Η ΕΙ ΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ 1. Ιστορική Εισαγωγή. Σύγγραµµα και Σηµειώσεις
|
|
- Ὀλυσσεύς Λόντος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Η ΕΙ ΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ 1. Ιστορική Εισαγωγή ιδάσκων: Κώστας Χριστοδουλίδης Γραφείο: Κτήριο Φυσικής, 1ος όροφος, Γραφείο 104 Ηλ. Ταχ.: Ιστοσελίδα: ΙστοσελίδαΜαθήµατος: >> ΣΕΜΦΕ >> Ειδική Θεωρία της Σχετικότητας καιτα δύο και µέσωτης ιστοσελίδας τουτοµέαφυσικής: >> Μαθήµατα ή ιδάσκοντες Σύγγραµµα και Σηµειώσεις Σύγγραµµα: Kittel κ.ά. «Μηχανική» (το σύγγραµµα της Φυσικής Ι) Κεφάλαια: (4), (10), 11, 1, 13 Σηµειώσεις: Κ. Χριστοδουλίδης «Η Ειδική Θεωρία της Σχετικότητας και Εφαρµογές» (από το γραφείο 104, κτ. Φυσικής) και σηµειώσεις που θα προστίθενται στην ιστοσελίδα του µαθήµατος
2 GPS Σχετικιστικές ιορθώσεις: 1. Λόγω Ειδικής Θεωρίας της Σχετικότητας: Τα κινούµενα ατοµικά ρολόγια στους δορυφόρους µένουν πίσω ως προς τα ρολόγια στη Γη.. Λόγω Γενικής Θεωρίας της Σχετικότητας: Τα ατοµικά ρολόγια στους δορυφόρους βρίσκονται σε χαµηλότερο βαρυτικό δυναµικό και πάνε πιο γρήγορα από τα ρολόγια στη Γη. Γεωγραφικό Μήκος και Γεωγραφικό Πλάτος
3 Ο Rømer και η ταχύτητα του φωτός Το 1676 προσπάθησε να χρησιµοποιήσει την Ιώ, δορυφόρο του ία, ως κοσµικό ρολόι (αρχικά, ιδέα του Γαλιλαίου). Σχήµα.Α: Ήλιος, EFGHLK: διάφορες θέσεις της Γης στην τροχιά της, Β: ίας, CD: θέσεις της Ιούς στην τροχιά της, ανάµεσα στις οποίες ο δορυφόρος είναι αόρατος (έκλειψη). ιαπίστωσε ότι οι προβλέψεις των χρόνων των εκλείψεων που βασίζονταν σε µετρήσεις από τη θέση G δεν ήταν ακριβείς όταν η Γη βρισκόταν στο σηµείο Κ, για παράδειγµα. Υπήρχε µια καθυστέρηση µερικών λεπτών. Η ερµηνεία είναι το γεγονός ότι το φως χρειάζεται µερικά λεπτά για να διανύσει την επιπλέον απόσταση LK. Από τις µετρήσεις του Rømer, η ταχύτητα του φωτός στο κενό υπολογίστηκε ως c = km/s. Ήταν η πρώτη φορά που µετρήθηκε µια παγκόσµια σταθερά. Ουσιαστικά ο Rømer παρατήρησε το φαινόµενο που αργότερα έγινε γνωστό ως φαινόµενο Doppler. Ο Αρίσταρχος ο Σάµιος και η Παράλλαξη των Άστρων Ο Αρίσταρχος ο Σάµιοςδιετύπωσε τον 3ο αιώνα π.χ. την ηλιοκεντρική θεωρία. Με βάση αυτήν οι θέσεις των άστρων στον ουρανό θα πρέπει να µεταβάλλονται περιοδικά καθώς η Γη βρίσκεται σε διάφορα σηµεία της τροχιάς της. Η µέγιστη γωνιακή µετατόπιση α ονοµάζεται παράλλαξη. ( α = R / D). Ένα άστρο που έχει παράλλαξη α = 1 απέχει απόσταση 1 pc (parsec) = 3,6 l.y. Για α = 0,5 είναι D= pc κ.ο.κ. Ο πρώτος που κατόρθωσε να µετρήσει την παράλλαξη ενός άστρου ήταν ο Bessel, Το πλησιέστερο στη Γη άστρο, ο εγγύτατος ή α του Κενταύρου, έχει α = 0,786 και απέχει D= 1,7 pc= 4, l.y.
4 Η Αποπλάνηση του Φωτός Στην προσπάθειά του να παρατηρήσει την παράλλαξη των άστρων, ο Bradley (Μπράτλυ) ανακάλυψε το φαινόµενο της αποπλάνησης του φωτός, το 175. Παρατήρησε ότι ο γ του ράκοντος διέγραφε µια κλειστή τροχιά στον ουρανό µε γωνιακό εύρος 39,6. Η Αποπλάνηση των Σταγόνων της Βροχής
5 Η Ερµηνεία της Αποπλάνησης του Φωτός Γνωρίζοντας τη γωνία της αποπλάνησης α = 0 και την ταχύτητα της Γης στην τροχιά της, υ = 30 km/s, ο Bradley 8 βρήκε ότι είναι c= 3, 0 10 m/s. Οι µετρήσεις της ταχύτητας του αστρικού φωτός από τον Αραγκό Ο Arago, το 1853, εξέτασε το ενδεχόµενο η ταχύτητα του φωτός να εξαρτάται από την ταχύτητα της πηγής ή του παρατηρητή. Μετρώντας την εστιακή απόσταση του αντικειµενικού φακού ενός τηλεσκοπίου µε χρήση του φωτός από ένα άστρο, δεν βρήκε καµιά διαφορά ανάµεσα στις µετρήσεις που έγιναν όταν η Γη εκινήτο προς το άστρο (θέση Α) και όταν η Γη αποµακρυνόταν από αυτό (θέση Β). Αυτό έδειχνε ότι ο δείκτης διάθλασης του φακού δεν µεταβαλλόταν και, εποµένως, η ταχύτητα του φωτός παρέµενε η ίδια.
6 Η ανεξαρτησία της ταχύτητας του φωτός από την κίνηση της πηγής, όπως προκύπτει από τις καµπύλες φωτεινότητας των διπλών αστέρων Οι καµπύλες φωτεινότητας των διπλών αστέρων θα έχαναν τη συµµετρία τους αν η ταχύτητα του φωτός διέφερε ανάλογα της σχετικής ταχύτητας του άστρου-δορυφόρου ως προς τη Γη. Επίγειες µετρήσεις της ταχύτητας του φωτός Ακριβείς επίγειες µετρήσεις της ταχύτητας του φωτός έγιναν για πρώτη φορά από τους Fizeau (Φιζώ) το 1849 Foucault (Φουκώ) το 186. Ο Φιζώ βρήκε την τιµή: c= ± 500 km/s Ο Φουκώ µέτρησε: c= ± 500 km/s Σήµερα ορίζουµε την ταχύτητα του φωτός στο κενό να είναι ακριβώς ίση µε c m/s Η διάταξη που χρησιµοποιήθηκε από τον Φιζώ για την πρώτη επίγεια µέτρηση της ταχύτητας του φωτός ( L= 17 km).
7 Το πείραµα των Michelson και Morley Το 1887 οι Μάικελσον και Μόρλυ προσπάθησαν να ανιχνεύσουν την κίνηση της Γης ως προς τον υποτιθέµενο αιθέρα, µέσα στον οποίο διαδίδονται τα ηλεκτροµαγνητικά κύµατα. Το πείραµα των Μάικελσον και Μόρλυ Καθώς περιέστρεφαν το συµβολόµετρο, η πρόβλεψη ήταν ότι θα παρατηρούσαν µια µετατόπιση των κροσσών κατά απόσταση ίση µε 0,40 του εύρους του κροσσού. εν παρατηρήθηκε µετατόπιση µεγαλύτερη από 0,01 του κροσσού. Συµπέρασµα: Ο αιθέρας δεν υπάρχει!
8 Η υπόθεση της συστολής των σωµάτων, των Lorentz και Fitzgerald Στην προσπάθειά τους να περισώσουν τον αιθέρα και να ερµηνεύσουν τα αρνητικά αποτελέσµατα του πειράµατος των Μάικελσον και Μόρλυ, οι Λόρεντςκαι Φιτστζέραλντ έκαναν,το 189, την αυθαίρετη υπόθεση ότι τα σώµατα που κινούνται σε σχέση µε τον αιθέρα συστέλλονται στην κατεύθυνση της κίνησής τους. Αν ο βραχίονας του συµβολοµέτρουτων Μάικελσον και Μόρλυ, που είναι προσανατολισµένος στην κατεύθυνση της ταχύτητας της Γης ως προς τον αιθέρα, συστέλλεται κατά έναν παράγοντα 1 V / c ήταν αρνητικά., τα αποτελέσµατα του πειράµατος θα Ο Μετασχηµατισµός του Γαλιλαίου Ο µετασχηµατισµός του Γαλιλαίου µετατρέπει τις συντεταγµένες ( x, y, z, t) ενός συµβάντος στο σύστηµα αναφοράς S, στις συντεταγµένες του ιδίου συµβάντος ( x, y, z, t ) στο σύστηµα αναφοράς S, το οποίο κινείται µε ταχύτητα V= V xˆ ως προς το σύστηµα S. Αν τα δύο συστήµατα συµπίπτουν όταν είναι t= t = 0, τότε: x = x Vt, y = y, z = z, t = t. ( r = r Vt, t = t ) Αυτός είναι ο µετασχηµατισµός του Γαλιλαίου
9 Το Αναλλοίωτο του εύτερου Νόµου του Νεύτωνα κατά τον Μετασχηµατισµό του Γαλιλαίου d r Στο σύστηµα αναφοράς S ισχύει ο νόµος F= m. dt Ποιος είναι ο νόµος που ισχύει στο σύστηµα S ; Επειδή είναι r = r Vt, t = t, προκύπτει ότι dr dr dr d r d r d r υ = = = V= υ V και a = = = = a dt dt dt dt dt dt άρα η επιτάχυνση παραµένει αναλλοίωτη. d r d r d r Εποµένως F= m = m ή F = m, dt dt dt που σηµαίνει ότι ο ος νόµος του Νεύτωνα παραµένει αναλλοίωτος κατά τον µετασχηµατισµό του Γαλιλαίου, αν επίσης παραµένει αναλλοίωτη η µάζα mκαι η δύναµη F. Οι Εξισώσεις του Maxwell ρ E= ε B= 0 0 B E= t E B= ε 0µ 0 + µ 0J t Η εξίσωση αυτή προκύπτει από τον νόµο του Coulombκαι αποτελεί τη διατύπωση του νόµου του Gaussσε διαφορική µορφή. Η έκφραση στα αριστερά είναι η ροή του ηλεκτρικού πεδίου ανά µονάδα απειροστού όγκου, η οποία φαίνεται να είναι ανάλογη του φορτίου που περικλείει ο όγκος αυτός. Αυτή η εξίσωση είναι η αντίστοιχη διατύπωση του νόµου του Gauss για τη ροή του µαγνητικού πεδίου, η οποία εξισώνεται µε µηδέν λόγω της ανυπαρξίας µαγνητικών µονοπόλων, που θα αντιστοιχούσαν στα αρνητικά ή θετικά ηλεκτρικά φορτία. Η διαφορική µορφή του νόµου της επαγωγής του Faraday, δηλαδή του γεγονότος ότι χρονικά µεταβαλλόµενο µαγνητικό πεδίο παράγει ηλεκτρικό πεδίο. Η τέταρτη εξίσωση είναι η η γενικευµένη µορφή του νόµου του Ampère, σύµφωνα µε τον οποίο χρονικά µεταβαλλόµενοηλεκτρικόπεδίοή ηλεκτρικόρεύµα, παράγει µαγνητικό πεδίο.
10 Η Εξίσωση του ΗΜ Κύµατος Στο κενό, χωρίς φορτία, ρ = 0, ή ρεύµατα, J= 0, οι εξισώσεις απλοποιούνται σε: B E E= 0 B= 0 E= B= ε 0µ 0 t t οι οποίες µπορούν να συνδυαστούν και να δώσουν µια εξίσωση για το ηλεκτρικό πεδίο E E E 1 E ή 1 E + + = E= x y z c t c t και µια εξίσωση για το µαγνητικό πεδίο B 1 ή + B + B = B 1 B B= x y z c t c t Αυτές οι εξισώσεις περιγράφουν ένα ηλεκτροµαγνητικό κύµα 1 8 που κινείται µε ταχύτητα c= = 3 10 m/s ε 0µ 0 χωρίς καµιά αναφορά στην ταχύτητα της πηγής του κύµατος ή του παρατηρητή. Το Ηλεκτροµαγνητικό Κύµα Ο µετασχηµατισµός του Γαλιλαίου δεν αφήνει την κυµατική εξίσωση αναλλοίωτη! Αν µετασχηµατίσουµε από ένα σύστηµα αναφοράς S σε ένα άλλο, S, που κινείται µε ταχύτητα V= V xˆ ως προς το S, µε βάση τον µετασχηµατισµό του Γαλιλαίου, βρίσκουµε για την εξίσωση του ΗΜ κύµατος: 1 E 1 E E E= + V V c t c x x t
11 Το Ηλεκτροµαγνητικό Κύµα Ο Μετασχηµατισµός του Lorentz Κατά τη διάρκεια της περιόδου , ο Lorentz (Λόρεντς) προσπάθησε να βρει τον µετασχηµατισµό ( x, y, z, t) ( x, y, z, t ) µεταξύ δύο αδρανειακών συστηµάτων αναφοράς, ένα «ακίνητο», S, και ένα κινούµενο µε ταχύτητα V= V xˆ ως προς το πρώτο, S, που θα άφηνε αναλλοίωτους τους νόµους του ηλεκτροµαγνητισµού, όπως αυτοί διατυπώθηκαν στις εξισώσεις του Μάξγουελ. Βρήκε ότι αυτό συµβαίνει αν x Vt t ( V / c ) x x =, y = y, z = z, t = 1 V / c 1 V / c Αυτός είναι τώρα γνωστός ως ο µετασχηµατισµός του Lorentz για τις συντεταγµένες θέσης. Ο µετασχηµατισµός ανάγεται σε αυτόν του Γαλιλαίου για ταχύτητες V µικρές ως προς την ταχύτητα c. Το 1905, ο Άινστάιν θα επανεξαγάγει τον µετασχηµατισµό βασιζόµενος στην απαίτηση η ταχύτητα του φωτός στο κενό να είναι η ίδια για όλους τους αδρανειακούς παρατηρητές.
12 Τα πειράµατα του Κάουφµαν Ο Kaufmann, το 1901, µελέτησε την απόκλιση ηλεκτρονίων από ραδιενεργό πηγή µέσα σε ηλεκτρικό πεδίο Ε και παράλληλο µαγνητικό πεδίο, B. Οι µετρήσεις του Kaufmann Ο Κάουφµαν ανέµενε ότι τα ηλεκτρόνια από τη ραδιενεργό πηγή, που είχαν συνεχές φάσµα, θα αποτυπώνονταν πάνω σε µια παραβολική καµπύλη που αντιστοιχούσε στη µάζα τους m 0 και το φορτίο τους e (κατώτερη διακεκοµµένη καµπύλη στο σχήµα). Αντί αυτού, παρατήρησε (έντονη καµπύλη στο σχήµα) ότι τα ηλεκτρόνια µε τις µεγαλύτερες ενέργειες αποτυπώνονταν πάνω σε παραβολές που αντιστοιχούσαν σε µεγαλύτερες µάζες m.
13 Η Ερµηνεία του Lorentz για τη µεταβολή της µάζας του ηλεκτρονίου µε την ταχύτητα Στη θεωρία του τού ηλεκτρονίου, ο Λόρεντςαποδεικνύει το 1904 για πρώτη φορά τη σχέση m0 m( υ) = 1 υ / c Γιατην εξαγωγή της σχέσης θεώρησε ότιη κατανοµήτου ηλεκτρονικού φορτίου είναι οµοιογενής σε µία σφαίρα, η οποία υφίσταται συστολή στην κατεύθυνση κίνησής της σύµφωνα µε τηνυπόθεσητης συστολήςτων Φιτστζέραλντ καιλόρεντς. Ο Λόρεντςσυγκρίνει τις τιµές τουλόγου πουµέτρησε ο Κάουφµαν και δηµοσίευσε σε µια εργασία του το 1903, και βρίσκει ικανοποιητικήσυµφωνίαµε τις θεωρητικές προβλέψεις. Η αύξηση της µάζας του ηλεκτρονίου µε την ταχύτητα Τα πειραµατικά αποτελέσµατα των Kaufmann, Bucherer, και Guye και Lavanchy, για τη µεταβολή της µάζας του ηλεκτρονίου συναρτήσει της ταχύτητάς του. Η καµπύλη δίνει τη µεταβολή που προβλέπει η εξίσωση m= m m / m ( υ / c) Kaufmann, 1901 Bucherer, 1909 Guye και Lavanchy, ,0 0,1 0, 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 β = υ / c
14 Σύγχρονη Επιβεβαίωση των Αποτελεσµάτων του Κάουφµαν Σύγχρονη Επιβεβαίωση των Αποτελεσµάτων του Κάουφµαν
Σύγχρονη Φυσική 1, Διάλεξη 4, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Η Αρχές της Ειδικής Θεωρίας της Σχετικότητας και οι μετασχηματισμοί του Lorentz
1 Η Αρχές της Ειδικής Θεωρίας της Σχετικότητας και οι μετασχηματισμοί του Lorentz Σκοποί της τέταρτης διάλεξης: 25.10.2011 Να κατανοηθούν οι αρχές με τις οποίες ο Albert Einstein θεμελίωσε την ειδική θεωρία
Κεφάλαιο 2 : Η Αρχή της Σχετικότητας του Einstein.
Κεφάλαιο : Η Αρχή της Σχετικότητας του Einstein..1 Ο απόλυτος χώρος και ο αιθέρας. Ας υποθέσουμε ότι ένας παρατηρητής μετρά την ταχύτητα ενός φωτεινού σήματος και την βρίσκει ίση με 10 m/se. Σύμφωνα με
Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο Τ Ο Μ Ε Α Σ Φ Υ Σ Ι Κ Η Σ
Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο Σ Χ Ο Λ Η Ε Φ Α Ρ Μ Ο Σ Μ Ε Ν Ω Ν Μ Α Θ Η Μ Α Τ Ι Κ Ω Ν Κ Α Ι Φ Υ Σ Ι Κ Ω Ν Ε Π Ι Σ Τ Η Μ Ω Ν Τ Ο Μ Ε Α Σ Φ Υ Σ Ι Κ Η Σ Κανονική εξέταση στο µάθηµα ΕΙ
3α. ΣΧΕΤΙΚΙΣΤΙΚΗ ΚΙΝΗΜΑΤΙΚΗ ΠΑΡΑ ΕΙΓΜΑΤΑ «ΠΑΡΑ ΟΞΑ» ΑΣΚΗΣΕΙΣ
3α. ΣΧΕΤΙΚΙΣΤΙΚΗ ΚΙΝΗΜΑΤΙΚΗ ΠΑΡΑ ΕΙΓΜΑΤΑ «ΠΑΡΑ ΟΞΑ» ΑΣΚΗΣΕΙΣ Παράδειγµα: Το τρένο του Άινστάιν Ένα τρένο κινείται ως προς έναν αδρανειακό παρατηρητή Ο µε σταθερή ταχύτητα V. Στο µέσο ακριβώς του τρένου
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Οι εξισώσεις του Μάξγουελ
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Οι εξισώσεις του Μάξγουελ Η µαθηµατική περιγραφή των νόµων του ηλεκτροµαγνητισµού δίνεται από τις εξισώσεις του Mawell (186), οι οποίες είναι οι εξής: ρ B E E, B, E, B ε µ + µ J. ε t
ΘΕΩΡΙΑ ΣΧΕΤΙΚΟΤΗΤΑΣ: Ιστορική εξέλιξη και σύγχρονα πειράματα
ΘΕΩΡΙΑ ΣΧΕΤΙΚΟΤΗΤΑΣ: Ιστορική εξέλιξη και σύγχρονα πειράματα ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Νάουσα, 31/3/2012 Περιεχόμενα 1. Ειδική Θεωρία Σχετικότητας (ΕΘΣ)
ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ
ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς 1. Μετασχηματισμοί συντεταγμένων και συμμετρίες. 1α. Στροφές στο επίπεδο. Θεωρείστε δύο καρτεσιανά συστήματα συντεταγμένων στο επίπεδο, στραμμένα
Πριν τον Αινστάιν. Νόμος του Νεύτωνα. Σχετικότητα στη Μηχανική. Μετασχηματισμοί Γαλιλαίου. Αδρανειακά Συστήματα.
Πριν τον Αινστάιν. Νόμος του Νεύτωνα. Αδρανειακά Συστήματα. Σχετικότητα στη Μηχανική. Οι νόμοι της Μηχανικής αναλλοίωτοι στα αδρανειακά συστήματα. Μετασχηματισμοί Γαλιλαίου. Η μηχανική στo τέλος του 9
Φυσικό Τμήμα Παν/μιο Ιωαννίνων - Ειδική Σχετικότητα - Λυμένα Προβλήματα - ΙII
2.11.2011 Άσκηση 1: Θεωρήστε δύο αδρανειακά συστήματα αναφοράς O, O ' και ας υποθέσουμε ότι το δεύτερο κινείται με ταχύτητα V κατά τη διεύθυνση του άξονα των χ σε σχέση με το πρώτο. Τη χρονική στιγμή που
Στοιχείατης. τηςθεωρίαςτης Σχετικότητας. Άλµπερτ Αϊνστάιν 1905
Στοιχείατης τηςθεωρίαςτης Σχετικότητας Άλµπερτ Αϊνστάιν 1905 Έννοια Συστήµατος Αναφοράς Ένα σταθερό σύστηµα (x,y,z) και t βάσει του οποίου περιγράφουµε ένα φυσικό γεγονός. Συνήθως σύστηµα Εργαστηρίου.
ΜΕΤΡΗΣΗ ΚΑΙ ΦΑΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ ΜΗ ΙΟΝΙΖΟΥΣΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ
ΜΕΤΡΗΣΗ ΚΑΙ ΦΑΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ ΜΗ ΙΟΝΙΖΟΥΣΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ Οποτε ακούτε ραδιόφωνο, βλέπετε τηλεόραση, στέλνετε SMS χρησιµοποιείτε ηλεκτροµαγνητική ακτινοβολία (ΗΜΑ). Η ΗΜΑ ταξιδεύει µε
(ΚΕΦ 32) f( x x f( x) x z y
(ΚΕΦ 3) f( x x f( x) x z y ΣΥΝΟΨΗ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΥ J. C. Maxwell (~1860) συνόψισε τη δουλειά ως τότε για το ηλεκτρικό και μαγνητικό πεδίο σε 4 εξισώσεις. Όμως, κατανόησε ότι οι εξισώσεις αυτές (όπως
Ο Μετασχηµατισµός του Λόρεντς για τις Συντεταγµένες Θέσης Ενός Συµβάντος
3 ΣΧΕΤΙΚΙΣΤΙΚΗ ΚΙΝΗΜΑΤΙΚΗ Ο Μετασχηµατισµός του Λόρεντς για τις Συντεταγµένες Θέσης Ενός Συµβάντος Έστω ένα αδρανειακό σύστηµα S, και ένα δεύτερο, S, το οποίο κινείται µε ταχύτητα ως προς το πρώτο Επιλέγουµε
ΑΠΟ ΤΟ ΝΕΥΤΩΝΑ ΣΤΟΝ ΑΪΝΣΤΑΪΝ ΙΑΤΡΑΚΗΣ ΙΩΑΝΝΗΣ «ΗΜΕΡΙ Α ΣΥΓΧΡΟΝΗΣ ΦΥΣΙΚΗΣ»
ΑΠΟ ΤΟ ΝΕΥΤΩΝΑ ΣΤΟΝ ΑΪΝΣΤΑΪΝ ΙΑΤΡΑΚΗΣ ΙΩΑΝΝΗΣ «ΗΜΕΡΙΑ ΣΥΓΧΡΟΝΗΣ ΦΥΣΙΚΗΣ» ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ z z y y ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΓΑΛΙΛΑΙΟΥ Αδρανειακό σύστηµααναφοράςείναι αυτό στο οποίο ενα σώµαπουδεν του ασκούνται
ΣΧΕΤΙΚΟΤΗΤΑ Μετασχηματισμοί Γαλιλαίου. (Κλασική θεώρηση) αφού σύμφωνα με τα πειράματα Mickelson-Morley είναι c =c.
ΣΧΕΤΙΚΟΤΗΤΑ Μετασχηματισμοί Γαλιλαίου. (Κλασική θεώρηση) y y z z t t Το οποίο οδηγεί στο ότι - υ.(άτοπο), αφού σύμφωνα με τα πειράματα Mikelson-Morley είναι. Επίσης y y, z z, t t Το οποίο ( t t ) είναι
ΤΟ ΦΩΣ ΩΣ ΑΓΓΕΛΙΟΦΟΡΟΣ ΤΟΥ ΣΥΜΠΑΝΤΟΣ. Κατερίνα Νικηφοράκη Ακτινοφυσικός (FORTH)
ΤΟ ΦΩΣ ΩΣ ΑΓΓΕΛΙΟΦΟΡΟΣ ΤΟΥ ΣΥΜΠΑΝΤΟΣ Κατερίνα Νικηφοράκη Ακτινοφυσικός (FORTH) ΟΙΚΕΙΟ ΦΩΣ Φιλοσοφική προσέγγιση με στοιχεία επιστήμης προσωκρατικοί φιλόσοφοι έχουν σκοπό να κατανοήσουν και όχι να περιγράψουν
Κεφάλαιο 1 : Μετασχηματισμοί Γαλιλαίου.
Κεφάλαιο : Μετασχηματισμοί Γαλιλαίου.. Γεγονότα, συστήματα αναφοράς και η αρχή της Νευτώνειας Σχετικότητας. Ως φυσικό γεγονός ορίζεται ένα συμβάν το οποίο λαμβάνει χώρα σε ένα σημείο του χώρου μια συγκεκριμένη
ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ευστάθιος Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, ΣΧΕΤΙΚΗ ΚΙΝΗΣΗ Ομαλή Σχετική Μεταφορική Κίνηση Μετασχηματισμοί Γαλιλαίου
ΦΥΣΙΚΗ Ι ΤΜΗΜΑ Α Ευστάθιος Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, 06 0 07 ΣΧΕΤΙΚΗ ΚΙΝΗΣΗ Ομαλή Σχετική Μεταφορική Κίνηση Μετασχηματισμοί Γαλιλαίου ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΣΧΕΤΙΚΟΤΗΤΑΣ Μετασχηματισμός Loenz Πείραμα Mihelson
Αριστοτέλης (384-322 π.χ) : «Για να ξεκινήσει και να διατηρηθεί μια κίνηση είναι απαραίτητη η ύπαρξη μιας συγκεκριμένης αιτίας»
Εισαγωγή Επιστημονική μέθοδος Αριστοτέλης (384-322 π.χ) : «Για να ξεκινήσει και να διατηρηθεί μια κίνηση είναι απαραίτητη η ύπαρξη μιας συγκεκριμένης αιτίας» Διατύπωση αξιωματική της αιτίας μια κίνησης
Ειδική Θεωρία Σχετικότητας
Ειδική Θεωρία Σχετικότητας Σύνολο διαφανειών 8/3/07 Γ. Βούλγαρης Πριν τον Αινστάιν. Νόμος το Νεύτωνα. Αδρανειακά Σστήματα. Σχετικότητα στη Μηχανική. Οι νόμοι της Μηχανικής αναλλοίωτοι στα αδρανειακά σστήματα.
Κεφάλαιο31 Εξισώσεις Maxwellκαι ΗλεκτροµαγνητικάΚύµατα. Copyright 2009 Pearson Education, Inc.
Κεφάλαιο31 Εξισώσεις Maxwellκαι ΗλεκτροµαγνητικάΚύµατα ΠεριεχόµεναΚεφαλαίου 31 Τα µεταβαλλόµενα ηλεκτρικά πεδία παράγουν µαγνητικά πεδία. Ο Νόµος του Ampère-Ρεύµα µετατόπισης Νόµος του Gauss s στο µαγνητισµό
Κυματική οπτική. Συμβολή Περίθλαση Πόλωση
Κυματική οπτική Η κυματική οπτική ασχολείται με τη μελέτη φαινομένων τα οποία δεν μπορούμε να εξηγήσουμε επαρκώς με τις αρχές της γεωμετρικής οπτικής. Στα φαινόμενα αυτά περιλαμβάνονται τα εξής: Συμβολή
Στοιχεία της θεωρίας της Σχετικότητας. Άλμπερτ Αϊνστάιν 1905
Στοιχεία της θεωρίας της Σχετικότητας Άλμπερτ Αϊνστάιν 1905 Αξιώματα Ειδικής Θεωρίας της Σχετικότητας, Αϊνστάιν (1905) μοναδική γοητεία εξαιτίας της απλότητας και κομψότητας των δύο αξιωμάτων πάνω στα
Συστήµατος Αναφοράς. Συγχρονισµός των Ρολογιών Ενός
2. ΠΡΟΛΕΓΟΜΕΝΑ Συστήµατα Αναφοράς Συγχρονισµός των Ρολογιών Ενός Συστήµατος Αναφοράς t A Ρολόι Α t 1 D A t + t + = A 1 t t t t 2 1 1 2 Ρολόι Αναφοράς t 2 D A = t t 2 2 1 ύο Αδρανειακά Συστήµατα Αναφοράς
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2008 ΕΚΦΩΝΗΣΕΙΣ
ΘΕΜΑ ο ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 00 ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Τα
ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ ΦΑΙΝΟΜΕΝΟ DOPPLER
ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ ΦΑΙΝΟΜΕΝΟ DOPPLER Μαγνητικό πεδίο γης Μετασχηματισμοί Λόρεντζ Φαινόμενο Doppler για τον ήχο Φαινόμενο Doppler για ηλεκτρομαγνητικά κύματα Κύριες εφαρμογές φαινομένου Doppler ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ
Σύγχρονη Φυσική 1, Διάλεξη 3, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Η θεωρία του αιθέρα καταρρίπτεται από το πείραμα των Michelson και Morley
1 Η θεωρία του αιθέρα καταρρίπτεται από το πείραμα των Mihelson και Morley 0.10.011 Σκοποί της τρίτης διάλεξης: Να κατανοηθεί η ιδιαιτερότητα των ηλεκτρομαγνητικών κυμάτων (π. χ. φως) σε σχέση με άλλα
Θεωρητική Εξέταση. 23 ος Πανελλήνιος Διαγωνισμός Αστρονομίας και Διαστημικής η φάση: «ΠΤΟΛΕΜΑΙΟΣ»
23 ος Πανελλήνιος Διαγωνισμός Αστρονομίας και Διαστημικής 2018 4 η φάση: «ΠΤΟΛΕΜΑΙΟΣ» Θεωρητική Εξέταση 23 ος Πανελλήνιος Διαγωνισμός Αστρονομίας 2018 4 η φάση Θεωρητική Εξέταση 1 Παρακαλούμε, διαβάστε
Κλασική Ηλεκτροδυναμική
Κλασική Ηλεκτροδυναμική Ενότητα 18: Νόμοι Maxwell Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παρουσίασει τις εξισώσεις Maxwell. 2 Περιεχόμενα ενότητας
ΕΙΔΙΚΗ ΣΧΕΤΙΚΟΤΗΤΑ. Νίκος Κανδεράκης
ΕΙΔΙΚΗ ΣΧΕΤΙΚΟΤΗΤΑ Νίκος Κανδεράκης Η Φυσική πριν τον Einstein Απόλυτος χρόνος και χώρος στη Νευτώνεια Φυσική Χρόνος «Ο απόλυτος, αληθής και μαθηματικός χρόνος, από την ίδια του τη φύση, ρέει ομοιόμορφα
Φυσικό Τμήμα Παν/μιο Ιωαννίνων - Ειδική Σχετικότητα - Λυμένα Προβλήματα - ΙI
.11.011 Άσκηση 1: Χρησιμοποιήστε την διωνυμική σχέση 1x N = i=0 N! i! N i! xi για να υπολογίστε το 1 V /c για (α) V = 0.01c και (β) V = 0.9998c (α) Η διωνυμική σχέση είναι ιδανική για προσεγγίσεις όταν
Μαγνητικά φαινόµενα: Σύντοµη ιστορική αναδροµή
Μαγνητικά φαινόµενα: Σύντοµη ιστορική αναδροµή 13ος αιώνας π.χ.: Οι Κινέζοι χρησιµοποιούσαν την πυξίδα. Η πυξίδα διαθέτει µαγνητική βελόνα (πιθανότατα επινόηση των Αράβων ή των Ινδών). 800 π.χ.: Έλληνες
kg(χιλιόγραμμο) s(δευτερόλεπτο) Ένταση ηλεκτρικού πεδίου Α(Αμπέρ) Ένταση φωτεινής πηγής cd (καντέλα) Ποσότητα χημικής ουσίας mole(μόλ)
ΕΙΣΑΓΩΓΗ- ΦΥΣΙΚΑ ΜΕΓΕΘΗ Στα φυσικά φαινόμενα εμφανίζονται κάποιες ιδιότητες της ύλης. Για να περιγράψουμε αυτές τις ιδιότητες χρησιμοποιούμε τα φυσικά μεγέθη. Τέτοια είναι η μάζα, ο χρόνος, το ηλεκτρικό
ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ
ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ Χρονικό των επιστημονικών ανακαλύψεων- πως αυτές επηρέασαν τον κόσμο-πως λειτουργούν τα μεγάλα ερευνητικά κέντρα όπως το cern ΤΙΤΛΟΣ ΥΠΟΘΕΜΑΤΟΣ Η ΤΑΧΥΤΗΤΑ ΤΟΥ ΦΩΤΟΣ ΚΑΙ ΤΑ ΠΕΙΡΑΜΑΤΑ
Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης
Ηλεκτρομαγνητισμός Μαγνητικό πεδίο Νίκος Ν. Αρπατζάνης Μαγνητικοί πόλοι Κάθε μαγνήτης, ανεξάρτητα από το σχήμα του, έχει δύο πόλους. Τον βόρειο πόλο (Β) και τον νότιο πόλο (Ν). Μεταξύ των πόλων αναπτύσσονται
Κίνηση σε Ηλεκτρικό Πεδίο.
Κίνηση σε Ηλεκτρικό Πεδίο. 3.01. Έργο κατά την μετακίνηση φορτίου. Στις κορυφές Β και Γ ενόςισοπλεύρου τριγώνου ΑΒΓ πλευράς α= 2cm, βρίσκονται ακλόνητα δύο σηµειακά ηλεκτρικά φορτία q 1 =2µC και q 2 αντίστοιχα.
ΟΠΤΙΚΗ ΦΩΤΟΜΕΤΡΙΑ. Φως... Φωτομετρικά μεγέθη - μονάδες Νόμοι Φωτισμού
ΟΠΤΙΚΗ ΦΩΤΟΜΕΤΡΙΑ Φως... Φωτομετρικά μεγέθη - μονάδες Νόμοι Φωτισμού Ηλεκτρομαγνητικά κύματα - Φως Θα διερευνήσουμε: 1. Τί είναι το φως; 2. Πως παράγεται; 3. Χαρακτηριστικά ιδιότητες Γεωμετρική οπτική:
Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ε π α ν α λ η π τ ι κ ά θ έ µ α τ α 0 0 5 Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΘΕΜΑ 1 o Για τις ερωτήσεις 1 4, να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που
2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης
Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Βιβλιογραφία C Kittel, W D Knight, A Rudeman, A C Helmholz και B J oye, Μηχανική (Πανεπιστηµιακές Εκδόσεις ΕΜΠ, 1998) Κεφ, 3 R Spiegel, Θεωρητική
ΘΕΜΑ Α : α. 3000 V/m β. 1500 V/m γ. 2000 V/m δ. 1000 V/m
ΑΡΧΗ 1 ΗΣ ΣΕΛΙ ΑΣ Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΞΗ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α : Για να απαντήσετε στις παρακάτω ερωτήσεις πολλαπλής επιλογής αρκεί να γράψετε
Κίνηση φορτισμένου σωματιδίου σε χώρο, όπου συνυπάρχουν ηλεκτρικό και μαγνητικό πεδίο ομογενή και χρονοανεξάρτητα
Κίνηση φορτισμένου σωματιδίου σε χώρο, όπου συνυπάρχουν ηλεκτρικό και μαγνητικό πεδίο ομογενή και χρονοανεξάρτητα Μέρος α : Εξισώσεις κίνησης και συμπεράσματα) Α. Τι βλέπει ένας αδρανειακός παρατηρητής
ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ. Φυσική Θετικού Προσανατολισμου Β' Λυκείου
ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ Εισαγωγή Πότε έχω οριζόντια βολή; Όταν από κάποιο μικρό ύψος (Η) εκτοξεύουμε με οριζόντια ταχύτητα (υ 0 ) ένα σώμα. Πρόκειται για μια μη ευθύγραμμη κίνηση, και ο πρώτος που είχε κάποια ιδέα
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ 1 .1 ΤΟ ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ ΚΙΝΟΥΜΕΝΟΥ ΦΟΡΤΙΟΥ Ας θεωρούμε το μαγνητικό πεδίο ενός κινούμενου σημειακού φορτίου q. Ονομάζουμε τη θέση του φορτίου σημείο πηγής
B 2Tk. Παράδειγμα 1.2.1
Παράδειγμα 1..1 Μία δέσμη πρωτονίων κινείται μέσα σε ομογενές μαγνητικό πεδίο μέτρου,0 Τ, που έχει την κατεύθυνση του άξονα των θετικών z, (Σχ. 1.4). Τα πρωτόνια έχουν ταχύτητα με μέτρο 3,0 10 5 m / s
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: Το Σέλας συμβαίνει όταν υψηλής ενέργειας, φορτισμένα σωματίδια από τον Ήλιο ταξιδεύουν στην άνω ατμόσφαιρα της Γης λόγω της ύπαρξης του μαγνητικού της πεδίου. Μαγνητισμός
Μαγνητισμός μαγνητικό πεδίο
ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ ΚΑΙ ΜΑΓΝΗΤΙΚΕΣ ΔΥΝΑΜΕΙΣ Μαγνητισμός μαγνητικό πεδίο Ο μαγνητισμός είναι κάτι τελείως διαφορετικό από τον ηλεκτρισμό; Πριν 200 χρόνια ο μαγνητισμός αποτελούσε ένα τελείως ξεχωριστό κεφάλαιο
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών. Κοσμάς Γαζέας
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Κοσμάς Γαζέας Η γέννηση της Αστροφυσικής Οι αστρονόμοι μελετούν τα ουράνια σώματα βασισμένοι στο φως, που λαμβάνουν από αυτά. Στα πρώτα χρόνια των παρατηρήσεων,
ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ 148
ΚΥΜΤΙΚΗ - ΟΠΤΙΚΗ 48 3 ΦΙΝΟΜΕΝΟ DOPPLER Το φαινόµενο Doppler αναφέρεται γενικά στη µεταβολή της συχνότητας των κυµάτων που αντιλαµβάνεται ένας παρατηρητής ως προς τη συχνότητα που εκπέµπει µια πηγή όταν
1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1.
1. Κινηµατική Βιβλιογραφία C. Kittel W. D. Knight M. A. Rueman A. C. Helmholz και B. J. Moe Μηχανική. Πανεπιστηµιακές Εκδόσεις Ε.Μ.Π. 1998. Κεφ.. {Μαθηµατικό Συµπλήρωµα Μ1 Παράγωγος} {Μαθηµατικό Συµπλήρωµα
ΕΥΤΕΡΑ 28 ΙΟΥΝΙΟΥ 1999 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΕΥΤΕΡΑ 28 ΙΟΥΝΙΟΥ 1999 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1ο Στις ερωτήσεις 1-5, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Μάζα που κινείται
Θεωρητική Εξέταση. 24 ος Πανελλήνιος Διαγωνισμός Αστρονομίας και Διαστημικής η φάση: «ΠΤΟΛΕΜΑΙΟΣ»
24 ος Πανελλήνιος Διαγωνισμός Αστρονομίας και Διαστημικής 2019 3 η φάση: «ΠΤΟΛΕΜΑΙΟΣ» Θεωρητική Εξέταση 24 ος Πανελλήνιος Διαγωνισμός Αστρονομίας 2019 3 η φάση Θεωρητική Εξέταση 1 Παρακαλούμε, διαβάστε
Σχολή Θετικών Επιστημών και Τεχνολογίας
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Σχολή Θετικών Επιστημών και Τεχνολογίας Πρόγραμμα Σπουδών Μεταπτυχιακή Ειδίκευση Καθηγητών Φυσικών Επιστημών ΘΕΜΑ ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΕ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΕΙΔΙΚΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ
ΣΧΕΤΙΚΟΤΗΤΑ ΚΑΙ ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ
ΜΑΘΗΜΑ 5: ΣΧΕΤΙΚΟΤΗΤΑ ΚΑΙ ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ Salviati: Εκεί που δεν μας βοηθούν οι αισθήσεις πρέπει να παρέμβει η λογική, γιατί μόνο αυτή θα επιτρέψει να εξηγήσουμε τα φαινόμενα ΓΑΛΙΛΑΪΚΟΙ ΔΙΑΛΟΓΟΙ Η μαθηματική
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss,
Κίνηση σε Ηλεκτρικό Πεδίο.
Κίνηση σε Ηλεκτρικό Πεδίο. 3.01. Έργο κατά την μετακίνηση φορτίου. Στις κορυφές Β και Γ ενός ισοπλεύρου τριγώνου ΒΓ πλευράς α= 2cm, βρίσκονται ακλόνητα δύο σημειακά ηλεκτρικά φορτία 1 =2μC και 2 αντίστοιχα.
ΜΑΘΗΜΑ - ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ
ΜΑΘΗΜΑ - ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ ΚΑΘΗΓΗΤΗΣ ΠΑΡΑΡΤΗΜΑ ΙΑΡΚΕΙΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΠΡΟΣΟΜΟΙΩΣΗ ΝΕΟ ΦΡΟΝΤΙΣΤΗΡΙΟ 3 ΩΡΕΣ ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω
Όσο χρονικό διάστηµα είχε τον µαγνήτη ακίνητο απέναντι από το πηνίο δεν παρατήρησε τίποτα.
1 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΑΓΩΓΗ (Ε επ ). 5-2 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΑΓΩΓΗ Γνωρίζουµε ότι το ηλεκτρικό ρεύµα συνεπάγεται τη δηµιουργία µαγνητικού πεδίου. Όταν ένας αγωγός διαρρέεται από ρεύµα, τότε δηµιουργεί γύρω του
Φ Υ ΣΙΚ Η ΚΑ ΤΕ ΥΘ ΥΝ ΣΗ Σ
ΔΙΩΝΙΣΜ: Μ Θ Η Μ : www.paideia-agrinio.gr ΤΞΗΣ ΛΥΕΙΟΥ Φ Υ ΣΙ Η ΤΕ ΥΘ ΥΝ ΣΗ Σ Ε Π Ω Ν Τ Μ Ο :..... Ο Ν Ο Μ :...... Σ Μ Η Μ :..... Η Μ Ε Ρ Ο Μ Η Ν Ι : 23 / 0 3 / 2 0 1 4 Ε Π Ι Μ Ε Λ ΕΙ Θ ΕΜ Σ Ω Ν : ΥΡΜΗ
Τμήμα Φυσικής, Παν/μιο Ιωαννίνων, Ειδική Σχετικότητα, Διάλεξη 5 Οι Μετασχηματισμοί του Lorentz και η Συστολή του μήκους
1 Οι Μετασχηματισμοί του Lorentz και η Συστολή του μήκους Σκοποί της πέμπτης διάλεξης: 10.11.2011 Εξοικείωση με τους μετασχηματισμούς του Lorentz και τις διάφορες μορφές που μπορούν να πάρουν για την επίλυση
Κατακόρυφη πτώση σωμάτων. Βαρβιτσιώτης Ιωάννης Πρότυπο Πειραματικό Γενικό Λύκειο Αγίων Αναργύρων Μάιος 2015
Κατακόρυφη πτώση σωμάτων Βαρβιτσιώτης Ιωάννης Πρότυπο Πειραματικό Γενικό Λύκειο Αγίων Αναργύρων Μάιος 2015 Α. Εισαγωγή Ερώτηση 1. Η τιμή της μάζας ενός σώματος πιστεύετε ότι συνοδεύει το σώμα εκ κατασκευής
Εναλλακτικές ιδέες των µαθητών
Εναλλακτικές ιδέες των µαθητών Αντωνίου Αντώνης, Φυσικός antoniou@sch.gr, http://users.att.sch.gr/antoniou Απόδοση στα ελληνικά της µελέτης του Richard P. Olenick, καθηγητή Φυσικής του University of Dallas.
Εισαγωγή στη Σχετικότητα και την Κοσμολογία ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΟΣ
Εισαγωγή στη Σχετικότητα και την Κοσμολογία Διδάσκων: Θεόδωρος Τομαράς, Πανεπιστήμιο Κρήτης ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΟΣ Εβδομάδα 1 Σχετικότητα 1.1 Η ανεπάρκεια της μηχανικής του Νεύτωνα V1.1.1 Σύντομη εισαγωγή
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΧΕΙΜΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 12/02/12 ΛΥΣΕΙΣ
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 011-01 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ/Γ ΥΚΕΙΟΥ ΣΕΙΡΑ: ΧΕΙΜΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 1/0/1 ΥΣΕΙΣ ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό κάθε µίας από τις παρακάτω ερωτήσεις
8 η Διάλεξη Ηλεκτρομαγνητική ακτινοβολία, φαινόμενα συμβολής, περίθλαση
11//17 8 η Διάλεξη Ηλεκτρομαγνητική ακτινοβολία, φαινόμενα συμβολής, περίθλαση Φίλιππος Φαρμάκης Επ. Καθηγητής 1 Ηλεκτρομαγνητισμός Πως συνδέονται ο ηλεκτρισμός με τον μαγνητισμό; Πως παράγονται τα κύματα;
Experiments are the only means of knowledge. Anyother is poetry and imagination. M.Plank 2 ΟΙ ΕΞΙΣΩΣΕΙΣ ΤΟΥ MAXWELL
ΚΥΜΑΤΙΚΗ-ΟΠΤΙΚΗ 7 xpeiments ae the only means o knowledge. Anyothe is poety and imagination. M.Plank 2 ΟΙ ΕΞΙΣΩΣΕΙΣ ΤΟΥ MAXWLL Σε µια πρώτη παρουσίαση του θέµατος δίνονται οι εξισώσεις του Maxwell στο
Φαινόμενο Doppler Α. ΦΑΙΝΟΜΕΝΟ DOPPLER ΓΙΑ ΤΑ ΑΚΟΥΣΤΙΚΑ ΚΥΜΑΤΑ. α) Πηγή (S) ακίνητη - Παρατηρητής (Ο) κινούμενος. S(u s =0) u o O x.
Φαινόμενο Dppler Α. ΦΑΙΝΟΜΕΝΟ DOPPLER ΓΙΑ ΤΑ ΑΚΟΥΣΤΙΚΑ ΚΥΜΑΤΑ α) Πηγή (S) ακίνητη - Παρατηρητής (Ο) κινούμενος S( =0) O x Σχήμα 72 t t t 0 0 0 άρα Όταν ο παρατηρητής πλησιάζει την πηγή, έχουμε: Όταν ο
Doppler, ηλεκτρομαγνητικά κύματα και μερικές εφαρμογές τους!
1 Doppler, ηλεκτρομαγνητικά κύματα και μερικές εφαρμογές τους! Με αφορμή τις συχνές ερωτήσεις μαθητών για το Doppler και το φως και κυρίως λόγω της επιμονής ενός άριστου μαθητή που από την Β Λυκείου ενθουσιάζονταν
Μερικές αποστάσεις σε έτη φωτός: Το φως χρειάζεται 8,3 λεπτά να φτάσει από τον Ήλιο στη Γη (απόσταση που είναι περίπου δεκάξι εκατομμυριοστά του
ΦΩΣ Το έτος φωτός είναι μονάδα μέτρησης μήκους - απόστασης (και όχι χρόνου). Ορίζεται ως η απόσταση που θα ταξιδέψει ένα φωτόνιο, κινούμενο στο κενό, μακριά από μάζες και ηλεκτρομαγνητικά πεδία, σε ένα
1. Νόμος του Faraday Ορισμός της μαγνητικής ροής στην γενική περίπτωση τυχαίου μαγνητικού πεδίου και επιφάνειας:
1. Νόμος του Faaday Ορισμός της μαγνητικής ροής στην γενική περίπτωση τυχαίου μαγνητικού πεδίου και επιφάνειας: dφ d A Φ d A Αν το μαγνητικό πεδίο είναι ομογενές και η επιφάνεια επίπεδη: Φ A Ο νόμος του
Κ. Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής Παράγωγος. x ορίζεται ως
Κ Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 5 Παράγωγος Παράγωγος Η παράγωγος της συνάρτησης f f () στο σηµείο f ( ) lim 0 ορίζεται ως f ( + ) f ( ) () Παράγωγοι ανώτερης
Θέµατα Φυσικής Θετικής Κατεύθυνσης Β Λυκείου 1999 ΕΚΦΩΝΗΣΕΙΣ
Θέµατα Φυσικής Θετικής Κατεύθυνσης Β Λυκείου 999 Ζήτηµα ο ΕΚΦΩΝΗΣΕΙΣ. Μάζα που κινείται οριζόντια µε ορµή µέτρου 0 Kg m/s προσπίπτει σε κατακόρυφο τοίχο και ανακλάται οριζόντια µε ορµή ίδιου µέτρου. Το
Η ΕΙ ΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ
Κ. ΧΡΙΣΤΟ ΟΥΛΙ ΗΣ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο Η ΕΙ ΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ Α Θ Η Ν Α iii ΠΕΡΙΕΧΟΜΕΝΑ
Θεωρία Κεφάλαιο 4 ο Γ Λυκείου Doppler
Θεωρία Κεφάλαιο 4 ο Γ Λυκείου Doppler Φαινόμενο Doppler Η συχνότητα που αντιλαμβάνεται ο παρατηρητής δεν είναι ίδια με αυτήν που εκπέμπει μία πηγή όταν ο παρατηρητής και η πηγή βρίσκονται σε σχετική κίνηση
Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις
Κεφάλαιο M4 Κίνηση σε δύο διαστάσεις Κινηµατική σε δύο διαστάσεις Θα περιγράψουµε τη διανυσµατική φύση της θέσης, της ταχύτητας, και της επιτάχυνσης µε περισσότερες λεπτοµέρειες. Θα µελετήσουµε την κίνηση
Ανακάλυψη βαρυτικών κυµάτων από τη συγχώνευση δύο µαύρων οπών. Σελίδα LIGO
Ανακάλυψη βαρυτικών κυµάτων από τη συγχώνευση δύο µαύρων οπών Σελίδα LIGO Πώς µία µάζα στο Σύµπαν στρεβλώνει τον χωροχρόνο (Credit: NASA) Πεδίο Βαρύτητας στη Γενική Σχετικότητα. Από την Επιτάχυνση ηµιουργούνται
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.. Τα δύο
ΤΥΠΟΛΟΓΙΟ ΚΕΦΑΛΑΙΟΥ 1 ΗΛΕΚΤΡΙΚΕΣ - ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ
ΤΥΠΟΛΟΓΙΟ ΚΕΦΑΛΑΙΟΥ ΗΛΕΚΤΡΙΚΕΣ - ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ( t ) Χρονική εξίσωση απομάκρυνσης a ( t ) με a Χρονική εξίσωση ταχύτητας a aa ( t ) με a a Χρονική εξίσωση επιτάχυνσης a Σχέση
( ) Φ.27 είξετε ότι, για ένα σωµατίδιο µε µάζα ηρεµίας m 0, το οποίο κινείται µε ταχύτητα υκαι έχει ορµή pκαι κινητική ενέργεια Κ, ισχύει η σχέση ΛΥΣΗ
Φ.7 είξετε ότι, για ένα σωµατίδιο µε µάζα ηρεµίας m 0, το οποίο κινείται µε ταχύτητα υκαι έχει ορµή pκαι κινητική ενέργεια Κ, ισχύει η σχέση pυ = + / K + K m c Η κινητική ενέργεια του σωµατιδίου είναι
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΦΥΣΙΚΗ ΙΙ
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΦΥΣΙΚΗ ΙΙ 1. Οι δυναμικές γραμμές ηλεκτροστατικού πεδίου α Είναι κλειστές β Είναι δυνατόν να τέμνονται γ Είναι πυκνότερες σε περιοχές όπου η ένταση του πεδίου είναι μεγαλύτερη δ Ξεκινούν
ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ
ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΕΓΧΕΙΡΙΔΙΟ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ ΔΗΜΗΤΡΙΟΣ ΘΕΟΔΩΡΙΔΗΣ Κεφάλαιο 1.1 Ευθύγραμμη κίνηση 1. Τι ονομάζουμε κίνηση; Τι ονομάζουμε τροχιά; Ποια είδη τροχιών γνωρίζετε; Κίνηση ενός αντικειμένου
ιαγώνισμα στη Φυσική Γ Λυκείου Κατεύθυνσης Επαναληπτικό Ι
Θέμα 1 ο ιαγώνισμα στη Φυσική Γ Λυκείου Κατεύθυνσης Επαναληπτικό Ι Στα ερωτήματα 1 5 του πρώτου θέματος, να μεταφέρετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα της απάντησης που θεωρείτε
Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Σύγχρονη Φυσική
Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Σύγχρονη Φυσική Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Μια σύντομη επισκόπηση της σύγχρονης φυσικής Σχετικότητα
Φυσική Β Λυκειου, Γενικής Παιδείας 1ο Φυλλάδιο - Οριζόντια Βολή
Φυσική Β Λυκειου, Γενικής Παιδείας - Οριζόντια Βολή Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, M Sc Φυσικός http://perifysikhs.wordpress.com 1 Εισαγωγικές Εννοιες - Α Λυκείου Στην Φυσική της Α Λυκείου κυριάρχησαν
Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθμό των ερωτήσεων και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ιαγώνισµα φυσικής Γ λυκείου σε όλη την υλη Θέµα 1ο Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθμό των ερωτήσεων και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1.Μονοχρωµατική
10. Παραγώγιση διανυσµάτων
Κ Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 51 10 Παραγώγιση διανυσµάτων 101 Παράγωγος διανυσµατικής συνάρτησης Αν οι συνιστώσες ενός διανύσµατος = είναι συνεχείς συναρτήσεις
Κλασική Ηλεκτροδυναμική Ι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΕΙΣΑΓΩΓΗ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Να αιτιολογήσετε την απάντησή σας. Μονάδες 5
2002 5. Να γράψετε στο τετράδιό σας τη λέξη που συµπληρώνει σωστά καθεµία από τις παρακάτω προτάσεις. γ. Η αιτία δηµιουργίας του ηλεκτροµαγνητικού κύµατος είναι η... κίνηση ηλεκτρικών φορτίων. 1. Ακτίνα
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 14 Μάθημα: ΦΥΣΙΚΗ 4ωρο Τ.Σ. Ημερομηνία και ώρα εξέτασης: Παρασκευή, 13 Ιουνίου 14 8:
δ. έχουν πάντα την ίδια διεύθυνση.
Διαγώνισμα ΦΥΣΙΚΗ Κ.Τ Γ ΛΥΚΕΙΟΥ ΖΗΤΗΜΑ 1 ον 1.. Σφαίρα, μάζας m 1, κινούμενη με ταχύτητα υ1, συγκρούεται μετωπικά και ελαστικά με ακίνητη σφαίρα μάζας m. Οι ταχύτητες των σφαιρών μετά την κρούση α. έχουν
Για τις παρακάτω ερωτήσεις 2-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.
46 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΣΑΒΒΑΪ Η-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Χρυσ Σµύρνης 3 : Τηλ.: 0760470 ΙΑΓΩΝΙΣΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 007 ΘΕΜΑ. Ποιες από τις παρακάτω προτάσεις είναι σωστές (Σ)
Κεφάλαιο 27 Μαγνητισµός. Copyright 2009 Pearson Education, Inc.
Κεφάλαιο 27 Μαγνητισµός Περιεχόµενα Κεφαλαίου 27 Μαγνήτες και Μαγνητικά πεδία Τα ηλεκτρικά ρεύµατα παράγουν µαγνητικά πεδία Μαγνητικές Δυνάµεις πάνω σε φορτισµένα σωµατίδια. Η ροπή ενός βρόχου ρεύµατος.
ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΟ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΦΥΣΙΚΗ 16 ΙΟΥΝΙΟΥ 2010 1) Ράβδος μάζας Μ και μήκους L που είναι στερεωμένη με άρθρωση σε οριζόντιο άξονα Ο, είναι στην κατακόρυφη θέση και σε κατάσταση ασταθούς ισορροπίας
ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΕΥ η ΕΡΓΑΣΙΑ
15/10/2004 ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΕΥ34 2004-05 1 η ΕΡΓΑΣΙΑ Προθεσμία παράδοσης 15/11/2004 ΑΣΚΗΣΕΙΣ 1) Επιβάτης τραίνου, το οποίο κινείται προς τα δεξιά με ταχύτητα υ = 0.6c στη διεύθυνση του άξονα
ΒΑΡΥΤΗΤΑ. Το μέτρο της βαρυτικής αυτής δύναμης είναι: F G όπου M,
ΒΑΡΥΤΗΤΑ ΝΟΜΟΣ ΤΗΣ ΠΑΓΚΟΣΜΙΑΣ ΕΛΞΗΣ Ο Νεύτωνας ανακάλυψε τον νόμο της βαρύτητας μελετώντας τις κινήσεις των πλανητών γύρω από τον Ήλιο και τον δημοσίευσε το 1686. Από την ανάλυση των δεδομένων αυτών ο
Επαναληπτικές Ερωτήσεις Θεωρίας. Κεφάλαιο 1 ο (ταλαντώσεις)
Επαναληπτικές Ερωτήσεις Θεωρίας Κεφάλαιο 1 ο (ταλαντώσεις) 1. Να αποδείξεις ότι για να εκτελέσει ένα σώµα Α.Α.Τ., η δύναµη που δέχεται πρέπει να είναι της µορφής: ΣF=-D.x 2. Να αποδείξεις ότι στο σύστηµα
ΠΕΡΙΕΧΟΜΕΝΑ 1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ. 1.3.1 Μετατροπή από καρτεσιανό σε κυλινδρικό σύστηµα... 6 1.3.2 Απειροστές ποσότητες... 7
ΠΕΡΙΕΧΟΜΕΝΑ 1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ 1.1 Φυσικά µεγέθη... 1 1.2 ιανυσµατική άλγεβρα... 2 1.3 Μετατροπές συντεταγµένων... 6 1.3.1 Μετατροπή από καρτεσιανό σε κυλινδρικό σύστηµα... 6 1.3.2 Απειροστές ποσότητες...
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά κύματα που απομακρύνονται
ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ
ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ 2008 ΘΕΜΑΤΑ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 29 ΜΑÏΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ