Αναλογική συλλογιστική: Η σκέψη βασισμένη σε αναλογίες, μοντέλα και παραδείγματα
|
|
- Νικομήδης Παπαγεωργίου
- 9 χρόνια πριν
- Προβολές:
Transcript
1 5 Γνωστική Ψυχολογία ΙΙ (ΨΧ 05) Αναλογική συλλογιστική: Η σκέψη βασισμένη σε αναλογίες, μοντέλα και παραδείγματα Αναλογική σκέψη «Η Η αναλογία διεισδύει δύ σε ολόκληρη λ τη σκέψη μας» (Polya, 1957) Χρήση στοιχείων από μια κατάσταση πραγμάτων προκειμένου να κατανοήσουμε μια άλλη κατάσταση Στηρίζεται στα κοινά στοιχεία των δύο καταστάσεων και αγνοεί τις διαφορές τους Άρρηκτα δεμένη με το περιεχόμενο των γνώσεων διαφέρει από τις στρατηγικές που λειτουργούν ανεξαρτήτως του ειδικού περιεχομένου των προβλημάτων (Vosniadou & Ortony, 1989) Επηρεάζεται πολύ από τα συμφραζόμενα και το πλαίσιο αναφοράς (το πλαίσιο αναδεικνύει τις σχέσεις ομοιότητας) Πηγή ή βάση & στόχος 2 1
2 Το πρόβλημα των ιεραποστόλων και των κανίβαλων Στην προηγούμενη διάλεξη είδαμε το πρόβλημα των Ιεραποστόλων και των Κανίβαλων ΠροσπαθήστετώραναλύσετετοπρόβληματωνΖηλιάρηδων Συζύγων Αναγνωρίζετε κάποιες ομοιότητες μεταξύ των δύο προβλημάτων; Επιφανειακή ομοιότητα ομική ομοιότητα (αφορά δομικά στοιχεία και βαθύτερες σχέσεις) Αναγνώριση της πηγής ως σχετικής Αφαίρεση της δομής Αντιστοίχηση η των δύο καταστάσεων 3 Gick & Holyoak (1980) 2
3 Gick & Holyoak (1980) Πρόβλημα του όγκου (Duncker, 1945) Πρόβλημα του στρατηγού (κάστρου) με τρεις λύσεις: ιαίρεση του στρατού σε μικρότερες ομάδες Χρήση του δρόμου που ήταν ανοικτός για ανεφοδιασμό του κάστρου Κατασκευή υπόγειας σήραγγας Μόνο η πρώτη εκδοχή ήταν κατάλληλη για τη λύση του προβλήματος του όγκου Μόνο στην πρώτη συνθήκη υπήρξε μεταβίβαση στο πρόβλημα του όγκου Έδειξαν επίσης ότι η διαδικασία αναγνώρισης υποβοηθείται αν δοθούν υποδείξεις προς αυτή την κατεύθυνση ή αν τονιστεί η κοινή σχέση που υπάρχει μεταξύ των προβλημάτων Η αφαίρεση του κοινού στοιχείου βοηθείται αν το άτομο λύσει πολλά παρόμοια προβλήματα που έχουν κοινή την υποκείμενη δομή (Holyoak & Koh, 1987) Νοητικά μοντέλα Ένα μοντέλο περιλαμβάνει τα βασικά στοιχεία ενός συστήματος καθώς και τις αιτιώδεις σχέσεις μεταξύ των στοιχείων αυτών Ο Gentner (1983, 1989) διέκρινε μεταξύ δύο τύπων αντιστοίχισης: Λεκτική ομοιότητα (τα στοιχεία στις δύο περιοχές έχουν παρόμοια χαρακτηριστικά και σχέσεις): Ένα ηλεκτρικό κύκλωμα είναι σαν το σύστημα του κουδουνιού της εξώπορτας Αναλογία (ανόμοια χαρακτηριστικά αλλά παρόμοιες σχέσεις): Ένα ηλεκτρικό κύκλωμα είναι σαν υδραυλικό σύστημα 3
4 Gentner & Gentner (1983) Παρουσίασαν στους συμμετέχοντες δύο μοντέλα για να τους βοηθήσουν να κατανοήσουν τη λειτουργία του ηλεκτρικού κυκλώματος: Το μοντέλο της ροής του νερού Το μοντέλο του κινούμενου πλήθους Στη συνέχεια παρουσίασαν προβλήματα με ηλεκτρικά κυκλώματα, όπου έπρεπε να αποφασίσουν ποιο είχε μεγαλύτερη τάση και ποιο μεγαλύτερη ροή Η επίδραση του μοντέλου στην επίλυση Mayer & Gallini, 1990: Παρουσίασαν στους συμμετέχοντες ένα κείμενο με την περιγραφή της λειτουργίας μιας τρόμπας ποδηλάτου, την ακόλουθη εικόνα και μια σειρά από ερωτήσεις, όπως: «Υποθέστε ότι ανεβοκατεβάζετε το έμβολο της τρόμπας αρκετές φορές και δεν βγαίνει αέρας. Τι μπορεί να συμβαίνει;» 4
5 Η χρήση παραδειγμάτων Το παράδειγμα είναι ένα πρόβλημα από την ίδια γνωστική περιοχή με το πρόβλημα-στόχο αλλά με διαφορετικές τιμές στις μεταβλητές του Reed (1987): Οι άνθρωποι έχουν δυσκολία στη χρήση παραδειγμάτων για την επίλυση νέων προβλημάτων Ακόμη και όταν ένα πρόβλημα έχει παρουσιαστεί και επιλυθεί από τους συμμετέχοντες πρέπει να είναι πανομοιότυπο με το πρόβλημα-στόχο για να βοηθήσει Chi et al. (1989): χρειάζεται ενθάρρυνση του λύτη για ενεργητική προσπάθεια (self-explanations) l Reed (1987) Μια νοσοκόμα ανακατεύει ένα διάλυμα με περιεκτικότητα σε βορικό οξύ 6% με ένα άλλο διάλυμα με περιεκτικότητα 12%. Πόση ποσότητα από τα δύο διαλύματα πρέπει να χρησιμοποιήσει προκειμένου να πάρει 4,5 λίτρα διαλύματος με περιεκτικότητα 8%; 5
6 Reed (1987) H λύση:,06 * δ +,12 * (4,5 δ) =,08 * 4,5 Λύνουμε ως προς δ Reed (1987) Μια κάβα πουλάει ένα μείγμα από φιστίκια και αμύγδαλα. Το κιλό τα φιστίκια κοστίζουν 165 1,65 και τα αμύγδαλα 210 2,10. Για να φτιάξει 30 κιλά από το μείγμα με κόστος 1,83 το κιλό, πόσα κιλά φιστίκια και πόσα κιλά αμύγδαλα πρέπει να χρησιμοποιήσει ο μαγαζάτορας; 6
7 Reed (1987) H λύση: 1,65 * Φ + 2,10 * (30 Φ) = 1,83 * 30 Λύνουμε ως προς Φ Reed (1987) Ένα κράμα χαλκού περιέχει 20% χαλκό και ένα άλλο κράμα 12% χαλκό. Πόση ποσότητα από κάθε κράμα πρέπει να λιώσουμε για να πάρουμε ένα νέο κράμα χαλκού συνολικού βάρους 60 τόνων και περιεκτικότητας σε καθαρό χαλκό 10,4 τόνους; 7
8 Reed (1987) H λύση:,2 * χ +,12 * (60 χ) = 10,4 Λύνουμε ως προς χ Στην επόμενη διάλεξη: Η φύση και η κατάκτηση της γλώσσας 8
Παραγωγικός συλλογισµός
ΑναλογικήΣκέψη Στέλλα Βοσνιάδου Πανεπιστήµιο Αθηνών Παραγωγικός συλλογισµός Οι παραγωγικοί συλλογισµοί αρχίζουν από µια γενική πρόταση που θεωρείται ή υποτίθεται αληθής και µε την επικουρία ενός ακόµη
Χειρισμός προβλημάτων με ποσοστά
Χειρισμός προβλημάτων με ποσοστά Στα προβλήματα με ποσοστά υπάρχει πάντα μία αρχική τιμή, μία μεταβολή της αρχικής τιμής (αύξηση ή μείωση), το ποσοστό της μεταβολής (αύξησης ή μείωσης) της αρχικής τιμής
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΨΥΧΟΛΟΓΙΑ (ΨΧ 00)
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΨΥΧΟΛΟΓΙΑ (ΨΧ 00) Πέτρος Ρούσσος ΔΙΑΛΕΞΗ 5 Έννοιες και Κλασική Θεωρία Εννοιών Έννοιες : Θεμελιώδη στοιχεία από τα οποία αποτελείται το γνωστικό σύστημα Κλασική θεωρία [ή θεωρία καθοριστικών
Ορισμός και φύση της σκέψης. Ορισμός και χαρακτηριστικά της σκέψης σε αντιδιαστολή προς άλλες γνωστικές λειτουργίες. Μεθοδολογικές ιδιαιτερότητες της
1 Γνωστική Ψυχολογία ΙΙ (ΨΧ 05) Πέτρος Ρούσσος Αντικείμενο του μαθήματος (1) Ορισμός και φύση της σκέψης. Ορισμός και χαρακτηριστικά της σκέψης σε αντιδιαστολή προς άλλες γνωστικές λειτουργίες. Μεθοδολογικές
ΣΚΕΨΗ 30/11/2001. Εισαγωγή στην Ψυχολογία Σκέψη Στέλλα Βοσνιάδου
ΣΚΕΨΗ Έννοιες Κλασσική θεωρία: αναγκαία και επαρκεί καθοριστικά γνωρίσµατα Θεωρία των προτύπων: Rosch Medin & Murphy Barsalou Αριθµός µετασχηµατισµών από το πρότυπο Η αναγνώριση των γεωµετρικών σχηµάτων,
ΕΡΩΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΘΕΜΑΤΩΝ ΠΑΛΑΙΟΤΕΡΩΝ ΕΤΩΝ
ΕΡΩΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΘΕΜΑΤΩΝ ΠΑΛΑΙΟΤΕΡΩΝ ΕΤΩΝ 1.1. Ένα υδατικό διάλυμα αλατιού (NaCl) έχει περιεκτικότητα 15%w/v. Αυτό σημαίνει : α) Σε 100g διαλύματος περιέχονται 15g NaCl β) Σε 100mL διαλύματος περιέχονται
των σχολικών μαθηματικών
Μια σύγχρονη διδακτική θεώρηση των σχολικών μαθηματικών «Οι περισσότερες σημαντικές έννοιες και διαδικασίες των μαθηματικών διδάσκονται καλύτερα μέσω της επίλυσης προβλημάτων (ΕΠ)» Παραδοσιακή προσέγγιση:
Copyright: ISBN: 960 631 539 8. 1 601 00. 23510 33535, 6946967552 E-mail: gperdikis@kat.forthnet.gr ,,.2121/1993,. 100/1975., , 51. 2121/1993.
2006 Copyright: - / 1 601 00. 23510 33535, 6946967552 E-mail: gperdikis@kat.forthnet.gr ISBN: 960 631 539 8,,.2121/1993,. 100/1975.,,,,, 51. 2121/1993. , ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ......σελ. 11 ΚΕΦΑΛΑΙΟ 1 1.
ΕΝΤΑΣΗ ΗΛΕΚΤΡΙΚΟΥ ΡΕΥΜΑΤΟΣ (Ε.Χαραλάμπους)
ΕΝΤΑΣΗ ΗΛΕΚΤΡΙΚΟΥ ΡΕΥΜΑΤΟΣ (Ε.Χαραλάμπους) Όνομα Παιδιού: Ναταλία Ασιήκαλη ΤΙΤΛΟΣ ΔΙΕΡΕΥΝΗΣΗΣ: Πως οι παράγοντες υλικό, μήκος και πάχος υλικού επηρεάζουν την αντίσταση και κατ επέκταση την ένταση του ρεύματος
Μάθημα 4. ΟΥΣΙΕΣ ΚΑΙ ΜΕΙΓΜΑΤΑ Δύο η περισσότερες ουσίες μαζί φτιάχνουν ένα μείγμα
Μάθημα 4 ΟΥΣΙΕΣ ΚΑΙ ΜΕΙΓΜΑΤΑ Δύο η περισσότερες ουσίες μαζί φτιάχνουν ένα μείγμα Στο προηγούμενο μάθημα διαπιστώσαμε πειραματικά ότι το χώμα είναι ένα μείγμα. Στο μάθημα αυτό θα μελετήσουμε περισσότερο
ΑΣΚΗΣΗ ΥΔΑΤΟΚΑΛΛΙΕΡΓΕΙΩΝ: Υπολογισμοί με διαλύματα- 1
ΑΣΚΗΣΗ ΥΔΑΤΟΚΑΛΛΙΕΡΓΕΙΩΝ: Υπολογισμοί με διαλύματα- 1 Επί τοις 100 (%) διαλύματα είναι αυτά που έχουν παρασκευαστεί στη βάση του πόσα «μέρη» διαλυτού υπάρχουν διαλυμένα σε 100 μέρη διαλύματος. Ονοματολογία:
«Η κανονική νοητική συνθήκη των ανθρώπων σε κατάσταση εγρήγορσης, που χαρακτηρίζεται από την εμπειρία των αντιλήψεων, σκέψεων, συναισθημάτων,
9 Γνωστική Ψυχολογία ΙΙ (ΨΧ 05) Το πρόβλημα της συνείδησης Μια απόπειρα ορισμού της συνείδησης «Η κανονική νοητική συνθήκη των ανθρώπων σε κατάσταση εγρήγορσης, που χαρακτηρίζεται από την εμπειρία των
1.5 Ταξινόμηση της ύλης
1.5 Ταξινόμηση της ύλης Θεωρία 5.1. Πως ταξινομείται η ύλη; Η ύλη ταξινομείται σε καθαρές ή καθορισμένες ουσίες και μίγματα. Τα μίγματα ταξινομούνται σε ομογενή και ετερογενή. Οι καθορισμένες ουσίες ταξινομούνται
ΔΥΝΑΜΗ ΕΛΞΗΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΗ
ΔΥΝΑΜΗ ΕΛΞΗΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΗ (ΧΡ. ΑΝΤΩΝΙΟΥ) Πρόβλημα: Πώς μπορούμε να αυξήσουμε τη δύναμη έλξης ενός ηλεκτρομαγνήτη; Υποθέσεις: Η δύναμη έλξης του ηλεκτρομαγνήτη αυξάνεται εάν : 1. Αυξήσουμε τον αριθμό
Γνωστική Ψυχολογία Ι (ΨΧ32)
Γνωστική Ψυχολογία Ι (ΨΧ32) Διάλεξη 8 Νοερή απεικόνιση Πέτρος Ρούσσος Νοερή απεικόνιση Μπορείτε να περιγράψετε τι βλέπετε στη φωτογραφία; Νοερό είδωλο (mental image) ή νοητική αναπαράσταση (mental representation):
Έχεις ξαναπαίξει με παιχνίδια που χρησιμοποιούν ηλεκτρισμό στη λειτουργία τους;
ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ Έχεις ξαναπαίξει με παιχνίδια που χρησιμοποιούν ηλεκτρισμό στη λειτουργία τους; Μπορείς να μου αναφέρεις μερικά παραδείγματα; ΣΤΑΔΙΟ 1: ΚΑΤΑΣΤΑΣΗ: ΕΙΔΗΣΕΙΣ:Μια από τις μεγαλύτερες
Εκπαιδευτικό Σενάριο: Αναλογίες. Βασίλης Παπαγεωργίου
Εκπαιδευτικό Σενάριο: Αναλογίες Ιανουάριος 2011 1. Τίτλος Αναλογίες 2. Ταυτότητα Συγγραφέας: Γνωστική περιοχή των μαθηματικών: Άλγεβρα, Γεωμετρία Θέμα: Αναλογίες Συντεταγμένες στο επίπεδο 3. Σκεπτικό 2
Κοινωνικο-πολιτισμική προσέγγιση - VYGOTSKY
Ο πρώτος που διατύπωσε μια ιστορικο-κοινωνική προσέγγιση της ανθρώπινης νοητικής δραστηριότητας η ανθρώπινη δραστηριότητα δια-μεσολαβείται από ιστορικά και κοινωνικά διαμορφωμένα συστήματα συμβολικών αναπαραστάσεων
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 4: Συστηματικές μέθοδοι επίλυσης κυκλωμάτων Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISN: 978-960-93-7110-0 κωδ.
Κεφάλαιο 26 DC Circuits-Συνεχή Ρεύματα. Copyright 2009 Pearson Education, Inc.
Κεφάλαιο 26 DC Circuits-Συνεχή Ρεύματα Περιεχόμενα Κεφαλαίου 26 Ηλεκτρεγερτική Δύναμη (ΗΕΔ) Αντιστάσεις σε σειρά και Παράλληλες Νόμοι του Kirchhoff Κυκλώματα σε Σειρά και Παράλληλα EMF-Φόρτιση Μπαταρίας
ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΣΥΜΒΟΥΛΟΥ ΚΑΘΗΓΗΤΗ: ΑΚΑΔ. ΕΤΟΣ: ΠΑΡΑΤΗΡΗΣΕΙΣ ΟΝ/ΜΟ ΣΠΟΥΔΑΣΤΗ:... ΤΜΗΜΑ:
ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΥΜΒΟΥΛΟΥ ΚΑΘΗΓΗΤΗ: ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΟΝ/ΜΟ ΣΠΟΥΔΑΣΤΗ:... ΤΜΗΜΑ: Β ΔΙΔΑΚΤΙΚΗ ΕΜΠΕΙΡΙΑ: ΕΠΑΣ ΜΑΘΗΤΕΙΑΣ ΟΑΕΔ ΕΙΔΟΣ ΔΙΔΑΣΚΑΛΙΑΣ: ΗΜΕΡΟΜΗΝΙΑ: 00/00/2017 ΟΝ/ΜΟ ΣΥΜΒΟΥΛΟΥ: ΜΑΘΗΜΑ: ΕΝΟΤΗΤΑ: ΤΑΞΗ:
ΚΑΤΑΓΡΑΦΗ ΤΟΥ ΙΧΝΟΥΣ ΤΗΣ ΟΠΤΙΚΗΣ ΑΝΑΖΗΤΗΣΗΣ: ΜΙΑ ΜΕΘΟΔΟΣ ΔΙΕΡΕΥΝΗΣΗΣ ΤΗΣ ΕΠΙΛΕΚΤΙΚΟΤΗΤΑΣ ΤΗΣ ΟΠΗΣ ΩΣ ΒΑΣΙΚΟΥ ΧΑΡΑΚΤΗΡΙΣΤΙΚΟΥ ΤΟΥ ΣΧΗΜΑΤΟΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΧΑΡΤΟΓΡΑΦΙΑΣ ΚΑΤΑΓΡΑΦΗ ΤΟΥ ΙΧΝΟΥΣ ΤΗΣ ΟΠΤΙΚΗΣ ΑΝΑΖΗΤΗΣΗΣ: ΜΙΑ ΜΕΘΟΔΟΣ ΔΙΕΡΕΥΝΗΣΗΣ ΤΗΣ ΕΠΙΛΕΚΤΙΚΟΤΗΤΑΣ
Πώς μελετάμε τις νοητικές λειτουργίες;
Γνωστική Ψυχολογία Ι (ΨΧ32) Διάλεξη 2 Ερευνητικές μέθοδοι της Γνωστικής Ψυχολογίας Πέτρος Ρούσσος Πώς μελετάμε τις νοητικές λειτουργίες; Πειραματική γνωστική ψυχολογία Μελέτη των νοητικών λειτουργιών φυσιολογικών
ΜΕΘΟΔΟΙ & ΤΕΧΝΙΚΕΣ ΕΝΕΡΓΗΤΙΚΗΣ ΑΚΡΟΑΣΗΣ ΙΙ «ΣΥΜΒΟΥΛΕΥΤΙΚΗ ΨΥΧΟΛΟΓΙΑ: ΣΧΕΣΗ ΘΕΡΑΠΕΥΤΗ ΘΕΡΑΠΕΥΟΜΕΝΟΥ»
ΜΕΘΟΔΟΙ & ΤΕΧΝΙΚΕΣ ΕΝΕΡΓΗΤΙΚΗΣ ΑΚΡΟΑΣΗΣ ΙΙ «ΣΥΜΒΟΥΛΕΥΤΙΚΗ ΨΥΧΟΛΟΓΙΑ: ΣΧΕΣΗ ΘΕΡΑΠΕΥΤΗ ΘΕΡΑΠΕΥΟΜΕΝΟΥ» Δρ. ΒΑΣΙΛΙΚΗ ΓΙΩΤΣΙΔΗ (PhD, MSc, MA) Κλινικός & Συμβουλευτικός Ψυχολόγος 1 ΔΟΜΗ ΔΙΑΛΕΞΗΣ Ορισμοί, οφέλη,
ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ
ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΑΔΑΜΗΣ Δ.Κ. / Τ.Κ. E.T. ΕΓΓ/ΝΟΙ ΨΗΦΙΣΑΝ ΕΓΚΥΡΑ ΓΙΟΒΑΣ ΙΩΑΝΝΗΣ ΛΕΥΚΑ ΠΑΝΑΓΙΩΤΗΣ ΜΑΝΤΑΣ ΠΑΝΑΓΙΩΤΗΣ ΔΑΛΙΑΝΗΣ ΓΕΩΡΓΙΟΣ ΑΣΤΡΟΣ 5 2.728 1.860 36 1.825 69 3,8% 152 8,3% 739 40,5%
Ο όρος μεταγνώση χρησιμοποιείται για να περιγράψει τη γνώση μας για τον τρόπο με τον οποίο αντιλαμβανόμαστε, θυμόμαστε, σκεφτόμαστε και ενεργούμε, με
8 Γνωστική Ψυχολογία ΙΙ (ΨΧ 05) Μεταγνώση και μεταγνωστικές διεργασίες Μεταγνώση (1) Cogito ergo sum (Descartes, 1628) Ο όρος μεταγνώση χρησιμοποιείται για να περιγράψει τη γνώση μας για τον τρόπο με τον
ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΤΟ ΑΠ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ
ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΤΟ ΑΠ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ Τι είναι Μαθηματικά; Ποια είναι η αξία τους καθημερινή ζωή ανάπτυξη λογικής σκέψης αισθητική αξία και διανοητική απόλαυση ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΤΟ ΑΠ ΤΟΥ ΔΗΜΟΤΙΚΟΥ
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 16 Συνεχή ρεύματα και κανόνες του Kirchhoff ΦΥΣ102 1 Ηλεκτρεγερτική δύναμη Ένα ηλεκτρικό
ΣΤΡΑΤΗΓΙΚΕΣ ΜΑΘΗΣΗΣ ΜΑΘΗΤΩΝ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ: ΤΑΞΙΝΟΜΗΣΗ ΚΑΙ ΣΧΕΣΗ ΑΚΑΔΗΜΑΪΚΗΣ ΕΠΙΤΥΧΙΑΣ ΚΑΙ ΙΚΑΝΟΤΗΤΑΣ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΟΣ
ΣΤΡΑΤΗΓΙΚΕΣ ΜΑΘΗΣΗΣ ΜΑΘΗΤΩΝ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ: ΤΑΞΙΝΟΜΗΣΗ ΚΑΙ ΣΧΕΣΗ ΑΚΑΔΗΜΑΪΚΗΣ ΕΠΙΤΥΧΙΑΣ ΚΑΙ ΙΚΑΝΟΤΗΤΑΣ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΟΣ STEPHEN J. PAPE & CHUANG WANG Μάθημα: Ειδικά Θέματα ΔτΜ Διδάσκουσα: Μ. Τζεκάκη
Δραστηριότητα Περίπτωσης. Τίτλος: Οι διαφορές της απλής, της σύνθετης και της εμφωλευμένης δομής επιλογής
Δραστηριότητα Περίπτωσης Τίτλος: Οι διαφορές της απλής, της σύνθετης και της εμφωλευμένης δομής επιλογής Γενικός Διδακτικός Στόχος: Να κατανοήσουν οι μαθητές τις διαφορές της απλής, της σύνθετης και της
Ηλεκτρισμός εμπόδια και στόχοι -εμπόδια. Δρ Ευαγγελία Αγγελίδου Σχ. Σύμβουλος Φυσικών Επιστημών
Ηλεκτρισμός εμπόδια και στόχοι -εμπόδια Δρ Ευαγγελία Αγγελίδου Σχ. Σύμβουλος Φυσικών Επιστημών Δομές και φαινόμενα που δεν φαίνονται (π.χ. ηλεκτρόνια-ηλεκτρισμός) Δεν υπάρχουν εμπειρικά δεδομένα Τι βλέπουμε;
Γνωστική Ψυχολογία ΙΙ (ΨΧ 05) Συλλογιστική (1)
Γνωστική Ψυχολογία ΙΙ (ΨΧ 05) Συλλογιστική (1) Συλλογιστική Η γνωστική διεργασία μέσω της οποίας καταλήγουμε σε συμπεράσματα και, μάλιστα, σε συμπεράσματα που συχνά υπερβαίνουν τη διαθέσιμη πληροφορία
Εξελικτική Ψυχολογία: Κοινωνικο-γνωστική ανάπτυξη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εξελικτική Ψυχολογία: Κοινωνικο-γνωστική ανάπτυξη Ενότητα 1 Γνωστική Ανάπτυξη: Εισαγωγικά Στοιχεία Ελευθερία N. Γωνίδα Άδειες Χρήσης Το
Πέραν της θεωρίας του Piaget. Κ. Παπαδοπούλου ΕΚΠΑ/ΤΕΑΠΗ
Πέραν της θεωρίας του Piaget Κ. Παπαδοπούλου ΕΚΠΑ/ΤΕΑΠΗ Προσεγγίσεις επεξεργασίας πληροφοριών Siegler, R. (2002) Πώς Σκέφτονται τα Παιδιά. Αθήνα: Gutenberg. Προσεγγίσεις επεξεργασίας πληροφοριών Η γνωστική
HMY 102 Ανάλυση Ηλεκτρικών Κυκλωμάτων
HMY Ανάλυση Ηλεκτρικών Κυκλωμάτων Από την προηγούμενη διάλεξη Στην κομβική ανάλυση προσδιορίζουμε ένα ουσιαστικό κόμβο ως τον κόμβο αναφοράς, και μετά εφαρμόζουμε τον νόμο του ρεύματος του Kichhoff στους
Στοιχειομετρικοί υπολογισμοί
Στοιχειομετρικοί υπολογισμοί Σε κάθε χημική αντίδραση οι ποσότητες των χημικών ουσιών που αντιδρούν και παράγονται έχουν ορισμένη σχέση μεταξύ τους, η οποία καθορίζεται από τους συντελεστές των ουσιών
Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης
Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 3 ο, Τμήμα Α Ο πυρήνας των μαθηματικών είναι οι τρόποι με τους οποίους μπορούμε να συλλογιζόμαστε στα μαθηματικά. Τρόποι απόδειξης Επαγωγικός συλλογισμός (inductive)
6.5 ΠΡΟΒΛΗΜΑΤΑ ΑΝΑΛΟΓΙΩΝ
1 6.5 ΠΡΟΒΛΗΜΑΤΑ ΑΝΑΛΟΓΙΩΝ ΘΕΩΡΙΑ 1. Τρόποι ελέγχου αν δύο ποσά είναι ανάλογα α) Εξετάζουµε αν µεταβάλλονται µε τον ίδιο τρόπο. ηλαδή, όταν πολλαπλασιάζεται (διαιρείται) η τιµή του ενός µε έναν αριθµό,
7.1 Επίπεδο δικτύου. Ερωτήσεις. λέξεις κλειδιά:
7.1 Επίπεδο δικτύου Ερωτήσεις 1. Με ποιες ενέργειες ασχολείται το επίπεδο δικτύου; Ποιες συσκευές συμμετέχουν σε αυτές τις ενέργειες; 2. Ποιο είναι το χαμηλότερο επίπεδο στο μοντέλο OSI που ασχολείται
Μαθηματικά της Φύσης και της Ζωής
Μαθηματικά της Φύσης και της Ζωής Τάξη: ΣΤ Η γάτα και το ποντίκι 1. Ένα ποντίκι βρίσκεται πάνω σε έναν τοίχο ύψους 2 μέτρων και κάτω στο έδαφος, περιμένοντας το, βρίσκεται μια γάτα. Κατά τη διάρκεια της
Εισαγωγή στην Οικονομική Επιστήμη Ι. Σκέφτομαι ως Οικονομολόγος. Αρ. Διάλεξης: 2
Εισαγωγή στην Οικονομική Επιστήμη Ι Σκέφτομαι ως Οικονομολόγος Αρ. Διάλεξης: 2 Σκέφτομαι ως οικονομολόγος Κάθε αντικείμενο επιστημονικής μελέτης έχει τη δική της επιστημονική ορολογία Μαθηματικά Ολοκληρωτικός
ΓΕΩΡΓΙΚΗ ΧΗΜΕΙΑ Α ΕΞΑΜΗΝΟ
ΓΕΩΡΓΙΚΗ ΧΗΜΕΙΑ Α ΕΞΑΜΗΝΟ ΧΗΜΙΚΗ ΙΣΟΡΡΟΠΙΑ ΗΛΕΚΤΡΟΛΥΤΙΚΩΝ ΔΙΑΛΥΜΑΤΩΝ Διδάσκων : ΦΙΛΙΠΠΟΣ ΒΕΡΒΕΡΙΔΗΣ Διάλεξη 5η 1 ΠΕΡΙΕΧΟΜΕΝΑ ΤΙ EINAI Η ΗΛΕΚΤΡΟΛΥΤΙΚΗ ΔΙΑΣΤΑΣΗ ΠΩΣ ΠΡΑΓΜΑΤΟΠΟΙΕΙΤΑΙ/ ΠΟΥ ΟΦΕΙΛΕΤΑΙ ΘΕΩΡΙΕΣ
Αναφορά (1/2) Μπορούμε να ορίσουμε μια άλλη, ισοδύναμη αλλά ίσως πιο σύντομη, ονομασία για ποσότητα (μεταβλητή, σταθερή, συνάρτηση, κλπ.
ΤΡΙΤΗ ΔΙΑΛΕΞΗ Αναφορά (1/2) Μπορούμε να ορίσουμε μια άλλη, ισοδύναμη αλλά ίσως πιο σύντομη, ονομασία για ποσότητα (μεταβλητή, σταθερή, συνάρτηση, κλπ.): Σύνταξη τύπος όνομαα; τύπος όνομαβ{όνομαα}; όνομαβ
Διδάσκων : Αργύρης Καραπέτσας Καθηγητής Νευροψυχολογίας Νευρογλωσσολογίας Πανεπιστήμιο Θεσσαλίας
Διδάσκων : Αργύρης Καραπέτσας Καθηγητής Νευροψυχολογίας Νευρογλωσσολογίας Πανεπιστήμιο Θεσσαλίας Μάθηση και κατάκτηση των Μαθηματικών ΑΡΙΘΜΗΤΙΚΗ 1/2 Με τον όρο αριθμητική νοείται η μάθηση πρόσθεσης, αφαίρεσης,
Η ΝΟΗΤΙΚΗ ΔΙΕΡΓΑΣΙΑ: Η Σχετικότητα και ο Χρονισμός της Πληροφορίας Σελ. 1
Η ΝΟΗΤΙΚΗ ΔΙΕΡΓΑΣΙΑ: Η Σχετικότητα και ο Χρονισμός της Πληροφορίας Σελ. 1 Μια σύνοψη του Βιβλίου (ΟΠΙΣΘΟΦΥΛΛΟ): Η πλειοψηφία θεωρεί πως η Νόηση είναι μια διεργασία που συμβαίνει στον ανθρώπινο εγκέφαλο.
Συγκέντρωση διαλύματος
Συγκέντρωση διαλύματος 22-1. SOS Ερώτηση: τι ονομάζουμε μοριακότητα κατ όγκο ή Molarity (Μολάριτι); Η μοριακότητα κατ' όγκο ή συγκέντρωση ή Molarity, εκφράζει τα mol διαλυμένης ουσίας που περιέχονται σε
Κοινωνικογνωστικές θεωρίες μάθησης. Διδάσκουσα Φ. Αντωνίου
Κοινωνικογνωστικές θεωρίες μάθησης Διδάσκουσα Φ. Αντωνίου Περίγραμμα Νοοκατασκευαστική θεώρηση της μάθησης Ιστορικό υπόβαθρο Top-down * bottom up Ομαδοσυνεργατική μάθηση Νοοκατασκευαστικές μέθοδοι στην
ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ
ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΜΣ «ΑΝΑΛΥΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΚΑΙ ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ» Παραδείγματα Variation Μεταπτυχιακός Φοιτητής:
Επίλυση Προβλημάτων 1
Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης
HMY 102 Ανάλυση Ηλεκτρικών Κυκλωμάτων
HMY Ανάλυση Ηλεκτρικών Κυκλωμάτων Δρ. Σταύρος Ιεζεκιήλ ezekel@ucy.ac.cy Green Park, Γραφείο Τηλ. 899 Διάλεξη Από την προηγούμενη διάλεξη Στο ΗΜΥ θα επικεντρωθούμε σε γραμμικά και συγκεντρωμένα κυκλώματα
ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΝΑΛΟΓΑ ΚΑΙ ΑΝΤΙΣΤΡΟΦΩΣ ΑΝΑΛΟΓΑ ΠΟΣΑ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΝΑΛΟΓΑ ΚΑΙ ΑΝΤΙΣΤΡΟΦΩΣ ΑΝΑΛΟΓΑ ΠΟΣΑ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 6 Ο ΑΝΑΛΟΓΑ ΠΟΣΑ ΚΑΙ ΑΝΤΙΣΤΡΟΦΩΣ ΑΝΑΛΟΓΑ ΠΟΣΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 1. Προκειμένου να προσδιορίσουμε τη θέση ενός
ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ
ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Χημεία Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α, Β ΤΑΞΕΙΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ ΚΕΝΤΡΙΚΗ ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΠΙΤΡΟΠΗ ΤΡΑΠΕΖΑΣ
H μάθηση υπό το πρίσμα των σύγχρονων παιδαγωγικών αντιλήψεων
H μάθηση υπό το πρίσμα των σύγχρονων παιδαγωγικών αντιλήψεων Συζητήστε τι σημαίνει για σας μαθαίνω; Πώς θεωρείτε ότι μαθαίνουν τα παιδιά; Σημειώστε κάτι που θεωρείτε ότι έμαθαν τα παιδιά σε κάποια από
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ:
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ: ΥΠΕΥΘΥΝΗ ΚΑΘΗΓΗΤΡΙΑ ΤΡΕΣΣΟΥ ΕΥΑΓΓΕΛΙΑ ΘΕΜΑ: «Η ΕΝΝΟΙΑ
ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)
6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,
Μεταπτυχιακή φοιτήτρια: Τσιρογιαννίδου Ευδοξία. Επόπτης: Πλατσίδου Μ. Επίκουρη Καθηγήτρια Β Βαθμολογητής: Παπαβασιλείου-Αλεξίου Ι.
Μεταπτυχιακή φοιτήτρια: Τσιρογιαννίδου Ευδοξία Επόπτης: Πλατσίδου Μ. Επίκουρη Καθηγήτρια Β Βαθμολογητής: Παπαβασιλείου-Αλεξίου Ι.- Λέκτορας Συναισθηματική Νοημοσύνη - Μια μορφή κοινωνικής νοημοσύνης, η
ΜΑΘΗΜΑ / ΤΑΞΗ : ΧΗΜΕΙΑ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 ΗΜΕΡΟΜΗΝΙΑ: 09 / 02 /2014
ΜΑΘΗΜΑ / ΤΑΞΗ : ΧΗΜΕΙΑ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 ΗΜΕΡΟΜΗΝΙΑ: 09 / 02 /2014 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Για τις ερωτήσεις Α1 έως και Α4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί
Άσκηση 21. Συστήματα Αποφάσεων Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης
Εταιρία παράγει σκυρόδεμα με το οποίο προμηθεύει σε καθημερινή βάση διάφορες οικοδομικές επιχειρήσεις. Το σκυρόδεμα παράγεται σε δύο εργοτάξια της εταιρίας, το Α και το Β. Με τα σημερινά δεδομένα, υπάρχει
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 14 Πυκνωτές Διηλεκτρικά
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 14 Πυκνωτές Διηλεκτρικά ΦΥΣ102 1 Πυκνωτές Ένας πυκνωτής αποτελείται από δύο αγωγούς
2.3 Περιεκτικότητα διαλύματος Εκφράσεις περιεκτικότητας
1 Η θεωρία του μαθήματος με ερωτήσεις. 2.3 Περιεκτικότητα διαλύματος Εκφράσεις περιεκτικότητας Ερωτήσεις θεωρίας με απάντηση 3-1. Τι ονομάζεται περιεκτικότητα ενός διαλύματος; Είναι μία έκφραση που δείχνει
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΨΥΧΟΛΟΓΙΑ (ΨΧ 00)
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΨΥΧΟΛΟΓΙΑ (ΨΧ 00) Πέτρος Ρούσσος ΔΙΑΛΕΞΗ 3 Ορισμός της Ψυχολογίας Η επιστήμη που σκοπό έχει να περιγράψει και να εξηγήσει τη συμπεριφορά και τις νοητικές διεργασίες του ανθρώπου (κυρίως)
Το πρόβλημα. 15m. ταμιευτήρας. κανάλι
Το πρόβλημα Μετά από ατύχημα, ρύπος (τριχλωροαιθένιο διαλυμένο στο νερό) διαρρέει στον ταμιευτήρα στο πιο κάτω σχήμα. Υπάρχει ανησυχία για το πόσο γρήγορα θα επηρεαστεί κανάλι στα κατάντη αν δεν ληφθούν
ΔΙΑΓΩΝΙΣΜΑ ΧΗΜΕΙΑΣ Α ΛΥΚΕΙΟΥ - ΠΑΡΑΔΕΙΓΜΑ
ΔΙΑΓΩΝΙΣΜΑ ΧΗΜΕΙΑΣ Α ΛΥΚΕΙΟΥ - ΠΑΡΑΔΕΙΓΜΑ ΘΕΜΑ 1ο Για τις παρακάτω ερωτήσεις Α1-Α3 να μεταφέρετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και δίπλα μόνο το γράμμα που αντιστοιχεί στη σωστή απάντηση.
Γνωστική Ψυχολογία ΙΙ (ΨΧ 05) Λύση Προβλημάτων (2)
Γνωστική Ψυχολογία ΙΙ (ΨΧ 05) Λύση Προβλημάτων (2) Θεωρία Ελέγχου Προόδου (1) MacGregor, Ormerod και Chronicle (2001) Πρόκειται για θεωρία σχετική με την ενορατική λύση προβλημάτων Ευρετική της μεγιστοποίησης
Συστήματα Αυτομάτου Ελέγχου 1
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου Ενότητα # 3: Ανάλογα Συστήματα-Αναλογικά Διαγράμματα Δ. Δημογιαννόπουλος, imogian@eipir.gr Επ. Καθηγητής Τμήματος
Εργαστηριακές ασκήσεις χημείας στις ιδιότητες οξέων και βάσεων
ΕΚΦΕ Δωδεκανήσου Γυμνάσιο Ιαλυσού Τάξη Γ Εργαστηριακές ασκήσεις χημείας στις ιδιότητες οξέων και βάσεων Β.Βελεχέρης ΕΚΦΕ Δωδεκανήσου Γυμνάσιο Ιαλυσού Τάξη Γ Εργαστηριακές ασκήσεις χημείας στις ιδιότητες
ΔΙΑΘΕΜΑΤΙΚΟ ΕΡΓΑΣΤΗΡΙΟ Μαθαίνω να μετρώ τα φυσικά μεγέθη
ΔΙΑΘΕΜΑΤΙΚΟ ΕΡΓΑΣΤΗΡΙΟ Μαθαίνω να μετρώ τα φυσικά μεγέθη Διάρκεια εργαστηρίου: 6 διδακτικές ώρες ΣΔΕ ΝΑΟΥΣΑΣ - Β ΚΥΚΛΟΣ 2014/2015 Υπεύθυνοι καθηγητές: Σταύρος Ραλλάκης (Αριθμητικός Γραμματισμός) & Γιώργος
Ανάλυση Ηλεκτρικών Κυκλωμάτων με Αντιστάσεις
Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ-2: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος Άνοιξη 2008 Ανάλυση Ηλεκτρικών Κυκλωμάτων με Αντιστάσεις H ανάλυση ενός κυκλώματος με αντιστάσεις στη
ΕΙΔΗ ΕΡΕΥΝΑΣ I: ΠΕΙΡΑΜΑΤΙΚΗ ΕΡΕΥΝΑ & ΠΕΙΡΑΜΑΤΙΚΟΙ ΣΧΕΔΙΑΣΜΟΙ
ΤΕΧΝΙΚΕΣ ΕΡΕΥΝΑΣ (# 252) Ε ΕΞΑΜΗΝΟ 9 η ΕΙΣΗΓΗΣΗ ΣΗΜΕΙΩΣΕΙΣ ΕΙΔΗ ΕΡΕΥΝΑΣ I: ΠΕΙΡΑΜΑΤΙΚΗ ΕΡΕΥΝΑ & ΠΕΙΡΑΜΑΤΙΚΟΙ ΣΧΕΔΙΑΣΜΟΙ ΛΙΓΗ ΘΕΩΡΙΑ Στην προηγούμενη διάλεξη μάθαμε ότι υπάρχουν διάφορες μορφές έρευνας
2.5 Συνδεσμολογία Αντιστατών
Κεφάλαιο 2. Ηλεκτρικό Ρεύμα 2.5 Συνδεσμολογία Αντιστατών 1. Τι είναι η ισοδύναμη αντίσταση; Γενικά ονομάζουμε σύστημα (συνδεσμολογία) αντιστατών ένα σύνολο αντιστατών που τους έχουμε συνδέσει με οποιονδήποτε
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α
ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Για τις ερωτήσεις Α.1 έως Α.5 να γράψετε το γράμμα που αντιστοιχεί στη σωστή απάντηση δίπλα στον αριθμό της ερώτησης. Α.1 Ηλεκτρολύτες ονομάζονται: α. όσες χημικές ενώσεις είναι ηλεκτρικά
«Άρτος και Ευρωπαϊκή Ένωση»
«Άρτος και Ευρωπαϊκή Ένωση» Εκπαιδευτικός: Βαμβουνάκη Άρτεμις (ΠΕ 70) Επιβλέπων επιμορφωτής: Μανωλάκης Κωνσταντίνος Σχολείο Διεξαγωγής: Εκπαιδευτήρια Μαυροματάκη-Μητέρα Χανιά, Μάιος 2017 Εισαγωγή Η παρούσα
ΑΣΚΗΣΕΙΣ ΣΤΗ ΟΜΗ ΕΠΙΛΟΓΗΣ (ΑΝΑΦΕΡΟΝΤΑΙ ΟΣΑ ΠΡΟΕΡΧΟΝΤΑΙ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ)
ΑΣΚΗΣΕΙΣ ΣΤΗ ΟΜΗ ΕΠΙΛΟΓΗΣ (ΑΝΑΦΕΡΟΝΤΑΙ ΟΣΑ ΠΡΟΕΡΧΟΝΤΑΙ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) ΑΣΚΗΣΗ 1 (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) Δίνεται ο παρακάτω αλγόριθμος : Αλγόριθμος Παράδειγμα_1 Διάβασε α Αν α < 0 τότε α α * 5 Τέλος_αν
ΓΥΜΝΑΣΙΟ ΑΓΙΑΣ ΒΑΡΒΑΡΑΣ ΣΧΟΛIKH ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ- ΙΟΥΝΙΟΥ 2018 ΤΑΞΗ: Β ΗΜΕΡΟΜΗΝΙΑ: 08 Ιουνίου 2018
ΓΥΜΝΑΣΙΟ ΑΓΙΑΣ ΒΑΡΒΑΡΑΣ ΣΧΟΛIKH ΧΡΟΝΙΑ 2017-2018 ΚΑΤΩ ΠΟΛΕΜΙΔΙΩΝ ΒΑΘΜΟΣ ΧΗΜΕΙΑΣ Αριθμ.:.../25 Αριθμ.:.../20 Υπογραφή:... ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ- ΙΟΥΝΙΟΥ 2018 ΤΑΞΗ: Β ΗΜΕΡΟΜΗΝΙΑ: 08 Ιουνίου
Αναπτυξιακή Ψυχολογία. Διάλεξη 6: Η ανάπτυξη της εικόνας εαυτού - αυτοαντίληψης
Αναπτυξιακή Ψυχολογία Διάλεξη 6: Η ανάπτυξη της εικόνας εαυτού - αυτοαντίληψης Θέματα διάλεξης Η σημασία της αυτοαντίληψης Η φύση και το περιεχόμενο της αυτοαντίληψης Η ανάπτυξη της αυτοαντίληψης Παράγοντες
α n z n = 1 + 2z 2 + 5z 3 n=0
Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Η ύλη συνοπτικά... Γεννήτριες συναρτήσεις Τι είναι η γεννήτρια Στην
Δίκτυα ΙΙ. Κεφάλαιο 7
Δίκτυα ΙΙ Κεφάλαιο 7 Στο κεφάλαιο αυτό παρουσιάζεται ο τρόπος επικοινωνίας σε ένα δίκτυο υπολογιστών. Το κεφάλαιο εστιάζεται στο Επίπεδο Δικτύου του OSI (το οποίο είδατε στο μάθημα της Β Τάξης). Οι βασικές
ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ
ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ 1 η : A) 9,8g H 3 PO 4 αντιδρούν με την κατάλληλη ποσότητα NaCl σύμφωνα με την χημική εξίσωση: H 3 PO 4 + 3NaCl Na 3 PO 4 + 3HCl. Να υπολογίσετε πόσα λίτρα αέριου HCl παράγονται,
Μεταβλητές. Σενάριο για μαθητές Γ γυμνασίου διάρκειας 3+ ωρών
Σενάριο για μαθητές Γ γυμνασίου διάρκειας 3+ ωρών Κύριος στόχος Εισαγωγή στις μεταβλητές, ένταξή τους στη λειτουργία ενός αλγόριθμου και αντιμετώπιση μερικών δυσκολιών, κυρίως προερχόμενων από τις πρότερες
ΜΕΤΑΤΡΟΠΗ ΑΡΧΙΚΟΥ Κ ΤΟΥ ΕΛΑΤΗΡΙΟΥ ΜΗΧΑΝΗΣ ΣΕ Κ=1,1 kg/mm
ΜΕΤΑΤΡΟΠΗ ΑΡΧΙΚΟΥ Κ ΤΟΥ ΕΛΑΤΗΡΙΟΥ ΜΗΧΑΝΗΣ ΣΕ Κ=1,1 kg/mm ΑΓΓΕΛΙΚΗ ΛΕΒΑΝΤΗ ΖΑΝΝΕΙΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΤΜΗΜΑ Α 2 10 ΙΑΝΟΥΑΡΙΟΥ 2010 ΣΕΝΑΡΙΟ : Πρόκειται να μετατρέψουμε τα εμπρός ελατήρια μιας μοτοσυκλέτας
α. Συνόδου β. Μεταφοράς γ. Δικτύου δ. Διασύνδεσης δεδομένων ε. Φυσικού Επιπέδου (Μονάδες 5)
ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ ΙΙ / ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 30/11/2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Ι. ΜΙΧΑΛΕΑΚΟΣ, Α. ΙΛΕΡΗ ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας δίπλα στο
ΕΠΙΜΟΡΦΩΤΙΚΕΣ ΑΝΑΓΚΕΣ ΠΑΙΔΑΓΩΓΩΝ ΠΡΟΣΧΟΛΙΚΗΣ ΗΛΙΚΙΑΣ: ΜΙΑ ΠΙΛΟΤΙΚΗ ΕΡΕΥΝΑ ΣΤΟΥΣ ΠΑΙΔΙΚΟΥΣ ΣΤΑΘΜΟΥΣ ΤΟΥ ΔΗΜΟΥ ΗΡΑΚΛΕΙΟΥ
ΕΠΙΜΟΡΦΩΤΙΚΕΣ ΑΝΑΓΚΕΣ ΠΑΙΔΑΓΩΓΩΝ ΠΡΟΣΧΟΛΙΚΗΣ ΗΛΙΚΙΑΣ: ΜΙΑ ΠΙΛΟΤΙΚΗ ΕΡΕΥΝΑ ΣΤΟΥΣ ΠΑΙΔΙΚΟΥΣ ΣΤΑΘΜΟΥΣ ΤΟΥ ΔΗΜΟΥ ΗΡΑΚΛΕΙΟΥ ΠΕΡΔΙΚΑΚΗ ΕΛΕΝΗ ΒΡΕΦΟΝΗΠΙΟΚΟΜΟΣ Med candidate Επιμορφωτικές & διοικητικές λειτουργίες
ΣΥΜΠΕΡΙΦΟΡΕΣ ΜΑΘΗΤΩΝ ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΣΤΟ ΘΕΜΑ ΤΗΣ ΜΕΤΑΦΟΡΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ
Καβούζη, Ι., Μεσαρίτης, Γ., & Λεμονίδης, Χ., (2008). Συμπεριφορές μαθητών ΣΤ τάξης δημοτικού στο θέμα της μεταφοράς στα μαθηματικά. Πρακτικά 10 ου Παγκύπριου Συνεδρίου Μαθηματικής Παιδείας και Επιστήμης,
Προσομοίωση: Η σκέψη ως αναζήτηση της πορείας προς τη λύση Επαγωγική συλλογιστική: Η σκέψη ως έλεγχος υποθέσεων
3 Γνωστική Ψυχολογία ΙΙ (ΨΧ 05) Προσομοίωση: Η σκέψη ως αναζήτηση της πορείας προς τη λύση Επαγωγική συλλογιστική: Η σκέψη ως έλεγχος υποθέσεων Προσομοίωση Οι υπολογιστές μπορούν να λύσουν προβλήματα συλλογιστικής,
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ-Β ΦΑΣΗ ΘΕΜΑ ΔΙΔΑΣΚΑΛΙΑΣ: ΣΤΡΑΤΗΓΙΚΕΣ ΔΙΑΧΕΙΡΙΣΗΣ ΑΡΙΘΜΩΝ-19 ο ΚΕΦΑΛΑΙΟ ΣΧΟΛΕΙΟ: 2 ο ΠΕΙΡΑΜΑΤΙΚΟ ΦΛΩΡΙΝΑΣ
Βασικές Οικονοµικές Έννοιες
ΠΡΩΤΟ ΚΕΦΑΛΑΙΟ Βασικές Οικονοµικές Έννοιες ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ Ερωτήσεις της µορφής σωστό-λάθος Σηµειώστε αν είναι σωστή ή λανθασµένη καθεµιά από τις παρακάτω προτάσεις, περιβάλλοντας µε ένα κύκλο
Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ.
Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Σάλαρης Πολλές φορές μας δίνεται να λύσουμε ένα πρόβλημα που από την πρώτη
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΨΥΧΟΛΟΓΙΑ (ΨΧ 00)
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΨΥΧΟΛΟΓΙΑ (ΨΧ 00) Πέτρος Ρούσσος ΔΙΑΛΕΞΗ 4 Γνωστική ψυχολογία Οι πληροφορίες του περιβάλλοντος γίνονται αντικείμενο επεξεργασίας από τον εγκέφαλο μέσω γνωστικών διαδικασιών (αντίληψη, μνήμη,
Η προβληματική κατάσταση Χρήστος Πανούτσος
Η προβληματική κατάσταση Χρήστος Πανούτσος Η Τζούλι και η μαμά της έχουν βγει για να αγοράσουν ένα τζιν για το σχολείο. Παρατηρούν έναν πάγκο με την εξής ταμπέλα πάνω: 40% έκπτωση των τιμών στις ετικέτες
Βασικές Έννοιες Κοστολόγησης
Οργάνωση Παραγωγής & ιοίκηση Επιχειρήσεων ΙΙ Κοστολόγηση Επιχειρήσεων & Λήψη Αποφάσεων Κεφάλαιο 2 Βασικές Έννοιες Κοστολόγησης Νικόλαος Α. Παναγιώτου 2004 ΕΜΠ Τομέας Βιομηχανικής ιοίκησης & Επιχειρησιακής
ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΧΗΜΕΙΑΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (1)
δ. CH Ν ΑΓ.ΚΩΝΣΤΑΝΤΙΝΟΥ 11 -- ΠΕΙΡΑΙΑΣ -- 18532 -- ΤΗΛ. 210-4224752, 4223687 ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΧΗΜΕΙΑΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (1) ΘΕΜΑ Α Για τις ερωτήσεις Α1 έως και Α4 να γράψετε στο τετράδιό
5.1 ΥΠΟΛΟΓΙΣΜΟΣ ΤΟΥ ΓΡΑΜΜΟΙΣΟΔΥΝΑΜΟΥ ΙΟΝΤΟΣ ΟΞΥΓΟΝΟΥ, ΥΔΡΟΓΟΝΟΥ ΚΑΙ ΧΑΛΚΟΥ ΜΕ ΗΛΕΚΤΡΟΛΥΣΗ
5.1 ΑΣΚΗΣΗ 5 ΥΠΟΛΟΓΙΣΜΟΣ ΤΟΥ ΓΡΑΜΜΟΙΣΟΔΥΝΑΜΟΥ ΙΟΝΤΟΣ ΟΞΥΓΟΝΟΥ, ΥΔΡΟΓΟΝΟΥ ΚΑΙ ΧΑΛΚΟΥ ΜΕ ΗΛΕΚΤΡΟΛΥΣΗ Α' ΜΕΡΟΣ: Ηλεκτρόλυση του νερού. ΘΕΜΑ: Εύρεση της μάζας οξυγόνου και υδρογόνου που εκλύονται σε ηλεκτρολυτική
ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ Μ. Γρηγοριάδου Ρ. Γόγουλου Ενότητα: Η Διδασκαλία του Προγραμματισμού Περιεχόμενα Παρουσίασης
Πανεπιστήμιο Δυτικής Μακεδονίας. Παιδαγωγικό Τμήμα Νηπιαγωγών. σύμβολα αριθμών. επ. Κωνσταντίνος Π. Χρήστου. Πανεπιστήμιο Δυτικής Μακεδονίας
Παιδαγωγικό Τμήμα Νηπιαγωγών σύμβολα αριθμών επ. Κωνσταντίνος Π. Χρήστου 1 αναπαραστάσεις των αριθμών Εμπράγματες Υλικά αντικείμενα ($$$) Εικονικές (***) Λεκτικές (τρία) Συμβολικές, (3, τρία) Διαφορετικές
1.1 Ερωτήσεις πολλαπλής επιλογής Στις παρακάτω ερωτήσεις (1-24) να βάλετε σε κύκλο το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΚΕΦΑΛΑΙΟ 1o ΕΙΣΑΓΩΓΗ - ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ 1.1 Ερωτήσεις πολλαπλής επιλογής Στις παρακάτω ερωτήσεις (1-24) να βάλετε σε κύκλο το γράμμα που αντιστοιχεί στη σωστή απάντηση. 6. Τα ιόντα είναι: α. ηλεκτρικά φορτισμένα
Χημεία Α Λυκείου. Διαλύματα
Διαλύματα Διάλυμα είναι ένα ομογενές μίγμα δύο ή περισσοτέρων ουσιών, οι οποίες αποούν τα συστατικά του διαλύματος. Από τα συστατικά αυτά, εκείνο που έχει την ίδια φυσική κατάσταση με αυτή του διαλύματος
Παράταση της ωφέλιμης ζωής κομμένου τριαντάφυλλου με την προσθήκη ουσιών στο νερό του ανθοδοχείου
Παράταση της ωφέλιμης ζωής κομμένου τριαντάφυλλου με την προσθήκη ουσιών στο νερό του ανθοδοχείου Υπόδειγμα φανταστικής πειραματικής έρευνας για τις ανάγκες του μαθήματος της Τεχνολογίας Λέξεις Κλειδιά
1 o ΓΕΛ ΕΛΕΥΘΕΡΙΟΥ ΚΟΡΔΕΛΙΟΥ ΧΗΜΕΙΑ A ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ, ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1. ΚΕΦΑΛΑΙΟ 1- ΒΑΣΙΚΑ ΜΕΓΕΘΗ-ΣΩΜΑΤΙΔΙΑ - Τι πρέπει να γνωρίζουμε
1 o ΓΕΛ ΕΛΕΥΘΕΡΙΟΥ ΚΟΡΔΕΛΙΟΥ ΧΗΜΕΙΑ A ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ, ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 ΚΕΦΑΛΑΙΟ 1- ΒΑΣΙΚΑ ΜΕΓΕΘΗ-ΣΩΜΑΤΙΔΙΑ - Τι πρέπει να γνωρίζουμε 1. Βασικά μεγέθη και μονάδες αυτών που θα χρησιμοποιηθούν
Ηλεκτρικό κύκλωµα. Βασική θεωρία
8 Ηλεκτρικό κύκλωµα Ηλεκτρικό κύκλωµα Βασική θεωρία Ηλεκτρικό κύκλωμα ονομάζεται κάθε διάταξη που αποτελείται από κλειστούς αγώγιμους «δρόμους», μέσω των οποίων μπορεί να διέλθει ηλεκτρικό ρεύμα. Κλειστό
Πανεπιστήμιο Δυτικής Μακεδονίας Παιδαγωγική Σχολή Τμήμα Δημοτικής Εκπαίδευσης
Πανεπιστήμιο Δυτικής Μακεδονίας Παιδαγωγική Σχολή Τμήμα Δημοτικής Εκπαίδευσης Εργασία: Επίλυση προβλήματος Καθηγητής : Χαράλαμπος Λεμονίδης Όνομα φοιτήτριας: Μπεσικιώτη Ζωή, Α.Ε.Μ. 4385 από το σχολικό