Απεικόνιση δεδομένων (data visualization)
|
|
- Βερενίκη Δημαράς
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Απεικόνιση δεδομένων (data visualization) Χρήση γραφικών για την αναπαράσταση δεδομένων από διάφορες πηγές Ιατρικές εφαρμογές (π.χ. αξονική τομογραφία) Μαθηματικά μοντέλα και συναρτήσεις Προσομοίωση διεργασιών Μετρήσεις διαφόρων μεγεθών
2 Απεικόνιση μαθηματικών συναρτήσεων Απεικόνιση συναρτήσεων της μορφής z=f(x,y) Παριστάνει επιφάνεια στις 3 διαστάσεις Απεικόνιση τοπογραφικών δεδομένων (height fields) Ή δισδιάστατα δεδομένα που μεταβάλλονται με το χρόνο
3 Απεικόνιση μαθηματικών συναρτήσεων Απεικόνιση πεπλεγμένων συναρτήσεων δύο μεταβλητών g(x,y)=c Παριστάνει καμπύλη (καμπύλες) στο επίπεδο Μπορεί να θεωρηθεί ως καμπύλη σταθερού z (z=c) για την επιφάνεια g(x,y)=z
4 Πολυγωνικά πλέγματα Απεικόνιση της επιφάνειας z=f(x,y) με βάση δείγματα της πάνω σε ένα τετραγωνικό πλέγμα ως προς τα x,y: z ij =f ij =f(x i,y j ) x i =x 0 +iδx, i=0, N y j =y 0 +jδy, j=0, M Απεικόνιση με χρήση τετραγωνικού ή τριγωνικού πλέγματος
5 Πολυγωνικά πλέγματα Χρήση γειτονικών σημείων z ij, z i+1,j, z i,j+1, z i+1,j+1 για το σχηματισμό τετραπλεύρου ή δύο τριγώνων
6 Πολυγωνικά πλέγματα Συνολικά ΝΜ τετράπλευρα ή 2ΝΜ τρίγωνα Πιθανή υποδειγματοληψία για καλύτερη απεικόνιση πολλών δεδομένων. Απεικόνιση με OpenGL ως πολύγωνα (GL_QUADS) και ως πολυγωνικές γραμμές. Το γεγονός ότι τα δεδομένα είναι διατεταγμένα (δομημένα) μπορεί να χρησιμοποιηθεί για την απόκρυψη κρυμμένων επιφανειών χωρίς z-buffer. 2 1/2 dimensional data
7 Πολυγωνικά πλέγματα Χρήση polygon offset mode για αποφυγή απόκρυψης των γραμμών από τα πολύγωνα Μετακινούν τις πολυγωνικές γραμμές σε σχέση με τα πολύγωνα Χρήση σκίασης, απεικόνισης υφής
8 Ισοϋψείς - ισοσταθμικές καμπύλες Απεικόνιση επιφάνειας με καμπύλες f(x,y)=c i που κάθε μία αντιστοιχεί σε σταθερό z αντίστοιχα με τους τοπογραφικούς χάρτες
9 Ισοϋψείς Αν ξέρουμε την έκφραση της f(x,y) και μπορούμε να λύσουμε μπορούμε να ζωγραφίσουμε τις ισουψείς f(x,y)=c σαν ευθύγραμμα τμήματα. Αν έχουμε δείγματα f ij =z ij της επιφάνειας μπορούμε να βρούμε μια προσέγγιση των ισουψών από τα δείγματα με τον αλγόριθμο marching squares
10 Marching squares z ij =f(x i,y j ) x i =x 0 +iδx, i=0, N y j =y 0 +jδy, j=0, M Θέλουμε να βρούμε μια προσέγγιση με πολυγωνική γραμμή της ισουψούς f(x,y)=c Εξετάζουμε κάθε κελί που δημιουργείται από 4 γειτονικά σημεία του πλέγματος
11 Marching squares Οι τιμές f ij της συνάρτησης στις 4 κορυφές κάθε κελιού χρησιμοποιούνται για να βρεθεί εάν η ισουψής περνάει από το κελί
12 Marching squares Προσεγγίζουμε την ισουψή εντός του κελιού με ευθύγραμμο τμήμα Μεταξύ των κέντρων των αντίστοιχων πλευρών Μεταξύ σημείων στις πλευρές που υπολογίζονται με γραμμική παρεμβολή σε σχέση με τις τιμές της συνάρτησης στις άκρες του ευθύγραμμου τμήματος
13 Marching squares x = x + i ( a c) Δx a b Ή εξέταση κάθε κελιού μπορεί να γίνει ανεξάρτητα από τα υπόλοιπα: παραλληλοποίηση Υπάρχουν 2 4 διαφορετικές διατάξεις άσπρων/μαύρων κορυφών.
14 Marching squares
15 Marching squares Υπάρχουν συμμετρικές περιπτώσεις Περιστροφή Εναλλαγή μαύρων/άσπρων Τελικά καταλήγουμε σε 4 μοναδικές περιπτώσεις από τις οποίες προκύπτουν οι άλλες
16 Marching squares Η τελευταία περίπτωση έχει δύο λύσεις Τυχαία επιλογή, υιοθέτηση της ίδιας πάντα λύσης, υποδιαίρεση του κελιού σε 4 μικρότερα
17 Marching squares Διαφορετικές επιλογές λύσης οδηγούν σε διαφορετικά αποτελέσματα
18 Απεικόνιση βαθμωτών πεδίων Βαθμωτό πεδίο: συνάρτηση 3 μεταβλητών με βαθμωτή τιμή f(x,y,z)=w Αποδίδει μια τιμή σε κάθε σημείο του χώρου όπου ορίζεται. Απορρόφηση ακτινών Χ από το σώμα στην αξονική τομογραφία Πυκνότητα υλικού
19 Απεικόνιση βαθμωτών πεδίων Δυσκολότερη απεικόνιση Μεγαλύτερος όγκος δεδομένων Η ύπαρξη τριών ανεξάρτητων μεταβλητών δεν δίνει δυνατότητα για την απεικόνιση της τιμής της συνάρτησης
20 Ογκομετρικά δεδομένα (volumetric data sets) Δομημένα δεδομένα: δείγματα σε κανονικό πλέγμα Μη δομημένα δεδομένα: δείγματα σε τυχαίες θέσεις του χώρου
21 Ογκομετρικά δεδομένα (volumetric data sets) Δείγματα του βαθμωτού πεδίου σε κανονικό τρισδιάστατο πλέγμα f ijk =f(x i,y j,z k ) x i =x 0 +iδx, y j =y 0 +jδy, z j =z 0 +kδz Το f ijk μέσος όρος της τιμής της συνάρτησης σε παραλληλεπίπεδο: voxel
22
23 Ογκομετρικά δεδομένα Απεικόνιση με δύο βασικές μεθόδους Απεικόνιση όγκου (volume rendering): συμμετοχή όλων των voxels στην παραγωγή της εικόνας Με ισοσταθμικές επιφάνειες (isosurfaces) f(x,y,z)=c Προέρχονται είτε από γνώση της εξίσωσης του βαθμωτού πεδίου είτε από διακριτά δεδομένα (voxels)
24 Απεικόνιση ισοσταθμικών επιφανειών Ισοσταθμικές επιφάνειες που δίνονται ως πεπλεγμένες συναρτήσεις τριών μεταβλητών g(x,y,z)=f(x,y,z)-c=0 Απεικόνιση με ray casting Ευθεία από το κέντρο προβολής και κάθε pixel Υπολογισμός της τομής με την ισοσταθμική Εύκολο για επιφάνειες 2ου βαθμού (quadrics) Απόδοση τιμής στο pixel με βάση απλό μοντέλο φωτισμού
25 Απεικόνιση ισοσταθμικών επιφανειών Υπολογισμός τομής ακτίνας-ισοσταθμικής με παράσταση της ακτίνας με παραμετρική μορφή p(t)=p 0 +td Απεικόνιση μίας ή περισσοτέρων ισοσταθμικών
26 Marching cubes Προσέγγιση ισοσταθμικών επιφανειών σε ογκομετρικά δεδομένα (voxel-based) Προσέγγιση των ισοσταθμικών με τριγωνικό πλέγμα Κάθε τρίγωνο προσεγγίζει μέρος της ισοσταθμικής Εξετάζουμε τα δεδομένα σε κύβους 8 γειτονικών voxels
27 Marching cubes Οι τιμές των voxels καθορίζουν εάν η ισοσταθμική περνάει η όχι από τον υπό εξέταση κύβο.
28 Marching cubes Χαρακτηρισμός/χρωματισμός των κορυφών ανάλογα με το αν οι τιμές των voxels είναι μεγαλύτερες / μικρότερες από την τιμή c που μας ενδιαφέρει (ισοσταθμική f(x,y,z)=c) Ισοδύναμο με κατωφλίωση 256 περιπτώσεις που με τις συμμετρίες περιορίζονται σε 14 (15) μοναδικές Καθορισμός των τριγώνων σε κάθε περίπτωση Υπολογισμός με γραμμική παρεμβολή των σημείων τομής
29 Marching cubes
30 Marching cubes
31 Marching cubes Κάθε 8άδα voxels επεξεργάζεται χωριστά Ύπαρξη αμφίσημων περιπτώσεων που μπορούν να δημιουργήσουν «τρύπες» στο τριγωνικό πλέγμα που προσεγγίζει την ισοσταθμική
32
33 Απλοποίηση πλέγματος Ο αλγόριθμος marching cubes δημιουργεί μεγάλο αριθμό τριγώνων που εξαρτάται από τον αριθμό των δειγμάτων του συνόλου δεδομένων κι όχι από την ομαλότητα της ισοσταθμικής Δυνατότητα δημιουργίας πλέγματος με λιγότερα τρίγωνα και το ίδιο ή παραπλήσιο οπτικό αποτέλεσμα
34 Απλοποίηση πλέγματος Αποδεκατισμός τριγώνων Επαναδειγματοληψία
35 Απ ευθείας απεικόνιση όγκου Στην απεικόνιση με ισοσταθμικές συμμετέχουν μόνο ένας αριθμός από voxels. Μετατροπή από όγκο σε τριγωνικό πλέγμα Με την απ ευθείας απεικόνιση όγκων έχω συμμετοχή όλων των voxels. Χρησιμοποιούν αρχές ray tracing και compositing Στις αρχικές προσπάθειες κάθε voxel θεωρούνταν αδιαφανής ή διαφανής κύβος
36 Απ ευθείας απεικόνιση όγκου Front to back: αποστολή ακτίνων Αν χτυπούσε αδιαφανές voxel απεικονιζόταν ένας κύβος, αλλιώς τίποτα. Back to front: απεικόνιση μόνο των αδιαφανών voxels. Δεν συμμετείχαν όλα τα voxels στην εικόνα Χρήση χρώματος και διαφάνειας.
37 Απόδοση τιμής χρώματος και αδιαφάνειας Πρέπει να γίνει σε κάθε voxel. Ισοδύναμο με ψευδοχρωματισμό Παράδειγμα: δεδομένα από αξονική τομογραφία (κεφάλι) Απόδοση χρώματος ανάλογα με την πυκνότητα ακτινών X που φτάνουν στο φίλμ Μαύρο χρώμα=μεγάλη πυκνότητα ακτινών=μικρή απορρόφησηαπότοσώμα=σώμα μικρής πυκνότητας Απόδοσηχρώματοςμεβάσητοιστόγραμματων τιμών των voxels και συναρτήσεις αντιστοίχισης πυκνότητας σε χρώμα
38 Απόδοση τιμής χρώματος και αδιαφάνειας
39 Απόδοση τιμής χρώματος και αδιαφάνειας Η τιμή αδιαφάνειας ορίζεται με βάση το σε ποια voxels-υλικά θέλουμε να δώσουμε έμφαση Απεικόνιση του εγκεφάλου: απόδοση πλήρους διαφάνειας στα voxels που αντιστοιχούν στο κρανίο Το πρόβλημα της απόδοσης χρώματος & αδιαφάνειας είναι πρόβλημα κατάταξης σε κλάσεις με βάση την τιμή του βαθμωτού πεδίου Μπορεί να γίνει και αλληλεπιδραστικά
40 Splatting Πρέπει να αποδώσουμε ένα σχήμα σε κάθε voxel και να εφαρμόσουμε μεθόδους σύνθεσης (compositing) Διάσχιση back to front.
41 Splatting Splatting: απόδοση ενός σχήματος σε κάθε voxel (με συγκεκριμένη αδιαφάνεια και χρώμα) και προβολή στο επίπεδο (splat / footprint )
42 Splatting Aν έχω παράλληλη προβολή όλα τα ίχνη ίδια ώς προς το σχήμα Αποθηκεύω τις προβολές σε bitmaps Επιλογή σχήματος και ίχνους Κύκλος, εξάγωνο, έλλειψη, 2-D gaussian Πώς συνθέτουμε ένα splat στην εικόνα Τα voxels διατεταγμένα ως προς τον παρατηρητή Τα διατρέχω από πίσω προς τα μπρος και συνθέτω στην εικόνα τη συνεισφορά κάθε voxel.
43 Splatting Ξεκινώ με μια εικόνα στο χρώμα του φόντου. Xρήση τύπων blending για τον καθορισμό του χρώματος και της διαφάνειας των pixels της εικόνας Το χρώμα/αδιαφάνεια του splat που είναι να απεικονιστεί (source) συνδυάζεται με το χρώμα/αδιαφάνεια του pixel όπου θα απεικονιστεί (destination) και αυτό αποδίδεται σαν χρώμα/αδιαφάνεια στο pixel (destination) d =f(s,d)
44 Splatting C d =(1-a s )C d + a s C s a d =(1-a s )a d + a s Σύνθεση back to front Aν τοsource (splat) αδιαφανές (a s =1) τότε a d =1 και C d =C s (αποκρύπτει ότι έχει προβλήθεί νωρίτερα) Aν τοsource (splat) διαφανές (a s =0) τότε a d = a d και C d =C d (το pixel διατηρεί το χρώμα και την αδιαφάνεια)
45 Splatting Χρήση των blending functions της OpenGL Blending κάθε φορά των splats της «φέτας» voxels που σαρώνω με την εικόνα προβολής Αντικατάσταση του χρώματος του splat (source) με ac (a: αδιαφάνεια του splat) Χρήση 1 και 1-a s ως source και destination blending factors C s = a s C s, alpha=a s C d, alpha=a d glblendfunc(gl_one, GL_ONE_MINUS_SRC_ALPHA)
46 Splatting Θεωρώ ότι τα δεδομένα είναι σωρός από 2-D εικόνες Δεν χρειάζεται να τα έχω όλα στη μνήμη Με την μέθοδο splatting back to front δεν εκμεταλλεύομαι πιθανές ιδιαιτερότητες των δεδομένων που μπορούν να επιταχύνουν την διαδικασία Αν τα μπροστά voxels του όγκου είναι αδιαφανή το back to front θα διασχίσει όλα τα δεδομένα παρόλο που δεν χρειάζεται.
47 Ray tracing όγκου Τεχνική διάσχισης front to back Στέλνω ακτίνα και συνθέτω στο αντίστοιχο pixel τις επιδράσεις όλων των voxels πάνω στην ακτίνα (με τους ίδιους τύπους)
48 Ray tracing όγκου Αν βρω αδιαφανές voxel σταματάω να σαρώνω τα πίσω από αυτό Για την εκτέλεση του αλγόριθμου πρέπει να έχω όλα τα δεδομένα στη μνήμη. Back to front με splatting και front to back με ray tracing είναι object oriented και image oriented rendering Η προβολή πρέπει να ξαναυπολογιστεί αν αλλάξει η θέση παρατήρησης
49
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΟΝΤΕΛΟΠΟΙΗΣΗ-ΨΗΦΙΑΚΗ ΣΥΝΘΕΣΗ ΕΙΚΟΝΩΝ Διδάσκων: Ν. ΝΙΚΟΛΑΙΔΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΟΝΤΕΛΟΠΟΙΗΣΗ-ΨΗΦΙΑΚΗ ΣΥΝΘΕΣΗ ΕΙΚΟΝΩΝ Διδάσκων: Ν. ΝΙΚΟΛΑΙΔΗΣ 3 η Σειρά Ασκήσεων 1. Ένα σωματίδιο με μάζα m=4 βρίσκεται αρχικά (t=0) στη θέση x=(2,2)
Διαβάστε περισσότεραBlending. Have a look:
Blending Have a look: http://nehe.gamedev.net/ Blending (ανάμειξη) Η OpenGL παρέχει τρόπους να προσομοιώσουμε διαφανείς επιφάνειες με pipeline rendering Φαινόμενο που απαιτεί global shading Ανάμειξη χρωμάτων,
Διαβάστε περισσότεραΗ διαδικασία Παραγωγής Συνθετικής Εικόνας (Rendering)
Υφή Η διαδικασία Παραγωγής Συνθετικής Εικόνας (Rendering) Θέσεις αντικειμένων και φωτεινών πηγών Θέση παρατηρητή 3D Μοντέλα 3Δ Μετασχ/σμοί Μοντέλου 3Δ Μετασχ/σμός Παρατήρησης Απομάκρυνση Πίσω Επιφανειών
Διαβάστε περισσότεραΑπεικόνιση καμπυλών και επιφανειών
Απεικόνιση καμπυλών και επιφανειών Αφού μοντελοποιήσουμε τα αντικείμενα αλληλεπιδραστικά με καμπύλες και επιφάνειες πρέπει να τα απεικονίσουμε Αν χρησιμοποιούμε ray tracing πρέπει να υπολογίσουμε τομές
Διαβάστε περισσότεραΑπεικόνιση Υφής. Μέρος Α Υφή σε Πολύγωνα
Απεικόνιση Γραφικά ΥφήςΥπολογιστών Απεικόνιση Υφής Μέρος Α Υφή σε Πολύγωνα Γ. Γ. Παπαϊωάννου, - 2008 Τι Είναι η Υφή; Η υφή είναι η χωρική διαμόρφωση των ποιοτικών χαρακτηριστικών της επιφάνειας ενός αντικειμένου,
Διαβάστε περισσότεραΣημαντικές χρονολογίες στην εξέλιξη της Υπολογιστικής Τομογραφίας
Σημαντικές χρονολογίες στην εξέλιξη της Υπολογιστικής Τομογραφίας 1924 - μαθηματική θεωρία τομογραφικής ανακατασκευής δεδομένων (Johann Radon) 1930 - κλασσική τομογραφία (A. Vallebona) 1963 - θεωρητική
Διαβάστε περισσότεραΤΟΜΟΣ Α : Συμβολικός Προγραμματισμός
2 ΤΟΜΟΣ Α : Συμβολικός Προγραμματισμός 3 ΟΔΗΓΟΣ στη ΧΡΗΣΗ του ΥΠΟΛΟΓΙΣΤΗ 4 ΤΟΜΟΣ Α : Συμβολικός Προγραμματισμός 5 ΓΕΩΡΓΙΟΣ ΘΕΟΔΩΡΟΥ Καθηγητής Α.Π.Θ. ΧΡΙΣΤΙΝΑ ΘΕΟΔΩΡΟΥ Μαθηματικός ΟΔΗΓΟΣ στη ΧΡΗΣΗ του ΥΠΟΛΟΓΙΣΤΗ
Διαβάστε περισσότεραΑπαραίτητες αφού 3Δ αντικείμενα απεικονίζονται σε 2Δ συσκευές. Θέση παρατηρητή. 3Δ Μετασχ/σμός Παρατήρησης
Προβολές Προβολές Απαραίτητες αφού 3Δ αντικείμενα απεικονίζονται σε Δ συσκευές. Θέσεις αντικειμένων και φωτεινών πηγών Θέση παρατηρητή 3Δ Μαθηματικά Μοντέλα 3Δ Μετασχ/σμοί Μοντέλου 3Δ Μετασχ/σμός Παρατήρησης
Διαβάστε περισσότεραΓραφικά & Οπτικοποίηση. Κεφάλαιο 1. Εισαγωγή. Γραφικά & Οπτικοπίηση: Αρχές & Αλγόριθμοι Κεφάλαιο 1
Γραφικά & Οπτικοποίηση Κεφάλαιο 1 Εισαγωγή Ιστορικά Ιστορική ανασκόπηση : 2 Ιστορικά (2) Ρυθμοί ανάπτυξης CPU και GPU 3 Εφαρμογές Ειδικά εφέ για ταινίες & διαφημίσεις Επιστημονική εξερεύνηση μέσω οπτικοποίησης
Διαβάστε περισσότεραΤεχνικές σκίασης/απεικόνισης βασισμένες στις φυσικές αρχές σχηματισμού εικόνας
Τεχνικές σκίασης/απεικόνισης βασισμένες στις φυσικές αρχές σχηματισμού εικόνας Η αρχιτεκτονική αλυσίδας γραφικών (κάθε πολύγωνο περνάει χωριστά από την αλυσίδα) σε συνδυασμό με τοπικά μοντέλα σκίασης έχει
Διαβάστε περισσότεραΣΤΕΡΕΟΣΚΟΠΙΚΕΣ ΕΙΚΟΝΕΣ
ΣΤΕΡΕΟΣΚΟΠΙΚΕΣ ΕΙΚΟΝΕΣ Η προοπτική εικόνα, είναι, όπως είναι γνωστό, η προβολή ενός χωρικού αντικειμένου, σε ένα επίπεδο, με κέντρο προβολής, το μάτι του παρατηρητή. Η εικόνα αυτή, θεωρούμε ότι αντιστοιχεί
Διαβάστε περισσότεραΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΟΝΤΕΛΟΠΟΙΗΣΗ-ΨΗΦΙΑΚΗ ΣΥΝΘΕΣΗ ΕΙΚΟΝΩΝ Διδάσκων: Ν. ΝΙΚΟΛΑΙΔΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΟΝΤΕΛΟΠΟΙΗΣΗ-ΨΗΦΙΑΚΗ ΣΥΝΘΕΣΗ ΕΙΚΟΝΩΝ Διδάσκων: Ν. ΝΙΚΟΛΑΙΔΗΣ 2 η Σειρά Ασκήσεων 1. Αντί των κλασικών κυβικών πολυωνυμικών παραμετρικών καμπυλών
Διαβάστε περισσότερα7 ο Εργαστήριο Θόρυβος 2Δ, Μετακίνηση, Περιστροφή
7 ο Εργαστήριο Θόρυβος 2Δ, Μετακίνηση, Περιστροφή O θόρυβος 2Δ μας δίνει τη δυνατότητα να δημιουργίας υφής 2Δ. Στο παρακάτω παράδειγμα, γίνεται σχεδίαση γραμμών σε πλέγμα 300x300 με μεταβαλόμενη τιμή αδιαφάνειας
Διαβάστε περισσότεραΑνακατασκευή εικόνας από προβολές
Ανακατασκευή εικόνας από προβολές Μέθοδος ανακατασκευής με χρήση χαρακτηριστικών δειγμάτων προβολής Αναστάσιος Κεσίδης Δρ. Ηλεκτρολόγος Μηχανικός Θέματα που θα αναπτυχθούν Εισαγωγή στις τομογραφικές μεθόδους
Διαβάστε περισσότεραΠαράγωγοι ανώτερης τάξης
Παράγωγοι ανώτερης τάξης Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Διαφορικά Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglks.gr 3 / 1 0 / 0 1 6 σε μερικές παραγώγους σε μέγιστα, ελάχιστα
Διαβάστε περισσότεραΓραφικά με Η/Υ / Εισαγωγή
Γραφικά με Η/Υ Εισαγωγή Πληροφορίες μαθήματος (1/4) Υπεύθυνος μαθήματος: Μανιτσάρης Αθανάσιος, Καθηγητής ιδάσκοντες: Μανιτσάρης Αθανάσιος: email: manits@uom.gr Μαυρίδης Ιωάννης: email: mavridis@uom.gr
Διαβάστε περισσότεραΤι είναι Αποκοπή (clip)?
Αποκοπή Τι είναι Αποκοπή (clip)? Η διαδικασία απεικόνισης μόνο των τμημάτων των αντικειμένων που βρίσκονται μέσα σε μια περιοχή Από μεγαλύτερη 2Δ σκηνή στην οποία έχουμε ήδη τιμές για τα piels Κατά την
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά
Εφαρμοσμένα Μαθηματικά ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ενότητα 6: Διπλά Ολοκληρώματα Δρ. Περικλής Παπαδόπουλος Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε Κάντε κλικ για
Διαβάστε περισσότεραΤεχνολογία Ψυχαγωγικού Λογισμικού και Εικονικοί Κόσμοι Ενότητα 4η - 3Δ γραφικά
Τεχνολογία Ψυχαγωγικού Λογισμικού και Εικονικοί Κόσμοι Ενότητα 4η - 3Δ γραφικά Ιόνιο Πανεπιστήμιο, Τμήμα Πληροφορικής, 2015 Κωνσταντίνος Οικονόμου, Επίκουρος Καθηγητής Βασίλειος Κομιανός, Υποψήφιος Διδάκτορας
Διαβάστε περισσότεραΚεφάλαιο 7 Ισομετρίες, Συμμετρίες και Πλακοστρώσεις Οπως είδαμε στην απόδειξη του πρώτου κριτηρίου ισότητας τριγώνων, ο Ευκλείδης χρησιμοποιεί την έννοια της εφαρμογής ενός τριγώνου σε ένα άλλο, χωρίς
Διαβάστε περισσότεραΓραφικά Ι. Ενότητα 1: Εισαγωγή. Θεοχάρης Θεοχάρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών
Γραφικά Ι Ενότητα 1: Εισαγωγή Θεοχάρης Θεοχάρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ενότητα 1 Εισαγωγή Ιστορικά Ιστορική ανασκόπηση : 3 Ιστορικά (2) Ρυθμοί ανάπτυξης CPU και
Διαβάστε περισσότερα5ο Μάθημα Αλγόριθμοι Σχεδίασης Βασικών Σχημάτων
5ο Μάθημα Αλγόριθμοι Σχεδίασης Βασικών Σχημάτων Γραφικα Τμήμα Πληροφορικής Πανεπιστήμιο Θεσσαλίας Ακ Έτος 2016-17 Εισαγωγή Ευθεία Κύκλος Έλλειψη Σύνοψη του σημερινού μαθήματος 1 Εισαγωγή 2 Ευθεία 3 Κύκλος
Διαβάστε περισσότεραΣύντομος οδηγός αναφοράς Για Windows Έκδοση 4.0
Σύντομος οδηγός αναφοράς Για Windows Έκδοση 4.0 Παράθυρα των εγγράφων Επιφάνεια του σχεδίου. Σχεδιάστε εδώ νέα αντικείμενα με τα εργαλεία σημείων, διαβήτη, σχεδίασης ευθύγραμμων αντικειμένων και κειμένου.
Διαβάστε περισσότεραΑρχιτεκτονική σχεδίαση με ηλεκτρονικό υπολογιστή
Γ Αρχιτεκτονική σχεδίαση με ηλεκτρονικό υπολογιστή Η χρήση των ηλεκτρονικών υπολογιστών στο τεχνικό σχέδιο, και ιδιαίτερα στο αρχιτεκτονικό, αποτελεί πλέον μία πραγματικότητα σε διαρκή εξέλιξη, που επηρεάζει
Διαβάστε περισσότεραII.6 ΙΣΟΣΤΑΘΜΙΚΕΣ. 1. Γραφήματα-Επιφάνειες: z= 2. Γραμμική προσέγγιση-εφαπτόμενο επίπεδο. 3. Ισοσταθμικές: f(x, y) = c
II.6 ΙΣΟΣΤΑΘΜΙΚΕΣ.Γραφήματα-Επιφάνειες.Γραμμική προσέγγιση-εφαπτόμενο επίπεδο 3.Ισοσταθμικές 4.Κλίση ισοσταθμικών 5.Διανυσματική ή Ιακωβιανή παράγωγος 6.Ιδιότητες των ισοσταθμικών 7.κυρτότητα των ισοσταθμικών
Διαβάστε περισσότεραΕισαγωγή Αποκοπή ευθείας σε 2Δ Αποκοπή πολυγώνου σε 2Δ Αποκοπή σε 3Δ. 3ο Μάθημα Αποκοπή. Γραφικα. Ευάγγελος Σπύρου
Εισαγωγή Αποκοπή ευθείας σε 2Δ Αποκοπή πολυγώνου σε 2Δ Αποκοπή σε 3Δ Γραφικα Τμήμα Πληροφορικής Πανεπιστήμιο Θεσσαλίας Ακ Έτος 2016-17 Εισαγωγή Αποκοπή ευθείας σε 2Δ Αποκοπή πολυγώνου σε 2Δ Αποκοπή σε
Διαβάστε περισσότεραΓραφικά με υπολογιστές. Διδάσκων: Φοίβος Μυλωνάς. Διάλεξη #07
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο Γραφικά με υπολογιστές Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #07 Γραμμές και Πολύγωνα: Εισαγωγή Αναπαράσταση 2D και 3D Χρωματισμός πολυγώνων
Διαβάστε περισσότεραΟδηγίες σχεδίασης στο περιβάλλον Blender
Οδηγίες σχεδίασης στο περιβάλλον Blender Στον πραγματικό κόσμο, αντιλαμβανόμαστε τα αντικείμενα σε τρεις κατευθύνσεις ή διαστάσεις. Τυπικά λέμε ότι διαθέτουν ύψος, πλάτος και βάθος. Όταν θέλουμε να αναπαραστήσουμε
Διαβάστε περισσότεραP G = 1 2 (x x 3 2 ) 2 [(y 1 + y y n ) 6 + (y y y 2 n ) 3 ] 2 (n6 + n 3 ) = n3 (n 3 + 1)
Διακριτά Μαθηματικά Φροντιστήριο Θεωρία μέτρησης Polya ΙΙ 1 / 15 Ενας κύλινδρος, που έχει διαιρεθεί σε 6 τμήματα θα χρωματιστεί με 1 ή περισσότερα από διαφορετικά χρώματα. Με πόσους τρόπους επιτυγχάνεται
Διαβάστε περισσότεραΓραφικά Υπολογιστών: Μέθοδοι Ανίχνευσης Επιφανειών (Surface Detection Methods)
1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Μέθοδοι Ανίχνευσης Επιφανειών (Surface Detection Methods) Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Περιεχόμενα
Διαβάστε περισσότεραΜάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 8 ο Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας. Ένας αποδεκτός ορισμός της ακμής είναι ο ακόλουθος: «Το σύνορο μεταξύ δύο ομοιογενών περιοχών με
Διαβάστε περισσότερα3) το παράθυρο Πίνακας τιμών όπου εμφανίζονται οι τιμές που παίρνουν οι παράμετροι
Ο Δ Η Γ Ι Ε Σ Γ Ι Α Τ Ο M O D E L L U S 0.0 4. 0 5 Για να κατεβάσουμε το πρόγραμμα Επιλέγουμε Download στη διεύθυνση: http://modellus.co/index.php/en/download. Στη συνέχεια εκτελούμε το ModellusX_windows_0_4_05.exe
Διαβάστε περισσότεραΕνότητα 2. Ζωγραφίζοντας με το ΒΥΟΒ
Ενότητα 2 : Ζωγραφίζοντας με το ΒΥΟΒ -1- Ενότητα 2. Ζωγραφίζοντας με το ΒΥΟΒ Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα α. Θέση και προσανατολισμός της μορφής Η θέση της κάθε μορφής στο σκηνικό προσδιορίζεται
Διαβάστε περισσότεραιαχειριστής Έργου ΣΟΥΓΑΡΗΣ ΙΩΑΝΝΗΣ Ιούνιος 14
ΟΓΚΟΣ ΣΤΕΓΗΣ ιαχειριστής Έργου ΣΟΥΓΑΡΗΣ ΙΩΑΝΝΗΣ Περιεχόμενα 1. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ 4 I. ΠΥΡΑΜΙΔΑ 4 II. ΤΕΤΡΑΕΔΡΟ 5 III. ΟΓΚΟΣ ΠΥΡΑΜΙΔΑΣ 5 2. ΜΟΡΦΕΣ ΙΣΟΚΛΙΝΟΥΣ ΣΤΕΓΗΣ 6 I. ΔΥΡΙΧΤΗ 6 II. ΤΕΤΡΑΡΙΧΤΗΜΕ ΤΕΤΡΑΓΩΝΗ
Διαβάστε περισσότεραΜάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 8 ο Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας Προς το παρόν δεν υπάρχει ακόμα ένας ευρέως αποδεκτός ορισμός της ακμής. Εδώ θα θεωρούμε ως ακμή:
Διαβάστε περισσότεραΕικόνα. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 05-1
Εικόνα Εισαγωγή Ψηφιακή αναπαράσταση Κωδικοποίηση των χρωμάτων Συσκευές εισόδου και εξόδου Βάθος χρώματος και ανάλυση Συμβολική αναπαράσταση Μετάδοση εικόνας Σύνθεση εικόνας Ανάλυση εικόνας Τεχνολογία
Διαβάστε περισσότεραΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ & ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ
ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ & ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ ΔΡ. Γ. ΜΑΤΣΟΠΟΥΛΟΣ ΕΠ. ΚΑΘΗΓΗΤΗΣ ΣΧΟΛΗ ΗΛΕΚΤΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επεξεργασία Ιατρικών Εικόνων
Διαβάστε περισσότεραΓραφικά με υπολογιστές
Γραφικά με Υπολογιστές Ενότητα # 3: Εισαγωγή Φοίβος Μυλωνάς Τμήμα Πληροφορικής Φοίβος Μυλωνάς Γραφικά με υπολογιστές 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότερα(Computed Tomography, CT)
Υπολογιστική Τοµογραφία (Computed Tomography, CT) Κωσταρίδου Ελένη Αναπληρώτρια Καθηγήτρια Ιατρικής Φυσικής Εργαστήριο Ιατρικής Φυσικής, Τµήµα Ιατρικής, Πανεπιστήµιο Πατρών Περιεχόµενα µαθήµατος Φυσικό
Διαβάστε περισσότεραf f 2 0 B f f 0 1 B 10.3 Ακρότατα υπό συνθήκες Πολλαπλασιαστές του Lagrange
Μέγιστα και ελάχιστα 39 f f B f f yx y x xy Οι ιδιοτιμές του πίνακα Β είναι λ =-, λ =- και οι δυο αρνητικές, άρα το κρίσιμο σημείο (,) είναι σημείο τοπικού μεγίστου. Εφαρμογή 6: Στο παράδειγμα 3 ο αντίστοιχος
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ
ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Α. Υπολογισμός της θέσης του κέντρου μάζας συστημάτων που αποτελούνται από απλά διακριτά μέρη. Τα απλά διακριτά
Διαβάστε περισσότεραΣτ Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1
Ενδεικτική Οργάνωση Ενοτήτων Στ Τάξη Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1 15 Αρ3.1 Απαγγέλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών Επανάληψη μέχρι το 1 000
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ
Ψηφιακή Επεξεργασία Εικόνας ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46 Περιλαμβάνει: Βελτίωση (Enhancement) Ανακατασκευή (Restoration) Κωδικοποίηση (Coding) Ανάλυση, Κατανόηση Τμηματοποίηση (Segmentation)
Διαβάστε περισσότεραΚεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ
Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η ισότητα στο σύνολο C των µιγαδικών αριθµών ορίζεται από την ισοδυναµία: α +βi = γ + δi α = γ και β = δ. Σ Λ. * Αν z = α + βi, α, β
Διαβάστε περισσότεραΑποκοπή 4.1. Εργα: : & ΣΚΕΠΣΙΣ (ΕΠΕΑΚ - ΥΠΕΠΘ) Τµήµα Πληροφορικής 1 2 (SCS) Θέση παρατηρητή. Θέσεις αντικειµένων και φωτεινών πηγών
Αποκοπή Αποκοπή αντικειµένου (π.χ. πολυγώνου) ως προς αντικείµενο αποκοπής (π.χ. πολύγωνο, πυραµίδα, κύβος). Για αποφυγή αντεστραµµένης εµφάνισης αντικειµένων όπισθεν παρατηρητή. Για σηµαντική µείωση όγκου
Διαβάστε περισσότεραΔΕΟ 13 - Ποσοτικές Μέθοδοι: Επιχειρησιακά Μαθηματικά. Κεφάλαιο 1: Συναρτήσεις μιας μεταβλητής
ΤΟΜΟΣ Α Ποσοτικές Μέθοδοι: Επιχειρησιακά Μαθηματικά Κεφάλαιο 1: Συναρτήσεις μιας μεταβλητής Ακαδ. Έτος: 2018-19 Συνάρτηση είναι.. Στα μαθηματικά, συνάρτηση, ή απεικόνιση είναι μια αντιστοίχιση μεταξύ δύο
Διαβάστε περισσότεραΣημειώσεις για το μάθημα "Σχεδίαση με υπολογιστές και δίκτυα παραγωγής (CAD/CAM)"
ΑΤΕΙ ΧΑΛΚΙ ΑΣ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ Σημειώσεις για το μάθημα "Σχεδίαση με υπολογιστές και δίκτυα παραγωγής (CAD/CAM" Εαρινό εξάμηνο 5 Χ. Οικονομάκος . Γενικά Χρήση γεωμετρικών μετασχηματισμών στα προγράμματα
Διαβάστε περισσότεραΤμήμα Μηχανικών Σχεδίασης Προϊόντων & Συστημάτων ΓΡΑΦΙΚΑ (6151) ΕΝΔΕΙΚΤΙΚΕΣ ΠΡΟΑΙΡΕΤΙΚΕΣ ΑΣΚΗΣΕΙΣ
ΓΡΑΦΙΚΑ (6151) ΕΝΔΕΙΚΤΙΚΕΣ ΠΡΟΑΙΡΕΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Άσκηση 1 (Βαρύτητα 30%. Ομάδες: μέχρι 2 ατόμων): Ανάπτυξη 2Δ παιχνιδιού τύπου «ποδοσφαιράκι» το οποίο θα έχει τις παρακάτω λειτουργίες/δυνατότητες: Μπάλα:
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 015 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση... Error! Bookmark not defined. Σκοποί Μαθήματος (Επικεφαλίδα
Διαβάστε περισσότεραΚεφάλαιο 4: Στοιχεία της εκδοχής hp της ΜΠΣ στις 2- διαστάσεις
Κεφάλαιο 4: Στοιχεία της εκδοχής hp της ΜΠΣ στις - διαστάσεις Στις -διαστάσεις, η περιγραφή της εκδοχής hp της ΜΠΣ είναι αρκετά πολύπλοκη. Στο παρόν κεφάλαιο θα δούμε κάποια στοιχεία της, ξεκινώντας με
Διαβάστε περισσότεραΗ γνώση του αναγλύφου
ΨΗΦΙΑΚΑ ΜΟΝΤΕΛΑ Ε ΑΦΟΥΣ Η γνώση του αναγλύφου συµβάλλει στον προσδιορισµό Ισοϋψών καµπυλών Κλίσεων του εδάφους Προσανατολισµού Ορατότητας Μεταβολών Κατανοµής φωτισµού ιατοµών Χωµατισµών Υδροκρίτη Οπτικοποίησης
Διαβάστε περισσότεραΧρωματίζουμε τα σημεία του επιπέδου με τρία χρώματα. Αποδείξτε ότι υπάρχουν δύο
1.1 ΠΡΟΒΛΗ ΜΑ Χρωματίζουμε τα σημεία του επιπέδου με δύο χρώματα. Αποδείξτε ότι υπάρχουν δύο τουλάχιστον σημεία με το ίδιο χρώμα που απέχουν απόσταση 1. Έστω ότι χρωματίζουμε τα σημεία του επιπέδου κόκινα
Διαβάστε περισσότεραΟλοκληρώματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ολοκληρώματα. τεχνικές. 108 ασκήσεις. εκδόσεις.
Ολοκληρώματα Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Ολοκληρώματα τεχνικές 08 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglkos.gr / / 0 9 εκδόσεις Καλό πήξιμο Τα πάντα για τα Ολοκληρώματα
Διαβάστε περισσότεραΣ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Τι κάνει η Στατιστική Στατιστική (Statistics) Μετατρέπει αριθμητικά δεδομένα σε χρήσιμη πληροφορία. Εξάγει συμπεράσματα για έναν πληθυσμό. Τις περισσότερες
Διαβάστε περισσότεραΕ.Α.Υ. Υπολογιστική Όραση. Κατάτμηση Εικόνας
Ε.Α.Υ. Υπολογιστική Όραση Κατάτμηση Εικόνας Γεώργιος Παπαϊωάννου 2015 ΚΑΤΩΦΛΙΩΣΗ Κατωφλίωση - Γενικά Είναι η πιο απλή μέθοδος segmentation εικόνας Χωρίζουμε την εικόνα σε 2 (binary) ή περισσότερες στάθμες
Διαβάστε περισσότεραΑπόδοση 3D σκηνών - Κινούµενα γραφικά
Απόδοση 3D σκηνών - Κινούµενα γραφικά Περιεχόµενα ενότητας Καταστολή κρυµµένων επιφανειών - Αλγόριθµος z-buffer Τρισδιάστατες επιφάνειες: Κύβος Σφαίρα Κώνος - Κύλινδρος - Κυκλικός δίσκος ακτύλιος Τοµέας
Διαβάστε περισσότεραΕνδεικτική Οργάνωση Ενοτήτων. E Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1
Ενδεικτική Οργάνωση Ενοτήτων E Τάξη Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1 Αρ3.1 Απαγγέλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών μέχρι το 1 000 000 000 8 Επανάληψη
Διαβάστε περισσότεραΣτοιχεία Συναρτήσεων. 1. Να βρεθεί το πεδίο ορισμού των παρακάτω συναρτήσεων: στ. x 1
Στοιχεία Συναρτήσεων 1. Να βρεθεί το πεδίο ορισμού των παρακάτω συναρτήσεων: 1 α. f() β. f() 3 6 8 3 1 γ. g() δ. g() ( 6)( 5) 4 ε. h() 4 στ. h() 4 ζ. ε. στ. 1 φ() η. 1 1 1 r() 5 6 1 r() 1 5 6 φ() 5. Στις
Διαβάστε περισσότεραΟλοκληρώματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ολοκληρώματα. τεχνικές. 108 ασκήσεις. εκδόσεις.
Ολοκληρώματα Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Ολοκληρώματα τεχνικές 08 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglkos.gr / / 0 7 εκδόσεις Καλό πήξιμο τηλ. Οικίας : 0-60.78
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 1/ Στον Ευκλείδειο χώρο ορίζουμε τις νόρμες: 0 2 xx, που ισχύει.
ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /0 Στον Ευκλείδειο χώρο ορίζουμε τις νόρμες: Ν : = + + + Ν : = + + + Ν : = ma 3 για κάθε = ( ) Να αποδείξετε ότι για κάθε = ( ) ισχύει: Ν ( ) Ν ( ) Ν ( ) Ν (
Διαβάστε περισσότεραΚεφάλαιο 4 ΜΕΤΑΒΟΛΗ ΚΕΝΤΡΟΥ ΑΝΤΩΣΗΣ ΚΑΙ ΜΕΤΑΚΕΝΤΡΟΥ ΛΟΓΩ ΕΓΚΑΡΣΙΑΣ ΚΛΙΣΗΣ
Κεφάλαιο 4 ΜΕΤΑΒΟΛΗ ΚΕΝΤΡΟΥ ΑΝΤΩΣΗΣ ΚΑΙ ΜΕΤΑΚΕΝΤΡΟΥ ΛΟΓΩ ΕΓΚΑΡΣΙΑΣ ΚΛΙΣΗΣ Σύνοψη Αυτό το κεφάλαιο έχει επίσης επαναληπτικό χαρακτήρα. Σε πρώτο στάδιο διερευνάται η μορφή της καμπύλης την οποία γράφει το
Διαβάστε περισσότεραΟδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης:
Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: παρόμοιο με του Cabri με αρκετές όμως διαφορές στην αρχιτεκτονική
Διαβάστε περισσότεραΠΟΥ ΔΙΑΔΙΔΕΤΑΙ ΤΟ ΦΩΣ
1 ΦΩΣ Στο μικρόκοσμο θεωρούμε ότι το φως έχει δυο μορφές. Άλλοτε το αντιμετωπίζουμε με τη μορφή σωματιδίων που ονομάζουμε φωτόνια. Τα φωτόνια δεν έχουν μάζα αλλά μόνον ενέργεια. Άλλοτε πάλι αντιμετωπίζουμε
Διαβάστε περισσότεραΕΦΑΡΜΟΓΕΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΤΗ ΝΑΥΠΗΓΙΚΗ ΚΑΙ ΣΤΗ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ
ΕΦΑΡΜΟΓΕΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΤΗ ΝΑΥΠΗΓΙΚΗ ΚΑΙ ΣΤΗ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ Εισαγωγή στη μέθοδο των πεπερασμένων στοιχείων Α. Θεοδουλίδης Η Μεθοδος των Πεπερασμένων στοιχείων Η Μέθοδος των ΠΣ είναι μια
Διαβάστε περισσότεραΣτο προοπτικό ανάγλυφο για τη ευθεία του ορίζοντα χρησιμοποιούμε ένα δεύτερο κατακόρυφο επίπεδο Π 1
ΠΡΟΟΠΤΙΚΟ ΑΝΑΓΛΥΦΟ Το προοπτικό ανάγλυφο, όπως το επίπεδο προοπτικό, η στερεοσκοπική εικόνα κ.λπ. είναι τρόποι παρουσίασης και απεικόνισης των αρχιτεκτονικών συνθέσεων. Το προοπτικό ανάγλυφο είναι ένα
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη : Περιγραφή αριθμητικών μεθόδων Χειμερινό εξάμηνο 008 Προηγούμενη παρουσίαση... Γράψαμε τις εξισώσεις
Διαβάστε περισσότεραΗ Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή
Αντιστροφή Υποθέτουμε ότι υπάρχει ένας κανόνας ο οποίος επιτρέπει την μετάβαση από ένα σχήμα σε ένα άλλο, με τέτοιο τρόπο ώστε το δεύτερο σχήμα να είναι τελείως ορισμένο όταν το πρώτο είναι δοσμένο και
Διαβάστε περισσότεραΜέγιστα & Ελάχιστα. ΗΥ111 Απειροστικός Λογισμός ΙΙ
ΗΥ-111 Απειροστικός Λογισμός ΙΙ Μέγιστα & Ελάχιστα 1 μεταβλητή: Τύπος Taylor Aν y=f(x) είναι καλή συνάρτηση f '( a) f ''( a) f ( a) f x f a x a x a x a R x 1!! n! n + 1 f ( c) n + 1 Rn ( x) = ( x a), a
Διαβάστε περισσότεραΓεωμετρικές Σκιές. Θ. Θεοχάρης Ι. Κακαδιάρης - Γ. Πασσαλής
Γεωμετρικές Σκιές Θ. Θεοχάρης Ι. Κακαδιάρης - Γ. Πασσαλής Περιεχόμενα Σ1 Χαρακτηριστικά Σκιών στα Γραφικά Σ2 Απλές Σκιές Σ3 Σύγχρονοι Αλγόριθμοι Σκιών 2 Εισαγωγή (1) Οι σκιές είναι σημαντικές στην κατανόηση
Διαβάστε περισσότερα2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ
ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί
Διαβάστε περισσότεραΠεριοχή εργασίας. Τμ. Γραφιστικής (Γραφιστική με Η/Υ - In Design) 2
Περιοχή εργασίας A. Παράθυρο εγγράφου B. Συγκέντρωση πινάκων συμπτυγμένων σε εικονίδια Γ. Γραμμή τίτλου πίνακα Δ. Γραμμή μενού E. Γραμμή επιλογών Στ. Παλέτα εργαλείων Ζ. Κουμπί σύμπτυξης σε εικονίδια Η.
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 6 Β' Λυκείου. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων- Τριγωνομετρία
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 6 Β' Λυκείου Ον/μο:. ΕΠΑ.Λ. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων- Τριγωνομετρία 06-11-16 Θέμα 1 ο : Α.i. Τι ονομάζουμε γραμμική εξίσωση; (4 μον.) ii. Πότε μία συνάρτηση f ονομάζεται
Διαβάστε περισσότεραΕνδεικτική πολυ-εργασία 1 - εφαρμογή στην υπολογιστική όραση
Ενδεικτική πολυ-εργασία 1 - εφαρμογή στην υπολογιστική όραση Εντοπισμός ενός σήματος STOP σε μια εικόνα. Περιγράψτε τη διαδικασία με την οποία μπορώ να εντοπίσω απλά σε μια εικόνα την ύπαρξη του παρακάτω
Διαβάστε περισσότεραb proj a b είναι κάθετο στο
ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ. Βρείτε όλα τα σηµεία P τέτοια ώστε η απόσταση του P από το A(, 5, 3) είναι διπλάσια από την απόσταση του P από το B(6, 2, 2). είξτε ότι το σύνολο όλων αυτών των σηµείων είναι σφαίρα.
Διαβάστε περισσότεραΚανονικά πολύγωνα Τουρναβίτης Στέργιος
Κανονικά πολύγωνα Τουρναβίτης Στέργιος Κανονικά πολύγωνα στη φύση, τέχνη, ανθρώπινες κατασκευές, Μαθηματικά Κανονικά πολύγωνα στη φύση Η κηρήθρα είναι ένα φυσικό θαύμα αρχιτεκτονικής Οι μέλισσες έχουν
Διαβάστε περισσότεραΑπορρόφηση Αερίων (2)
Απορρόφηση Αερίων (2) Λεπτομερής Ανάλυση Θεωρούμε έναν πύργο απορρόφησης που μπορεί να περιέχει δίσκους ή να είναι τύπου πληρωτικού υλικού ή άλλου τύπου. Τελικός σκοπός είναι να βρούμε το μέγεθος του πύργου.
Διαβάστε περισσότερα1 8 και ο δεύτερος παίρνει το υπόλοιπο. Παρακάτω, ο πρώτος παραπόταμος χωρίζεται στα 3 και το ένα τμήμα του παίρνει το του νερού του 8 ) 1 2
Kangourou Sans Frontières Θέματα Καγκουρό 00 LEVELS: - (για μαθητές της Β' και ' τάξης Λυκείου) Ερωτήσεις βαθμών: ) Οι αριθμοί και και δύο άγνωστοι αριθμοί γράφονται μέσα στα τετραγωνάκια του διπλανού
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 1/2012
ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /0 Στον Ευκλείδειο χώρο ορίζουμε τις νόρμες: : : : ma 3 για κάθε Να αποδείξετε ότι για κάθε ισχύει: 3 3 Τι συμπεραίνετε για τις παραπάνω νόρμες του Αν θεωρήσουμε
Διαβάστε περισσότεραΚεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα
Ασκήσεις της Ενότητας 2 : Ζωγραφίζοντας με το ΒΥΟΒ -1- α. Η χρήση της πένας Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα Υπάρχουν εντολές που μας επιτρέπουν να επιλέξουμε το χρώμα της πένας, καθώς και το
Διαβάστε περισσότερα2. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 και του 100 αυξάνονται κατά 9 μονάδες, όταν αντιστραφούν τα ψηφία τους; Γ. Αν, Δ. Αν, τότε. τότε.
11η Κυπριακή Μαθηματική Ολυμπιάδα πρίλιος 010 Χρόνος: 60 λεπτά ΛΥΚΕΙΟΥ 1. Το τελευταίο ψηφίο του αριθμού 1 3 5 Ε 9 7. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 του 100 αυξάνονται κατά 9 μονάδες όταν αντιστραφούν
Διαβάστε περισσότεραΕργαστήριο Τεχνολογίας Πολυμέσων & Γραφικών, Τ.Ε.Π Π.Μ, Μάθημα: Γραφικά με Η/Υ
ΓΡΑΦΙΚΑ Γέμισμα ΑΛΓΟΡΙΘΜΟΙ ΓΕΜΙΣΜΑΤΟΣ Για τις πλεγματικές οθόνες υπάρχουν: Αλγόριθμοι γεμίσματος:, που στηρίζονται στη συνάφεια των pixels του εσωτερικού ενός πολυγώνου Αλγόριθμοι σάρωσης: που στηρίζονται
Διαβάστε περισσότεραΑσκήσεις. Κεφάλαιο 6. a = a 0 + x 1 b 1 + x 2 b 2 + x 3 b 3, όπου b i = a i a 0, i = 1, 2, 3, P 2 = {(x, y, z) R 3 : x 2y + 3z = 2}.
Κεφάλαιο 6 Ασκήσεις 1. (αʹ) ώστε δράση του Χ R 2 στο αφινικό επίπεδο P = {(x, y, z) R 3 : x = 2}. Επίσης, δώστε µία αφινική ϐάση τριών σηµείων (a 0, a 1, a 2 ) και ϐρείτε τις ϐαρυκεντρικές συντεταγµένες
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ
ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ Εισαγωγή /4 Το σχήμα και το μέγεθος των δισδιάστατων αντικειμένων περιγράφονται με τις καρτεσιανές συντεταγμένες x, y. Με εφαρμογή γεωμετρικών μετασχηματισμών στο μοντέλο
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΟΠΤΙΚΩΝ ΟΡΓΑΝΩΝ
ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΟΠΤΙΚΩΝ ΟΡΓΑΝΩΝ Άσκηση 4. Διαφράγματα. Θεωρία Στο σχεδιασμό οπτικών οργάνων πρέπει να λάβει κανείς υπόψη και άλλες παραμέτρους πέρα από το πού και πώς σχηματίζεται το είδωλο ενός
Διαβάστε περισσότεραΕυχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17
Περιεχόμενα Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 ΚΕΦΑΛΑΙΟ 1. Το σύνολο των πραγματικών αριθμών... 19 1.1 Σύνολα αριθμών... 19 1.2 Αλγεβρική δομή του R... 20 1.2.1 Ιδιότητες πρόσθεσης...
Διαβάστε περισσότερα1 x m 2. degn = m 1 + m m n. a(m 1 m 2...m k )x m 1
1 Πολυώνυμα και συσχετικός χώρος Ορισμός 3.1 Ενα μονώνυμο N στις μεταβλητές x 1, x 2,..., x n είναι ένα γινόμενο της μορφής x m 1 2...x m n n, όπου όλοι οι εκθέτες είναι φυσικοί αριθμοί. Ο βαθμός του μονωνύμου
Διαβάστε περισσότεραΓρήγορη Εκκίνηση. Όταν ξεκινήσετε το GeoGebra, εμφανίζεται το παρακάτω παράθυρο:
Τι είναι το GeoGebra; Γρήγορη Εκκίνηση Λογισμικό Δυναμικών Μαθηματικών σε ένα - απλό στη χρήση - πακέτο Για την εκμάθηση και τη διδασκαλία σε όλα τα επίπεδα της εκπαίδευσης Συνδυάζει διαδραστικά γεωμετρία,
Διαβάστε περισσότεραΤεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας
Τεχνικές Μείωσης Διαστάσεων Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας 1 Εισαγωγή Το μεγαλύτερο μέρος των δεδομένων που καλούμαστε να επεξεργαστούμε είναι πολυδιάστατα.
Διαβάστε περισσότεραΟδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας
Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Η πρώτη οθόνη μετά την εκτέλεση του προγράμματος διαφέρει κάπως από τα προηγούμενα λογισμικά, αν και έχει αρκετά κοινά στοιχεία. Αποτελείται
Διαβάστε περισσότεραΦυσική για Μηχανικούς
Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss,
Διαβάστε περισσότεραΚεφάλαιο 0: Εισαγωγή
Κεφάλαιο : Εισαγωγή Διαφορικές εξισώσεις Οι Μερικές Διαφορικές Εξισώσεις (ΜΔΕ) αλλά και οι Συνήθεις Διαφορικές Εξισώσεις (ΣΔΕ) εμφανίζονται παντού στις επιστήμες από τη μηχανική μέχρι τη βιολογία Τις περισσότερες
Διαβάστε περισσότερα6 Φεβρουαρίου 2016, Λεμεσός
6 Φεβρουαρίου 2016, Λεμεσός Τα ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ περιγράφει: τα Μαθηματικά που αναμένουμε να κατανοήσουν οι μαθητές μέχρι το τέλος της σχολικής τους εκπαίδευσης, από το Νηπιαγωγείο μέχρι
Διαβάστε περισσότεραΛειτουργία σηµείο γραµµή σε πολύγωνο
Λειτουργία σηµείο γραµµή σε πολύγωνο 2 5 7 3 1 6 8 4 2 5 1 6 7 8 3 4 Υπολογισµός του ελάχιστου περιβάλλοντος ορθογώνιου παραλληλόγραµµου του πολυγώνου που εξετάζεται. Ο υπολογισµός αυτών γίνεται εύκολα
Διαβάστε περισσότεραΤεχνικό Τοπογραφικό Σχέδιο
Τεχνικό Τοπογραφικό Σχέδιο Γ. Καριώτου ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ & ΜΗΧΑΝΙΚΩΝ ΤΟΠΟΓΡΑΦΙΑΣ ΚΑΙ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1Ο : ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Διάνυσμα Θέσης ενός σημείου Αν θεωρήσουμε ένα οποιοδήποτε σημείο Ο του επιπέδου ως σημείο αναφοράς (ακόμα
Διαβάστε περισσότεραΔεδομένα ενός ΓΣΠ: Οντότητες, αντικείμενα και περιγραφικά χαρακτηριστικά
Δεδομένα ενός ΓΣΠ: Οντότητες, αντικείμενα και περιγραφικά χαρακτηριστικά Aπεικόνιση του πραγματικού κόσμου σε ένα ΓΣΠ: Απλοποίηση απόψεων της πραγματικότητας Οι οντότητες (entities) του πραγματικού κόσμου
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ
Ο ΚΕΦΑΛΑΙΟ ΑΣΚΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΣΥΝΟΛΑ ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ «ΣΩΣΤΟ ΛΑΘΟΣ». {,3,5,7,... } { / = ν +, ν Ν} =. = {} 0 3. Αν Α Β τότε Α Β = Α 4. 5 {,3,5,7 } 5. Αν Α= {, 3,7} και Β= {,3} 7, τότε Α=Β 6.
Διαβάστε περισσότεραΚεφάλαιο 7. Τρισδιάστατα Μοντέλα
Κεφάλαιο 7. 7.1 ομές εδομένων για Γραφικά Υπολογιστών. Οι δομές δεδομένων αποτελούν αντικείμενο της επιστήμης υπολογιστών. Κατά συνέπεια πρέπει να γνωρίζουμε πώς οργανώνονται τα γεωμετρικά δεδομένα, προκειμένου
Διαβάστε περισσότεραΕνότητα 5: ΜΕΤΑΒΛΗΤΕΣ
Ενότητα 5: ΜΕΤΑΒΛΗΤΕΣ Οι Μεταβλητές στον Προγραμματισμό Οι μεταβλητές είναι θέσεις μνήμης που έχουν κάποιο όνομα. Όταν δίνω τιμή σε μία μεταβλητή, ουσιαστικά, αποθηκεύουμε στη μνήμη αυτή τον αριθμό που
Διαβάστε περισσότερα