Χειρισμός προβλημάτων με ποσοστά

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Χειρισμός προβλημάτων με ποσοστά"

Transcript

1 Χειρισμός προβλημάτων με ποσοστά Στα προβλήματα με ποσοστά υπάρχει πάντα μία αρχική τιμή, μία μεταβολή της αρχικής τιμής (αύξηση ή μείωση), το ποσοστό της μεταβολής (αύξησης ή μείωσης) της αρχικής τιμής και η τελική τιμή η οποία προκύπτει από την αρχική τιμή αν προσθέσουμε σε αυτή την αύξηση ή αν αφαιρέσουμε τη μείωση. Αρχική τιμή Μεταβολή (αύξηση ή μείωση) Σε ποσοστό Σε ποσό (πάνω στην αρχική τιμή) Τελική τιμή Για την περίπτωση που έχουμε αύξηση, η σχέση που συνδέει την αρχική και την τελική τιμή είναι: Α) Τελική τιμή = Αρχική τιμή + Αύξηση Για την περίπτωση που έχουμε αύξηση, η σχέση που συνδέει την αρχική και την τελική τιμή είναι: Β) Τελική τιμή = Αρχική τιμή Μείωση Η κατάστρωση και η επίλυση των προβλημάτων με ποσοστά μπορεί να γίνει με πολλούς τρόπους, όπως, με τη χρήση τύπων, με εξίσωση, με αναγωγή στη μονάδα. Εδώ προτείνεται η χρήση της απλής (και της σύνθετης) μεθόδου των τριών. Είναι πιο γενική και αποτελεσματική σε όποια εκδοχή και αν τεθεί το πρόβλημα και ταυτόχρονα αναδεικνύει το μαθηματικό υπόβαθρο αυτών των προβλημάτων, που είναι η αναλογική σκέψη.

2 Παράδειγμα προβλήματος στο οποίο η μεταβολή είναι αύξηση Το κόστος ενός προϊόντος είναι ευρώ. Σε αυτό προστίθεται φόρος %, που σε ποσό είναι 10 ευρώ και έτσι η τελική του τιμή είναι 60 ευρώ. Στο πρόβλημα, συνήθως δίνονται δύο από τα παραπάνω και τα άλλα δύο ζητούνται. Παραλλαγές του προβλήματος: 1) Δίνονται: αρχική τιμή ( ) και αύξηση (σε ποσοστό) (%). Ζητούνται: αύξηση (σε ποσό) και τελική τιμή. Ποσοστά: Αρχική τιμή: Αύξηση: Τελική τιμή: 1 Ποσά: Αρχική τιμή: Αύξηση: x Τελική τιμή: y x y y = 1 1 = 10 y = = 60 2) Δίνονται: αρχική τιμή ( ) και αύξηση (σε ποσό) (10 ). Ζητούνται: αύξηση (σε ποσοστό) και τελική τιμή. Τελική τιμή = Αρχική τιμή + αύξηση = + 10 = 60 Ποσοστά: Αρχική τιμή: Αύξηση: x Ποσά: Αρχική τιμή: Αύξηση: = % 3) Δίνονται: αρχική τιμή ( ) και τελική τιμή (60 ). Ζητούνται: αύξηση (σε ποσό) και αύξηση (σε ποσοστό). Αύξηση (σε ποσό) = Τελική τιμή Αρχική τιμή = 60 = 10 Ποσοστά: Αρχική τιμή: Αύξηση: x Ποσά: Αρχική τιμή: Αύξηση: = %

3 4) Δίνονται: αύξηση (σε ποσό) (10 ) και αύξηση (σε ποσοστό) (%). Ζητούνται: αρχική τιμή και τελική τιμή. Ποσοστά: Αρχική τιμή: Αύξηση: Τελική τιμή: 1 Ποσά: Αρχική τιμή: x Αύξηση: 10 Τελική τιμή: y x y 10 y = = y = 1 10 = 60 5) Δίνονται: αύξηση (σε ποσό) (10 ) και τελική τιμή (60 ). Ζητούνται: αρχική τιμή και αύξηση (σε ποσοστό). Αρχική τιμή = Τελική τιμή Αύξηση (σε ποσό) = = Ποσοστά: Αρχική τιμή: Αύξηση: x Ποσά: Αρχική τιμή: Αύξηση: = % 6) Δίνονται: αύξηση (σε ποσοστό) (%) και τελική τιμή (60). Ζητούνται: αρχική τιμή και αύξηση (σε ποσό). Ποσοστά: Αρχική τιμή: Αύξηση: Τελική τιμή: 1 Ποσά: Αρχική τιμή: x Αύξηση: y Τελική τιμή: 60 x 60 y y = = y = 1 1

4 Με ανάλογο τρόπο χειριζόμαστε το πρόβλημα όταν η μεταβολή είναι μείωση. Παράδειγμα προβλήματος στο οποίο η μεταβολή είναι μείωση Το κόστος ενός προϊόντος είναι ευρώ. Σε αυτό γίνεται έκπτωση %, που σε ποσό είναι 10 ευρώ και έτσι η τελική του τιμή είναι 40 ευρώ. Στο πρόβλημα, συνήθως δίνονται δύο από τα παραπάνω και τα άλλα δύο ζητούνται. Παραλλαγές του προβλήματος: 1) Δίνονται: αρχική τιμή ( ) και μείωση (σε ποσοστό) (%). Ζητούνται: μείωση (σε ποσό) και τελική τιμή. Ποσοστά: Αρχική τιμή: Μείωση: Τελική τιμή: 80 Ποσά: Αρχική τιμή: Μειωση: x Τελική τιμή: y x y y = = 10 y = 2) Δίνονται: αρχική τιμή ( ) και μείωση (σε ποσό) (10 ). Ζητούνται: μείωση (σε ποσοστό) και τελική τιμή. Τελική τιμή = Αρχική τιμή μείωση = 10 = 40 Ποσοστά: Αρχική τιμή: Μείωση: x Ποσά: Αρχική τιμή: Μείωση: = % 3) Δίνονται: αρχική τιμή ( ) και τελική τιμή (40 ). Ζητούνται: μείωση (σε ποσό) και μείωση (σε ποσοστό). Μείωση (σε ποσό) = Αρχική τιμή Τελική τιμή = 40 = 10 Ποσοστά: Αρχική τιμή: Μείωση: x Ποσά: Αρχική τιμή: Μείωση: = %

5 4) Δίνονται: μείωση (σε ποσό) (10 ) και μείωση (σε ποσοστό) (%). Ζητούνται: αρχική τιμή και τελική τιμή. Ποσοστά: Αρχική τιμή: Μείωση: Τελική τιμή: 80 Ποσά: Αρχική τιμή: x Μείωση: 10 Τελική τιμή: y x y 10 y = = y = = 40 5) Δίνονται: μείωση (σε ποσό) (10 ) και τελική τιμή (40 ). Ζητούνται: αρχική τιμή και μείωση (σε ποσοστό). Αρχική τιμή = Τελική τιμή + Μείωση (σε ποσό) = = Ποσοστά: Αρχική τιμή: Μείωση: x Ποσά: Αρχική τιμή: Μείωση: = % 6) Δίνονται: μείωση (σε ποσοστό) (%) και τελική τιμή (40). Ζητούνται: αρχική τιμή και μείωση (σε ποσό). Ποσοστά: Αρχική τιμή: Μείωση: Τελική τιμή: 80 Ποσά: Αρχική τιμή: x Μείωση: y Τελική τιμή: 40 x 40 y y = = y = = 10

5.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ

5.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ 5.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ 5.4.1. Αποτελέσματα από το πρόγραμμα εξ αποστάσεως επιμόρφωσης δασκάλων και πειραματικής εφαρμογής των νοερών

Διαβάστε περισσότερα

των σχολικών μαθηματικών

των σχολικών μαθηματικών Μια σύγχρονη διδακτική θεώρηση των σχολικών μαθηματικών «Οι περισσότερες σημαντικές έννοιες και διαδικασίες των μαθηματικών διδάσκονται καλύτερα μέσω της επίλυσης προβλημάτων (ΕΠ)» Παραδοσιακή προσέγγιση:

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Υπεύθυνος καθηγητής Χαράλαμπος Λεμονίδης Μέντορας Γεώργιος Γεωργιόπουλος ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ Θέμα Διδασκαλίας Πρόσθεση

Διαβάστε περισσότερα

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Ε+ΣΤ Δημοτικού

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Ε+ΣΤ Δημοτικού Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων 2016-2017 Τάξεις Ε+ΣΤ Δημοτικού Περιεχόμενα Στόχοι Πηγή Υλικού 3.1 Αριθμοί Οι μαθητές πρέπει: Σχολικά βιβλία Ε και ΣΤ Φυσικοί, Δεκαδικοί, μετρήσεις Να μπορούν

Διαβάστε περισσότερα

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ.

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Σάλαρης Πολλές φορές μας δίνεται να λύσουμε ένα πρόβλημα που από την πρώτη

Διαβάστε περισσότερα

1.2 Εξισώσεις 1 ου Βαθμού

1.2 Εξισώσεις 1 ου Βαθμού 1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση

Διαβάστε περισσότερα

ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ

ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ 10 Η ενότητα 7 περιλαμβάνει την ανάλυση και τη σύνθεση των αριθμών μέχρι το 10, στρατηγικές πρόσθεσης/αφαίρεσης και επίλυση προβλημάτων πρόσθεσης και αφαίρεσης. ΔΕΙΚΤΕΣ

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 4: Συστηματικές μέθοδοι επίλυσης κυκλωμάτων Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 978-960-93-7110-0 κωδ.

Διαβάστε περισσότερα

ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΠΕΡΙΛΗΨΗ. Εισαγωγή

ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΠΕΡΙΛΗΨΗ. Εισαγωγή ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ Αθανάσιος Γαγάτσης Τµήµα Επιστηµών της Αγωγής Πανεπιστήµιο Κύπρου Χρήστος Παντσίδης Παναγιώτης Σπύρου Πανεπιστήµιο

Διαβάστε περισσότερα

ΠΛΗ513 - Αυτόνομοι Πράκτορες Αναφορά Εργασίας

ΠΛΗ513 - Αυτόνομοι Πράκτορες Αναφορά Εργασίας ΠΛΗ513 - Αυτόνομοι Πράκτορες Αναφορά Εργασίας Ομάδα εργασίας: LAB51315282 Φοιτητής: Μάινας Νίκος ΑΦΜ: 2007030088 ΠΕΡΙΓΡΑΦΗ ΙΔΕΑΣ Η ιδέα της εργασίας βασίζεται στην εύρεση της καλύτερης πολιτικής για ένα

Διαβάστε περισσότερα

2.2 Οργάνωση και ιοίκηση (Μάνατζµεντ -Management) 2.2.1. Βασικές έννοιες 2.2.2 Ιστορική εξέλιξη τον µάνατζµεντ.

2.2 Οργάνωση και ιοίκηση (Μάνατζµεντ -Management) 2.2.1. Βασικές έννοιες 2.2.2 Ιστορική εξέλιξη τον µάνατζµεντ. 2.2 Οργάνωση και ιοίκηση (Μάνατζµεντ -Management) 2.2.1. Βασικές έννοιες Έχει παρατηρηθεί ότι δεν υπάρχει σαφής αντίληψη της σηµασίας του όρου "διοίκηση ή management επιχειρήσεων", ακόµη κι από άτοµα που

Διαβάστε περισσότερα

A ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ

A ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ 1 A ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ 2 ΕΝΟΤΗΤΑ 1 ΚΑΝΩ ΟΜΑΔΕΣ, ΜΟΤΙΒΑ, ΑΝΤΙΣΤΟΙΧΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΑΣ -Ομαδοποίηση αντικειμένων με διαφορετικούς τρόπους. -Εντοπισμός ομοιοτήτων και

Διαβάστε περισσότερα

Μαθηματικά και Φυσική με Υπολογιστές

Μαθηματικά και Φυσική με Υπολογιστές ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά και Φυσική με Υπολογιστές Σύνθετοι αναλυτικοί - αριθμητικοί υπολογισμοί Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

άλγεβρα και αλγεβρική σκέψη μαρία καλδρυμίδου

άλγεβρα και αλγεβρική σκέψη μαρία καλδρυμίδου άλγεβρα και αλγεβρική σκέψη μαρία καλδρυμίδου άλγεβρα από την επίλυση εξισώσεων στη μελέτη των μεταβολών, των σχέσεων, των κανονικοτήτων και δομών, σε ένα περιβάλλον αναλυτικού συμβολικού συλλογισμού με

Διαβάστε περισσότερα

Μεταβατική Ανάλυση - Φάσορες. Κατάστρωση διαφορικών εξισώσεων. Μεταβατική απόκριση. Γενικό μοντέλο. ,, ( ) είναι γνωστές ποσότητες (σταθερές)

Μεταβατική Ανάλυση - Φάσορες. Κατάστρωση διαφορικών εξισώσεων. Μεταβατική απόκριση. Γενικό μοντέλο. ,, ( ) είναι γνωστές ποσότητες (σταθερές) Μεταβατική Ανάλυση - Φάσορες Πρόσθετες διαφάνειες διαλέξεων Αλέξανδρος Πίνο Δεκέμβριος 2017 Γενικό μοντέλο Απόκριση κυκλώματος πρώτης τάξης, δηλαδή με ένα μόνο στοιχείο C ή L 3 Μεταβατική απόκριση Ξαφνική

Διαβάστε περισσότερα

ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ

ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ Ενότητα 4: Οι αριθμητικοί πράξεις: Πολλαπλασιασμός - Διαίρεση Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία

Διαβάστε περισσότερα

Μαθηματικές Συναντήσεις

Μαθηματικές Συναντήσεις Μαθηματικές Συναντήσεις ΣΗΜΕΙΩΜΑ 1 / ΟΚΤΩΒΡΙΟΣ 16 Ενδεικτικά θέματα μαθηματικών για τις Α, Β και Γ τάξεις του Γενικού Λυκείου Του ΔΗΜΗΤΡΗ ΝΤΡΙΖΟΥ Σχολικού Συμούλου Μαθηματικών Τρικάλων και Καρδίτσας Τα

Διαβάστε περισσότερα

Μαθηµατικά Τεύχος Α. Φύλλα εργασίας. Για παιδιά Ε ΗΜΟΤΙΚΟΥ. Συµπληρωµατικές ασκήσεις & Προβλήµατα Ανάλυση θεωρίας µε ασκήσεις και παραδείγµατα

Μαθηµατικά Τεύχος Α. Φύλλα εργασίας. Για παιδιά Ε ΗΜΟΤΙΚΟΥ. Συµπληρωµατικές ασκήσεις & Προβλήµατα Ανάλυση θεωρίας µε ασκήσεις και παραδείγµατα Παίζω, Σκέφτοµαι, Μαθαίνω Φύλλα εργασίας Μαθηµατικά Τεύχος Α Για παιδιά Ε ΗΜΟΤΙΚΟΥ Συµπληρωµατικές ασκήσεις & Προβλήµατα Ανάλυση θεωρίας µε ασκήσεις και παραδείγµατα 100 σελίδες Περιεχόµενα 1η ενότητα

Διαβάστε περισσότερα

Σύμφωνα με τον ολισμό το Σύμπαν περιγράφεται πλήρως από το ίδιο το Σύμπαν,

Σύμφωνα με τον ολισμό το Σύμπαν περιγράφεται πλήρως από το ίδιο το Σύμπαν, Επινοώντας εκ νέου τη φυσική, στην εποχή της ανάδυσης. Εκδόσεις Κάτοπτρο, 2008. Ο Robert B. Laughlin κατέχει την έδρα φυσικής Robert M. και Anne Bass στο Πανεπιστήμιο Stanford, όπου διδάσκει από το 1985.

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 5 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ 10

ΕΝΟΤΗΤΑ 5 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ 10 Ενότητα 5 1 ΕΝΟΤΗΤΑ 5 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ 10 Η ενότητα 5 αποτελεί εισαγωγή στην έννοια της πρόσθεσης και αφαίρεσης αριθμών μέχρι το 10. Οι διαμερισμοί των αριθμών και εξάσκηση των μαθητών

Διαβάστε περισσότερα

2. Να γράψετε έναν αριθμό που είναι μεγαλύτερος από το 3,456 και μικρότερος από το 3,457.

2. Να γράψετε έναν αριθμό που είναι μεγαλύτερος από το 3,456 και μικρότερος από το 3,457. 1. Ένα κεφάλαιο ενός βιβλίου ξεκινάει από τη σελίδα 32 και τελειώνει στη σελίδα 75. Από πόσες σελίδες αποτελείται το κεφάλαιο; Αν το κεφάλαιο ξεκινάει από τη σελίδα κ και τελειώνει στη σελίδα λ, από πόσες

Διαβάστε περισσότερα

Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Γ Γυμνασίου» των Δημητρίου Αργυράκη, Παναγιώτη Βουργάνα, Κωνσταντίνου Μεντή, Σταματούλας Τσικοπούλου, Μιχαήλ Χρυσοβέργη, έκδοση

Διαβάστε περισσότερα

Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων

Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων Σημειώσεις στα πλαίσια του μαθήματος: Βελτιστοποίηση Συστημάτων Υδατικών Πόρων Υδροπληροφορική Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων Ανδρέας Ευστρατιάδης, Χρήστος Μακρόπουλος

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 5 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ 10

ΕΝΟΤΗΤΑ 5 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ 10 Ενότητα 5 1 ΕΝΟΤΗΤΑ 5 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ 10 Η ενότητα 5 αποτελεί εισαγωγή στην έννοια της πρόσθεσης και αφαίρεσης αριθμών μέχρι το 10. Οι διαμερισμοί των αριθμών και εξάσκηση των μαθητών

Διαβάστε περισσότερα

Συνθέτουν και αναλύουν αριθμούς μέχρι το 100 με βάση την αξία θέσης ψηφίου, χρησιμοποιώντας αντικείμενα, εικόνες, και σύμβολα.

Συνθέτουν και αναλύουν αριθμούς μέχρι το 100 με βάση την αξία θέσης ψηφίου, χρησιμοποιώντας αντικείμενα, εικόνες, και σύμβολα. ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ 10 Η ενότητα 7 περιλαμβάνει τους διαμερισμούς και τη σύνθεση των αριθμών μέχρι το 10, στρατηγικές πρόσθεσης/αφαίρεσης και επίλυση προβλημάτων πρόσθεσης και αφαίρεσης.

Διαβάστε περισσότερα

ΙΑΛΕΞΕΙΣ ΜΗΧΑΝΙΚΗΣ. Την Κινηµατική (µελετάει την κίνηση των σωµάτων χωρίς να ενδιαφέρεται για τις δυνάµεις που ενεργούν στα σώµατα)

ΙΑΛΕΞΕΙΣ ΜΗΧΑΝΙΚΗΣ. Την Κινηµατική (µελετάει την κίνηση των σωµάτων χωρίς να ενδιαφέρεται για τις δυνάµεις που ενεργούν στα σώµατα) ΙΑΛΕΞΕΙΣ ΜΗΧΑΝΙΚΗΣ ΤΕΙ / Λ, ΤΜΗΜΑ: ΜΗΧΑΝΙΚΗΣ ΒΙΟΣΥΣΤΗΜΑΤΩΝ Η Μηχανική, εκτός απο θεωρητικός, είναι και εφηρµοσµένος κλάδος της Φυσικής. Αποτελεί την ραχοκοκαλιά της σύγχρονης Μηχανολογίας και διαιρείται

Διαβάστε περισσότερα

Ενότητα 2 Πρόβλημα σελ 13-18

Ενότητα 2 Πρόβλημα σελ 13-18 Πρόβλημα Ποιό θεωρείτε το σημαντικότερο πρόβλημα της ανθρωπότητας και ποιο το σημαντικότερο πρόβλημα που χρήζει αντιμετώπισης στο σχολείο ; Με τον όρο Πρόβλημα προσδιορίζεται μια κατάσταση η οποία χρήζει

Διαβάστε περισσότερα

( ) Ίσες συναρτήσεις. = g, Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f. όταν: Έχουν το ίδιο πεδία ορισμού Α

( ) Ίσες συναρτήσεις. = g, Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f. όταν: Έχουν το ίδιο πεδία ορισμού Α .5.. Ίσες συναρτήσεις ΣΥΝΑΡΤΗΣΕΙΣ 7 Ο ΜΑΘΗΜΑ Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f = g, Έχουν το ίδιο πεδία ορισμού Α Για κάθε x Α ισχύει f ( x) = g( x) Αν για τις συναρτήσεις: f:

Διαβάστε περισσότερα

Η διδακτική αξιοποίηση της Ιστορίας των Μαθηματικών ως μεταπτυχιακό μάθημα. Γιάννης Θωμαΐδης Δρ. Μαθηματικών Σχολικός Σύμβουλος

Η διδακτική αξιοποίηση της Ιστορίας των Μαθηματικών ως μεταπτυχιακό μάθημα. Γιάννης Θωμαΐδης Δρ. Μαθηματικών Σχολικός Σύμβουλος Η διδακτική αξιοποίηση της Ιστορίας των Μαθηματικών ως μεταπτυχιακό μάθημα Γιάννης Θωμαΐδης Δρ. Μαθηματικών Σχολικός Σύμβουλος Διαπανεπιστημιακό Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών ΔΙΔΑΚΤΙΚΗ ΚΑΙ

Διαβάστε περισσότερα

6 η Δραστηριότητα στο MicroWorlds Pro (1)

6 η Δραστηριότητα στο MicroWorlds Pro (1) 6 η Δραστηριότητα στο MicroWorlds Pro (1) Προχωρημένος Προγραμματισμός με Logo Δομή επιλογής Αν & ΑνΔιαφορετικά Στην δραστηριότητα που ακολουθεί, θα προσπαθήσουμε να βρούμε την απόλυτη τιμή ενός αριθμού,

Διαβάστε περισσότερα

Ενδεικτική Οργάνωση Ενοτήτων. E Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1

Ενδεικτική Οργάνωση Ενοτήτων. E Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1 Ενδεικτική Οργάνωση Ενοτήτων E Τάξη Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1 Αρ3.1 Απαγγέλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών μέχρι το 1 000 000 000 8 Επανάληψη

Διαβάστε περισσότερα

Σ. Ασημέλλης. Μαθημαγικά

Σ. Ασημέλλης. Μαθημαγικά Σ. Ασημέλλης Μαθημαγικά Αθήνα 2013 Αφιερωμένο στο δικαίωμα ελεύθερης διάδοσης της γνώσης. Γνωρίζω, οι πρόλογοι των βιβλίων είναι ενδεχομένως το πιο σίγουρο τμήμα τους που κανένας δε διαβάζει. Στην πραγματικότητα

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 2: Γραμμικές συναρτήσεις (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Η κλασματική γραμμή είναι η πράξη της διαίρεσης.

Η κλασματική γραμμή είναι η πράξη της διαίρεσης. όροι του κλάσματος : αριθμητής παρονομαστής πόσα ίσα μέρη της ακέραιης μονάδας πήρα πόσα ίσα μέρη χώρισα την ακέραιη μονάδα Η κλασματική γραμμή είναι η πράξη της διαίρεσης. Τα κόκκινα κομμάτια αποτελούν

Διαβάστε περισσότερα

Αναλογική συλλογιστική: Η σκέψη βασισμένη σε αναλογίες, μοντέλα και παραδείγματα

Αναλογική συλλογιστική: Η σκέψη βασισμένη σε αναλογίες, μοντέλα και παραδείγματα 5 Γνωστική Ψυχολογία ΙΙ (ΨΧ 05) Αναλογική συλλογιστική: Η σκέψη βασισμένη σε αναλογίες, μοντέλα και παραδείγματα Αναλογική σκέψη «Η Η αναλογία διεισδύει δύ σε ολόκληρη λ τη σκέψη μας» (Polya, 1957) Χρήση

Διαβάστε περισσότερα

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή.

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή. Η Αριθµητική Ανάλυση χρησιµοποιεί απλές αριθµητικές πράξεις για την επίλυση σύνθετων µαθηµατικών προβληµάτων. Τις περισσότερες φορές τα προβλήµατα αυτά είναι ή πολύ περίπλοκα ή δεν έχουν ακριβή αναλυτική

Διαβάστε περισσότερα

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 3 Ιανουαρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 3 Ιανουαρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ 8//06 έως τις 05/0/07 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τρίτη Ιανουαρίου 07 Διάρκεια Εξέτασης: ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α Έστω η συνάρτηση ()

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ

ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ Ένα «ανοικτό» αρχείο, δηλαδή επεξεργάσιμο που όλοι μπορούν να συμμετέχουν είτε προσθέτοντας είτε διορθώνοντας υλικό. Μετά

Διαβάστε περισσότερα

H Συμβολή της Υπολογιστικής Σκέψης στην Προετοιμασία του Αυριανού Πολίτη

H Συμβολή της Υπολογιστικής Σκέψης στην Προετοιμασία του Αυριανού Πολίτη H Συμβολή της Υπολογιστικής Σκέψης στην Προετοιμασία του Αυριανού Πολίτη Κοτίνη Ι., Τζελέπη Σ. Σχ. Σύμβουλοι Κ. Μακεδονίας στην οικονομία, στη τέχνη, στην επιστήμη, στις ανθρωπιστικές και κοινωνικές επιστήμες.

Διαβάστε περισσότερα

x < y ή x = y ή y < x.

x < y ή x = y ή y < x. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εαρινό Εξάμηνο 011-1 Τμήμα Μαθηματικών Διδάσκων: Χ.Κουρουνιώτης Μ8 ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΥΣΗΣ Φυλλάδιο 1 Ανισότητες Οι πραγματικοί αριθμοί είναι διατεταγμένοι. Ενισχύουμε αυτήν την ιδέα με

Διαβάστε περισσότερα

Χρονική Αξία του Χρήµατος

Χρονική Αξία του Χρήµατος ΤΕΙ ΑΘΗΝΑΣ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Ι ΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ email: thkazanas@teiath.gr Χρονική Αξία του Χρήµατος Α. ΘΕΩΡΗΤΙΚΟ ΥΠΟΒΑΘΡΟ Η αξία του χρήµατος (όπως λ.χ. ενός

Διαβάστε περισσότερα

Μαθηματικά A Γυμνασίου

Μαθηματικά A Γυμνασίου Μαθηματικά A Γυμνασίου ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ Μέρος Α - Άλγεβρα 1. Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; (σελ. 15) 2. Πως ορίζεται η πράξη της αφαίρεσης στους φυσικούς και πότε αυτή μπορεί να

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Έργων (Y100) Διάλεξη #2 Παραδείγματα Μοντελοποίησης Γραμμικού Προγραμματισμού

Ποσοτικές Μέθοδοι στη Διοίκηση Έργων (Y100) Διάλεξη #2 Παραδείγματα Μοντελοποίησης Γραμμικού Προγραμματισμού Μεταπτυχιακό Πρόγραμμα Σπουδών Διοίκηση και Διαχείριση Έργων και Προγραμμάτων Ποσοτικές Μέθοδοι στη Διοίκηση Έργων (Y100) Διάλεξη #2 Παραδείγματα Μοντελοποίησης Γραμμικού Προγραμματισμού Ερμηνεία Λύσεων

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΕΞΙΣΩΣΕΙΣ

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΕΞΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 4 Ο ΕΞΙΣΩΣΕΙΣ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 4 Ο Εξισώσεις και Προβλήματα ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Εξίσωση με έναν άγνωστο λέγεται... 2. Λύση ή ρίζα της εξίσωσης λέγεται...... 3. Επίλυση εξίσωσης

Διαβάστε περισσότερα

Ικανότητες. Μηδέν είναι μήτε τέχνην άνευ μελέτης μήτε μελέτην άνευ τέχνης ΠΡΩΤΑΓΟΡΑΣ

Ικανότητες. Μηδέν είναι μήτε τέχνην άνευ μελέτης μήτε μελέτην άνευ τέχνης ΠΡΩΤΑΓΟΡΑΣ Ικανότητες Υπολογιστική ικανότητα Μαθηματική ικανότητα Μηχανική ικανότητα Ικανότητα αντίληψης χώρου Γλωσσική ικανότητα Ικανότητα για δουλειές γραφείου Επιδεξιότητα Εικαστική ικανότητα Επαγγελματικές κατευθύνσεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΚΕΦΑΛΑΙΟ Ο ΚΛΑΣΜΑΤΑ Α.. Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΥΓΚΡΙΣΗ ΚΛΑΣΜΑΤΟΣ ΜΕ ΤΟ Αν ο αριθμητής ενός κλάσματος είναι μεγαλύτερος από τον παρανομαστή, τότε το κλάσμα είναι μεγαλύτερο από το. Αν ο αριθμητής

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ Ποια κλάσματα λέγονται ισοδύναμα; Με ποιους τρόπους μπορούμε να φτιάξουμε ισοδύναμα κλάματα; Ποια διαδικασία ονομάζουμε απλοποίηση ενός κλάσματος; Πότε ένα κλάσμα λέγεται ανάγωγο; Ποια κλάσματα λέγονται

Διαβάστε περισσότερα

ΕΠΠΣ & ΑΠΣ ΜΑΘΗΜΑΤΙΚΩΝ (ΦΕΚ 303/2003 σσ )

ΕΠΠΣ & ΑΠΣ ΜΑΘΗΜΑΤΙΚΩΝ (ΦΕΚ 303/2003 σσ ) ΗΛΙΑΣ. ΑΝΑΓΝΩΣΤΟΥ, Σχολικός Σύµβουλος 41 ης ΕΠ Αττικής ΣΤΕΛΙΟΣ Κ. ΚΡΑΣΣΑΣ, Σχολικός Σύµβουλος 31 ης ΕΠ Αττικής ΕΠΠΣ & ΑΠΣ ΜΑΘΗΜΑΤΙΚΩΝ (ΦΕΚ 303/2003 σσ. 3983-4008) ΣΚΟΠΟΣ ΣΤΟ ΕΠΠΣ 1. Σκοπός της ιδασκαλίας

Διαβάστε περισσότερα

Τάξη Β (ομάδα A) ΘΕ ΑΤΑ

Τάξη Β (ομάδα A) ΘΕ ΑΤΑ ο ΓΕ Ο Υ Ε Ο ΟΡ ΘΟΥ Σχολικό έτος -3.Α. Να λυσετε το παρακατω μη γραμμικο συστημα: Τάξη Β (ομάδα A) ì + = ï y ïî - - =- y (μονάδες 3). δυο ευθειες του επιπεδου τεμνονται αν μονο αν το αντιστοιχο. Ένα γραμμικο

Διαβάστε περισσότερα

Παιδαγωγικές δραστηριότητες μοντελοποίησης με χρήση ανοικτών υπολογιστικών περιβαλλόντων

Παιδαγωγικές δραστηριότητες μοντελοποίησης με χρήση ανοικτών υπολογιστικών περιβαλλόντων Παιδαγωγικές δραστηριότητες μοντελοποίησης με χρήση ανοικτών υπολογιστικών περιβαλλόντων Βασίλης Κόμης, Επίκουρος Καθηγητής Ερευνητική Ομάδα «ΤΠΕ στην Εκπαίδευση» Τμήμα Επιστημών της Εκπαίδευσης και της

Διαβάστε περισσότερα

2.1 Η ΕΞΙΣΩΣΗ αx + β = 0

2.1 Η ΕΞΙΣΩΣΗ αx + β = 0 1 2.1 Η ΕΞΙΣΩΣΗ αx + β = 0 ΘΕΩΡΙΑ 1. Εξίσωση 1 ου βαθµού µε άγνωστο x Κάθε εξίσωση που έχει ή µπορεί να πάρει τη µορφή αx + β = 0. Tο x είναι ο άγνωστος, το α ο συντελεστής του αγνώστου και το β ο σταθερός

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο :.2 -.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων Πολλαπλασιασμός

Διαβάστε περισσότερα

Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού. Φεβρουάριος /2/2013 Α ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ

Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού. Φεβρουάριος /2/2013 Α ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού Φεβρουάριος 2013 Α ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΕΝΟΤΗΤΑ 9 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 20 ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΑΣ -Επέκταση της έννοιας του αριθμού μέχρι

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 5 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ, ΚΛΑΣΜΑΤΑ ΕΜΒΑΔΟΝ ΚΑΙ ΠΕΡΙΜΕΤΡΟΣ ΟΡΘΟΓΩΝΙΟΥ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ

ΕΝΟΤΗΤΑ 5 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ, ΚΛΑΣΜΑΤΑ ΕΜΒΑΔΟΝ ΚΑΙ ΠΕΡΙΜΕΤΡΟΣ ΟΡΘΟΓΩΝΙΟΥ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ, ΚΛΑΣΜΑΤΑ ΕΜΒΑΔΟΝ ΚΑΙ ΠΕΡΙΜΕΤΡΟΣ ΟΡΘΟΓΩΝΙΟΥ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.5 Αναπαριστούν, συγκρίνουν και σειροθετούν ομώνυμα κλάσματα και δεκαδικούς αριθμούς,

Διαβάστε περισσότερα

Κυκλώματα με ημιτονοειδή διέγερση

Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση ονομάζονται εκείνα στα οποία επιβάλλεται τάση της μορφής: = ( ω ϕ ) vt V sin t όπου: V το πλάτος (στιγμιαία μέγιστη τιμή) της τάσης ω

Διαβάστε περισσότερα

Εναλλασσόμενο και μιγαδικοί

Εναλλασσόμενο και μιγαδικοί (olts) Εναλλασσόμενο και μιγαδικοί Γενικά Σε κυκλώματα DC, οι ηλεκτρικές μεγέθη εξαρτώνται αποκλειστικά από τις ωμικές αντιστάσεις, φυσικά μετά την ολοκλήρωση πιθανών μεταβατικών φαινομένων λόγω παρουσίας

Διαβάστε περισσότερα

Μαθηματικά A Δημοτικού. Πέτρος Κλιάπης Σεπτέμβρης 2007

Μαθηματικά A Δημοτικού. Πέτρος Κλιάπης Σεπτέμβρης 2007 Μαθηματικά A Δημοτικού Πέτρος Κλιάπης Σεπτέμβρης 2007 Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση ΌΧΙ απομνημόνευση Αξιοποίηση

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ

ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ 2015-16 ΕΞΕΤΑΣΤΕΑ ΥΛΗ Α ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΥΧΟΣ Α ΕΝΟΤΗΤΑ 1: ΣΥΝΟΛΑ (Σελ. 25 42) Η Έννοια του Συνόλου Σχέσεις Συνόλων Πράξεις Συνόλων ΕΝΟΤΗΤΑ 2: ΑΡΙΘΜΟΙ (Σελ. 46 83)

Διαβάστε περισσότερα

Τα ποσά στα ποσοστά είναι πάντα ανάλογα.

Τα ποσά στα ποσοστά είναι πάντα ανάλογα. Μαθηματικά Κεφάλαιο 42 Λύνω προβλήματα με ποσοστά: Βρίσκω την τελική τιμή Όνομα: Ημερομηνία: / / Θεωρία Τα ποσά στα ποσοστά είναι πάντα ανάλογα. Άρα μπορούμε να λύνουμε τα προβλήματα ποσοστών με τις μεθόδους

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÅÐÉËÏÃÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÅÐÉËÏÃÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_ΜλΘΤ(α) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή Απριλίου 0 ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία Σχολικό Βιβλίο (έκδοση 0) σελίδα

Διαβάστε περισσότερα

Στ Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1

Στ Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1 Ενδεικτική Οργάνωση Ενοτήτων Στ Τάξη Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1 15 Αρ3.1 Απαγγέλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών Επανάληψη μέχρι το 1 000

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

Επαναληπτικές ασκήσεις για τα Χριστούγεννα.

Επαναληπτικές ασκήσεις για τα Χριστούγεννα. Μαθηματικά B Γυμνασίου Επαναληπτικές ασκήσεις για τα Χριστούγεννα. Μέρος Α Άλγεβρα. 1. Να γίνουν οι πράξεις: α. Α=(-3)(-4)+3[(-3).4+(-6) ] β. Β=--8.3+7[7(-3)+(-)(-1)] 8 γ. Γ= 3 ( ) ( 8) 3 9 3 δ. Δ=(-3+9-)(3-9)+(9-0)(4:+).

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Διαγωνισμός Μαθηματικών ικανοτήτων ΠΥΘΑΓΟΡΑΣ ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΓΙΑ ΤΗΝ Α και Β ΤΑΞΗ ΓΥΜΝΑΣΙΟΥ Θέμα 1 ο Από τους αριθμούς 12, 13, 14, 15, 17 αυτός που έχει τους περισσότερους

Διαβάστε περισσότερα

Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων

Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων Σημειώσεις στα πλαίσια του μαθήματος: Βελτιστοποίηση Συστημάτων Υδατικών Πόρων Υδροπληροφορική Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων Ανδρέας Ευστρατιάδης, Χρήστος Μακρόπουλος

Διαβάστε περισσότερα

1) Να συμπληρώσετε τα τετραγωνάκια με τον κατάλληλο μονοψήφιο αριθμό ώστε: (α) ο αριθμός 25 να διαιρείται ακριβώς με το 2, το 3 και το 5

1) Να συμπληρώσετε τα τετραγωνάκια με τον κατάλληλο μονοψήφιο αριθμό ώστε: (α) ο αριθμός 25 να διαιρείται ακριβώς με το 2, το 3 και το 5 Μαθηματικά Α' Γυμνασίου - Ασκήσεις επανάληψης στην Άλγεβρα Σελίδα 1 1) Να συμπληρώσετε τα τετραγωνάκια με τον κατάλληλο μονοψήφιο αριθμό ώστε: (α) ο αριθμός 5 να διαιρείται ακριβώς με το, το και το 5 (β)

Διαβάστε περισσότερα

Ανάλυση ευαισθησίας. Άσκηση 3 Δίνεται ο παρακάτω τελικός πίνακας Simplex. Επιχειρησιακή Έρευνα Γκόγκος Χρήστος

Ανάλυση ευαισθησίας. Άσκηση 3 Δίνεται ο παρακάτω τελικός πίνακας Simplex. Επιχειρησιακή Έρευνα Γκόγκος Χρήστος Τμήμα Μηχανικών Πληροφορικής ΤΕ Ακαδημαϊκό έτος 2016-2017 Άρτα Επιχειρησιακή Έρευνα Γκόγκος Χρήστος Μεταπτυχιακό Μηχανικών Η/Υ και Δικτύων Μεταπτυχιακό Μηχανικών Η/Υ και Δικτύων ΣΕΤ ΑΣΚΗΣΕΩΝ 3 Ανάλυση

Διαβάστε περισσότερα

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Ενότητα 2: Δημιουργία και Επεξεργασία διανυσμάτων και πινάκων μέσω του Matlab Διδάσκουσα: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες

Διαβάστε περισσότερα

3, ( 4), ( 3),( 2), 2017

3, ( 4), ( 3),( 2), 2017 ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

Τμήμα Τεχνολόγων Γεωπόνων - Φλώρινα

Τμήμα Τεχνολόγων Γεωπόνων - Φλώρινα Τμήμα Τεχνολόγων Γεωπόνων - Φλώρινα Μάθημα: Μαθηματικά Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών (1 ο, 2 ο, 3 ο Κεφάλαιο) 11-10-2017, 18-10-2017 Διδάσκουσα: Αριστούλα Κοντογιάννη ΩΡΕΣ ΔΙΔΑΣΚΑΛΙΑΣ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή Απριλίου 0 ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ A Α Θεωρία Σχολικό Βιβλίο (έκδοση 0) σελίδα 5 Α Θεωρία Σχολικό Βιβλίο (έκδοση

Διαβάστε περισσότερα

Επίλυση της πρωτοβάθμιας εξίσωσης με χρήση πλαισίων κειμένου και κουμπιών. Με το σετ αυτών των 4 εντολών τι κάνω ; Διαβάζω τις 2 μεταβλητές α και β.

Επίλυση της πρωτοβάθμιας εξίσωσης με χρήση πλαισίων κειμένου και κουμπιών. Με το σετ αυτών των 4 εντολών τι κάνω ; Διαβάζω τις 2 μεταβλητές α και β. Επίλυση της πρωτοβάθμιας εξίσωσης με χρήση πλαισίων κειμένου και κουμπιών. Οι βασικές εντολές επίλυσης της πρωτοβάθμιας εξίσωσης είναι: 1. Ερώτηση [δώσε το α] 2. Κάνε α απάντηση 3. Ερώτηση [δώσε το β]

Διαβάστε περισσότερα

Όταν οι αριθμοί είναι ομόσημοι Βάζουμε το κοινό πρόσημο και προσθέτουμε

Όταν οι αριθμοί είναι ομόσημοι Βάζουμε το κοινό πρόσημο και προσθέτουμε Κανόνες των προσήμων Στην πρόσθεση Όταν οι αριθμοί είναι ομόσημοι Βάζουμε το κοινό πρόσημο και προσθέτουμε (+) και (+) κάνει (+) + + 3 = +5 (-) και (-) κάνει (-) - - 3 = -5 Όταν οι αριθμοί είναι ετερόσημοι

Διαβάστε περισσότερα

Μαθηματικά και Φυσική με Υπολογιστές

Μαθηματικά και Φυσική με Υπολογιστές ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά και Φυσική με Υπολογιστές Εφαρμογές στη Φυσική Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα. i Π Ρ Ο Λ Ο Γ Ο Σ Το βιβλίο αυτό αποτελεί μια εισαγωγή στα βασικά προβλήματα των αριθμητικών μεθόδων της υπολογιστικής γραμμικής άλγεβρας (computational linear algebra) και της αριθμητικής ανάλυσης (numerical

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΧΗΜΕΙΑΣ

ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΧΗΜΕΙΑΣ ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΧΗΜΕΙΑΣ Κατερίνα Σάλτα ΔιΧηΝΕΤ 2017-2018 Σύνθεση της βιβλιογραφίας Εννοιολογική κατανόηση των μαθητών Επίλυση προβλημάτων Αποτελεσματικές διδακτικές στρατηγικές Επίλυση Προβλημάτων και Χρήση

Διαβάστε περισσότερα

ΑΝΙΧΝΕΥΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΜΑΘΗΜΑΤΙΚΗΣ ΕΠΙΔΟΣΗΣ (ΑΔΜΕ) ΓΙΑ ΜΑΘΗΤΕΣ ΤΟΥ ΔΗΜΟΤΙΚΟΥ. Σ. Παπαϊωάννου, Α. Μουζάκη Γ. Σιδερίδης & Π. Σίμος

ΑΝΙΧΝΕΥΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΜΑΘΗΜΑΤΙΚΗΣ ΕΠΙΔΟΣΗΣ (ΑΔΜΕ) ΓΙΑ ΜΑΘΗΤΕΣ ΤΟΥ ΔΗΜΟΤΙΚΟΥ. Σ. Παπαϊωάννου, Α. Μουζάκη Γ. Σιδερίδης & Π. Σίμος ΑΝΙΧΝΕΥΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΜΑΘΗΜΑΤΙΚΗΣ ΕΠΙΔΟΣΗΣ (ΑΔΜΕ) ΓΙΑ ΜΑΘΗΤΕΣ ΤΟΥ ΔΗΜΟΤΙΚΟΥ Σ. Παπαϊωάννου, Α. Μουζάκη Γ. Σιδερίδης & Π. Σίμος ΜΑΘΗΜΑΤΙΚΑ Αναπόσπαστο μέρος της ανθρώπινης δραστηριότητας Βασικό στοιχείο

Διαβάστε περισσότερα

Εισαγωγή στις Βάσεις Δεδομζνων II

Εισαγωγή στις Βάσεις Δεδομζνων II ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ Εισαγωγή στις Βάσεις Δεδομζνων II Ενότητα: Λογική και Θεωρία Συνόλων Διδάσκων: Πηγουνάκης Κωστής ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΕΡΩΤΗΜΑΤΑ. Και οι απαντήσεις τους

ΜΑΘΗΜΑΤΙΚΑ ΕΡΩΤΗΜΑΤΑ. Και οι απαντήσεις τους ΜΑΘΗΜΑΤΙΚΑ ΕΡΩΤΗΜΑΤΑ Και οι απαντήσεις τους Ποια είναι η διαφορά ανάμεσα στο «παλιό» και στο «σύγχρονο» μάθημα των Μαθηματικών; Στο μάθημα παλαιού τύπου η γνώση παρουσιάζεται στο μαθητή από τον διδάσκοντα

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

Πρόβλημα είναι μια κατάσταση η οποία χρήζει αντιμετώπισης, απαιτεί λύση, η δε λύση της δεν είναι γνωστή, ούτε προφανής.

Πρόβλημα είναι μια κατάσταση η οποία χρήζει αντιμετώπισης, απαιτεί λύση, η δε λύση της δεν είναι γνωστή, ούτε προφανής. Κεφάλαιο 2 - Πρόβλημα 2.1.1. Η έννοια του προβλήματος Πρόβλημα είναι μια κατάσταση η οποία χρήζει αντιμετώπισης, απαιτεί λύση, η δε λύση της δεν είναι γνωστή, ούτε προφανής. 2.1.2. Κατηγορίες προβλημάτων

Διαβάστε περισσότερα

Λύσεις για τις ασκήσεις του lab5

Λύσεις για τις ασκήσεις του lab5 Εισαγωγή Λύσεις για τις ασκήσεις του lab5 Επειδή φάνηκε να υπάρχουν αρκετά προβλήματα σχετικά με τον τρόπο σκέψης για την επίλυση των προβλημάτων του lab5, θα συνοδεύσουμε τις λύσεις με αρκετές επεξηγήσεις,

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μαθηματική τεχνική για αντιμετώπιση προβλημάτων λήψης πολυσταδιακών αποφάσεων Συστηματική διαδικασία εύρεσης εκείνου του συνδυασμού αποφάσεων που βελτιστοποιεί τη συνολική απόδοση

Διαβάστε περισσότερα

Εγχειρίδιο Χρήσης του «Μαθη.Συ.»

Εγχειρίδιο Χρήσης του «Μαθη.Συ.» Εργαστήριο Εκπαιδευτικής Τεχνολογίας Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Φιλοσοφική Σχολή Τμήμα Φ.Π.Ψ., Τομέας Παιδαγωγικής Διευθυντής: Καθ. Χ. Κυνηγός Εγχειρίδιο Χρήσης του «Μαθη.Συ.» Πίνακας

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤ. Β ΛΥΚΕΙΟΥ ΑΠΡΙΛΙΟΣ 2012

ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤ. Β ΛΥΚΕΙΟΥ ΑΠΡΙΛΙΟΣ 2012 ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤ. Β ΛΥΚΕΙΟΥ ΑΠΡΙΛΙΟΣ ΘΕΜΑ Α. Λ Λ Λ Σ - Σ - Λ ΜΟΝΑΔΕΣ Β. α) Δύο συναρτήσεις και g λέγονται ίσες όταν: έχουν το ίδιο πεδίο ορισμού Α και για κάθε A ισχύει ( ) g( ). ΜΟΝΑΔΕΣ β) Μια συνάρτηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν () Στρογγυλοποίησε τον αριθμό 8.987. στις πλησιέστερες: (α) δ ε- κάδες, (β) εκατοντάδες, (γ) χιλιάδες,

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α Τάξης Ημερησίου ΓΕΛ

ΑΛΓΕΒΡΑ Α Τάξης Ημερησίου ΓΕΛ ΑΛΓΕΒΡΑ Α Τάξης Ημερησίου ΓΕΛ ΔΙΔΑΚΤΕΑ ΥΛΗ Ι. Εισαγωγή Το μάθημα «Άλγεβρα και Στοιχεία Πιθανοτήτων» περιέχει σημαντικές μαθηματικές έννοιες, όπως, της απόλυτης τιμής, των προόδων, της συνάρτησης κ.ά.,

Διαβάστε περισσότερα

Α. ΔΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ

Α. ΔΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΜΕΡΟΣ Α.5 ΑΝΙΣΟΤΗΤΕΣ-ΑΝΙΣΩΣΕΙΣ ΜΕ ΕΝΑΝ ΑΓΝΩΣΤΟ 9. 5 ΑΝΙΣΟΤΗΤΕΣ- ΑΝΙΣΩΣΕΙΣ ΜΕ ΕΝΑΝ ΑΓΝΩΣΤΟ Α. ΔΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΟΡΙΣΜΟΙ Εάν έχουμε δύο πραγματικούς αριθμούς α και β τότε λέμε ότι ο α είναι μεγαλύτερος

Διαβάστε περισσότερα

Παρασκευή-17/5/2019. Επανάληψη με ασκήσεις σε όλη την ύλη. Πέμπτη-16/5/2019. Επανάληψη στις παράλληλες ευθείες. που τέμνονται από τρίτη ευθεία,

Παρασκευή-17/5/2019. Επανάληψη με ασκήσεις σε όλη την ύλη. Πέμπτη-16/5/2019. Επανάληψη στις παράλληλες ευθείες. που τέμνονται από τρίτη ευθεία, Παρασκευή-17/5/2019 Επανάληψη με ασκήσεις σε όλη την ύλη. Πέμπτη-16/5/2019 Επανάληψη στις παράλληλες ευθείες που τέμνονται από τρίτη ευθεία, στο άθροισμα γωνιών τριγώνου και στις πράξεις ρητών αριθμών.

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 9: Εσωτερική πράξη και κλάσεις ισοδυναμίας - Δομές Ισομορφισμοί Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος)

Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος) Μαθηματικά Γ Γυμνασίου Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος) 1. Πως προσθέτουμε δυο πραγματικούς αριθμούς; Για να προσθέσουμε δύο ομόσημους αριθμούς, προσθέτουμε τις απόλυτες τιμές τους και στο άθροισμά

Διαβάστε περισσότερα

Η προβληματική κατάσταση Χρήστος Πανούτσος

Η προβληματική κατάσταση Χρήστος Πανούτσος Η προβληματική κατάσταση Χρήστος Πανούτσος Η Τζούλι και η μαμά της έχουν βγει για να αγοράσουν ένα τζιν για το σχολείο. Παρατηρούν έναν πάγκο με την εξής ταμπέλα πάνω: 40% έκπτωση των τιμών στις ετικέτες

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Τ Ν Ο Π Σ Ι Κ Η Τ Λ Η

ΑΛΓΕΒΡΑ Τ Ν Ο Π Σ Ι Κ Η Τ Λ Η Τ Ν Ο Π Σ Ι Κ Η Τ Λ Η ΑΛΓΕΒΡΑ Τα ςημαντικότερα ςημεία τησ θεωρίασ Ερωτήςεισ εμπζδωςησ- απαντήςεισ Μεθοδολογία αςκήςεων Προτεινόμενεσ αςκήςεισ του βιβλίου - διεξοδική ανάλυςη των λφςεων (ςκζψη-βήματα-επεξήγηςη

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ 1. ΓΕΝΙΚΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ ΠΡΟΠΤΥΧΙΑΚΟ ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ 2101101 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 1 ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ Μαθηματικά Ι ΑΥΤΟΤΕΛΕΙΣ

Διαβάστε περισσότερα

= 2. iii) Αν το Q(χ) είναι περιττού βαθµού, βρείτε το άθροισµα των συντελεστών των άρτιων δυνάµεων του χ.

= 2. iii) Αν το Q(χ) είναι περιττού βαθµού, βρείτε το άθροισµα των συντελεστών των άρτιων δυνάµεων του χ. Σύλλογος Θετιών Επιστηµόνων ράµας ιαγωνισµός στη µνήµη του αθηγητή: Βασίλη Ξανθόπουλου Μαθηµατιά : Τάξη: Β ράµα 3 Απριλίου 11 Θέµα 1 ο ίνονται τα πολυώνυµα P(x) αι Q(x) ώστε η εξίσωση P (x) + Q (x) = (1)

Διαβάστε περισσότερα

Α2. Να γράψετε στο τετράδιό σας τους αριθμούς της Στήλης Α και δίπλα τα γράμματα της Στήλης Β που τους αντιστοιχούν.

Α2. Να γράψετε στο τετράδιό σας τους αριθμούς της Στήλης Α και δίπλα τα γράμματα της Στήλης Β που τους αντιστοιχούν. ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ /Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 03-11-2013 ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-8 και δίπλα τη λέξη Σωστό, αν είναι

Διαβάστε περισσότερα

TA ΚΛΑΣΜΑΤΑ ME ΛΙΓΑ ΛΟΓΙΑ

TA ΚΛΑΣΜΑΤΑ ME ΛΙΓΑ ΛΟΓΙΑ TA ΚΛΑΣΜΑΤΑ ME ΛΙΓΑ ΛΟΓΙΑ Τα κλάσµατα ανέκαθεν ταν ένα δύσκολο κοµµάτι κάθε µαθητ. Μπως όµως απλά έχουµε παρεξηγσει κάποια πράγµατα; Ας περιπλανηθούµε µαζί στον «παράξενο» κόσµο των κλασµάτων, µε τη βοθεια

Διαβάστε περισσότερα

ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΑ ΜΕΙΟΝΟΤΙΚΑ ΣΧΟΛΕΙΑ ΠΑΡΑΣΧΙΔΗΣ ΚΥΡΙΑΖΗΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ 3ΗΣ ΠΕΡΙΦΕΡΕΙΑΣ Ν. ΞΑΝΘΗΣ

ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΑ ΜΕΙΟΝΟΤΙΚΑ ΣΧΟΛΕΙΑ ΠΑΡΑΣΧΙΔΗΣ ΚΥΡΙΑΖΗΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ 3ΗΣ ΠΕΡΙΦΕΡΕΙΑΣ Ν. ΞΑΝΘΗΣ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΑ ΜΕΙΟΝΟΤΙΚΑ ΣΧΟΛΕΙΑ ΠΑΡΑΣΧΙΔΗΣ ΚΥΡΙΑΖΗΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ 3ΗΣ ΠΕΡΙΦΕΡΕΙΑΣ Ν. ΞΑΝΘΗΣ ΤΙ ΠΕΡΙΛΑΜΒΑΝΕΙ ΤΟ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ Μοτίβα Προβλήματα

Διαβάστε περισσότερα