Προγραμματισμός ΙI (Θ)
|
|
- Διόδωρος Κόρακας
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Προγραμματισμός ΙI (Θ) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Μάρτιος 2017 Δρ. Δημήτρης Βαρσάμης Μάρτιος / 35
2 ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΙΙ (Θ) 1 Εισαγωγή 2 Βιβλιοθήκες (Χειρισμός χαρακτήρων) (Μαθηματικές συναρτήσεις) (Διάφορες συναρτήσεις) (Χειρισμός χρόνου) Δρ. Δημήτρης Βαρσάμης Μάρτιος / 35
3 Δομή Διαφανειών 1 Εισαγωγή 2 Βιβλιοθήκες (Χειρισμός χαρακτήρων) (Μαθηματικές συναρτήσεις) (Διάφορες συναρτήσεις) (Χειρισμός χρόνου) Δρ. Δημήτρης Βαρσάμης Μάρτιος / 35
4 Εισαγωγή Αντικείμενο της παρούσης ενότητας είναι οι συναρτήσεις βιβλιοθήκης. Θα αναφερθούμε στις βιβλιοθήκες για χειρισμό αλφαριθμητικών πως τα δημιουργούμε πώς τα διαβάζουμε πώς τα ενημερώνουμε κ.α. Δρ. Δημήτρης Βαρσάμης Μάρτιος / 35
5 Δομή Διαφανειών 1 Εισαγωγή 2 Βιβλιοθήκες (Χειρισμός χαρακτήρων) (Μαθηματικές συναρτήσεις) (Διάφορες συναρτήσεις) (Χειρισμός χρόνου) Δρ. Δημήτρης Βαρσάμης Μάρτιος / 35
6 Δομή Διαφανειών 1 Εισαγωγή 2 Βιβλιοθήκες (Χειρισμός χαρακτήρων) (Μαθηματικές συναρτήσεις) (Διάφορες συναρτήσεις) (Χειρισμός χρόνου) Δρ. Δημήτρης Βαρσάμης Μάρτιος / 35
7 (Χειρισμός χαρακτήρων) Μερικές από τις συναρτήσεις είναι Επιστρέφει μη μηδενική τιμή όταν δεχθεί κάποιο αλφαριθμητικό χαρακτήρα (a-z, A-Z, 0-9), διαφορετικά επιστρέφει μηδέν. Επιστρέφει μη μηδενική τιμή όταν δεχθεί κάποιο χαρακτήρα (a-z, A-Z), διαφορετικά επιστρέφει μηδέν. Επιστρέφει μη μηδενική τιμή όταν δεχθεί κάποιο αριθμητικό χαρακτήρα (0-9), διαφορετικά επιστρέφει μηδέν. Δρ. Δημήτρης Βαρσάμης Μάρτιος / 35
8 (Χειρισμός χαρακτήρων) Επιστρέφει μη μηδενική τιμή όταν δεχθεί χαρακτήρα διαστήματος, διαφορετικά επιστρέφει μηδέν. Επιστρέφει μη μηδενική τιμή όταν δεχθεί κάποιο πεζό χαρακτήρα (a-z), διαφορετικά επιστρέφει μηδέν. Επιστρέφει μη μηδενική τιμή όταν δεχθεί κάποιο κεφαλαίο χαρακτήρα (A-Z), διαφορετικά επιστρέφει μηδέν. Εάν δεχθεί κεφαλαίο χαρακτήρα επιστρέφει τον αντίστοιχο πεζό χαρακτήρα, διαφορετικά επιστρέφει την είσοδο. Δρ. Δημήτρης Βαρσάμης Μάρτιος / 35
9 (Χειρισμός χαρακτήρων) Εάν δεχθεί πεζό χαρακτήρα επιστρέφει τον αντίστοιχο κεφαλαίο χαρακτήρα, διαφορετικά επιστρέφει την είσοδο. Δρ. Δημήτρης Βαρσάμης Μάρτιος / 35
10 (Χειρισμός χαρακτήρων) - Παραδείγματα Έστω το αλφαριθμητικό το οποίο θέλουμε να μετατραπεί ως εξής. Δρ. Δημήτρης Βαρσάμης Μάρτιος / 35
11 (Χειρισμός χαρακτήρων) - Παραδείγματα Δρ. Δημήτρης Βαρσάμης Μάρτιος / 35
12 (Χειρισμός χαρακτήρων) - Παραδείγματα θα εμφανιστεί στην κονσόλα Δρ. Δημήτρης Βαρσάμης Μάρτιος / 35
13 Δομή Διαφανειών 1 Εισαγωγή 2 Βιβλιοθήκες (Χειρισμός χαρακτήρων) (Μαθηματικές συναρτήσεις) (Διάφορες συναρτήσεις) (Χειρισμός χρόνου) Δρ. Δημήτρης Βαρσάμης Μάρτιος / 35
14 (Μαθηματικές συναρτήσεις) Μερικές από τις συναρτήσεις είναι Συνάρτηση C Μαθηματική συνάρτηση a a a b a e a ln(a) log(a) sin(a) cos(a) tan(a) cot(a) Δρ. Δημήτρης Βαρσάμης Μάρτιος / 35
15 (Μαθηματικές συναρτήσεις) - Παραδείγματα Να υπολογιστεί η μαθηματική παράσταση για x = 1 και y = 2. A = ( sin 2 (x) + cos 2 (x) ) + ln(e 2y ) Δρ. Δημήτρης Βαρσάμης Μάρτιος / 35
16 (Μαθηματικές συναρτήσεις) - Παραδείγματα θα εμφανιστεί στην κονσόλα Δρ. Δημήτρης Βαρσάμης Μάρτιος / 35
17 Δομή Διαφανειών 1 Εισαγωγή 2 Βιβλιοθήκες (Χειρισμός χαρακτήρων) (Μαθηματικές συναρτήσεις) (Διάφορες συναρτήσεις) (Χειρισμός χρόνου) Δρ. Δημήτρης Βαρσάμης Μάρτιος / 35
18 (Διάφορες συναρτήσεις) Μερικές από τις συναρτήσεις είναι Επιστρέφει ένα τυχαίο αριθμό από το έως το. Αρχικοποιεί την γεννήτρια τυχαίων αριθμών. Η τιμή που χρησιμοποιείται συνήθως για την αρχικοποίηση είναι η. Δημιουργία διαστημάτων Για να δημιουργήσουμε τυχαίους ακέραιους αριθμούς σε ένα διάστημα [a, b] με b RAND_MAX = max μπορούμε να χρησιμοποιήσουμε τον τύπο [a, b] = mod ([0, max], (b a + 1)) + a Δρ. Δημήτρης Βαρσάμης Μάρτιος / 35
19 (Διάφορες συναρτήσεις) Για να δημιουργήσουμε τυχαίους πραγματικούς αριθμούς σε ένα διάστημα [a, b] με b RAND_MAX μπορούμε να χρησιμοποιήσουμε τον τύπο [a, b] = [0, max] max (b a) + a Γενικά, με τον πολλαπλασιασμό μεγαλώνουμε το εύρος του διαστήματος και με την πρόσθεση μετατοπίζουμε το διάστημα Δρ. Δημήτρης Βαρσάμης Μάρτιος / 35
20 (Διάφορες συναρτήσεις) - Παραδείγματα Να δημιουργηθούν 10 τυχαίοι ακέραιοι αριθμοί στο διάστημα [10, 20] και να υπολογιστεί μέσω συνάρτησης ο μέσος όρος και να εμφανιστεί. Δρ. Δημήτρης Βαρσάμης Μάρτιος / 35
21 (Διάφορες συναρτήσεις) - Παραδείγματα θα εμφανιστεί στην κονσόλα Δρ. Δημήτρης Βαρσάμης Μάρτιος / 35
22 (Διάφορες συναρτήσεις) - Παραδείγματα Δρ. Δημήτρης Βαρσάμης Μάρτιος / 35
23 (Διάφορες συναρτήσεις) - Παραδείγματα Να δημιουργηθούν 10 τυχαίοι πραγματικοί αριθμοί στο διάστημα [ 10, 10] και να υπολογιστούν μέσω συνάρτησης το πλήθος των θετικών, των αρνητικών και των μηδενικών και να εμφανιστούν. Δρ. Δημήτρης Βαρσάμης Μάρτιος / 35
24 (Διάφορες συναρτήσεις) - Παραδείγματα Δρ. Δημήτρης Βαρσάμης Μάρτιος / 35
25 (Διάφορες συναρτήσεις) - Παραδείγματα θα εμφανιστεί στην κονσόλα Δρ. Δημήτρης Βαρσάμης Μάρτιος / 35
26 (Διάφορες συναρτήσεις) - Παραδείγματα Δρ. Δημήτρης Βαρσάμης Μάρτιος / 35
27 Δομή Διαφανειών 1 Εισαγωγή 2 Βιβλιοθήκες (Χειρισμός χαρακτήρων) (Μαθηματικές συναρτήσεις) (Διάφορες συναρτήσεις) (Χειρισμός χρόνου) Δρ. Δημήτρης Βαρσάμης Μάρτιος / 35
28 (Χειρισμός χρόνου) Μερικές από τις συναρτήσεις είναι Επιστρέφει τον χρόνο που έχει περάσει από την έναρξη του προγράμματος σε κύκλους του επεξεργαστή. Για να μετατραπεί σε δευτερόλεπτα διαιρούμε με την σταθερά. Επιστρέφει τον αριθμό δευτερολέπτων που έχουν περάσει από τον δηλωθέντα χρόνο. Επιστρέφει την διαφορά των χρόνων και σε δευτερόλεπτα. Δρ. Δημήτρης Βαρσάμης Μάρτιος / 35
29 (Χειρισμός χρόνου) - Παραδείγματα Να μετρήσετε και να εμφανίσετε τον χρόνο εκτέλεσης της αναδρομικής συνάρτησης Fibonacci για τον υπολογισμό της τιμής F 45. Δρ. Δημήτρης Βαρσάμης Μάρτιος / 35
30 (Χειρισμός χρόνου) - Παραδείγματα Δρ. Δημήτρης Βαρσάμης Μάρτιος / 35
31 (Χειρισμός χρόνου) - Παραδείγματα θα εμφανιστεί στην κονσόλα Δρ. Δημήτρης Βαρσάμης Μάρτιος / 35
32 (Χειρισμός χρόνου) - Παραδείγματα Να μετρήσετε και να εμφανίσετε τον χρόνο εκτέλεσης της αναδρομικής και κανονικής συνάρτησης Fibonacci για τον υπολογισμό της τιμής F 45. Δρ. Δημήτρης Βαρσάμης Μάρτιος / 35
33 (Χειρισμός χρόνου) - Παραδείγματα Δρ. Δημήτρης Βαρσάμης Μάρτιος / 35
34 (Χειρισμός χρόνου) - Παραδείγματα Δρ. Δημήτρης Βαρσάμης Μάρτιος / 35
35 (Χειρισμός χρόνου) - Παραδείγματα Δρ. Δημήτρης Βαρσάμης Μάρτιος / 35
Προγραμματισμός ΙI (Θ)
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Προγραμματισμός ΙI (Θ) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Μάρτιος 2017 Δρ. Δημήτρης Βαρσάμης Μάρτιος 2017
Προγραμματισμός ΙI (Θ)
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Προγραμματισμός ΙI (Θ) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Μάρτιος 2017 Δρ. Δημήτρης Βαρσάμης Μάρτιος 2017
Προγραμματισμός I (Θ)
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Προγραμματισμός I (Θ) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2017 Δρ. Δημήτρης Βαρσάμης Οκτώβριος
Προγραμματισμός ΙI (Θ)
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Προγραμματισμός ΙI (Θ) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Μάρτιος 2017 Δρ. Δημήτρης Βαρσάμης Μάρτιος 2017
Προγραμματισμός I (Θ)
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Προγραμματισμός I (Θ) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δεκέμβριος 2017 Δρ. Δημήτρης Βαρσάμης Δεκέμβριος
Προγραμματισμός ΙI (Θ)
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Προγραμματισμός ΙI (Θ) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Μάρτιος 2017 Δρ. Δημήτρης Βαρσάμης Μάρτιος 2017
Προγραμματισμός I (Θ)
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Προγραμματισμός I (Θ) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2017 Δρ. Δημήτρης Βαρσάμης Οκτώβριος
Προγραμματισμός I (Θ)
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Προγραμματισμός I (Θ) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2017 Δρ. Δημήτρης Βαρσάμης Οκτώβριος
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης
Προγραμματισμός I (Θ)
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Προγραμματισμός I (Θ) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2017 Δρ. Δημήτρης Βαρσάμης Οκτώβριος
Προγραμματισμός ΙI (E)
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Προγραμματισμός ΙI (E) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Μάρτιος 2015 Δρ. Δημήτρης Βαρσάμης Μάρτιος 2015
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
z = c 1 x 1 + c 2 x c n x n
Τεχνολογικό Εκπαιδευτικό Ιδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός & Βελτιστοποίηση Δρ. Δημήτρης Βαρσάμης Καθηγητής Εφαρμογών Δρ. Δημήτρης Βαρσάμης Μάρτιος
Εισαγωγή στον Προγραμματισμό
Εισαγωγή στον Προγραμματισμό Ψευδοτυχαίοι Αριθμοί Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2012-2013 Ψευδοτυχαίοι Αριθμοί Μια γεννήτρια ψευδοτυχαίων αριθμών είναι
Προγραμματισμός ΙI (E)
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Προγραμματισμός ΙI (E) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Μάρτιος 2015 Δρ. Δημήτρης Βαρσάμης Μάρτιος 2015
Προγραμματισμός ΙI (E)
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Προγραμματισμός ΙI (E) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Μάρτιος 2015 Δρ. Δημήτρης Βαρσάμης Μάρτιος 2015
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 37 Αριθμητικές Μέθοδοι
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Ιδιότητες της Συνέλιξης Η συνέλιξη μετατοπισμένων σημάτων
Προγραμματισμός I (E)
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Προγραμματισμός I (E) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης
Προγραμματισμός I (E)
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Προγραμματισμός I (E) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος
Βασικοί τύποι δεδομένων (Pascal) ΕΠΑ.Λ Αλίμου Γ Πληροφορική Δομημένος Προγραμματισμός (Ε) Σχολ. Ετος Κων/νος Φλώρος
Βασικοί τύποι δεδομένων (Pascal) ΕΠΑ.Λ Αλίμου Γ Πληροφορική Δομημένος Προγραμματισμός (Ε) Σχολ. Ετος 2012-13 Κων/νος Φλώρος Απλοί τύποι δεδομένων Οι τύποι δεδομένων προσδιορίζουν τον τρόπο παράστασης των
Εισαγωγή στον Προγραμματισμό με C++
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στον Προγραμματισμό με C++ Ενότητα # 4: Πίνακες Κωνσταντίνος Κουκουλέτσος Τμήμα Αυτοματισμού Άδειες Χρήσης Το παρόν εκπαιδευτικό
Μεθόδων Επίλυσης Προβλημάτων
ΕΠΛ 032.3: 3: Προγραμματισμός Μεθόδων Επίλυσης Προβλημάτων Αχιλλέας Αχιλλέως, Τμήμα Πληροφορικής, Πανεπιστήμιο Κύπρου Email: achilleas@cs.ucy.ac.cy Κεφάλαιο 9 Συναρτήσεις Μέρος II Θέματα ιάλεξης Μη- ομημένος
Εισαγωγή στον Προγραμματισμό
Εισαγωγή στον Προγραμματισμό Αριθμητική Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2012-2013 Δεύτερο Πρόγραμμα 1 / * Second Simple Program : add 2 numbers * / 2
Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πληροφορική Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης
Εισαγωγή στην Πληροφορική & τον Προγραμματισμό
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 3 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ (14/9/2012)
Φτιάξε ένα πρόγραµµα FORTRAN που θα βρίσκει αν ο ακέραιος N που θα εισάγει ο χρήστης είναι άρτιος ή περιττός. Φτιάξε ένα πρόγραµµα FORTRAN που να προσδιορίζει και να τυπώνει την θέση των στοιχείων ενός
ΕΞΕΤΑΣΗ ΙΑΝΟΥΑΡΙΟΥ (28/1/2011)
Φτιάξε ένα πρόγραµµα FORTRAN που θα βρίσκει αν ο ακέραιος N που θα εισάγει ο χρήστης είναι άρτιος ή περιττός. Φτιάξε ένα πρόγραµµα FORTRAN που να προσδιορίζει και να τυπώνει την θέση των στοιχείων ενός
Γραμμικός Προγραμματισμός και Βελτιστοποίηση (Εργαστήριο 2)
Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός και Βελτιστοποίηση (Εργαστήριο 2) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Μάρτιος 2015 Δρ. Δημήτρης Βαρσάμης Γραμμικός Προγραμματισμός (E 1) Μάρτιος
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Δομημένος Προγραμματισμός Ενότητα 5(γ): Εργαστηριακή Άσκηση Αναπλ. Καθηγητής: Κωνσταντίνος Στεργίου Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 2)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 2) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 2) Σεπτέμβριος 2015
Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Δομημένος Προγραμματισμός Ενότητα 4(β): Εργαστηριακή Άσκηση Αναπλ. Καθηγητής: Κωνσταντίνος Στεργίου Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Γραμμικός Προγραμματισμός και Βελτιστοποίηση (Εργαστήριο 3)
Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός και Βελτιστοποίηση (Εργαστήριο 3) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Μάρτιος 2015 Δρ. Δημήτρης Βαρσάμης Γραμμικός Προγραμματισμός (E 3) Μάρτιος
Σημειώσεις του εργαστηριακού μαθήματος Πληροφορική ΙΙ. Εισαγωγή στην γλώσσα προγραμματισμού
Σημειώσεις του εργαστηριακού μαθήματος Πληροφορική ΙΙ Εισαγωγή στην γλώσσα προγραμματισμού Ακαδημαϊκό έτος 2016-2017, Εαρινό εξάμηνο Οι σημειώσεις βασίζονται στα συγγράμματα: A byte of Python (ελληνική
Διαδικασιακός Προγραμματισμός
Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 2 η Τύποι Δεδομένων Δήλωση Μεταβλητών Έξοδος Δεδομένων Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 68 Αριθμητικές Μέθοδοι
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών. Σήματα. και. Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Άσκηση η Να υπολογιστεί η έξοδος του συστήματος με κρουστική απόκριση h()=u()-u(-4) και είσοδο x()=u(-) u(-3)
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ
Ελίνα Μακρή
Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Μετασχηματισμός Laplace Στοιχειωδών Συναρτήσεων Πίνακας Ιδιοτήτων
Αναφορά (1/2) Μπορούμε να ορίσουμε μια άλλη, ισοδύναμη αλλά ίσως πιο σύντομη, ονομασία για ποσότητα (μεταβλητή, σταθερή, συνάρτηση, κλπ.
ΤΡΙΤΗ ΔΙΑΛΕΞΗ Αναφορά (1/2) Μπορούμε να ορίσουμε μια άλλη, ισοδύναμη αλλά ίσως πιο σύντομη, ονομασία για ποσότητα (μεταβλητή, σταθερή, συνάρτηση, κλπ.): Σύνταξη τύπος όνομαα; τύπος όνομαβ{όνομαα}; όνομαβ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΔΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ 7 Ο ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΑΠΟΣΤΟΛΙΑ ΠΑΓΓΕ Περιεχόμενα 2 Δυαδικό Σύστημα Προσημασμένοι δυαδικοί αριθμοί Αφαίρεση
Κεφάλαιο , 3.2: Συναρτήσεις II. (Διάλεξη 12)
Κεφάλαιο 3.5-3.6, 3.2: Συναρτήσεις II (Διάλεξη 12) 12-1 Ανασκόπηση Δομής Προγράμματος με Συναρτήσεις 1 void PrintMessage (); Πρότυπο (Δήλωση) Συνάρτησης (Δηλώνουν τι επιπλέον συναρτήσεις θα χρησιμοποιήσουμε
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ. Πως γίνεται ο ορισμός μιας διαδικασίας; Να δοθούν σχετικά παραδείγματα. ΑΡΧΗ Εντολές ΤΕΛΟΣ_ΔΙΑΔΙΚΑΣΙΑΣ
Πως γίνεται ο ορισμός μιας διαδικασίας; Να δοθούν σχετικά παραδείγματα. Οι διαδικασίες μπορούν να εκτελέσουν οποιαδήποτε λειτουργία και δεν επιστρέφουν μια τιμή όπως οι συναρτήσεις. Κάθε διαδικασία έχει
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 7)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 7) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 7) Δεκέμβριος 2014
Δομημένος Προγραμματισμός (ΤΛ1006)
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κρήτης Σχολή Εφαρμοσμένων Επιστημών Τμήμα Ηλεκτρονικών Μηχανικών Τομέας Αυτοματισμού και Πληροφορικής Δομημένος Προγραμματισμός (ΤΛ1006) Δρ. Μηχ. Νικόλαος Πετράκης, Καθηγητής
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Σύντομες εισαγωγικές σημειώσεις για την. Matlab
Σύντομες εισαγωγικές σημειώσεις για την Matlab Δήλωση Μεταβλητών Για να εισάγει κανείς δεδομένα στη Matlab υπάρχουν πολλοί τρόποι. Ο πιο απλός είναι στη γραμμή εντολών να εισάγουμε αυτό που θέλουμε και
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 7)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 7) Δρ Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 7) Δεκέμβριος 2014 1
Τεχνολογία και Προγραμματισμός Υπολογιστών. Η γλώσσα προγραμματισμού C
Τεχνολογία και Προγραμματισμός Υπολογιστών Η γλώσσα προγραμματισμού C Με μια ματιά Τύπος Πίνακα Μεταβλητές με ενδείκτη Αλφαριθμητικά - Πίνακες Δισδιάστατος Πολυδιάστατος Πίνακας 2 2 Τύπος Πίνακα Σύνθετος
Προγραμματισμός I (Θ)
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Προγραμματισμός I (Θ) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2017 Δρ. Δημήτρης Βαρσάμης Οκτώβριος
Διαδικασιακός Προγραμματισμός
Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 7 η Πίνακες Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην Εφαρμογή Σωτήρης Χριστοδούλου
Γραμμικός Προγραμματισμός και Βελτιστοποίηση (Εργαστήριο 3)
Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός και Βελτιστοποίηση (Εργαστήριο 3) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Μάρτιος 2015 Δρ. Δημήτρης Βαρσάμης Γραμμικός Προγραμματισμός (E 3) Μάρτιος
Σκοπός. Αλγεβρικοί και Λογικοί Υπολογισμοί στη PASCAL
Αλγεβρικοί και Λογικοί Υπολογισμοί στη PASCAL Δυνατότητα ανάπτυξης, μεταγλώττισης και εκτέλεσης προγραμμάτων στη PASCAL. Κατανόηση της σύνταξης των προτάσεων της PASCAL. Κατανόηση της εντολής εξόδου για
Προγραμματισμός I (Θ)
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Προγραμματισμός I (Θ) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2017 Δρ. Δημήτρης Βαρσάμης Οκτώβριος
Προγραμματισμός ΙI (Θ)
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Προγραμματισμός ΙI (Θ) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Μάρτιος 2017 Δρ. Δημήτρης Βαρσάμης Μάρτιος 2017
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Δομή Επανάληψης. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Δομή Επανάληψης Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Δομή Επανάληψης Επανάληψη με αρίθμηση DO = ,
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 8 Ο. Ταξινόμηση και Αναζήτηση Συναρτήσεις χειρισμού οθόνης ΣΙΝΑΤΚΑΣ Ι. ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 8 Ο Ταξινόμηση και Αναζήτηση Συναρτήσεις χειρισμού οθόνης ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ 2010-11 1 Εισαγωγή Η τακτοποίηση των δεδομένων με ιδιαίτερη σειρά είναι πολύ σημαντική λειτουργία που ονομάζεται
Δομημένος Προγραμματισμός (ΤΛ1006)
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κρήτης Σχολή Εφαρμοσμένων Επιστημών Τμήμα Ηλεκτρονικών Μηχανικών Τομέας Αυτοματισμού και Πληροφορικής Δομημένος Προγραμματισμός (ΤΛ1006) Δρ. Μηχ. Νικόλαος Πετράκης, Καθηγητής
Πρόβλημα 29 / σελίδα 28
Πρόβλημα 29 / σελίδα 28 Πρόβλημα 30 / σελίδα 28 Αντιμετάθεση / σελίδα 10 Να γράψετε αλγόριθμο, οποίος θα διαβάζει τα περιεχόμενα δύο μεταβλητών Α και Β, στη συνέχεια να αντιμεταθέτει τα περιεχόμενά τους
ΣΥΝΑΡΤΗΣΕΙΣ. Η σύνταξη μιας συνάρτησης σ ένα κελί έχει την γενική μορφή: =όνομα_συνάρτησης(όρισμα1; όρισμα2;.)
ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση είναι ένας έτοιμος τύπος ο οποίος δέχεται σαν είσοδο τιμές ή συνθήκες και επιστρέφει ένα αποτέλεσμα, το οποίο μπορεί να είναι μια τιμή αριθμητική, αλφαριθμητική, λογική, ημερομηνίας
Η εντολή if-else. Η απλή μορφή της εντολής if είναι η ακόλουθη: if (συνθήκη) { Η γενική μορφή της εντολής ifelse. εντολή_1; εντολή_2;..
Επιλογή - Επανάληψη Η εντολή if-else Ο τελεστής παράστασης συνθήκης H εντολή switch Η εντολές for και while Η εντολή do-while Η εντολές break - continue - goto Μαθηματικές συναρτήσεις Λέξεις κλειδιά στη
7.1 Αλφάβητο. 7.2 Τύποι δεδομένων. 7.3 Σταθερές. 7.4 Μεταβλητές. 7.5 Αριθμητικοί τελεστές. 7.6 Συναρτήσεις. 7.7 Αριθμητικές εκφράσεις. 7.
7.1 Αλφάβητο. 7.2 Τύποι δεδομένων. 7.3 Σταθερές. 7.4 Μεταβλητές. 7.5 Αριθμητικοί τελεστές. 7.6 Συναρτήσεις. 7.7 Αριθμητικές εκφράσεις. 7.8 Εντολή εκχώρησης. 7.1 7.9 Εντολές εισόδου εξόδου. 7.10 Δομή προγράμματος.
Προγραμματισμός Η/Υ (ΤΛ2007 )
Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε.Ι. Κρήτης Προγραμματισμός Η/Υ (ΤΛ2007 ) Δρ. Μηχ. Νικόλαος Πετράκης (npet@chania.teicrete.gr) Ιστοσελίδα Μαθήματος: https://eclass.chania.teicrete.gr/ Εξάμηνο: Εαρινό 2014-15
3.1 Αριθμητικοί και Λογικοί Τελεστές, Μετατροπές Τύπου (Casting)
Εργαστήριο 3: 3.1 Αριθμητικοί και Λογικοί Τελεστές, Μετατροπές Τύπου (Casting) Η C++, όπως όλες οι γλώσσες προγραμματισμού, χρησιμοποιεί τελεστές για να εκτελέσει τις αριθμητικές και λογικές λειτουργίες.
Προγραμματισμός I (Θ)
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Προγραμματισμός I (Θ) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2017 Δρ. Δημήτρης Βαρσάμης Οκτώβριος
I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ
I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ.Δεύτερη παράγωγος.παραβολική προσέγγιση ή επέκταση 3.Κυρτή 4.Κοίλη 5.Ιδιότητες κυρτών/κοίλων συναρτήσεων 6.Σημεία καμπής ΠΑΡΑΡΤΗΜΑ 7.Δεύτερη πλεγμένη παραγώγιση 8.Χαρακτηρισμός
Η-Υ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Εργαστήριο 2 Εντολές Εισόδου/Εξόδου Τελεστές. Δρ. Γιώργος Λαμπρινίδης 23/10/2015 Η - Υ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ 1
Η-Υ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Εργαστήριο 2 Εντολές Εισόδου/Εξόδου Τελεστές Δρ. Γιώργος Λαμπρινίδης amprinidis@pharm.uoa.gr 1 Αριθμητικοί Τελεστές + πρόσθεση - αφαίρεση * πολλαπλασιασμός / διαίρεση Προσοχή! Διαίρεση
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 8)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 8) Δρ Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 8) Δεκέμβριος 2017 1
Προβλήματα που αφορούν εντολές ελέγχου της ροής ενός προγράμματος.
Κεφάλαιο ΙΙ Προβλήματα που αφορούν εντολές ελέγχου της ροής ενός προγράμματος. Στο παρόν κεφάλαιο παρουσιάζονται προβλήματα τα οποία αφορούν κυρίως τις εντολές της C οι οποίες ελέγχουν την ροή εκτέλεσης
Κεφάλαιο 1. Τι θα μάθουμε σήμερα: -AND, OR, NOT. -Ενσωματωμένες συναρτήσεις. -Μαθηματικοί τελεστές -ΤΕΛΕΣΤΕΣ DIV ΚΑΙ MOD. -Προτεραιότητα πράξεων
Κεφάλαιο 1 Αρχή ήμισυ παντός. Πλάτων, 427-347 π.χ., Φιλόσοφος Τι θα μάθουμε σήμερα: -AND, OR, NOT -Ενσωματωμένες συναρτήσεις -Μαθηματικοί τελεστές -ΤΕΛΕΣΤΕΣ DIV ΚΑΙ MOD -Προτεραιότητα πράξεων 1 Λογικές
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Συναρτήσεις στη Visual Basic 6.0
Προγραμματισμός & Εφαρμογές Υπολογιστών Μάθημα 4ο Συναρτήσεις στη Visual Basic 6.0 Κ. Κωστοπούλου Σειρά εκτέλεσης των πράξεων Όταν ορίζετε μια ακολουθία αριθμητικών πράξεων είναι δυνατόν να προκύψει αμφισημία.
Συστήματα Παράλληλης και Κατανεμημένης Επεξεργασίας
Συστήματα Παράλληλης και Κατανεμημένης Επεξεργασίας Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No:06 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων
2ο ΓΕΛ ΑΓ.ΔΗΜΗΤΡΙΟΥ ΑΕΠΠ ΘΕΟΔΟΣΙΟΥ ΔΙΟΝ ΠΡΟΣΟΧΗ ΣΤΑ ΠΑΡΑΚΑΤΩ
ΠΡΟΣΟΧΗ ΣΤΑ ΠΑΡΑΚΑΤΩ ΣΤΑΘΕΡΕΣ είναι τα μεγέθη που δεν μεταβάλλονται κατά την εκτέλεση ενός αλγόριθμου. Εκτός από τις αριθμητικές σταθερές (7, 4, 3.5, 100 κλπ), τις λογικές σταθερές (αληθής και ψευδής)
I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ
I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ.Δεύτερη παράγωγος.κυρτή 3.Κοίλη 4.Ιδιότητες κυρτών/κοίλων συναρτήσεων 5.Σημεία καμπής 6.Παραβολική προσέγγιση(επέκταση) ΠΑΡΑΡΤΗΜΑ 7.Δεύτερη πλεγμένη παραγώγιση 8.Χαρακτηρισμός
12. Συναρτήσεις (Μέρος ΙI)
Προγραμματισμός Μεθόδων Επίλυσης Προβλημάτων 12. Συναρτήσεις (Μέρος ΙI) Ιωάννης Κατάκης Σήμερα o Συναρτήσεις χωρίς παραμέτρους o Συναρτήσεις με παραμέτρους Χωρίς επιστροφή τιμής Με επιστροφή τιμής o Εμβέλεια
ΚΕΦΑΛΑΙΟ 8 Η ΓΛΩΣΣΑ PASCAL
8.1. Εισαγωγή ΚΕΦΑΛΑΙΟ 8 Η ΓΛΩΣΣΑ PACAL Πως προέκυψε η γλώσσα προγραμματισμού Pascal και ποια είναι τα γενικά της χαρακτηριστικά; Σχεδιάστηκε από τον Ελβετό επιστήμονα της Πληροφορικής Nicklaus Wirth to
Προγραμματισμός Ι. Χαρακτήρες. Πανεπιστήμιο Πελοποννήσου Τμήμα Πληροφορικής & Τηλεπικοινωνιών
Χαρακτήρες Πανεπιστήμιο Πελοποννήσου Τμήμα Πληροφορικής & Τηλεπικοινωνιών Νικόλαος Προγραμματισμός Δ. Τσελίκας Ι Χαρακτήρες - Εισαγωγή Έως τώρα έχουμε κατά κύριο λόγο χρησιμοποιήσει τους αριθμητικούς τύπους
Φροντιστήρια Επίγνωση Προτεινόμενα Θέματα Πανελλαδικών ΑΕΠΠ 2015
Φροντιστήρια Επίγνωση Προτεινόμενα Θέματα Πανελλαδικών ΑΕΠΠ 2015 Βάλβης Δημήτριος Μηχανικός Πληροφορικής ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα
Κεφάλαιο 3.5-3.6, 3.2: Συναρτήσεις II. ( ιάλεξη 12) ιδάσκων: ηµήτρης Ζεϊναλιπούρ
Κεφάλαιο 3.5-3.6, 3.2: Συναρτήσεις II ( ιάλεξη 12) ιδάσκων: ηµήτρης Ζεϊναλιπούρ 12-1 Ανασκόπηση οµής Προγράµµατος µε Συναρτήσεις #include 1 void PrintMessage (); Πρότυπο ( ήλωση) Συνάρτησης (
Διαδικασιακός Προγραμματισμός
Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 9 η Χαρακτήρες Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην Εφαρμογή Σωτήρης
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 63 Αριθμητικές Μέθοδοι
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 6)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 6) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 6) Σεπτέμβριος 2015
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÁÈÇÍÁ ΕΚΦΩΝΗΣΕΙΣ
ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ (2ος Κύκλος) ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ηµεροµηνία: Κυριακή 19 Απριλίου 2015 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ Α1.
Μαθηματικά. Ενότητα 2: Δεκαδικοί αριθμοί, κλάσματα, δυνάμεις, ρίζες και ποσοστά. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 2: Δεκαδικοί αριθμοί, κλάσματα, δυνάμεις, ρίζες και ποσοστά Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Αριθμητικά Συστήματα
Αριθμητικά Συστήματα Η ανάγκη του ανθρώπου για μετρήσεις οδήγησε αρχικά στην επινόηση των αριθμών Κατόπιν, στην επινόηση συμβόλων για τη παράσταση τους Τέλος, στη δημιουργία των αριθμητικών συστημάτων:
Δομημένος Προγραμματισμός
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Δομημένος Προγραμματισμός Ενότητα 6: Πίνακες Κώστας Κουκουλέτσος, Καθηγητής Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος 2001-2002 ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #4
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος 2001-2002 ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #4 «Προγραμματισμός Η/Υ» - Τετράδιο Εργαστηρίου #4 2 Γενικά Στο Τετράδιο #4 του Εργαστηρίου θα αναφερθούμε σε θέματα διαχείρισης πινάκων
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Δείκτες & Πίνακες Δείκτες, Πίνακες
Δείκτες & Πίνακες Δείκτες, Πίνακες Δείκτες Δείκτης είναι μια μεταβλητή που ως δεδομένο περιέχει τη θέση μνήμης (διεύθυνση) μιας άλλης μεταβλητής. Μεταβλητές Τιμές. (*) Δείκτης p Μεταβλητή v Δ1. Δ2. τιμή
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2014 1 / 42 Αριθμητικές Μέθοδοι
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ομή Επανάληψης
ΕΠ.1 Να αναπτυχθεί αλγόριθμος που θα εκτυπώνει τους διψήφιους άρτιους ακέραιους. Η άσκηση στην ουσία θα πρέπει να εκτυπώσει του αριθμούς 10, 12, 14,.,96, 98. Μεμιαπρώτηματιάθαμπορούσαμενατηνλύσουμεμετοναπροσπελάσουμετιςτιμές
Κεφάλαιο 5: Εισαγωγή στην Προσομοίωση
Κεφάλαιο 5: Εισαγωγή στην Προσομοίωση Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Γιάννης Γαροφαλάκης Αν. Καθηγητής Προσομοίωση Τεχνικές χρήσης υπολογιστών για τη «μίμηση» των λειτουργιών διαφόρων ειδών
ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Τύποι δεδομένων, μεταβλητές, πράξεις. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης ΥΠΟΛΟΓΙΣΤΕΣ ΙI Τύποι δεδομένων, μεταβλητές, πράξεις Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
APEIROSTIKOS LOGISMOS I
APEIROSTIKOS LOGISMOS I ΟΛΟΗΜΕΡΟ ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΒΛΗΜΑΤΩΝ Λύσεις ασκήσεων φυλλαδίου 4. Άσκηση : Υπολογίστε, αν υπάρχουν, τα παρακάτω όρια. Αν χρειάζεται, υπολογίστε τα αντίστοιχα πλευρικά όρια. + 4 3 + +,