Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 3)
|
|
- Στέφανος Διαμαντόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 3) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 3) Σεπτέμβριος / 25
2 Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Σκοπός του εργαστηρίου είναι η γνωριμία του φοιτητή με την δημιουργία γραφικών παραστάσεων και την χρήση βασικών δομών στο περιβάλλον του Matlab. Ειδικότερα, ο φοιτητής θα ασχοληθεί με τα παρακάτω αντικείμενα. 1 Γραφικές Παραστάσεις Γραφική Παράσταση Συνάρτησης Γραφική Παράσταση Σημείων 2 Βασικές δομές Παράδειγμα (for) Παράδειγμα (while) Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 3) Σεπτέμβριος / 25
3 Γραφική Παράσταση Συνάρτησης Για τη δημιουργία γραφικής παράστασης μιας συνάρτησης χρησιμοποιούμε την εντολή plot(x,y,'parameters') Πρώτα ορίζουμε τα διανύσματα x και y. x είναι το διάνυσμα των τετμημένων των σημείων της συνάρτησης. y είναι το διάνυσμα των τεταγμένων των σημείων της συνάρτησης. Το όρισμα 'parameters' είναι προαιρετικό με το οποίο καθορίζουμε το χρώμα, το σχήμα των σημείων και το είδος της γραμμής¹. ¹Περισσότερες πληροφορίες στη βοήθεια του Matlab Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 3) Σεπτέμβριος / 25
4 Γραφική Παράσταση Συνάρτησης Έπειτα, μπορούμε να προσθέσουμε και κάποιες άλλες εντολές για την καλύτερη παρουσίαση της γραφικής παράστασης. title('some text') Εισαγωγή τίτλου στο figure xlabel('some text') Ετικέτα στον οριζόντιο άξονα ylabel('some text') Ετικέτα στον κατακόρυφο άξονα text(x,y,'some text') Κείμενο μέσα στο figure Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 3) Σεπτέμβριος / 25
5 Γραφική Παράσταση Συνάρτησης - Παράδειγμα Να γίνει η γραφική παράσταση της συνάρτησης f(x) = e x + 5x 13 στο διάστημα [ 5, 5]. Σε Matlab θα έχουμε ορίζουμε την συνάρτηση f(x) f=inline('exp(x)+5*x-13') δημιουργούμε τα διανύσματα x και y x=-5:0.01:5; y=f(x); καλούμε την συνάρτηση plot με τα κατάλληλα ορίσματα plot(x,y) εναλλακτικά μπορούμε να κάνουμε και το εξής plot(x,f(x)) Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 3) Σεπτέμβριος / 25
6 Γραφική Παράσταση Συνάρτησης - Παράδειγμα Στον Editor γράφουμε 1 f=inline('exp(x)+5*x-13'); 2 x=-5:0.01:5; 3 plot(x, f(x)) Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 3) Σεπτέμβριος / 25
7 Γραφική Παράσταση Συνάρτησης - Παράδειγμα το εκτελούμε και μας επιστρέφει το παρακάτω figure Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 3) Σεπτέμβριος / 25
8 Γραφική Παράσταση Συνάρτησης - Παράδειγμα Στις γραφικές παραστάσεις των συναρτήσεων χρειάζεται να αποτυπωθεί και ο άξονας x x στην συνάρτηση plot(x,f(x)) προσθέτουμε το ζεύγος διανυσμάτων που αναπαριστά τον x x x, zeros(1,length(x)) Στον Editor γράφουμε 1 f=inline('exp(x)+5*x-13'); 2 x=-5:0.01:5; 3 plot(x, f(x), x, zeros(1,length(x))); Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 3) Σεπτέμβριος / 25
9 Γραφική Παράσταση Συνάρτησης - Παράδειγμα το εκτελούμε και μας επιστρέφει το παρακάτω figure Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 3) Σεπτέμβριος / 25
10 Γραφική Παράσταση Συνάρτησης - Παράδειγμα Επιπλέον, στο figure μπορούμε να προσθέσουμε πληροφορίες όπως φαίνεται παρακάτω Στον Editor γράφουμε 1 f=inline('exp(x)+5*x-13'); 2 x=-5:0.01:5; 3 plot(x, f(x), x, zeros(1,length(x))); 4 title('f(x)=e^x+5x-13'); 5 xlabel('x'); 6 ylabel('y'); 7 text(3,5,'exponential'); Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 3) Σεπτέμβριος / 25
11 Γραφική Παράσταση Συνάρτησης - Παράδειγμα το εκτελούμε και μας επιστρέφει το παρακάτω figure Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 3) Σεπτέμβριος / 25
12 Γραφική Παράσταση Σημείων Για τη δημιουργία γραφικής παράστασης ενός συνόλου διακριτών σημείων χρησιμοποιούμε την εντολή plot(x,y,'parameters') Πρώτα ορίζουμε τα διανύσματα x και y. x είναι το διάνυσμα των τετμημένων των σημείων. y είναι το διάνυσμα των τεταγμένων των σημείων. Στο όρισμα 'parameters' στο οποίο ορίζουμε το χρώμα, το σχήμα των σημείων και το είδος της γραμμής, πρέπει να ορίσουμε υποχρεωτικά το σχήμα των σημείων και να μην ορίσουμε το είδος της γραμμής. Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 3) Σεπτέμβριος / 25
13 Γραφική Παράσταση Σημείων - Παράδειγμα Δίνεται ο παρακάτω πίνακας τιμών X Y Να γίνει η γραφική παράσταση των παραπάνω σημείων. Στον Editor γράφουμε 1 x=[ ]; 2 y=[ ]; 3 plot(x,y,'ro'); Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 3) Σεπτέμβριος / 25
14 Γραφική Παράσταση Σημείων - Παράδειγμα το εκτελούμε και μας επιστρέφει το παρακάτω figure Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 3) Σεπτέμβριος / 25
15 Βασικές δομές Δομές Επιλογής if switch Δομές Επανάληψης for while Πρόσθετες εντολές break Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 3) Σεπτέμβριος / 25
16 Βασικές δομές - Παράδειγμα (for) Να βρεθούν οι 10 πρώτες τιμές της ακολουθίας (αναδρομικός τύπος) που δίνεται από τον τύπο με αρχική τιμή a 1 = 1. Στον Editor γράφουμε 1 clear 2 clc 3 a(1)=1; 4 for i=2:10 5 a(i)=3*a(i-1)+8; 6 end 7 disp(a') a n = 3 a n Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 3) Σεπτέμβριος / 25
17 Βασικές δομές - Παράδειγμα (for) Εκτελούμε και στο Command Window έχουμε Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 3) Σεπτέμβριος / 25
18 Βασικές δομές - Παράδειγμα (for) Μπορούμε στο αποτέλεσμα να προσθέσουμε τον αριθμό των βημάτων. Στον Editor γράφουμε 1 clear 2 clc 3 a(1)=1; 4 for i=2:10 5 a(i)=3*a(i-1)+8; 6 end 7 k=1:length(a); 8 out=[k', a(k)'] Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 3) Σεπτέμβριος / 25
19 Βασικές δομές - Παράδειγμα (for) Εκτελούμε και στο Command Window έχουμε out = Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 3) Σεπτέμβριος / 25
20 Βασικές δομές - Παράδειγμα (while) Να βρεθούν οι τιμές της ακολουθίας (αναδρομικός τύπος) a n για τις οποίες να ισχύει η σχέση a n < Οι τιμές της ακολουθίας a n δίνονται από τον τύπο με αρχική τιμή a 1 = 1. a n = 3 a n Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 3) Σεπτέμβριος / 25
21 Βασικές δομές - Παράδειγμα (while) Στον Editor γράφουμε 1 clear 2 clc 3 a(1)=1; 4 i=1; 5 while abs(a(i))< i=i+1; 7 a(i)=3*a(i-1)+8; 8 end 9 k=1:(length(a)-1); 10 out=[k', a(k)'] 1 clear 2 clc 3 a(1)=1; 4 i=2; 5 done=0; 6 while done==0 7 a(i)=3*a(i-1)+8; 8 if abs(a(i))< i=i+1; 10 else 11 done=1; 12 end 13 end 14 k=1:(length(a)-1); 15 out=[k', a(k)'] Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 3) Σεπτέμβριος / 25
22 Βασικές δομές - Παράδειγμα (while) Εκτελούμε και στο Command Window έχουμε out = Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 3) Σεπτέμβριος / 25
23 Βασικές δομές - Παράδειγμα 2 (while) Να βρεθούν οι τιμές της ακολουθίας (αναδρομικός τύπος) a n για τις οποίες να ισχύει η σχέση a n a n 1 < 10 6 Οι τιμές της ακολουθίας a n δίνονται από τον τύπο με αρχική τιμή a 1 = 1. a n = 3 a n Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 3) Σεπτέμβριος / 25
24 Βασικές δομές - Παράδειγμα 2 (while) Στον Editor γράφουμε 1 clear 2 clc 3 a(1)=1; 4 i=2; 5 done=0; 6 while done==0 7 a(i)=3*a(i-1)+8; 8 if abs(a(i)-a(i-1))<10^6 9 i=i+1; 10 else 11 done=1; 12 end 13 end 14 k=1:(length(a)-1); 15 out=[k', a(k)'] Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 3) Σεπτέμβριος / 25
25 Βασικές δομές - Παράδειγμα 2 (while) Εκτελούμε και στο Command Window έχουμε out = Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 3) Σεπτέμβριος / 25
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΡΓΑΣΤΗΡΙΟ 3 ΕΡΓΑΣΤΗΡΙΟ 3 ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΕΣ ΔΟΜΕΣ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΔΗΜΙΟΥΡΓΙΑ ΔΙΑΝΥΣΜΑΤΩΝ Χ (ΤΕΤΜΗΜΕΝΩΝ) ΚΑΙ Υ (ΤΕΤΑΓΜΕΝΩΝ) ΤΩΝ ΣΗΜΕΙΩΝ
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 4)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 4) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 4) Σεπτέμβριος 2015
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 5)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 5) Δρ Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 5) Σεπτέμβριος 2015 1
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 6)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 6) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 6) Σεπτέμβριος 2015
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 2)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 2) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 2) Σεπτέμβριος 2015
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 2)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 2) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 2) Σεπτέμβριος 2015
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 8)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 8) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 8) Σεπτέμβριος 2015
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 7)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 7) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 7) Δεκέμβριος 2014
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 7)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 7) Δρ Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 7) Δεκέμβριος 2014 1
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 8)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 8) Δρ Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 8) Δεκέμβριος 2017 1
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2014 1 / 42 Αριθμητικές Μέθοδοι
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 47 Αριθμητικές Μέθοδοι
Προγραμματισμός I (Θ)
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Προγραμματισμός I (Θ) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2017 Δρ. Δημήτρης Βαρσάμης Οκτώβριος
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Συστήματα Αναμονής (Queuing Systems)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ - ΕΜΠ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης & Βέλτιστου Σχεδιασμού Δικτύων Τηλεματικής
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
1 η Εργαστηριακή Άσκηση MATLAB Εισαγωγή
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΗΠΕΙΡΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. Εργαστήριο Επεξεργασία Εικόνας & Βίντεο 1 η Εργαστηριακή Άσκηση MATLAB Εισαγωγή Νικόλαος Γιαννακέας Άρτα 2018 1 Εισαγωγή Το Matlab
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Γραφικές παραστάσεις (1ο μέρος)
ΤΕΙ ΑΘΗΝΑΣ Τμήμα Ηλεκτρονικής Φυσική των Αισθητήρων Γραφικές παραστάσεις (1ο μέρος) Σε αυτήν την ενότητα θα εξοικειωθείτε με τον τρόπο απεικόνισης γραφικών παραστάσεων στο MATLAB, και συγκεκριμένα με τις
Προγραμματισμός ΙI (Θ)
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Προγραμματισμός ΙI (Θ) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Μάρτιος 2017 Δρ. Δημήτρης Βαρσάμης Μάρτιος 2017
Γραφικές παραστάσεις (2ο μέρος)
Γραφικές παραστάσεις (2ο μέρος) Σε αυτήν την ενότητα θα εξοικειωθείτε με τον τρόπο απεικόνισης γραφικών παραστάσεων στο MATLAB χρησιμοποιώντας την εντολή plot με πίνακες. Επίσης, θα δείτε επιπλέον εντολές
Νέο υλικό. www.cs.uoi.gr/~develeg. Matlab2.pdf - Παρουσίαση μαθήματος 2. Matlab-reference.pdf Σημειώσεις matlab στα ελληνικά (13 σελίδες).
Matlab Μάθημα Νέο υλικό www.cs.uoi.gr/~develeg Matlab.pdf - Παρουσίαση μαθήματος. Matlab-reference.pdf Σημειώσεις matlab στα ελληνικά (3 σελίδες). Επαναληπτικές δομές Όταν εκτελείται μια πράξη σε ένα διάνυσμα,
Εισαγωγή στη Matlab Εισαγωγή στην Αριθμητική Ανάλυση Διδάσκων: Γεώργιος Ακρίβης Βοηθός: Δημήτριος Ζαβαντής
Εισαγωγή στη Matlab Εισαγωγή στην Αριθμητική Ανάλυση Διδάσκων: Γεώργιος Ακρίβης Βοηθός: Δημήτριος Ζαβαντής email: dzavanti@cs.uoi.gr Περιεχόμενα Τι είναι η Matlab; Ιστορικά Χρήσεις και στοιχεία της Matlab
Εισαγωγή στην Αριθμητική Ανάλυση
Εισαγωγή στην Αριθμητική Ανάλυση Εισαγωγή στη MATLAB ΔΙΔΑΣΚΩΝ: ΓΕΩΡΓΙΟΣ ΑΚΡΙΒΗΣ ΒΟΗΘΟΙ: ΔΗΜΗΤΡΙΑΔΗΣ ΣΩΚΡΑΤΗΣ, ΣΚΟΡΔΑ ΕΛΕΝΗ E-MAIL: SDIMITRIADIS@CS.UOI.GR, ESKORDA@CS.UOI.GR Τι είναι Matlab Είναι ένα περιβάλλον
ΠΡΟΣΟΜΟΙΩΣΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ - MATLAB
ΠΡΟΣΟΜΟΙΩΣΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ - MATLAB Εργασία εξαμήνου Ευαγγελία Βλιώρα Α.Μ. 120004 Τμήμα E1 Εξάμηνο Β' ΘΕΣΣΑΛΟΝΙΚΗ 2013 ΘΕΜΑ 1 Σας δίνεται η συνάρτηση α) Να τη σχεδιάσετε στο διάστημα [0,10]. β) Να
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τ Ε Ί Κ Μ - Σ Τ Μ Π Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Matlab - Ε Ο Δρ. Δημήτριος Βαρσάμης 22 Οκτωβρίου 2015 Εισαγωγή Το πακέτο λογισμικού MATLAB (MathWorks Inc.) παρέχει ένα δυναμικό,
Εργαστήριο Μαθηματικής Ανάλυσης Ι. Εισαγωγή στη Matlab Βασικές Συναρτήσεις-Γραφικές παραστάσεις. Πανεπιστήμιο Θεσσαλίας. Σχολή Θετικών Επιστημών
Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής με εφαρμογές στη Βιοϊατρική Εργαστήριο Μαθηματικής Ανάλυσης Ι Εισαγωγή στη Matlab Βασικές Συναρτήσεις-Γραφικές παραστάσεις Εισαγωγή στη
Εργαστήρια Αριθμητικής Ανάλυσης Ι. 4 ο Εργαστήριο. Διανύσματα-Πίνακες 1 ο Μέρος
Εργαστήρια Αριθμητικής Ανάλυσης Ι 4 ο Εργαστήριο Διανύσματα-Πίνακες 1 ο Μέρος 2017 Εισαγωγή Όπως έχουμε προαναφέρει σε προηγούμενα εργαστήρια. Ο βασικός τύπος δεδομένων στο Matlab είναι οι πίνακες. Ένα
Εισαγωγή στους Υπολογιστές
Εισαγωγή στους Υπολογιστές Ενότητα #6: Προγραμματισμός στο MATLAB Καθ. Δημήτρης Ματαράς Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Προγραμματισμός στο MATLAB Εντολή ελέγχου ροής if Γενική μορφή σύνταξης:
Εισαγωγή στον επιστημονικό προγραμματισμό 2 o Μάθημα
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές Εισαγωγή στον επιστημονικό προγραμματισμό 2 o Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ email: leo@mail.ntua.gr url: http://users.ntua.gr/leo Μελάς Ιωάννης Υποψήφιος
Προγραμματισμός I (Θ)
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Προγραμματισμός I (Θ) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δεκέμβριος 2017 Δρ. Δημήτρης Βαρσάμης Δεκέμβριος
Εργαστήριο Γραμμικής Άλγεβρας. H Matlab ως γλώσσα προγραμματισμού
Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής με Εφαρμογές στη Βιοϊατρική Εργαστήριο Γραμμικής Άλγεβρας H Matlab ως γλώσσα προγραμματισμού Προγραμματιστικές δομές Έλεγχος ροής if if
4. Εισαγωγή στο Matlab
ΠΠΜ 500: Εφαρμογές Μηχανικής με Ανάπτυξη Λογισμικού 4. Εισαγωγή στο Matlab Εαρινό εξάμηνο 2006 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www. www.eng. eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή στο Matlab
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 37 Αριθμητικές Μέθοδοι
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ιάλεξη 14
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ιάλεξη 14 20 Οκτωβρίου, 2005 Ηλίας Κυριακίδης Λέκτορας ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ 2005Ηλίας Κυριακίδης,
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ιάλεξη 17
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ιάλεξη 17 10 Νοεµβρίου, 2006 Γεώργιος Έλληνας Επίκουρος Καθηγητής ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΑ ΘΕΜΑΤΑ
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 63 Αριθμητικές Μέθοδοι
ΑΣΚΗΣΗ 8 Η εξίσωση της απομάκρυνσης x συναρτήσει του χρόνου t σε μια απλή αρμονική ταλάντωση δίνεται από τη σχέση:
ΑΣΚΗΣΗ 7 Θεωρούμε δύο απλές αρμονικές ταλαντώσεις, χωρίς τριβές, με ίδιο πλάτος Α, των οποίων οι απομακρύνσεις σε συνάρτηση με το χρόνο t δίνονται από τις σχέσεις: x 1 = A ημ(2πf 1 t) x 2 = A ημ(2πf 2
Εισαγωγή στο GNU Octave/MATLAB
Εισαγωγή στο GNU Octave/MATLAB Δρ. Βασίλειος Δαλάκας Καλώς ήρθατε στο εργαστήριο Σημάτων και Συστημάτων με το λογισμικό Octave (Οκτάβα). Οι σημειώσεις αυτές έχουν βασιστεί στις σημειώσεις του εργαστηρίου
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 5
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 5 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη και Τεχνολογία Μια Εισαγωγή Πίνακες (Arrays) [1/2] Δομές δεδομένων για την αποθήκευση δεδομένων υπό
Ψηφιακή Επεξεργασία Σήματος
Ψηφιακή Επεξεργασία Σήματος Εργαστήριο 3 Εισαγωγή στα Σήματα Αλέξανδρος Μανουσάκης Τι είναι σήμα; Ως σήμα ορίζουμε το σύνολο των τιμών που λαμβάνει μια ποσότητα (εξαρτημένη μεταβλητή) όταν αυτή μεταβάλλεται
Εισαγωγή στα Σήματα. Κυριακίδης Ιωάννης 2011
Εισαγωγή στα Σήματα Κυριακίδης Ιωάννης 2011 Τελευταία ενημέρωση: 11/11/2011 Τι είναι ένα σήμα; Ως σήμα ορίζουμε το σύνολο των τιμών που λαμβάνει μια ποσότητα (εξαρτημένη μεταβλητή) όταν αυτή μεταβάλλεται
Μαρία Λουκά. Εργαστήριο Matlab Πολυώνυμα - Παρεμβολή. Τμήμα Πληροφορικής και Τηλεπικοινωνιών.
Μαρία Λουκά Εργαστήριο Matlab Πολυώνυμα - Παρεμβολή Τμήμα Πληροφορικής και Τηλεπικοινωνιών. Στη MATLAB τα πολυώνυμα αναπαριστώνται από πίνακες που περιέχουν τους συντελεστές τους σε φθίνουσα διάταξη. Για
Αξιοποίηση Η/Υ και Πληροφορικής στην Μηχανική
ΠΠΜ100 & ΜΜΠ100: Εισαγωγή στην Μηχανική Αξιοποίηση Η/Υ και Πληροφορικής στην Μηχανική ιάλεξη 4 η 2 Οκτωβρίου Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Περιεχόµενα ιάλεξη #1:
Πληροφορική. Ενότητα 1: Α. Οργάνωση μαθήματος. Β. Στοιχεία Προγραμματισμού -Προγραμματιστικές Δομές, Πρόγραμμα, Γλώσσες.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πληροφορική Ενότητα 1: Α. Οργάνωση μαθήματος. Β. Στοιχεία Προγραμματισμού -Προγραμματιστικές Δομές, Πρόγραμμα, Γλώσσες. Κωνσταντίνος Καρατζάς
Σύντομες εισαγωγικές σημειώσεις για την. Matlab
Σύντομες εισαγωγικές σημειώσεις για την Matlab Δήλωση Μεταβλητών Για να εισάγει κανείς δεδομένα στη Matlab υπάρχουν πολλοί τρόποι. Ο πιο απλός είναι στη γραμμή εντολών να εισάγουμε αυτό που θέλουμε και
Έναρξη Τερματισμός του MatLab
Σύντομος Οδηγός MATLAB Β. Χ. Μούσας 1/6 Έναρξη Τερματισμός του MatLab Η έναρξη της λειτουργίας του MatLab εξαρτάται από το λειτουργικό σύστημα. Στα συστήματα UNIX πληκτρολογούμε στη προτροπή του συστήματος
Βασικά στοιχεία στο Matlab
Αριθμητική : + - * / ^ 3ˆ2 - (5 + 4)/2 + 6*3 >> 3^2 - (5 + 4)/2 + 6*3 22.5000 Βασικά στοιχεία στο Matlab Το Matlab τυπώνει την απάντηση και την καταχωρεί σε μια μεταβλητή που την ονομάζει ans. Αν θέλουμε
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Εισαγωγή στον Προγραμματισμό
Εισαγωγή στον Προγραμματισμό Έλεγχος Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2012-2013 Σχεσιακοί Τελεστές και Ισότητας Ένα πρόγραμμα εκτός από αριθμητικές πράξεις
2. Δισδιάστατα γραφικά
2. Δισδιάστατα γραφικά 2.1 Δισδιάστατες γραφικές παραστάσεις συναρτήσεων μίας μεταβλητής. Η βασική εντολή σχεδίασης, του Sage, μιας γραφικής παράστασης μίας συνάρτησης μίας μεταβλητής είναι η συνάρτηση
Εισαγωγή στη Matlab 2 Εισαγωγή στην Αριθμητική Ανάλυση Διδάσκων: Γεώργιος Ακρίβης Βοηθός: Δημήτριος Ζαβαντής
Εισαγωγή στη Matlab 2 Εισαγωγή στην Αριθμητική Ανάλυση Διδάσκων: Γεώργιος Ακρίβης Βοηθός: Δημήτριος Ζαβαντής email: dzavanti@cs.uoi.gr Περιεχόμενα Ορισμοί Λογικοί τελεστές f0r loops while loops if else
Το πρόβλημα. Έχουμε έναν κύκλο με μοναδιαία ακτίνα. Η εξίσωσή του θα είναι:
Το πρόβλημα 1 x y Έχουμε έναν κύκλο με μοναδιαία ακτίνα. Η εξίσωσή του θα είναι: x 2 + y 2 = 1 2 Το πρόβλημα Για n=6 Εάν βάλουμε πάνω στην περιφέρειά του n σημεία, σε ίση απόσταση μεταξύ τους και τα ενώσουμε,
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Ενότητα 8: Γραφικές παραστάσεις Διδάσκουσα: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
1. Κατασκευάστε ένα διάνυσμα με στοιχεία τους ζυγούς αριθμούς μεταξύ του 31 και 75
1. Κατασκευάστε ένα διάνυσμα με στοιχεία τους ζυγούς αριθμούς μεταξύ του 31 και 75 2. Έστω x = [2 5 1 6] α. Προσθέστε το 16 σε κάθε στοιχείο β. Προσθέστε το 3 σε κάθε στοιχείο που βρίσκεται σε μονή θέση.
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΕ PYTHON (ΟΜΑΔΑ Α)
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΕ PYTHON (ΟΜΑΔΑ Α) ΑΣΚΗΣΗ 1 [1 μονάδα] α) Γράψτε έναν βρόχο while που κάνει ακριβώς το ίδιο με τον εξής βρόχο for: for i in range(1,11): print i =, i β) Ποιο θα είναι το αποτέλεσμα της
Εργαστήρια Αριθμητικής Ανάλυσης Ι. 1 ο Εργαστήριο. Εισαγωγή στο Matlab
Εργαστήρια Αριθμητικής Ανάλυσης Ι 1 ο Εργαστήριο Εισαγωγή στο Matlab 2017 Εισαγωγή Στα εργαστήρια θα ασχοληθούμε με την υλοποίηση των αριθμητικών μεθόδων που βλέπουμε στο θεωρητικό μέρος του μαθήματος,
Γραμμικός Προγραμματισμός και Βελτιστοποίηση (Εργαστήριο 2)
Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός και Βελτιστοποίηση (Εργαστήριο 2) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Μάρτιος 2015 Δρ. Δημήτρης Βαρσάμης Γραμμικός Προγραμματισμός (E 1) Μάρτιος
Διάλεξη 1. Πράξεις Τελεστές Έλεγχος Ροής
Διάλεξη 1 Πράξεις Τελεστές Έλεγχος Ροής Διοργάνωση : ΚΕΛ ΣΑΤΜ Διαφάνειες: Skaros, MadAGu Παρουσίαση: MadAGu Άδεια: Creative Commons 3.0 Αριθμητικοί Τελεστές- Αριθμητικές Πράξεις 2 Internal use only Αριθμητικοί
Το παράθυρο έναρξης του Μatlab
Εισαγωγή στο Matlab Το παράθυρο έναρξης του Μatlab Αν οποιοδήποτε από αυτά τα παράθυρα είναι κρυμμένο μπορείτε να το εμφανίσετε από το menu με όνομα Desktop. Desktop > Desktop Layout > Default Ένα παράθυρο
Χρονικές σειρές 9 o μάθημα: ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΤΗ MATLAB (3) ΓΡΑΦΗΜΑΤΑ
Χρονικές σειρές 9 o μάθημα: ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΤΗ MATLAB (3) ΓΡΑΦΗΜΑΤΑ Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό
ΠΑΡΑΡΤΗΜΑ Α Εισαγωγή στο MATLAB
ΠΑΡΑΡΤΗΜΑ Α A-2 Ν. Μήτρου - ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ: Συνοπτική Θεωρία και Εργαστήριο Περιεχόμενα Παραρτήματος Α A.1 Γενικά... Α-3 A.2 Αριθμοί και βασικές δομές δεδομένων στο MATLAB... Α-3 A.3 Αριθμητικές
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ηλεκτρονική Υγεία. Εργαστήριο 5 ο : MATLAB
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ηλεκτρονική Υγεία Εργαστήριο 5 ο : MATLAB Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες
11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 11.1 Γενικά περί συνήθων διαφορικών εξισώσεων Μια συνήθης διαφορική εξίσωση (ΣΔΕ) 1 ης τάξης έχει τη μορφή dy d = f (, y()) όπου f(, y) γνωστή και y() άγνωστη συνάρτηση.
Β ΜΕΡΟΣ: ΕΦΑΡΜΟΓΗ ΤΟΥ MATLAB ΣΤΗΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ
Β ΜΕΡΟΣ: ΕΦΑΡΜΟΓΗ ΤΟΥ MATLAB ΣΤΗΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ 1. Εύρεση ρίζας Στο κεφάλαιο αυτό θα ασχοληθούμε με την εύρεση ρίζας μιας συνάρτησης ή αλλιώς με την ευρεση λύσης της εξίσωσης: Πριν αναφερθούμε στην
Προγραμματισμός I (Θ)
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Προγραμματισμός I (Θ) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2017 Δρ. Δημήτρης Βαρσάμης Οκτώβριος
Συναρτήσεις - Όρια- Παράγωγοι- Ολοκληρώματα Ακολουθίες-Σειρές
Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής με εφαρμογές στη Βιοϊατρική Συναρτήσεις - Όρια- Παράγωγοι- Ολοκληρώματα Ακολουθίες-Σειρές Μαθηματική Ανάλυση Ι Συνάρτηση μίας Μεταβλητής
ΠΑΝΕΠΙΣΤΗΜΙΟ AΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ. Εισαγωγή στη Python
ΠΑΝΕΠΙΣΤΗΜΙΟ AΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ ΠΛΗΡΟΦΟΡΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Εισαγωγή στη Python Νικόλαος Ζ. Ζάχαρης Αναπληρωτής
MATLAB Desktop (Επιφάνεια Εργασίας MATLAB) [1.]
Εισαγωγή στο MATLAB Το MATLAB αποτελεί ένα εμπορικό εργαλείο το οποίο προσφέρει ένα διαδραστικό προγραμματιστικό περιβάλλον στον χρήστη και χρησιμοποιείται σε ένα μεγάλο εύρος εφαρμογών. Ενσωματώνει μια
Matlab. Εισαγωγικές έννοιες. C. C. Katsidis
Matlab Εισαγωγικές έννοιες C. C. Katsidis m-file editor Εισαγωγή στο Matlab Command Window Εισαγωγή στο Matlab Ορισμός και γραφικές παραστάσεις συναρτήσεων στο matlab (συνάρτηση y=x 2 ) Ορισμός και γραφικές
( ) ( ) ( ) ( ) ενώ η εξίσωση της παραβολής είναι η
ΤΕΜΦΕ 4 ο Εξάµηνο Αριθµητική Ανάλυση Ι 1 η Εργαστηριακή Άσκηση Μέθοδος Müller Αν θέλαµε να ερµηνεύσουµε γεωµετρικά τη µέθοδο Secant θα βλέπαµε ότι σε κάθε βήµα φέρουµε την ευθεία που διέρχονται από τις
Λογικά Διανύσματα. >>x = -3/2*pi : pi/100 : 3/2*pi; >>y = tan(x); >>plot(x, y)
Λογικά Διανύσματα Τα λογικά διανύσματα του Matlab είναι πολύ χρήσιμα εργαλεία. Για παράδειγμα ας υποθέσουμε ότι θέλουμε να κάνουμε την γραφική παράσταση της tan(x) στο διάστημα από -3π/2 μέχρι 3π/2. >>x
Προγραμματισμός ΙI (Θ)
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Προγραμματισμός ΙI (Θ) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Μάρτιος 2017 Δρ. Δημήτρης Βαρσάμης Μάρτιος 2017
Προγραμματισμός I (Θ)
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Προγραμματισμός I (Θ) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2017 Δρ. Δημήτρης Βαρσάμης Οκτώβριος
Εισαγωγή στους Υπολογιστές
Εισαγωγή στους Υπολογιστές Ενότητα #5: Διαγράμματα ροής (Flow Charts), Δομές επανάληψης Καθ. Δημήτρης Ματαράς Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Διαγράμματα ροής (Flow Charts), Δομές επανάληψης
Προσεγγιστική λύση Γραμμικών Συστημάτων με την μέθοδο Gauss-Seidel. Δημιουργία κώδικα στο Matlab
Προσεγγιστική λύση Γραμμικών Συστημάτων με την μέθοδο Gauss-Seidel Δημιουργία κώδικα στο Matlab Χατζηγεωργίου Αντώνης Νοέμβριος 2013 Περιεχόμενα 1. Αρχικό πρόβλημα.... 3 2. Εφαρμογή της θεωρίας.... 4 3.
FORTRAN και Αντικειμενοστραφής Προγραμματισμός
FORTRAN και Αντικειμενοστραφής Προγραμματισμός Παραδόσεις Μαθήματος 2016 Δρ Γ Παπαλάμπρου Επίκουρος Καθηγητής ΕΜΠ georgepapalambrou@lmentuagr Εργαστήριο Ναυτικής Μηχανολογίας (Κτίριο Λ) Σχολή Ναυπηγών
1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...
Προγραμματισμός ΙI (Θ)
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Προγραμματισμός ΙI (Θ) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Μάρτιος 2017 Δρ. Δημήτρης Βαρσάμης Μάρτιος 2017
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 5: Πίνακες [1/2] (Διανύσματα)
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 5: Πίνακες [1/2] (Διανύσματα) Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 5 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική
Επιστηµονικός Υπολογισµός Ι - Πρώτη εργαστηριακή άσκηση
Επιστηµονικός Υπολογισµός Ι - Πρώτη εργαστηριακή άσκηση Ηµεροµηνία επιστροφής : Τετάρτη 4/11/2010 18 Οκτωβρίου 2010 1 Γραµµική άλγεβρα (20 µονάδες) Η παράγωγος ενός µητρώου H ορίζεται ως η παράγωγος κάθε
Εισαγωγή στο MATLAB. Κολοβού Αθανασία, ΕΔΙΠ,
Εισαγωγή στο MATLAB Κολοβού Αθανασία, ΕΔΙΠ, akolovou@di.uoa.gr Εγκατάσταση του Matlab Διανέμεται ελεύθερα στα μέλη του ΕΚΠΑ το λογισμικό MATLAB με 75 ταυτόχρονες (concurrent) άδειες χρήσης. Μπορείτε να
Προγραμματισμός I (Θ)
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Προγραμματισμός I (Θ) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2017 Δρ. Δημήτρης Βαρσάμης Οκτώβριος
ΕΡΓΑΣΤΗΡΙΟ ΙV. ΤΜΗΜΑ ΙΕΘΝΟΥΣ ΕΜΠΟΡΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι Μονοβασίλης Θεόδωρος
ΤΜΗΜΑ ΙΕΘΝΟΥΣ ΕΜΠΟΡΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι Μονοβασίλης Θεόδωρος ΕΡΓΑΣΤΗΡΙΟ ΙV Συναρτήσεις στο Mathematica Στο Mathematica υπάρχουν ορισμένες πολλές βασικές συναρτήσεις όπως ημίτονο, συνημίτονο,
2 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 2 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα: ΜΑΘΑΙΝΟΝΤΑΣ ΤΟ MATLAB, ΜΕΡΟΣ B Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν
Διαγράμματα UML στην Ανάλυση. Μέρος Γ Διαγράμματα Επικοινωνίας Διαγράμματα Ακολουθίας Διαγράμματα Μηχανής Καταστάσεων
Διαγράμματα UML στην Ανάλυση Μέρος Γ Διαγράμματα Επικοινωνίας Διαγράμματα Ακολουθίας Διαγράμματα Μηχανής Καταστάσεων περιεχόμενα παρουσίασης Διαγράμματα επικοινωνίας Διαγράμματα ακολουθίας Διαγράμματα
Ανάπτυξη και Σχεδίαση Λογισμικού
Ανάπτυξη και Σχεδίαση Λογισμικού Η γλώσσα προγραμματισμού C Γεώργιος Δημητρίου Εκφράσεις και Λίγες Εντολές Οι εκφράσεις της C Τελεστές Απλές και σύνθετες εντολές Εντολές ελέγχου (επιλογής) Εισαγωγή σε
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 3 Ηµεροµηνία αποστολής στον φοιτητή: 3 Iανουαρίου 004. Τελική ηµεροµηνία αποστολής από τον φοιτητή: 8 Φεβρουαρίου
Προγραμματισμός σε Octave/Matlab
Προγραμματισμός σε Octave/Matlab Συμπληρωματικές σημειώσεις Αναστάσιος Κεσίδης, Αν. Καθηγητής akesidis@uniwa.gr ΠΕΡΙΕΧΟΜΕΝΑ 1 Βασική χρήση του Octave... 4 1.1 Χρήση του Command Window ως αριθμομηχανή...
Ο ΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ MATLAB
Ο ΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ MATLAB (το παρόν αποτελεί τροποποιηµένη έκδοση του οµόνυµου εγχειριδίου του κ. Ν. Μαργαρη) 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ 1.1.1 ΠΡΟΣΘΕΣΗ» 3+5 8 % Το σύµβολο
Εργαστήρια Αριθμητικής Ανάλυσης Ι. 9 ο Εργαστήριο. Απαλοιφή Gauss με μερική οδήγηση - Παρεμβολη
Εργαστήρια Αριθμητικής Ανάλυσης Ι 9 ο Εργαστήριο Απαλοιφή Gauss με μερική οδήγηση - Παρεμβολη 2018 Απαλοιφή Gauss Με Μερική Οδήγηση Για την εύρεση του οδηγού στοιχείου στο k ο βήμα, αναζητούμε το μέγιστο
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης
Γραφικά περιβάλλοντα από τον χρήστη Graphical User Interfaces (GUI)
Γραφικά περιβάλλοντα από τον χρήστη Graphical User Interfaces (GUI) Θα γράψουμε το πρώτο μας GUI το οποίο : 1. Θα σχεδιάζει μια συνάρτηση 2. Θα παρέχει κουμπιά για να αλλάζουμε το χρώμα του γραφήματος
Ασκήσεις Ρομποτικής με την χρήση του MATLAB
Ασκήσεις Ρομποτικής με την χρήση του MATLAB Δρ. Φασουλάς Ιωάννης Επίκουρος Καθηγητής Τ.Ε.Ι. Κρήτης Τµήµα Μηχανολόγων Μηχανικών Τ.Ε. 2 ~Μέρος 1 ο ~ Βασικές Δραστηριότητες με το MATLAB Δραστηριότητα 1: Εξοικείωση