2014
ΛΥΚΕΙΟ ΠΑΛΟΥΡΙΩΤΙΣΣΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014 ΒΑΘΜΟΣ...... ΟΛΟΓΡΑΦΩΣ... ΥΠΟΓΡΑΦΗ... ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑÏΟΥ- ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΗΜΕΡΟΜΗΝΙΑ: 26/05/2014 ΧΡΟΝΟΣ: 2 ΩΡΕΣ ΩΡΑ: 7.45-9.45
ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΕΠΑΝΑΛΗΨΗ ΘΕΩΡΙΑΣ 2017
ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΕΠΑΝΑΛΗΨΗ ΘΕΩΡΙΑΣ 2017 ΚΕΦΑΛΑΙΟ 1 ο ΕΙΣΑΓΩΓΗ 1.3 Τα φυσικά μεγέθη και οι μονάδες τους 1. Ποια μεγέθη ονομάζονται θεμελιώδη; Θεμελιώδη ονομάζονται τα μεγέθη τα οποία δεν ορίζονται με
2. Δύο αυτοκίνητα Α και Β κινούνται σε προσανατολισμένη ευθεία, ομαλά. Οι ταχύτητες των αυτοκινήτων είναι αντίστοιχα, A
ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΚΙΝΗΜΑΤΙΚΗ - 1 Ος,2 Ος ΝΟΜΟΣ ΝΕΥΤΩΝΑ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ Ημερομηνία: 22/12/14 Διάρκεια διαγωνίσματος: 120 Υπεύθυνος καθηγητής: Τηλενίκης Ευάγγελος ΖΗΤΗΜΑ 1 Στις ερωτήσεις 1-6
ΦΥΣΙΚΗ Α ΓΕΛ ΕΥΘΥΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ
ΦΥΣΙΚΗ Α ΓΕΛ ΕΥΘΥΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ Ευθύγραμμη Ομαλή Κίνηση Ορισμός: Είναι η ευθύγραμμη κίνηση με σταθερή σε μέτρο και φορά ταχύτητα. Εξισώσεις ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΤΑΧΥΤΗΤΑ ΣΤΑΘΕΡΗ
Η κλασσική, η σχετικιστική και η κβαντική προσέγγιση. Θωµάς Μελίστας Α 3
Η κλασσική, η σχετικιστική και η κβαντική προσέγγιση Θωµάς Μελίστας Α 3 Σύµφωνα µε την κλασσική µηχανική και την γενική αντίληψη η µάζα είναι µία εγγενής ιδιότητα των φυσικών σωµάτων. Μάζα είναι η ποσότητα
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ 2 ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας 2 Kg με αρχική ταχύτητα υ 0 8i κινείται με σταθερή επιτάχυνση
Φυσική Β Γυμνασίου Συνοπτικές Σημειώσεις Επανάληψης
Φυσική Β Γυμνασίου Συνοπτικές Σημειώσεις Επανάληψης Επιμέλεια: Αγκανάκης Α. Παναγιώτης Κεφάλαιο 1 Φυσικά Μεγέθη: τα μεγέθη που μελετάει η Φυσική Επιστήμη Κατηγορίες: 1. Θεμελιώδη a. Μάζα (kg) b. Μήκος
Δυναµική. ! F(δύναµη), m(µάζα), E(ενέργεια), p(ορµή),! Πως ένα σώµα αλληλεπιδρά µε το περιβάλλον του! Γιατί σώµατα κινούνται µε το τρόπο που κινούνται
1 Δυναµική F(δύναµη), m(µάζα), E(ενέργεια), p(ορµή), Πως ένα σώµα αλληλεπιδρά µε το περιβάλλον του Γιατί σώµατα κινούνται µε το τρόπο που κινούνται " Θεµελιώδεις νόµοι της µηχανικής: Οι τρεις νόµοι του
ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ
ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ Οι δακτύλιοι του Κρόνου είναι ένα σύστημα πλανητικών δακτυλίων γύρω από αυτόν. Αποτελούνται από αμέτρητα σωματίδια των οποίων το μέγεθος κυμαίνεται από μm μέχρι m, με
Σύγχρονη Φυσική 1, Διάλεξη 10, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων. Ορμή και Ενέργεια στην Ειδική Θεωρία της Σχετικότητας
1 Ορμή και Ενέργεια στην Ειδική Θεωρία της Σχετικότητας Σκοπός της δέκατης διάλεξης: 10/11/12 Η κατανόηση των εννοιών της ολικής ενέργειας, της κινητικής ενέργειας και της ορμής στην ειδική θεωρία της
Προτεινόμενα θέματα για τις εξετάσεις 2011
Προτεινόμενα θέματα για τις εξετάσεις 011 Τάξη: Γ Γενικού Λυκείου Μάθημα: Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης ΘΕΜΑ Α Α1-A4 Να επιλέξετε τη σωστή από τις απαντήσεις Α1. Ένα σώμα μάζας είναι στερεωμένο
1 Η ΑΡΧΗ ΤΗΣ ΙΣΟΔΥΝΑΜΙΑΣ
1 Η ΑΡΧΗ ΤΗΣ ΙΣΟΔΥΝΑΜΙΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς 1.1 Newton s law A. Newton s law: Περιγράφει τη κίνηση υλικού σημείου μάζας m σε χωρο-χρονικά μεταβαλλόμενο πεδίο δυνάμεων F. Σε Αδρανειακό Σύστημα
ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4o ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η
Θέση-Μετατόπιση -ταχύτητα
Φυσική έννοια Φυσική έννοια Φαινόμενα ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ Θέση-Μετατόπιση -ταχύτητα Ένα τρένο που ταξιδεύει αλλάζει διαρκώς θέση, το ίδιο ένα αυτοκίνητο και ένα πλοίο ή αεροπλάνο
Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος
Α Λυκείου 9 Μαρτίου 014 ΟΔΗΓΙΕΣ: 1. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε τετράδιο που θα σας δοθεί (το οποίο θα παραδώσετε στο τέλος της εξέτασης). Εκεί θα σχεδιάσετε και όσα γραφήματα
ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 A ΦΑΣΗ
ΤΑΞΗ: ΜΑΘΗΜΑ: A ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ημερομηνία: Παρασκευή 5 Ιανουαρίου 2018 Διάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης
ΜΗΧΑΝΙΚΗ ΕΝΟΤΗΤΑ 1. ΚΕ Φ ΑΛ ΑΙ Ο 2 : Περ ιγ ραφ ή της κ ίν ησ ης
1 Σκοπός ΜΗΧΑΝΙΚΗ ΕΝΟΤΗΤΑ 1 ΚΕ Φ ΑΛ ΑΙ Ο 2 : Περ ιγ ραφ ή της κ ίν ησ ης Να αποκτήσουν οι μαθητές τη δυνατότητα να απαντούν σε ερωτήματα που εμφανίζονται στην καθημερινή μας ζωή και έχουν σχέση με την
ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 19//013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 υ (m/s) Σώμα μάζας m = 1Kg κινείται σε ευθύγραμμη τροχιά
ΛΥΣΕΙΣ. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 01-013 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 1//1 ΘΕΜΑ 1 ο ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα
ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ
ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ Συγγραμμικές δυνάμεις 1 ος -2 ος νόμος του Νεύτωνα 1. Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λανθασμένες; α. Μια δύναμη μπορεί να προκαλέσει αλλαγή στην κινητική
ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΤΑΞΗ: Β ΗΜΕΡΟΜΗΝΙΑ: 29/05/2017 ΜΑΘΗΜΑ: Φυσική ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 1:30 ΩΡΑ: 10:30 12:00
ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΒΑΣΙΛΕΙΟΥ ΣΤΡΟΒΟΛΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2016-2017 ΒΑΘΜΟΣ ΦΥΣΙΚΗΣ Αριθμητικώς: / 50 Ολογράφως: Υπογραφή: ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ 2017 ΤΑΞΗ: Β ΗΜΕΡΟΜΗΝΙΑ: 29/05/2017 ΜΑΘΗΜΑ: Φυσική
Κεφάλαιο 4. Νόμοι κίνησης του Νεύτωνα
Κεφάλαιο 4 Νόμοι κίνησης του Νεύτωνα Στόχοι 4 ου Κεφαλαίου Δύναμη και αλληλεπιδράσεις. Η δύναμη σαν διάνυσμα και ο συνδυασμός δυνάμεων- Επαλληλία δυνάμεων. Πρώτος νόμος του Νεύτωνα- η έννοια της αδράνειας.
ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ. Φυσική Θετικού Προσανατολισμου Β' Λυκείου
ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ Εισαγωγή Πότε έχω οριζόντια βολή; Όταν από κάποιο μικρό ύψος (Η) εκτοξεύουμε με οριζόντια ταχύτητα (υ 0 ) ένα σώμα. Πρόκειται για μια μη ευθύγραμμη κίνηση, και ο πρώτος που είχε κάποια ιδέα
Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις
Κεφάλαιο M4 Κίνηση σε δύο διαστάσεις Κινηµατική σε δύο διαστάσεις Θα περιγράψουµε τη διανυσµατική φύση της θέσης, της ταχύτητας, και της επιτάχυνσης µε περισσότερες λεπτοµέρειες. Θα µελετήσουµε την κίνηση
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να
ΔΕΙΓΜΑΤΙΚΗ ΔΙΔΑΣΚΑΛΙΑ
ΔΕΙΓΜΑΤΙΚΗ ΔΙΔΑΣΚΑΛΙΑ ΘΕΜΑ: «Δύναμη, Κίνηση και Ενέργεια με χρήση προσομοιώσεων & διαδραστικού πίνακα» 1 Ο ΓΥΜΝΑΣΙΟ ΣΥΡΟΥ Επιμέλεια φύλλου εργασίας : ΓΙΩΡΓΟΣ ΞΑΝΘΑΚΗΣ Σελίδα 1 ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Έννοιες και
Ο µετασχηµατισµός της ορµής και της ενέργειας. x y z x y z
Ο µετασχηµατισµός της ορµής και της ενέρειας Ορµή p Ολική ενέρεια ( p, p, p, ) ( p, p, p, ) S S V p p Ο µετασχηµατισµός της ορµής και της ενέρειας Για σωµατίδιο: ορµή p= m υ ολική ενέρεια = m σ = 1 1 υ
Φαινόμενο Doppler Α. ΦΑΙΝΟΜΕΝΟ DOPPLER ΓΙΑ ΤΑ ΑΚΟΥΣΤΙΚΑ ΚΥΜΑΤΑ. α) Πηγή (S) ακίνητη - Παρατηρητής (Ο) κινούμενος. S(u s =0) u o O x.
Φαινόμενο Dppler Α. ΦΑΙΝΟΜΕΝΟ DOPPLER ΓΙΑ ΤΑ ΑΚΟΥΣΤΙΚΑ ΚΥΜΑΤΑ α) Πηγή (S) ακίνητη - Παρατηρητής (Ο) κινούμενος S( =0) O x Σχήμα 72 t t t 0 0 0 άρα Όταν ο παρατηρητής πλησιάζει την πηγή, έχουμε: Όταν ο
ΥΠΟΥΡΓΕΙΟ ΠΑΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟY ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΛΕΥΚΩΣΙΑ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΛΥΚΕΙΑΚΟΣ ΚΥΚΛΟΣ Β ΣΕΙΡΑ ΕΞΕΤΑΣΕΩΝ
ΥΠΟΥΡΓΕΙΟ ΠΑΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟY ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΛΕΥΚΩΣΙΑ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 13 ΛΥΚΕΙΑΚΟΣ ΚΥΚΛΟΣ Β ΣΕΙΡΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑ: ΧΡΟΝΟΣ: ΦΥΣΙΚΗ 3 ΩΡΕΣ ΗΜΕΡΟΜΗΝΙΑ: 6/6/13 ΩΡΑ ΕΝΑΡΞΗΣ: 15:3
ΘΕΩΡΙΑ ΣΧΕΤΙΚΟΤΗΤΑΣ: Ιστορική εξέλιξη και σύγχρονα πειράματα
ΘΕΩΡΙΑ ΣΧΕΤΙΚΟΤΗΤΑΣ: Ιστορική εξέλιξη και σύγχρονα πειράματα ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Νάουσα, 31/3/2012 Περιεχόμενα 1. Ειδική Θεωρία Σχετικότητας (ΕΘΣ)
1 f. d F D x m a D x m D x dt. 2 t. Όλες οι αποδείξεις στην Φυσική Κατεύθυνσης Γ Λυκείου. Αποδείξεις. d t dt dt dt. 1. Απόδειξη της σχέσης.
Αποδείξεις. Απόδειξη της σχέσης N t T N t T. Απόδειξη της σχέσης t t T T 3. Απόδειξη της σχέσης t Ικανή και αναγκαία συνθήκη για την Α.Α.Τ. είναι : d F D ma D m D Η εξίσωση αυτή είναι μια Ομογενής Διαφορική
Β ΚΥΚΛΟΣ ΣΥΓΧΡΟΝΩΝ ΠΡΟΣΟΜΟΙΩΤΙΚΩΝ ΔΙΑΓΩΝΙΣΜΑΤΩΝ Προτεινόμενα Θέματα B ΓΕΛ NOEMΒΡIOΣ Φυσική ΘΕΜΑ Α
Φυσική ΘΕΜΑ Α Στις προτάσεις από 1-4 να βρείτε την σωστή απάντηση. Α1. Η οριζόντια βολή είναι μία κίνηση για την οποία ισχύει: α) η αρχή της επαλληλίας των κινήσεων β) αποτελείται από δύο απλούστερες επιταχυνόμενες
Κεφάλαιο 3. Κίνηση σε δύο διαστάσεις (επίπεδο)
Κεφάλαιο 3 Κίνηση σε δύο διαστάσεις (επίπεδο) Κινηματική σε δύο διαστάσεις Θα περιγράψουμε τη διανυσματική φύση της θέσης, της ταχύτητας, και της επιτάχυνσης με περισσότερες λεπτομέρειες. Σαν ειδικές περιπτώσεις,
Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου
Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Θέμα 1 ο Σε κάθε μια από τις παρακάτω προτάσεις 1-5 να επιλέξετε τη μια σωστή απάντηση: 1. Όταν ένα σώμα ισορροπεί τότε: i. Ο ρυθμός μεταβολής της ταχύτητάς του
ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 A ΦΑΣΗ ΦΥΣΙΚΗ
ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ημερομηνία: Πέμπτη 4 Ιανουαρίου 08 Διάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α Α4 να γράψετε στο τετράδιό
ΤΟ ΦΩΣ ΩΣ ΑΓΓΕΛΙΟΦΟΡΟΣ ΤΟΥ ΣΥΜΠΑΝΤΟΣ. Κατερίνα Νικηφοράκη Ακτινοφυσικός (FORTH)
ΤΟ ΦΩΣ ΩΣ ΑΓΓΕΛΙΟΦΟΡΟΣ ΤΟΥ ΣΥΜΠΑΝΤΟΣ Κατερίνα Νικηφοράκη Ακτινοφυσικός (FORTH) ΟΙΚΕΙΟ ΦΩΣ Φιλοσοφική προσέγγιση με στοιχεία επιστήμης προσωκρατικοί φιλόσοφοι έχουν σκοπό να κατανοήσουν και όχι να περιγράψουν
Φυσική Β Γυμνασίου - Κεφάλαιο 2: Κινήσεις ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ. Φυσική Β Γυμνασίου
ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ Φυσική Β Γυμνασίου Εισαγωγή Τα πάντα γύρω μας κινούνται. Στο διάστημα όλα τα ουράνια σώματα κινούνται. Στο μικρόκοσμο συμβαίνουν κινήσεις που δεν μπορούμε να τις αντιληφθούμε άμεσα.
2 ΓΕΛ ΧΑΙΔΑΡΙΟΥ ΖΙΚΟΣ ΜΑΣΤΡΟΔΗΜΟΣ. Ευθύγραμμη ομαλή Κίνηση
Ευθύγραμμη ομαλή Κίνηση ΘΕΜΑ Β(4990) Β1) Ένα αυτοκίνητο κινείται κατά μήκος ενός ευθύγραμμου οριζόντιου δρόμου, ο οποίος θεωρούμε ότι ταυτίζεται με τον οριζόντιο άξονα x'x. Στο διπλανό διάγραμμα παριστάνεται
Τμήμα Φυσικής, Παν/μιο Ιωαννίνων, Ειδική Σχετικότητα, Διάλεξη 5 Οι Μετασχηματισμοί του Lorentz και η Συστολή του μήκους
1 Οι Μετασχηματισμοί του Lorentz και η Συστολή του μήκους Σκοποί της πέμπτης διάλεξης: 10.11.2011 Εξοικείωση με τους μετασχηματισμούς του Lorentz και τις διάφορες μορφές που μπορούν να πάρουν για την επίλυση
Διαγώνισμα Φυσικής Γ Λυκείου Απλή αρμονική ταλάντωση Κρούσεις
Διαγώνισμα Φυσικής Γ Λυκείου Απλή αρμονική ταλάντωση Κρούσεις ~ Διάρκεια: 3 ώρες ~ Θέμα Α Α1. Η ορμή συστήματος δύο σωμάτων που συγκρούονται διατηρείται: α. Μόνο στην πλάγια κρούση. β. Μόνο στην έκκεντρη
Ασκήσεις στις κινήσεις
Ασκήσεις στις κινήσεις 1. Αμαξοστοιχία κινείται με ταχύτητα 72km/h και διασχίζει σήραγγα μήκους 900m. Ο χρόνος που μεσολάβησε από τη στιγμή που το μπήκε η μηχανή μέχρι να βγει και το τελευταίο βαγόνι από
ΑΓ.ΚΩΝΣΤΑΝΤΙΝΟΥ ΠΕΙΡΑΙΑΣ ΤΗΛ ,
ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ 1 ΘΕΜΑ Α Στις προτάσεις που ακολουθούν να επιλέξετε τη σωστή απάντηση. 1. Δύο σώματα συγκρούονται πλαστικά. Τότε δεν
ΑΙΝΣΤΑΙΝ Η ΘΕΩΡΙΑ ΤΗΣ ΕΙΔΙΚΗΣ ΚΑΙ ΓΕΝΙΚΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ. 4ο ΚΕΦΑΛΑΙΟ
http://hallofpeople.com/gr/bio/einstein.php ΑΙΝΣΤΑΙΝ Η ΘΕΩΡΙΑ ΤΗΣ ΕΙΔΙΚΗΣ ΚΑΙ ΓΕΝΙΚΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ (αποσπάσματα) 4ο ΚΕΦΑΛΑΙΟ Το σύστημα συντεταγμένων του Γαλιλαίου Η αρχή της μηχανικής του Νεύτωνα και
ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση.
ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση. Η δύναμη είναι ένα διανυσματικό μέγεθος. Όταν κατά την κίνηση ενός σώματος η δύναμη είναι μηδενική