ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων
|
|
- Ωρίων Καλύβας
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων Επιμέλεια παρουσιάσεων: Δρ. Αλέκα Καλαπόδη Copyright 2009 Cengage Learning
2 Συναρτήσεις Κατανομής Πιθανοτήτων Αντίθετα με τις διακριτές τυχαίες μεταβλητές που μελετήσαμε στο Κεφάλαιο 7, μια συνεχής τυχαία μεταβλητή είναι μια μεταβλητή η οποία μπορεί να πάρει μη αριθμήσιμο πλήθος τιμών. Δεν μπορούμε να γράψουμε όλες τις δυνατές τιμές διότι υπάρχουν άπειρες το πλήθος. Επειδή υπάρχει άπειρο πλήθος τιμών, η πιθανότητα κάθε μεμονωμένης τιμής είναι πρακτικά 0. Copyright 2009m Cengage Learning 8.2
3 Οι Σημειακές Πιθανότητες είναι Μηδέν Επειδή υπάρχει άπειρο πλήθος τιμών, η πιθανότητα κάθε μεμονωμένης τιμής είναι πρακτικά 0. Άρα, μπορούμε μόνο να ορίσουμε την πιθανότητα ενός διαστήματος τιμών. Π.χ. έχοντας μια διακριτή τυχαία μεταβλητή, όπως στη ρίψη ενός ζαριού, έχει νόημα να μιλάμε για την P(X=5). Σε μια συνεχή περίπτωση (π.χ. με το χρόνο ως τυχαία μεταβλητή), η πιθανότητα η τυχαία μεταβλητή που μας ενδιαφέρει να είναι ακριβώς 5 λεπτά είναι απείρως μικρή, επομένως P(X=5) = 0. Έχει νόημα να μιλήσουμε για την P(X 5). Copyright 2009m Cengage Learning 8.3
4 Συναρτήσεις Πυκνότητας Πιθανοτήτων Μια συνάρτηση f(x) καλείται συνάρτηση πυκνότητας πιθανοτήτων (στο διάστημα a x b) εάν πληροί τις ακόλουθες προϋποθέσεις: 1) f(x) 0 για κάθε x μεταξύ a και b, και f(x) a εμβαδό=1 2) Το συνολικό εμβαδό κάτω από την καμπύλη μεταξύ a και b είναι 1.0 b x Copyright 2009m Cengage Learning 8.4
5 Η Κανονική Κατανομή Η κανονική κατανομή είναι η πιο σημαντική από όλες τις κατανομές πιθανοτήτων. Η συνάρτηση πυκνότητας πιθανοτήτων μιας κανονικής τυχαίας μεταβλητής δίνεται από την: Η γραφική παράσταση : σχήμα καμπάνας, συμμετρική ως προς τον μέσο Copyright 2009m Cengage Learning 8.5
6 Η Κανονική Κατανομή Σημαντικά στοιχεία: Η κανονική κατανομή καθορίζεται πλήρως από δύο παραμέτρους: την τυπική απόκλιση και τον μέσο Η κανονική κατανομή έχει σχήμα καμπάνας και είναι συμμετρική ως προς τον μέσο Η κανονική κατανομή παίρνει τιμές από - έως + Copyright 2009m Cengage Learning 8.6
7 Τυποποιημένη Κανονική Κατανομή Μια κανονική κατανομή με μέσο μηδέν και τυπική απόκλιση ένα καλείται τυποποιημένη κανονική κατανομή Όπως θα δούμε, κάθε κανονική κατανομή μπορεί να μετατραπεί σε τυποποιημένη κανονική κατανομή με απλές πράξεις. Αυτό κάνει τους υπολογισμούς ευκολότερους. Copyright 2009m Cengage Learning 8.7
8 Κανονική Κατανομή Η κανονική κατανομή καθορίζεται από δύο παραμέτρους: τον μέσο και την τυπική απόκλιση. Αυξάνοντας τον μέσο μετατοπίζεται η καμπύλη προς τα δεξιά Ίδια διακύμανση, διαφορετικός μέσος Copyright 2009m Cengage Learning 8.8
9 Κανονική Κατανομή Η κανονική κατανομή καθορίζεται από δύο παραμέτρους: τον μέσο και την τυπική απόκλιση. Αυξάνοντας την τυπική απόκλιση πλαταίνει η καμπύλη Ίδιος μέσος, διαφορετικές τυπικές αποκλίσεις Copyright 2009m Cengage Learning 8.9
10 Υπολογισμός πιθανοτήτων Μπορούμε να χρησιμοποιήσουμε την ακόλουθη συνάρτηση για να μετατρέψουμε οποιαδήποτε κανονική τυχαία μεταβλητή σε τυποποιημένη κανονική τυχαία μεταβλητή 0 Συμβουλή: πάντοτε να κάνετε σχήμα! Copyright 2009m Cengage Learning 8.10
11 Υπολογισμός πιθανοτήτων Μπορούμε να χρησιμοποιήσουμε την ακόλουθη συνάρτηση για να μετατρέψουμε οποιαδήποτε κανονική τυχαία μεταβλητή σε τυποποιημένη κανονική τυχαία μεταβλητή Έτσι μετατοπίζεται ο μέσος της X στο μηδέν 0 Copyright 2009m Cengage Learning 8.11
12 Υπολογισμός πιθανοτήτων Μπορούμε να χρησιμοποιήσουμε την ακόλουθη συνάρτηση για να μετατρέψουμε οποιαδήποτε κανονική τυχαία μεταβλητή σε τυποποιημένη κανονική τυχαία μεταβλητή 0 Έτσι αλλάζει το σχήμα της καμπύλης Copyright 2009m Cengage Learning 8.12
13 Παράδειγμα 8.2 Υποθέτουμε ότι σε ένα πρατήριο βενζίνης η ημερήσια ζήτηση απλής βενζίνης έχει κανονική κατανομή με μέσο γαλόνια και τυπική απόκλιση 100 γαλόνια. Ένα πρωί ο διευθυντής παρατηρεί ότι στις δεξαμενές υπάρχουν ακριβώς γαλόνια απλής βενζίνης. Η επόμενη παράδοση είναι προγραμματισμένη προς το τέλος της ημέρας. Ο διευθυντής θα ήθελε να ξέρει την πιθανότητα να έχει αρκετή απλή βενζίνη για να ικανοποιήσει τη ζήτηση της ημέρας. Copyright 2009m Cengage Learning 8.13
14 Παράδειγμα 8.2 Η ζήτηση έχει κανονική κατανομή με μέσο µ = και τυπική απόκλιση σ = 100. Θέλουμε να υπολογίσουμε την πιθανότητα P(X < 1.100) Γραφικά, θέλουμε να υπολογίσουμε : Copyright 2009m Cengage Learning 8.14
15 Παράδειγμα 8.2 Το πρώτο βήμα να τυποποιήσουμε τη X. Ωστόσο, εάν κάνουμε οποιαδήποτε πράξη στη X πρέπει να κάνουμε την ίδια πράξη στο Επομένως, X 1,100 1,000 P(X < 1,100) = P = P(Z < 1.00) 100 Copyright 2009m Cengage Learning 8.15
16 Παράδειγμα 8.2 Το παρακάτω σχήμα δείχνει γραφικά τη ζητούμενη πιθανότητα. Copyright 2009m Cengage Learning 8.16
17 Παράδειγμα 8.2 Οι τιμές της Z προσδιορίζουν τη θέση της αντίστοιχης τιμής της X. Η τιμή Z = 1 αντιστοιχεί στην τιμή της X που είναι 1 τυπική απόκλιση πάνω από τον μέσο. Σημειώστε ότι ο μέσος της Z, ο οποίος είναι 0, αντιστοιχεί στον μέσο της X. Copyright 2009m Cengage Learning 8.17
18 Παράδειγμα 8.2 Εάν γνωρίζουμε τον μέσο και την τυπική απόκλιση μιας κανονικά κατανεμημένης τυχαίας μεταβλητής, μπορούμε πάντοτε να μετασχηματίζουμε τον υπολογισμό πιθανοτήτων για την X σε υπολογισμό πιθανοτήτων για την Z. Συνεπώς, χρειαζόμαστε μόνο έναν πίνακα, τον Πίνακα 3 στο Παράρτημα B, τον πίνακα πιθανοτήτων της τυποποιημένης κανονικής κατανομής. Copyright 2009m Cengage Learning 8.18
19 Πίνακας 3 Ο πίνακας αυτός είναι παρόμοιος με αυτούς που χρησιμοποιήσαμε για τη διωνυμική κατανομή και την κατανομή Poisson. Δηλαδή, στον πίνακα καταγράφονται αθροιστικές πιθανότητες P(Z < z) για τιμές της z μεταξύ του 3.09 και του Copyright 2009m Cengage Learning 8.19
20 Πίνακας 3 Έστω ότι θέλουμε να υπολογίσουμε την πιθανότητα P(Z < 1.52) Βρίσκουμε πρώτα το 1.5 στο αριστερό περιθώριο. Στη συνέχεια κινούμαστε κατά μήκος της γραμμής μέχρι να βρούμε την πιθανότητα κάτω από την επικεφαλίδα.02 Επομένως, P(Z < 1.52) =.0643 Copyright 2009m Cengage Learning 8.20
21 Πίνακας 3 P(Z < 1.52) =.0643 Copyright 2009m Cengage Learning 8.21
22 Πίνακας 3 Όπως στην περίπτωση με τους Πίνακες 1 και 2, μπορούμε τώρα να καθορίσουμε την πιθανότητα η τυποποιημένη κανονική τυχαία μεταβλητή να είναι μεγαλύτερη από κάποια τιμή της z. Για παράδειγμα, βρίσκουμε την πιθανότητα η Z να είναι μεγαλύτερη από 1.80 καθορίζοντας την πιθανότητα η Z να είναι μικρότερη από 1.80 και αφαιρώντας την τιμή αυτή από το 1. Εφαρμόζοντας τον κανόνα συμπληρώματος έχουμε P(Z > 1.80) = 1 P(Z < 1.80) = =.0359 Copyright 2009m Cengage Learning 8.22
23 Πίνακας 3 P(Z > 1.80) = 1 P(Z < 1.80) = =.0359 Copyright 2009m Cengage Learning 8.23
24 Πίνακας 3 Μπορούμε επίσης εύκολα να καθορίσουμε την πιθανότητα μια τυποποιημένη κανονική τυχαία μεταβλητή να βρίσκεται μεταξύ 2 τιμών της z. Για παράδειγμα, υπολογίζουμε την πιθανότητα P( 1.30 < Z < 2.10) Βρίσκουμε τις 2 αθροιστικές πιθανότητες και υπολογίζουμε τη διαφορά τους. Έχουμε και Συνεπώς, P(Z < 1.30) =.0968 P(Z < 2.10) =.9821 P( 1.30 < Z < 2.10) = P(Z < 2.10) P(Z < 1.30) = =.8853 Copyright 2009m Cengage Learning 8.24
25 Πίνακας 3 P( 1.30 < Z < 2.10) =.8853 Copyright 2009m Cengage Learning 8.25
26 Πίνακας 3 Σημειώστε ότι η μεγαλύτερη τιμή του z στον πίνακα είναι 3.09, και ότι P( Z < 3.09) = Αυτό σημαίνει ότι P(Z > 3.09) = =.0010 Ωστόσο, επειδή ο πίνακας δεν περιέχει τιμές πέρα από το 3.09, προσεγγίζουμε οποιαδήποτε περιοχή πέρα από το 3.10 ως 0. Άρα, P(Z > 3.10) = P(Z < 3.10) 0 Copyright 2009m Cengage Learning 8.26
27 Πίνακας 3 Θυμηθείτε ότι τους Πίνακες 1 και 2 μπορούσαμε να τους χρησιμοποιήσουμε για να βρούμε την πιθανότητα η X να ισούται με κάποια τιμή x, αλλά τώρα δεν θα κάνουμε το ίδιο με τον πίνακα της κανονικής κατανομής. Θυμηθείτε ότι η κανονική τυχαία μεταβλητή είναι συνεχής και ότι η πιθανότητα μια συνεχής τυχαία μεταβλητή να ισούται με οποιαδήποτε μεμονωμένη τιμή είναι 0. Copyright 2009m Cengage Learning 8.27
28 Παράδειγμα 8.2 Τελικά, επιστρέφοντας στο Παράδειγμα 8.2, η πιθανότητα που αναζητάμε είναι P(X < 1,100) = P( Z < 1.00) =.8413 Copyright 2009m Cengage Learning 8.28
29 Παράδειγμα 8.2 P(X < 1,100) = P( Z < 1.00) =.8413 Copyright 2009m Cengage Learning 8.29
30 ΟΙΚΟΝΟΜΙΚΗ ΕΦΑΡΜΟΓΗ: Μέτρηση Κινδύνου Έχουμε δει οικονομικές εφαρμογές μελετώντας τη μείωση της διακύμανσης της απόδοσης μιας επένδυσης. Δεν έχουμε όμως εξηγήσει γιατί ο κίνδυνος μετριέται μέσω της διακύμανσης και της τυπικής απόκλισης, το οποίο γίνεται στο επόμενο παράδειγμα. Copyright 2009m Cengage Learning 8.30
31 Παράδειγμα 8.3 Θεωρήστε μια επένδυση της οποίας οι αποδόσεις έχουν κανονική κατανομή με μέσο 10% και τυπική απόκλιση 5%. a. Να υπολογίσετε την πιθανότητα να χάσουμε χρήματα. b. Να υπολογίσετε την πιθανότητα να χάσουμε χρήματα, όταν η τυπική απόκλιση είναι ίση με 10%. Copyright 2009m Cengage Learning 8.31
32 Παράδειγμα 8.3 a Από την επένδυση χάνουμε χρήματα όταν η απόδοση είναι αρνητική. Επομένως ζητάμε την P(X < 0) Το πρώτο βήμα είναι να τυποποιήσουμε και την X και την τιμή 0 στην έκφραση της πιθανότητας P(X < 0) = P = P(Z < 2.00) X Copyright 2009m Cengage Learning 8.32
33 Παράδειγμα 8.3 Από τον Πίνακα 3 βρίσκουμε P(Z < 2.00) =.0228 Συνεπώς η πιθανότητα ζημίας είναι.0228 Copyright 2009m Cengage Learning 8.33
34 Παράδειγμα 8.3 b. Εάν αυξήσουμε την τυπική απόκλιση στο 10% η πιθανότητα να υποστούμε ζημία γίνεται P(X < 0) = P X = P(Z < 1.00) =.1587 Copyright 2009m Cengage Learning 8.34
35 Υπολογισμός Τιμών της Z Συχνά θέλουμε να υπολογίσουμε κάποια τιμή της Z για μια δεδομένη πιθανότητα, δηλ. έχοντας δεδομένη μια περιοχή εμβαδού (A) κάτω από την καμπύλη, ποια είναι η τιμή της z (z A ) στον οριζόντιο άξονα που δίνει το αντίστοιχο εμβαδό; Αυτό σημαίνει ότι: P(Z > z A ) = A = Εμβαδό Copyright 2009m Cengage Learning 8.35
36 Υπολογισμός Τιμών της Z Ποια τιμή της z αντιστοιχεί σε εμβαδό 2.5% κάτω από την καμπύλη; Δηλαδή ποια είναι η τιμή z.025 ; (1 A) = (1.025) =.9750 Area =.025 = Εμβαδό Εάν κάνετε αντίστροφη αναζήτηση στον Πίνακα 3 για το.9750, θα βρείτε την αντίστοιχη τιμή z A = 1.96 Αφού P(z > 1.96) =.025, λέμε ότι: z.025 = 1.96 Copyright 2009m Cengage Learning 8.36
37 Αθροιστικές πιθανότητες τυποποιημένης κανονικής κατανομής Αθροιστικές πιθανότητες τυποποιημένης κανονικής κατανομής Ρ(-οο < Ζ < z)) ο z z 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,0 0,5000 0,5040 0,5080 0,5120 0,5160 0,5199 0,5239 0,5279 0,5319 0,5359 0,1 0,5398 0,5438 0,5478 0, ,5596 0, ,5714 0,5753 0,2 0,5793 0,5832 0,5871 0,5910 0,5948 0,5987 0,6026 0,6064 0,6103 0,6141 0,3 0,6179 0,6217 0,6255 0,6293 0,6331 0,6368 0,6406 0,6443 0,6480 0,6517.0,4 0,6554 0,6591 0,6628 0,6664 0,6700 0,6736 0,6772 0,6808 0,6844 0,6879 0,5 0,6915 0,6950 0,6985 0,7019 0, ,7190 0,7224 0,6 0,7257 0,7291 0,7324 0,7357 0,7389 0,7422 0,7454 0,7486 0,7517 0,7549 0,7 0,7580 0,7611 0,7642 0,7673 0, ,7764 ),7794 0,7823 0,7852 0,8 0,7881 0,7910 0,7939 0,7967 0, ,8051 0,8078 0,8106 0,8133 0,9 0,8159 0,8186 0,8212 0,8238 0, ,8315 0, ,8389 1,0 0,8413 0,8438 0,8461 0,8485 0,8508 0,8531 0,8554 0,8577 0,8599 0,8621 1,1 0,8643 0,8665 0,8686 0,8708 0,8729 0,8749 0,8770 0,8790 0,8810 0,8830 1,2 0,8849 0,8869 0,8888 0, ,8944 0,8962 0,8980 0,8997 0,9015 1,3 0,9032 0,9049 0,9066 0,9082 0,9099 0,9115 0, ,9162 0,9177 1,4 0,9192 0,9207 0,9222 0,9236 0,9251 0,9265 0,9279 0,9292 0,9306 0,9319 1,5 0,9332 0,9345 0,9357 0,9370 0,9382 0,9394 0,9406 0,9418 0,9429 0,9441 1,6 0,9452 0,9463 0,9474 0,9484 0,9495 0,9505 0,9515 0,9525 0,9535 0,9545 1,7 0,9554 0,9564 0,9573 0,9582 0,9591 0,9599 0,9608 0,9616 0,9625 0,9633 1,8 0,9641 0,9649 0,9656 0,9664 0,9671 0,9678 0,9686 0,9693 0,9699 0,9706 1,9 0,9713 0,9719 0,9726 0,9732 0,9738 0,9744 0,9750 0,9756 0,9761 0,9767 2,0 0,9772 0,9778 0,9783 0,9788 0,9793 0,9798 0,9803 0,9808 0,9812 0,9817 2,1 0,9821 0,9826 0,9830 0,9834 0,9838 0,9842 0,9846 0,9850 0,9854 0,9857 2,2 0,9861 0,9864 0,9868 0,9871 0,9875 0,9878 0,9881 0,9884 0,9887 0,9890 2,3 0,9893 0,9896 0,9898 0,9901 0,9904 0,9906 0,9909 0,9911 0,9913 0,9916 2,4 0,9918 0,9920 0,9922 0,9925 0,9927 0,9929 0,9931 0,9932 0,9934 0,9936 2,5 0,9938 0,9940 0,9941 0,9943 0,9945 0,9946 0,9948 0,9949 0,9951 0,9952 2,6 0,9953 0,9955 0,9956 0,9957 0,9959 0,9960 0,9961 0,9962 0,9963 0,9964 2,7 0,9965 0,9966 0,9967 0,9968 0,9969 0,9970 0, ,9973 0,9974 2,8 0,9974 0,9975 0,9976 0,9977 0,9977 0,9978 0, ,9980 0,9981 2,9 0,9981 0,9982 0,9982 0,9983 0,9984 0,9984 0,9985 0,9985 0,9986 0,9986 3,0 0,9987 0,9987 0,9987 0,9988 0,9988 0,9989 0,9989 0,9989 0,9990 0,9990 Copyright 2009m Cengage Learning 8.37
38 Αθροιστικές πιθανότητες τυποποιημένης κανονικής κατανομής Αθροιστικές πιθανότητες τυποποιημένης κανονικής κατανομής Ρ(-οο < Ζ < z ) z 0 Ζ 0,00 0,01 0,02 0, ,05 0,06 0,07 0,08 0,09-3,0 0, ,0013 0,0012 0,0012 0,0011 0,0011 0,0011 0,0010 0,0010-2,9 0,0019 0,0018 0,0018 0,0017 0,0016 0,0016 0,0015 0,0015 0,0014 0,0014-2,8 0,0026 0,0025 0,0024 0,0023 0,0023 0,0022 0,0021 0,0021 0,0020 0,0019-2,7 0,0035 0,0034 0,0033 0, ,0030 0,0029 0,0028 0,0027 0,0026-2,6 0,0047 0,0045 0,0044 0,0043 0,0041 0,0040 0,0039 0,0038 0,0037 0,0036-2,5 0,0062 0,0060 0,0059 0,0057 0,0055 0,0054 0,0052 0,0051 0,0049 0,0048-2,4 0,0082 0,0080 0,0078 0,0075 0,0073 0,0071 0,0069 0,0068 0,0066 0,0064-2,3 0,0107 0,0104 0,0102 0,0099 0,0096 0,0094 0,0091 0,0089 0,0087 0,0084-2,2 0,0139 0,0136 0,0132 0,0129 0,0125 0,0122 0,0119 0,0116 0,0113 0,0110-2,1 0,0179 0,0174 0,0170 0, ,0154 0, ,0 0,0228 0,0222 0,0217 0,0212 0,0207 0,0202 0,0197 0,0192 0,0188 0,0183-1,9 0,0287 0,0281 0,0274 0,0268 0,0262 0,0256 0,0250 0,0244 0,0239 0,0233-1,8 0,0359 0,0351 0,0344 0,0336 0,0329 0,0322 0,0314 0,0307 0,0301 0,0294-1,7 0,0446 0,0436 0,0427 0,0418 0,0409 0,0401 0,0392 0,0384 0,0375 0,0367-1,6 0,0548 0,0537 0,0526 0, ,0495 0,0485 0,0475 0,0465 0,0455-1, ,0655 0,0643 0,0630 0,0618 0,0606 0,0594 0,0582 0, , ,0793 0,0778 0,0764 0,0749 0,0735 0,0721 0,0708 0, ,3 0,0968 0,0951 0,0934 0,0918 0,0901 0,0885 0,0869 0,0853 0,0838 0,0823-1, ,1112 0,1093 0,1075 0,1056 0,1038 0,1020 0, , ,1314 0,1292 0,1271 0,1251 0,1230 0,1210 0,1190 0,1170-1, ,1539 0,1515 0,1492 0,1469 0, ,1401 0,1379-0,9 0, ,1788 0,1762 0,1736 0,1711 0,1685 0,1660 0,1635 0,1611-0,8 0,2119 0,2090 0,2061 0,2033 0,2005 0,1977 0,1949 0,1922 0,1894 0,1867-0, , ,2296 0,2266 0,2236 0,2206 0,2177 0,2148-0, ,2709 0,2676 0,2643 0,2611 0,2578 0,2546 0,2514 0,2483 0,2451-0, ,3050 0,3015 0,2981 0,2946 0,2912 0,2877 0,2843 0, ,4 0,3446 0,3409 0,3372 0,3336 0,3300 0,3264 0,3228 0,3192 0,3156 0,3121-0,3 0,3821 0,3783 0,3745 0,3707 0,3669 0, ,3557 0,3520 0,3483-0, ,4168 0,4129 0,4090 0, , ,3897 0,3859-0,1 0,4602 0,4562 0,4522 0,4483 0, ,4325 0,4286 0,4247-0, , , , Copyright 2009m Cengage Learning 8.38
39 Κατανομή Student t Εδώ το γράμμα t χρησιμοποιείται για να αναπαραστήσει μια τυχαία μεταβλητή. Η συνάρτηση πυκνότητας για την κατανομή Student t είναι ν (νι) είναι οι βαθμοί ελευθερίας, και Γ (συνάρτηση Γάμμα) είναι Γ(k)=(k-1)(k-2) (2)(1) Copyright 2009m Cengage Learning 8.39
40 Κατανομή Student t Όπως και η τυποποιημένη κανονική κατανομή, η κατανομή Student t έχει σχήμα λόφου και είναι συμμετρική ως προς το 0 (μέσος): Ο μέσος και η διακύμανση της τυχαίας μεταβλητής Student t είναι E(t) = 0 και V(t) = για ν > 2. Copyright 2009m Cengage Learning 8.40
41 Κατανομή Student t Όπως το µ και το σ καθορίζουν την κανονική κατανομή, εδώ το ν, οι βαθμοί ελευθερίας, καθορίζουν την κατανομή Student t : Student t με ν=30 Student t με ν=10 Student t με ν=2 Όσο οι βαθμοί ελευθερίας αυξάνονται, η κατανομή t προσεγγίζει την τυποποιημένη κανονική κατανομή. Copyright 2009m Cengage Learning 8.41
42 Υπολογισμός τιμών της Student t Η κατανομή student t χρησιμοποιείται ευρέως στην επαγωγική στατιστική. Ο πίνακας 4 στο Παράρτημα B δίνει τιμές της Δηλαδή, τιμές μιας τυχαίας μεταβλητής Student t με βαθμούς ελευθερίας έτσι ώστε: Οι τιμές του A είναι προκαθορισμένες κρίσιμες τιμές, τυπικά κινούνται σε 10%, 5%, 2.5%, 1% και 1/2%. Copyright 2009m Cengage Learning 8.42
43 Χρήση του πίνακα t (Πίνακας 4) για τιμές Για παράδειγμα, εάν θέλουμε την τιμή της t με 10 βαθμούς ελευθερίας έτσι ώστε το εμβαδό κάτω από την καμπύλη t να είναι.05: Εμβαδό κάτω από την καμπύλη για την τιμή (t A ) : ΣΤΗΛΗ t.05,10 t.05,10 =1.812 Βαθμοί ελευθερίας: ΓΡΑΜΜΗ Copyright 2009m Cengage Learning 8.43
Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων
Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων Copyright 2009 Cengage Learning 8.1 Συναρτήσεις Πυκνότητας Πιθανοτήτων Αντίθετα με τη διακριτή τυχαία μεταβλητή που μελετήσαμε στο Κεφάλαιο 7, μια συνεχής τυχαία
ΚΑΤΑΝΟΜΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ
ΚΑΤΑΝΟΜΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ Σε αντίθεση με την διακριτή τυχαία μεταβλητή, μία συνεχής τυχαία μεταβλητή παίρνει μη-αριθμήσιμο (συνεχές) πλήθος τιμών. Δεν μπορούμε να καταγράψουμε το σύνολο των τιμών
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ TECHNOLOGICAL EDUCATIONAL INSTITUTE OF WESTERN GREECE
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου 1, 263 34 ΠΑΤΡΑ Τηλ.: 2610 369051, Φαξ: 2610 396184, email: mitro@teipat.gr Καθηγητής
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 9. Κατανομές Δειγματοληψίας
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ
Στατιστική Ι. Ενότητα 7: Κανονική Κατανομή. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 7: Κανονική Κατανομή Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Περιεχόμενα της Ενότητας. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς Κατανομές Πιθανότητας. Συνεχείς Κατανομές Πιθανότητας.
Περιεχόμενα της Ενότητας Στατιστική Ι Ενότητα 5: Συνεχείς Κατανομές Πιθανότητας Δρ. Χρήστος Εμμανουηλίδης Επίκουρος Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς
3. Κατανομές πιθανότητας
3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.
Ορισμός και Ιδιότητες
ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ Ορισμός και Ιδιότητες H κανονική κατανομή norml distriution θεωρείται η σπουδαιότερη κατανομή της Θεωρίας Πιθανοτήτων και της Στατιστικής. Οι λόγοι που εξηγούν την εξέχουσα θέση της,
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η :1-0-017, 3-0-017 Διδάσκουσα: Κοντογιάννη Αριστούλα Σκοπός του μαθήματος Η παρουσίαση
Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium Iii Η Κανονική Κατανομή Λέμε ότι μία τυχαία μεταβλητή X, ακολουθεί την Κανονική Κατανομή με παραμέτρους και και συμβολίζουμε X N, αν έχει συνάρτηση πυκνότητας
1 x-μ - 2 σ. e σ 2π. f(x) =
Κανονική κατανομή Η πιο σημαντική κατανομή πιθανοτήτων της στατιστικής είναι η κανονική κατανομή. Η κανονική κατανομή είναι συνεχής κατανομή, σε αντίθεση με την διωνυμική που είναι διακριτή κατανομή. Τα
Η Κανονική Κατανομή. Κανονικές Κατανομές με την ίδια διασπορά και διαφορετικές μέσες τιμές.
Η Κανονική Κατανομή 1. Η Κανονική Κατανομή Λέμε ότι τυχαία μεταβλητή X, ακολουθεί την Κανονική Κατανομή με παραμέτρους μ και σ 2, και συμβολίζουμε Χ ~ N (μ, σ 2 ) αν έχει συνάρτηση πυκνότητας πιθανότητας
Τυχαία μεταβλητή (τ.μ.)
Τυχαία μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) είναι μια συνάρτηση X ( ) με πεδίο ορισμού το δειγματικό χώρο Ω του πειράματος και πεδίο τιμών ένα υποσύνολο πραγματικών αριθμών που συμβολίζουμε συνήθως
Διαστήματα εμπιστοσύνης, εκτίμηση ακρίβειας μέσης τιμής
Ενότητα 2 Διαστήματα εμπιστοσύνης, εκτίμηση ακρίβειας μέσης τιμής Ένας από τους βασικούς σκοπούς της Στατιστικής είναι η εκτίμηση των χαρακτηριστικών ενός πληθυσμού βάσει της πληροφορίας από ένα δείγμα.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος
ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 3Α: Η Κανονική Κατανομή Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης
Κεφάλαιο 9 Κατανομές Δειγματοληψίας
Κεφάλαιο 9 Κατανομές Δειγματοληψίας Copyright 2009 Cengage Learning 9.1 Κατανομές Δειγματοληψίας Μια κατανομή δειγματοληψίας δημιουργείται, εξ ορισμού, από δειγματοληψία. Η μέθοδος που θα χρησιμοποιήσουμε
ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα.
ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα. Στα παραπάνω ιστογράμματα, παρατηρούμε, ότι αν και υπάρχει διαφορά στη διασπορά των τιμών
Στατιστική Επιχειρήσεων Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 3: Χρήσιμες Κατανομές Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ
P(200 X 232) = =
ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΠΙΘΑΝΟΤΗΤΕΣ. Το μέγεθος ενός αναλογικού σήματος, που λαμβάνεται από έναν ανιχνευτή και μετράται σε microvolts, είναι τυχαία μεταβλητή που ακολουθεί την Κανονική κατανομή Ν(00, 6) σε συγκεκριμένη
Θεωρητικές Κατανομές Πιθανότητας
Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ
Στατιστική. Ενότητα 3 η : Χαρακτηριστικά Τυχαίων Μεταβλητών Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3 η : Χαρακτηριστικά Τυχαίων Μεταβλητών Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή Γεώργιος Ζιούτας Άδειες
Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς
Διαστήματα εμπιστοσύνης Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Διαστήματα εμπιστοσύνης Το διάστημα εμπιστοσύνης είναι ένα διάστημα αριθμών
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ
Κεφάλαιο 4 Κανονική Κατανομή. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς
Κεφάλαιο 4 Κανονική Κατανομή Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς 4-4-1 Εισαγωγή Όσο το n αυξάνει, η διωνυμική κατανομή προσεγγίζει... n = 6 n = 1 n = 14 Binomial Distribution:
Στοχαστικές Στρατηγικές
Στοχαστικές Στρατηγικές 3 η ενότητα: Εισαγωγή στα στοχαστικά προβλήματα διαδρομής Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 2018-2019 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο
F x h F x f x h f x g x h g x h h h. lim lim lim f x
3 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 013: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Κεφάλαιο 1, ) ΘΕΜΑ Α 1 Έχουμε F h F f( h) g h f() g f( h)
ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ
ΚΑΤΑΝΟΜΈΣ ΚΕΦΑΛΑΙΟ 8 81 Εισαγωγή Οι κατανομές διακρίνονται σε κατανομές συχνοτήτων, κατανομές πιθανοτήτων και σε δειγματοληπτικές κατανομές Στη συνέχεια θα γίνει αναλυτική περιγραφή αυτών 82 Κατανομές
Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος
Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία Υπεύθυνος: Δρ. Κολιός Σταύρος Κατανομές Πιθανότητας Ως τυχαία μεταβλητή ορίζεται το σύνολο των τιμών ενός χαρακτηριστικού
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 12. Εκτίμηση των παραμέτρων ενός πληθυσμού
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ
Στατιστική Περιγραφή Φυσικού Μεγέθους - Πιθανότητες
Στατιστική Περιγραφή Φυσικού Μεγέθους - Πιθανότητες Είπαμε ότι γενικά τα συστηματικά σφάλματα που υπεισέρχονται σε μια μέτρηση ενός φυσικού μεγέθους είναι γενικά δύσκολο να επισημανθούν και να διορθωθούν.
Μέρος ΙΙ. Τυχαίες Μεταβλητές
Μέρος ΙΙ. Τυχαίες Μεταβλητές Ορισμοί Συναρτήσεις κατανομής πιθανότητας και πυκνότητας πιθανότητας Διακριτές τυχαίες μεταβλητές Ειδικές κατανομές διακριτών τυχαίων μεταβλητών Συνεχείς τυχαίες μεταβλητές
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 13a: Συνεχείς Κατανομές Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 08-09 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος
Β Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής
2.5.1 ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ
.5. ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ Η μέθοδος κατασκευής διαστήματος εμπιστοσύνης για την πιθανότητα που περιγράφεται στην προηγούμενη ενότητα μπορεί να χρησιμοποιηθεί για την κατασκευή διαστημάτων
Η παρουσίαση που ακολουθεί, αφορά την κανονική κατανομή και σκοπό έχει τη διευκόλυνση των φοιτητών του τμήματος Ηλεκτρολόγων Μηχανικών & Μηχανικών
Η παρουσίαση που ακολουθεί, αφορά την κανονική κατανομή και σκοπό έχει τη διευκόλυνση των φοιτητών του τμήματος Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών να αντιληφθούν τη σημασία της εν λόγω κατανομής
159141,9 64 x n 1 n
Πιθανότητες Στατιστική: Λύσεις θεμάτων. Φεβρουάριος 9. Σειρά Α Ζήτημα ο : Μία ομάδα φοιτητών μετρά 64 φορές μία απόσταση s που δεν γνωρίζουν. Τα αποτελέσματα των μετρήσεων εμφανίζονται στον διπλανό πίνακα
04_Κανονική Τυπική κατανομή εύρεση εμβαδού. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ.
Ν161_(262)_Στατιστική στη Φυσική Αγωγή 04_Κανονική Τυπική κατανομή εύρεση εμβαδού Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. 1 Κατανομές Κάθε κατανομή συχνότητας (λίστα από ζεύγη X i,
Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση
Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Εκεί που είμαστε Κεφάλαια 7 και 8: Οι διωνυμικές,κανονικές, εκθετικές κατανομές και κατανομές Poisson μας επιτρέπουν να κάνουμε διατυπώσεις πιθανοτήτων γύρω από το Χ
Στατιστική. Ενότητα 4 η : Θεωρητικές Κατανομές Πιθανότητας Διακριτής και Συνεχούς Τυχαίας Μεταβλητής. Γεώργιος Ζιούτας Τμήμα Χημικών Μηχανικών Α.Π.Θ.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4 η : Θεωρητικές Κατανομές Πιθανότητας Διακριτής και Συνεχούς Τυχαίας Μεταβλητής Γεώργιος Ζιούτας Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές
ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές ΠΜΣ στη «Ναυτιλία» Τμήμα Β art time Χαράλαμπος Ευαγγελάρας hevangel@unipi.gr Η έννοια της Πιθανότητας Ο όρος πιθανότητα είναι συνδέεται άμεσα με τη μελέτη
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες
Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ
Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 12 Δεκεμβρίου 2012 Περιγραφή 1 Θεωρητικές Κατανομές ΙΙ Περιγραφή 1 Θεωρητικές
ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ
15/1/009 ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 10 o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος:
Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα
Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα Ορισμός τυχαίας μεταβλητής Τυχαία μεταβλητή λέγεται η συνάρτηση
Α (i) Από την έκφραση «το πολύ 85 λεπτά», δηλαδή λιγότερο από 85 λεπτά συμπεραίνουμε ότι η ζητούμενη πιθανότητα είναι η P X 85. Χ = 85 μ = 100 Επομένως από τον τύπο της κανονικής κατανομής (σχετικό βίντεο
Ανάλυση ευαισθησίας Ανάλυση ρίσκου
Τεχνολογία, Καινοτομία & Επιχειρηματικότητα, 9 ο εξάμηνο Σχολή Χ-Μ Ανάλυση ευαισθησίας Ανάλυση ρίσκου Γιώργος Μαυρωτάς Αν. καθηγητής ΕΜΠ Εργαστήριο Βιομηχανικής & Ενεργειακής Οικονομίας Τομέας ΙΙ, Σχολή
ΤΕΧΝΟΛΟΓΙΑ, ΚΑΙΝΟΤΟΜΙΑ ΚΑΙ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ 9 Ο εξάμηνο Χημικών Μηχανικών
ΤΕΧΝΟΛΟΓΙΑ, ΚΑΙΝΟΤΟΜΙΑ ΚΑΙ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ 9 Ο εξάμηνο Χημικών Μηχανικών Γιώργος Μαυρωτάς, Αν.Καθηγητής ΕΜΠ mavrotas@chemeng.ntua.gr ΑΝΑΛΥΣΗ ΕΥΑΙΣΘΗΣΙΑΣ ΑΝΑΛΥΣΗ ΡΙΣΚΟΥ Άδεια Χρήσης Το παρόν εκπαιδευτικό
ΕΡΓΑΣΤΗΡΙΟ ΙV. ΤΜΗΜΑ ΙΕΘΝΟΥΣ ΕΜΠΟΡΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι Μονοβασίλης Θεόδωρος
ΤΜΗΜΑ ΙΕΘΝΟΥΣ ΕΜΠΟΡΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι Μονοβασίλης Θεόδωρος ΕΡΓΑΣΤΗΡΙΟ ΙV Συναρτήσεις στο Mathematica Στο Mathematica υπάρχουν ορισμένες πολλές βασικές συναρτήσεις όπως ημίτονο, συνημίτονο,
Κατανομές Πιθανοτήτων. Γεωργία Φουτσιτζή, Καθηγήτρια, Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Ιωαννίνων Ακαδ.
Κατανομές Πιθανοτήτων Γεωργία Φουτσιτζή, Καθηγήτρια, Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Ιωαννίνων Ακαδ. Έτος 2018-2019 1 Περιεχόμενα Ενότητας Βασικές έννοιες από τη θεωρία Πιθανοτήτων
Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες
Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού
Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς )
Πληθυσμός (populaton) ονομάζεται ένα σύνολο, τα στοιχεία του οποίου εξετάζουμε ως προς τα χαρακτηριστικά τους. Μεταβλητές (varables ) ονομάζονται τα χαρακτηριστικά ως προς τα οποία εξετάζουμε έναν πληθυσμό.
Pr(10 X 15) = Pr(15 X 20) = 1/2, (10.2)
Κεφάλαιο 10 Συνεχείς τυχαίες μεταβλητές Σε αυτό το κεφάλαιο θα εξετάσουμε τις ιδιότητες που έχουν οι συνεχείς τυχαίες μεταβλητές. Εκείνες οι Τ.Μ. X, δηλαδή, των οποίων το σύνολο τιμών δεν είναι διακριτό,
X = = 81 9 = 9
Πιθανότητες και Αρχές Στατιστικής (11η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 35 Σύνοψη
Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Τι κάνει η Στατιστική Στατιστική (Statistics) Μετατρέπει αριθμητικά δεδομένα σε χρήσιμη πληροφορία. Εξάγει συμπεράσματα για έναν πληθυσμό. Τις περισσότερες
ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ
ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ
3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ
20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας
ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 3: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (3/4) Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
ΣΤΑΤΙΣΤΙΚΗ ΙΙ Ενότητα 3: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (3/4) Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Ανάλυση ευαισθησίας Ανάλυση ρίσκου. Μαυρωτά Γιώργου Αναπλ. Καθηγητή ΕΜΠ
Ανάλυση ευαισθησίας Ανάλυση ρίσκου Μαυρωτά Γιώργου Αναπλ. Καθηγητή ΕΜΠ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Κατανομή συνάρτησης τυχαίας μεταβλητής Y=g(X) Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ13 ( 1 )
Κατανομή συνάρτησης τυχαίας μεταβλητής =() Πιθανότητες & Στατιστική 07 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ3 ( ) Κατανομή συνάρτησης τυχαίας μεταβλητής Έστω τ.μ. Χ με γνωστή κατανομή. Δηλαδή
Στατιστική. 4 ο Μάθημα: Θεωρητικές και Εμπειρικές - Δειγματοληπτικές Κατανομές. Γεώργιος Μενεξές Τμήμα Γεωπονίας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Στατιστική 4 ο Μάθημα: Θεωρητικές και Εμπειρικές - Δειγματοληπτικές Κατανομές Γεώργιος Μενεξές Τμήμα Γεωπονίας Άδειες Χρήσης Το παρόν
Πανεπιστήμιο Πελοποννήσου
Πανεπιστήμιο Πελοποννήσου Τυχαίες μεταβλητές Κατανομές Τυχαία Μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) ονομάζεται η συνάρτηση που απεικονίζει το σύνολο των δυνατών αποτελεσμάτων ενός πειράματος στο σύνολο
ρ. Ευστρατία Μούρτου
ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΩΝ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΕΞΑΜΗΝΟ : Ε ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ : - ΜΑΘΗΜΑ «ΒΙΟΣΤΑΤΙΣΤΙΚΗ» ΚΕΦ. ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ρ. Ευστρατία Μούρτου
P (A B) = P (AB) P (B) P (A B) = P (A) P (A B) = P (A) P (B)
Πιθανότητες και Αρχές Στατιστικής (4η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 39 Περιεχόμενα
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 3 Επιστήμη και Τέχνη των Γραφικών Παρουσιάσεων
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ
17/10/2016. Στατιστική Ι. 3 η Διάλεξη
Στατιστική Ι 3 η Διάλεξη 1 2 Τυχαία μεταβλητή X στο δειγματικό χώρο Ω Μια πραγματική συνάρτηση που αντιστοιχίζει τα στοιχεία του δειγματικού χώρου Ω στο σύνολο των πραγματικών αριθμών τέτοια ώστε για κάθε
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 1 Τι είναι η Στατιστική;
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ
Τυχαίες Μεταβλητές. Ορισμός
Τυχαίες Μεταβλητές Ορισμός Μία τυχαία μεταβλητή (τ.μ.) είναι μία συνάρτηση (ή μία μεταβλητή) η οποία καθορίζει αριθμητικές τιμές σε μία ποσότητα που σχετίζεται με το αποτέλεσμα ενός πειράματος, όπου μία
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Σε κάθε αποτέλεσμα του πειράματος αντιστοιχεί μία αριθμητική τιμή Μαθηματικός ορισμός: Τυχαία μεταβλητή X είναι
Στατιστική Ι-Θεωρητικές Κατανομές Ι
Στατιστική Ι-Θεωρητικές Κατανομές Ι Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 12 Δεκεμβρίου 2012 Περιγραφή 1 Θεωρητικές Κατανομές Η Χρήση των Θεωρητικών
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR.
ΘΕΜΑ 1o ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 5 ΜΑΪΟΥ 006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)
Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:
Άσκηση 1: Δύο τυχαίες μεταβλητές Χ και Υ έχουν στατιστικές μέσες τιμές 0 και διασπορές 25 και 36 αντίστοιχα. Ο συντελεστής συσχέτισης των 2 τυχαίων μεταβλητών είναι 0.4. Να υπολογισθούν η διασπορά του
Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)
Μαθηματικά Ενότητα 2: Διαφορικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr
Ποσοτικές Μέθοδοι Εισηγητής: Ν.Κυρίτσης MBA Ph.D. Candidate e-mail: kyritsis@ist.edu.gr Εισαγωγή στη Στατιστική Διδακτικοί Στόχοι Μέτρα Σχετικής Διασποράς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή Η Τυποποιημένες
ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ
9 ο ΜΑΘΗΜΑ ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Πότε κάνουμε ομαδοποίηση των παρατηρήσεων; Όταν το πλήθος των τιμών μιας μεταβλητής είναι αρκετά μεγάλο κάνουμε ομαδοποίηση των παρατηρήσεων. Αυτό συμβαίνει είτε
Στατιστική Επιχειρήσεων Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 2: Τυχαίες Μεταβλητές Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το
ΠΙΘΑΝΟΤΗΤΕΣ -ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ(τελικές εξετάσεις πλη12)
ΠΙΘΑΝΟΤΗΤΕΣ -ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ(τελικές εξετάσεις πλη) Για διακριτή τυχαία μεταβλητή ισχύει μία συνάρτηση πιθανότητας ικανοποιεί τις ακόλουθες δύο ιδιότητες: (α) ( ) 0, για κάθε i,, i (β) ( i ) i S Παράδειγμα
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 4 η : Χαρακτηριστικά Τυχαίων Μεταβλητών. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Α.Π.Θ.
Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 4 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ
Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) o ΘΕΜΑ A. Aν n
pdf: X U(a, b) 0, x < a 1 b a, a x b 0, x > b
Πιθανότητες και Αρχές Στατιστικής (8η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 41 Περιεχόμενα
Μέρος IV. Πολυδιάστατες τυχαίες μεταβλητές. Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ15 ( 1 )
Μέρος IV Πολυδιάστατες τυχαίες μεταβλητές Πιθανότητες & Στατιστική 07 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Παν. Ιωαννίνων Δ5 ( ) Πολυδιάστατες μεταβλητές Πολλά ποσοτικά χαρακτηριστικά που σχετίζονται με
ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. αλλού
ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. Η τυχαία μεταβλητή Χ έχει συνάρτηση πιθανότητας που δίνεται από τον πίνακα: x f(x) / / / / / Να βρεθεί η μέση τιμή και η διασπορά.. Η τυχαία μεταβλητή
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 5 Συλλογή Δεδομένων & Δειγματοληψία
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ
Α. Έστω δύο σύνολα Α και Β. Ποιά διαδικασία ονομάζεται συνάρτηση με πεδίο ορισμού το Α και πεδίο τιμών το Β;
σελ 1 από 5 ΚΕΦΑΛΑΙΟ 1 Ο Α. Έστω δύο σύνολα Α και Β. Ποιά διαδικασία ονομάζεται συνάρτηση με πεδίο ορισμού το Α και πεδίο τιμών το Β; 1. Σ-Λ Η σχέση με:, είναι συνάρτηση. 2. Σ-Λ Η σχέση είναι συνάρτηση.
Π.χ. πρωτεύουσες, Εκ περιτροπής από δευτερεύουσες σε τριτεύουσες
Συστήματα άρδευσης Συνεχούς ροής Εκ περιτροπής Με ελεύθερη ζήτηση Μείξη (π.χ. χ περιορισμένη ζήτηση, ελεύθερη ζήτηση αλλά ορισμένες ημέρες της εβδομάδας) ) Συνεχούς ροής (χρησιμοποιήθηκε στα συλλογικά
Η Κανονική Κατανομή κανονική κατανομή (normal distribution) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem) συνδέει οποιαδήποτε άλλη κατανομή
Η Κανονική Κατανομή H κανονική κατανομή (ormal dstrbuto) θεωρείται η σπουδαιότερη κατανομή της Θεωρίας Πιθανοτήτων και της Στατιστικής. Οι λόγοι που εξηγούν την εξέχουσα θέση της, είναι βασικά δύο: ) Πολλές
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις στο μάθημα ΠΙΘΑΝΟΤΗΤΕΣ Ι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις στο μάθημα ΠΙΘΑΝΟΤΗΤΕΣ Ι Ονοματεπώνυμο: Όνομα Πατρός:... ΑΜ:. Ημερομηνία: Σ Παρακαλώ μη γράφετε στα παρακάτω τετράγωνα Μέρος
Κεφάλαιο 9. Έλεγχοι υποθέσεων
Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές
Κεφάλαιο 3 Κατανομές. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς
Κεφάλαιο Κατανομές Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς - - Χρησιμοποιώντας την Στατιστική Έστω οι διαφορετικές διατάξεις ενός αγοριού (B) και ενός κοριτσιού (G) σε τέσσερις
Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,
Βιομαθηματικά BIO-156
Βιομαθηματικά BIO-156 Τυχαίες μεταβλητές Κατανομές Πιθανοτήτων Ντίνα Λύκα Εαρινό Εξάμηνο, 013 lika@biology.uoc.gr Τυχαία Μεταβλητή τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε απλό ενδεχόμενο
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 6 η : Θεωρητικές Κατανομές Πιθανότητας για Συνεχή Τυχαία Μεταβλητή. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών
Τυχαία Διανύσματα και Ανεξαρτησία
Τυχαία Διανύσματα και Ανεξαρτησία Θα γενικεύσουμε την έννοια της τυχαίας μεταβλητής από συνάρτηση στο R σε συνάρτηση στο R n. Ακολούθως, θα επεκτείνουμε τις έννοιες με τις οποίες ασχοληθήκαμε μέχρι τώρα