Metode de explorare a grafurilor.
|
|
- Εὔα Λιακόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Mto xplorr rurilor. Explorr (su trvrsr ) unui r st o mtoă sistmtiă prurr, prin xminr muiilor şi vârurilor. O trvrsr iintă r lo în timp linir O(n+m). rvrsr în ânim unui r (DFS Dpt First Sr). In zul rurilor norintt, trvrsr în ânim st o mtoă iintă pntru: ăsir uni ăi într ouă vâruri trmin ă un r st onx trminr rorlui oprir unui r onx Prin trvrsr DFS unui r norintt s oţin un ror oprir în ânim. In st sop: s pornşt intr un vâr s (vâr strt). Iniţil vârul urnt u v i vârul strt. Fi (u, v) o mui inintă în vârul urnt u. Sunt posiil 2 situţii: vârul v nu ost înă xplort (vizitt), z în r: s mrză vârul vizitt s ontinuă xplorr in v vârul v ost j vizitt, situţi în r s rvin în u şi s înră vizitr unui lt vâr int lui u ă s u vizitt tot vâruril int lui u, s un ps înpoi, lân lt vâr urnt u, u muii nxplort, Prosul s îni ân n întorm în s. Mui xplortă in u, r onu l un vâr nsoprit st o mui ror. O mui in u, r onu l un vâr j vizitt, st o mui rvnir. E iniă prznţ unui ilu. Fi o trvrsr DFS într un r norintt G, pornin in vârul strt u: trvrsr vizitză tot vâruril omponnti onx lui s muiil ror ormză un ror oprir omponnti onx lui s. In trvrsr, unţi DFS st pltă o sinură tă pntru ir vâr,.î. ir mui st xmintă 2 ori, ât o tă pntru ir xtrmitt. Complxitt loritmului v i şr O(n+m). Următorii loritmi s zză p trvrsr în ânim (DFS) şi u şi omplxitt: 1) tst onxitt r 2) trminr ror oprir pntru r onx 3) trminr omponnt onx l rului 4) trminr uni ăi într ouă vâruri 5) trminr unui ilu (su trminr inxistnţi ilurilor). rvrsr în ânim unui r norintt lsiiă muiil rului în: muii ror muii rvnir loritm DFS(u) or ir mui inintă în u v = llt xtrmitt lui ; i v nvizitt >tip = ror; DFS(v); ls >tip = rvnir; rorl oprir în ânim st păstrt prin surul prsor G p = (V, E p ) în r: 1
2 E p = {(pr(v), v): v V pr(v) 0 S osrvă ă E p păstrză muiil ror. voi DFSV(Gr G, Vr u){ Vr v; G_StCol(G, u, ri); or(v=primv(g);!ultv(g); v=vnsv(g,v)) i(g_isv(g,v) && G_Is(G,u,v) && G_GtCol(G,v)==l){ G_StPr(G, v, u); DFSV(G, v); voi DFS(Gr G){ Vr u; or(u=primv(g);!ultv(g); u=vnsv(g,u)) i(g_isv(g,u)){ G_StCol(G, u, l); G_StPr(G,u, 0); ; or(u=primv(g);!ultv(g); u=vnsv(g,u)) i(g_isv(g,u) && V_GtCol(u)==l) DFSV(G, u); Spr osir ruril norintt, l r în ursul trvrsării un vâr pot i vizitt su nvizitt, pntru ruri orintt, s istin 3 stări, intiit prin ulori: 0 = l pntru vâr nvizitt 1 = ri pntru vâr vizitt, ărui listă susori nu ost în întrim xplortă 2 = nru pntru vâr vizitt, u listă susori xplortă Pntru ir vâr u s mrză ouă momnt: strt[u] = momntul sopririi vârului stop[u] = momntul în r s xplort list susori i vârului u Intr un r orintt, rl siil in s s lsiiă în: r ror r onu l soprir vâruri noi r rvnir r lă un vâr u un strămoş în rorl DFS r înintr r lă un vâr u un snnt în rorl DFS r trvrsr r lă vâruri in rori DFS iriţi (nu s înrză în toriil prnt). int strt[2*m], stop[2*m]; int t; voi DFS(Gr G){ Vr u; or(u=primv(g);!ultimv(g); u=vnsv(g,u)) i(g_isv(g,u)){ G_StCol(G, u, l); G_StPr(G, u, 0); ; t = 0; or(u=primv(g);!ultimv(g); u=vnsv(g,u)) i(g_isv(g,u) && G_GtCol(G, u)==l) DFSV(G, u); 2
3 voi DFSV(Gr G, Vr u){ Vr v; G_StCol(G, u, ri); strt[u] = ++t; or(v=primv(g);!ultimv(g); v=vnsv(g,v)) i(g_isv(g,v) && G_Is(G,u,v) && G_GtCol(G,v)==l){ G_StPr(G, v, u); DFSV(G, v); ; G_StCol(G, u, nru); stop[u] = ++t; O unţi DFS nrursivă olosşt o stivă: DFS(G, s){ pun noul strt in stivă; ât timp(stivă nviă){ sot in stivă în x; mrr x; pun în stivă susorii nvizitţi i lui x; voi DFSV(Gr G, Vr u){ Stiv S = S_Nw(); Pus(S, u); Vr x, v; wil(!s_empty(s)){ x =*(Vr*)Pop(S); i(g_gtcol(g, x)==l){ G_StCol(G, x, ri); or(v=primv(g);!ultimv(g); v=vnsv(g,v)) i(g_isv(g,v) && G_Is(G,x,v) && G_GtCol(G,v)==l){ Pus(S, v); G_StPr(G, v, u); rvrsr DFS pot olosi l lsiir rlor. stl ă: olort[v] = l (u, v) r ror olort[v] = ri (u, v)r rvnir olort[v] = nru strt[u] < strt[v] (u, v)r înintr strt[u] > strt[v] (u, v)r trvrsr 3
4 1/12 2/11 8/9 5/6 vir List susori 3/10 4/7 vir pr olort strt sto p rvrsr în lăţim (BFS Brt First Sr). Prin trvrsr în lăţim unui r G = (V, E) s rză un ror prurr în lăţim: G p = (V p, E p ) V p = { v V : pr[v] 0 {s E p = {(pr[v],v) E : v V p {s Folosit pntru işr ăii l vârul strt s l un vâr v: voi isl(gr G, Vr s, Vr v){ i(v==s) print( %s\n, V_GtEt(v)); ls i(g_gtpr(g, v)==0) print( nu xist rum\n ); ls{ isl(g, s, G_GtPr(G, v)); print( %s\n, G_GtEt(G, v)); Prin trvrsr în lăţim, pornin in vârul sursă s: s lulză istnţ (în număr muii) l sursă l ir vâr 4
5 pntru ori vâr v, siil in surs s,l în ror orspun lui mi surt rum l s l v voi BFS(Gr G, Vr s){ Vr u,v; Quu Q=Q_Nw(); or(u=primv(g);!ultimv(g); u=vnsv(g,u)){ i(g_isv(g,u)){ G_StCol(G, u, l); G_StDist(G, u, INF); G_StPr(G, u, NULL); G_StCol(G, s, ri); G_StDist(s, 0); Enq(Q, s); wil(!q_empty(q)){ u = Front(Q); or(v=primv(g,u);!ultv(g,u); v=vnsv(g,u,v) i(g_gtcol(g, v)==l){ G_StCol(G, v, ri); G_StDist(G, v, G_GtDist(G,u) + 1); G_StPr(G, v, u); Enq(Q, v); Dq(Q); G_StCol(G, u, nru); S U V W X Y vir pr olort s r 0 s ω 1 t 0 w ω 2 u 0 t ω 3 v 0 r ω 2 w 0 s ω 1 x 0 w ω 2 y 0 x ω 3 3 5
6 Evoluţi ozii p prursul xuţii loritmului BFS st: Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q. s sr srw rw rwv wv wvt wvtx vtx tx txu xu xuy uy y Prin trvrsr în lăţim unui r norintt pr muii ror şi muii trvrsr. L trvrsr în lăţim unui r orintt pr: r ror, r trvrsr şi r rvnir. rorl prurr în lăţim st: S W V X U Y Sortr topoloiă. Intr un r orintt prznţ unui r (u, v) pot i privită o rlţi prnţă: u pr v. ipro, mi mult lmnt într r xistă rlţii prnţă pot i rprzntt printr un r orintt. Dă nu xistă iluri, st posiilă ăsir uni rlţii orin p nsmlul tuturor vârurilor rului. O sortr topoloiă unui r orintt ili st o oronr liniră vâruri în r u pr v, ă xistă rul (u, v). Un loritm sortr topoloiă r onsir mi întâi vâruril r nu sunt prt (oniţiont) lt vâruri, iă vâruril sursă (u r intrior nul), upă r urmză vâruril r su p l intâi ş..m.. o sst un vâr v u in[v]=0 pun v în oă ştr vârul v şi rl inint în vâr wil mi sunt vâruri) Sortr topoloiă s pot rliz printr o trvrsr în ânim (DFS). Un vâr r nu mi r susori (olort nru) r r işir 0, i pr în rpt şirului vâruri sortt topoloi; l v i pus în stivă,.î. în vârul stivi vor pr vâruril u r intrr 0. 6
7 voi topsort(gr G, Vr u){ Stiv S=S_Nw (); Vr v; G_StCol(G, u, ri); or(v=primv(g);!ultimv(g); v=vnsv(g,v)) i(g_isv(g,v) && G_Is(G, u, v) && G_GtCol(G,v)==l) topsort(g, v); Pus(S, u); Pntru rul mi jos: Păur oprir în ânim st: Elmntl sunt pus în stivă în orin:, i sortr topoloiă st: S onsttă ă xistă mi mult vrint sortr topoloiă, or vâruril inpnnt, vân l un momnt t rul intrr 0 pot i onsirt în ori orin. Dtrminr omponntlor tr onx. O omponntă tr onxă unui r orintt G = (V, E) st un st mximl vâruri U V.î. pntru u, v U vm u v şi v u (vâruril u şi v sunt siil unul in lăllt). S ormză rul trnspus, invrsân irţi rlor. G = (V, E ) E = {(u, v) : (v, u) E Gruril G şi G u lşi omponnt tr onx. loritmul pntru lulul omponntlor tr onx prsupun ouă trvrsări în ânim: în prim trvrsr rului G s lulză timpii trminării stop[u] pntru ir vâr u. ou trvrsr 7
8 s supr rului trnspus G în orin vârurilor ittă vtorul stop[]. Fir ror in păur oprir în ânim li ou prurri rprzintă o omponntă tr onxă. CC(G) DFS(G) Clul G DFS(G ) în orin itt stop[] 1/16 2/15 3/12 4/7 13/14 9/10 8/11 5/6 vr pr olor strt stop Grul trnspus st: 8
9 I vr stop1 pr olor strt stop
Cursul 10 T. rezultă V(x) < 0.
ursul uţol ătrtă V: X R V s lsă stl: ) V st oztv tă ă X u X rzultă V(). ) V st tv tă ă X u X rzultă V()
7. CONVOLUŢIA SEMNALELOR ANALOGICE
7. CONVOLUŢIA SEMNALELOR ANALOGICE S numş funcţi (prous) convoluţi în imp smnllor şi ingrl: f ( ) Noţi conscră prousului convoluţi în imp s urmăor: no Convoluţi unui smnl cu (7.) (7.) δ su u conuc l rzul
7. INTEGRALA IMPROPRIE. arcsin x. cos xdx
7 INTEGRALA IMPROPRIE 7 Erciţii rzolv Erciţiul 7 Să s sudiz nur urăorlor ingrl irorii şi să s drin vloril csor în cz d convrgnţă: d c sin d 3 / rcsin d cos d d sin d > R Soluţii Funcţi f : - R f s ingrilă
Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.
II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai
P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ
P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s
Alterazioni del sistema cardiovascolare nel volo spaziale
POLITECNICO DI TORINO Corso di Laurea in Ingegneria Aerospaziale Alterazioni del sistema cardiovascolare nel volo spaziale Relatore Ing. Stefania Scarsoglio Studente Marco Enea Anno accademico 2015 2016
ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s
P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t
Assessment of otoacoustic emission probe fit at the workfloor
Assessment of otoacoustic emission probe fit at the workfloor t s st tt r st s s r r t rs t2 t P t rs str t t r 1 t s ér r tr st tr r2 t r r t s t t t r t s r ss r rr t 2 s r r 1 s r r t s s s r t s t
Eşantionarea semnalelor
Eşantionara smnallor Eşantionara = prlvara d prob dintr-un smnal la momnt d timp dcalat intr l cu cu frcvnta d şantionar, f =/. xˆ t x k t k k = ( = δ ( Smnalul şantionat idal:. Spctrul Xˆ = X ( k k =
BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)
BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul
M p f(p, q) = (p + q) O(1)
l k M = E, I S = {S,..., S t } E S i = p i {,..., t} S S q S Y E q X S X Y = X Y I X S X Y = X Y I S q S q q p+q p q S q p i O q S pq p i O S 2 p q q p+q p q p+q p fp, q AM S O fp, q p + q p p+q p AM
ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο
18 ρ * -sf. NO 1 D... 1: - ( ΰ ΐ - ι- *- 2 - UN _ ί=. r t ' \0 y «. _,2. "* co Ι». =; F S " 5 D 0 g H ', ( co* 5. «ΰ ' δ". o θ * * "ΰ 2 Ι o * "- 1 W co o -o1= to»g ι. *ΰ * Ε fc ΰ Ι.. L j to. Ι Q_ " 'T
r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t
r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs
P r s r r t. tr t. r P
P r s r r t tr t r P r t s rés t t rs s r s r r t é ér s r q s t r r r r t str t q q s r s P rs t s r st r q r P P r s r r t t s rés t t r t s rés t t é ér s r q s t r r r r t r st r q rs s r s r r t str
Punţi de măsurare. metode de comparaţie: masurandul este comparat cu o mărime etalon de aceeaşi natura;
Punţi de măsurre metode de comprţie: msurndul este comprt cu o mărime etlon de ceeşi ntur; punte: reţe complet cu 4 noduri: brţe: 4 impednţe digonl de limentre: surs (tensiune, curent) digonl de măsurre:
rs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat
Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat Pierre Coucheney, Patrick Maillé, runo Tuffin To cite this version: Pierre Coucheney, Patrick
Metode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs
Coupling strategies for compressible - low Mach number flows
Coupling strategies for compressible - low Mach number flows Yohan Penel, Stéphane Dellacherie, Bruno Després To cite this version: Yohan Penel, Stéphane Dellacherie, Bruno Després. Coupling strategies
THỂ TÍCH KHỐI CHÓP (Phần 04) Giáo viên: LÊ BÁ TRẦN PHƯƠNG
Khó học LTðH KT-: ôn Tán (Thầy Lê á Trần Phương) THỂ TÍH KHỐ HÓP (Phần 4) ðáp Á À TẬP TỰ LUYỆ Giá viên: LÊ Á TRẦ PHƯƠG ác ài tập trng tài liệu này ñược iên sạn kèm the ài giảng Thể tich khối chóp (Phần
1951 {0, 1} N = N \ {0} n m M n, m N F x i = (x i 1,..., xi m) x j = (x 1 j,..., xn j ) i j M M i j x i j m n M M M M T f : F m F f(m) f M (f(x 1 1,..., x1 m),..., f(x n 1,..., xn m)) T R F M R M R x
Proiectarea filtrelor prin metoda pierderilor de inserţie
FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri
Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent
Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului
ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t
ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t FichaCatalografica :: Fichacatalografica https://www3.dti.ufv.br/bbt/ficha/cadastrarficha/visua... Ficha catalográfica preparada
4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica
Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design
Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
Mesh Parameterization: Theory and Practice
Mesh Parameterization: Theory and Practice Kai Hormann, Bruno Lévy, Alla Sheffer To cite this version: Kai Hormann, Bruno Lévy, Alla Sheffer. Mesh Parameterization: Theory and Practice. This document is
ΠΑΡΑΡΤΗΜΑ ΙΙ ΔΗΜΟΣ ΑΛΕΞΑΝΔΡΟΥΠΟΛΗΣ. Πόλη: ΑΛΕΞΑΝΔΡΟΥΠΟΛΗ Ταχ. κώδικας: Χώρα: Ελλάδα 681 00 ΕΛΛΑΔΑ-GR Σημείο(-α) επαφής: Τεχνική Υπηρεσία
ΠΑΡΑΡΤΗΜΑ ΙΙ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ Δημοσίευση στο συμπλήρωμα της Επίσημης Εφημερίδας της Ευρωπαϊκής Ένωσης 2, rue Mercier, L-2985 Luxembourg Φαξ: (352) 29 29 42 670 Ηλεκτρονικό ταχυδρομείο: mp-ojs@opoce.cec.eu.int
Multi-GPU numerical simulation of electromagnetic waves
Multi-GPU numerical simulation of electromagnetic waves Philippe Helluy, Thomas Strub To cite this version: Philippe Helluy, Thomas Strub. Multi-GPU numerical simulation of electromagnetic waves. ESAIM:
Sistem analogic. Sisteme
Sistm Smnall pot fi supus prlucrarii in scopul obtinrii unor alt smnal, sau al obtinrii unor paramtri ai acstora. Prlucraril s aplica unui smnal intrar x(t) si s obtin un alt smnal, isir, y(t). Moulara/moulara,
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s
r t r r é té tr q tr t q t t q t r t t rrêté stér ût Prés té r ré ér ès r é r r st P t ré r t érô t 2r ré ré s r t r tr q t s s r t t s t r tr q tr t q t t q t r t t r t t r t t à ré ér t é r t st é é
Integrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
ΠΑΡΑΡΤΗΜΑ ΠΡΩΤΟΝ ΝΟΜΟΘΕΣΙΑ
ΠΑΡΑΡΤΗΜΑ ΠΡΩΤΝ ΤΗΣ ΕΠΙΣΗΜΥ ΕΦΗΜΕΡΙΔΣ ΤΗΣ ΔΗΜΚΡΑΤΙΑΣ υπ Άρ. 62 τής 19ης ΜΑΙΥ 1961 ΝΜΘΕΣΙΑ ΜΕΡΣ III ΚΙΝΤΙΚΙ ΝΜΙ ΤΥΡΚΙΚΗΣ ΚΙΝΤΙΚΗΣ ΣΥΝΕΛΕΎΣΕΩς Ό κττέρ νόμς της Τυρκικής Κιντικής Συνελεύσεις όστις υπεγράφη
Q B Y A P O 4 O 6 Z O 5 O 1 O 2 O 3
ài tập ôn đội tuyển năm 2015 guyễn Văn Linh Số 8 ài 1. ho tam giác nội tiếp đường tròn () có là tâm nội tiếp. cắt () lần thứ hai tại J. Gọi ω là đường tròn tâm J và tiếp xúc với,. Hai tiếp tuyến chung
Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle
Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle Anahita Basirat To cite this version: Anahita Basirat.
lim lim lim lim (criteriul cu şiruri); lim lim = lim ; Limite de funcńii NotaŃii: f :D R, D R, α - punct de acumulare a lui D;
Limit d fucńii Aliz mtmtică, cls XI- Limit d fucńii NotŃii: f :D R, D R, α - puct d cumulr lui D DfiiŃii l iti DfiiŃi f ( = l, l R, dcă ptru oric vciătt V lui l istă o vciătt α U lui α stfl îcât D U, α,
Integrale generalizate (improprii)
Integrle generlizte (improprii) Fie f : [, ] R, definită prin =, α > 0. Pentru u, funţi α f este integrilă pe intervlul [, u] şi u ln α+ α+ u u = ( α)u α α, α = ln u, α =. Dă treem l limită pentru u oţinem
LUCRAREA 1 ERORI DE CALCUL NUMERIC Obiectivele lucrării Aspecte teoretice Moduri de exprimare a erorii
LUCRR 1 RORI D CLCUL NUMRIC 1.1. Obictivl lucrării În cdrul lucrării s v vidnți modul în cr roril numric pot i crctrizt, motivl priții cstor, prcum şi mnir în cr cst s propgă. S vor studi roril inrnt (cr
Teorema Rezidurilor şi Bucuria Integralelor Reale
Torma Ridurilor şi Bucuria Intgrallor Ral Prntar d Alandru Ngrscu Intgral cu funcţii raţional c dpind d sin t şi cos t u notaţia it, avm: cos t ( + sin t ( i dt d i, iar intgrara s va fac d-a lungul crcului
❷ s é 2s é í t é Pr 3
❷ s é 2s é í t é Pr 3 t tr t á t r í í t 2 ➄ P á r í3 í str t s tr t r t r s 3 í rá P r t P P á í 2 rá í s é rá P r t P 3 é r 2 í r 3 t é str á 2 rá rt 3 3 t str 3 str ýr t ý í r t t2 str s í P á í t
ACI sécurité informatique KAA (Key Authentification Ambient)
ACI sécurité informatique KAA (Key Authentification Ambient) Samuel Galice, Veronique Legrand, Frédéric Le Mouël, Marine Minier, Stéphane Ubéda, Michel Morvan, Sylvain Sené, Laurent Guihéry, Agnès Rabagny,
10. Circuit Diagrams and PWB Layouts
ircuit iagrams and W ayouts Q... ircuit iagrams and W ayouts mbilight nterface: nterf. + Single / TR + S - V _SS RV_ SW_ T_ V T_ V_UT SW_T _S V STU VRSTS R / TR See the stuffing diversities table in the
Vers un assistant à la preuve en langue naturelle
Vers un assistant à la preuve en langue naturelle Thévenon Patrick To cite this version: Thévenon Patrick. Vers un assistant à la preuve en langue naturelle. Autre [cs.oh]. Université de Savoie, 2006.
Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques
Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques Raphael Chenouard, Patrick Sébastian, Laurent Granvilliers To cite this version: Raphael
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα Γραφήματα Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Γραφήματα 1 Μη Κατευθυνόμενο Γράφημα G(V, E) V σύνολο κόμβων E σύνολο ακμών (ζεύγοι κόμβων)
Εισαγωγή στους Αλγορίθμους Φροντιστήριο 3
Εισαγωγή στους Αλγορίθμους Φροντιστήριο 3 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
MARCAREA REZISTOARELOR
1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
5.4. MULTIPLEXOARE A 0 A 1 A 2
5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării
Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis
Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Daniel García-Lorenzo To cite this version: Daniel García-Lorenzo. Robust Segmentation of Focal Lesions on Multi-Sequence
Jeux d inondation dans les graphes
Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 6η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Γραφήματα Βασικές Έννοιες και Εφαρμογές Βασικοί
Dumnezeu este Domnul. Glas 4 T. bi ne es te cu vân tat Cel ce vi ne în tru nu me le Dom nu lui
1 CANON DE MÂNGÂIERE către Sfântul Ioan Rusul Dumnezeu este Domnul. Glas 4 T. Dum ne zeu es te Dom nul şi S a a ră ta at no uă bi ne es te cu vân tat Cel ce vi ne în tru nu me le Dom nu lui Troparul Sfântului,
Tema 1 - CCIA. Proiectarea unui dig de pământ
Tem - CCIA. Piete unui dig de pământ Dte de temă : Pentu pteje unui bietiv industil împtiv inundţiil, se ee exeute unui dig de pământ u umătele teistii : γ φ γ φ S S = (7,0 0, G )kn / m ;n = (5 0, G )
➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I
tr 3 P s tr r t t 0,5A s r t r r t s r r r r t st 220 V 3r 3 t r 3r r t r r t r r s e = I t = 0,5A 86400 s e = 43200As t r r r A = U e A = 220V 43200 As A = 9504000J r 1 kwh = 3,6MJ s 3,6MJ t 3r A = (9504000
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio
K r i t i k i P u b l i s h i n g - d r a f t
n n T ime(n) = Θ(n 2 ) T ime(n) = Θ(2n) n i=1 i = Θ(n2 ) T (n) = 2T ( n 2 ) + n = Θ(n log n) i i i i i i i & i i + L(1..n) i L(i) n n L n i j : L[i] L[1..j]. (j n) j = j + 1 L[i] < L[j] i = j i
#%" )*& ##+," $ -,!./" %#/%0! %,!
-!"#$% -&!'"$ & #("$$, #%" )*& ##+," $ -,!./" %#/%0! %,! %!$"#" %!#0&!/" /+#0& 0.00.04. - 3 3,43 5 -, 4 $ $.. 04 ... 3. 6... 6.. #3 7 8... 6.. %9: 3 3 7....3. % 44 8... 6.4. 37; 3,, 443 8... 8.5. $; 3
Marin Chirciu INEGALITĂŢI TRIGONOMETRICE DE LA INIŢIERE LA PERFORMANŢĂ EDITURA PARALELA 45
Main Chiiu INEGLITĂŢI TIGONOMETICE DE L INIŢIEE L PEFOMNŢĂ Cuins Consideații eliminae... 7 Soluţii Caitolul Inegalități u unghiui. Inegalitatea lui Jensen... 4 4 Caitolul Funții tigonometie ale jumătății
ITU-R P (2012/02) &' (
ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS
L P I J C B D. Do GI 2 = GJ.GH nên GIH = IJG = IKJ = 90 GJB = 90 GLH. Mà GIH + GIQ = 90 nên QIG = ILG = IQG, suy ra GI = GQ hay Q (BIC).
ài tập ôn đội tuyển I năm 015 Nguyễn Văn inh Số 7 ài 1. (ym). ho tam giác nội tiếp đường tròn (), ngoại tiếp đường tròn (I). G là điểm chính giữa cung không chứa. là tiếp điểm của (I) với. J là điểm nằm
ON THE MEASUREMENT OF
ON THE MEASUREMENT OF INVESTMENT TYPES: HETEROGENEITY IN CORPORATE TAX ELASTICITIES HENDRIK JUNGMANN, SIMON LORETZ WORKING PAPER NO. 2016-01 t s r t st t t2 s t r t2 r r t t 1 st t s r r t3 str t s r ts
Κεφάλαιο q = C V => q = 48(HiC. e και. I = -3- => I = 24mA. At. 2. I = i=>i= -=>I = e- v=»i = 9,28 1(Γ 4 Α. t Τ
Κεφάλαιο 3.1 1. q = C V => q = 48(HiC q = χ e => χ = - e και => χ = 3 ΙΟ 15 ηλεκτρόνια I = -3- => I = 24mA. At 2. I = i=>i= -=>I = e- v=»i = 9,28 1(Γ 4 Α. t Τ 3. Έστω u d η μέση ταχύτητα κίνησης των ελευθέρων
Consommation marchande et contraintes non monétaires au Canada ( )
Consommation marchande et contraintes non monétaires au Canada (1969-2008) Julien Boelaert, François Gardes To cite this version: Julien Boelaert, François Gardes. Consommation marchande et contraintes
Κεφάλαιο 5 Όριο και συνέχεια συνάρτησης
Κεφάλαιο 5 Όριο και συνέχεια συνάρτησης 5 Όριο συνάρτησης για єr Θεωρούµε την αραβολή = Θέλουµε να ροσδιορίσουµε την κλίση της εφατοµένης της στο σηµείο (, ) ηλαδή, θέλουµε να βρούµε την εφατοµένη της
Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes
Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes Jérôme Baril To cite this version: Jérôme Baril. Modèles de représentation multi-résolution pour le rendu
(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets
E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets Benoît Combès To cite this version: Benoît Combès. E fficient computational tools for the statistical
Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1
Sarò signor io sol Canzon, ottava stanza Domenico Micheli Soprano Soprano 2 Alto Alto 2 Α Α Sa rò si gnor io sol del mio pen sie io sol Sa rò si gnor io sol del mio pen sie io µ Tenor Α Tenor 2 Α Sa rò
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
Criptosisteme cu cheie publică III
Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.
MULTIMEA NUMERELOR REALE
www.webmteinfo.com cu noi totul pre mi usor MULTIMEA NUMERELOR REALE office@ webmteinfo.com 1.1 Rdcin ptrt unui numr nturl ptrt perfect Ptrtul unui numr rtionl este totdeun pozitiv su zero (dic nenegtiv).
Examen AG. Student:... Grupa:... ianuarie 2011
Problema 1. Pentru ce valori ale lui n,m N (n,m 1) graful K n,m este eulerian? Problema 2. Să se construiască o funcţie care să recunoască un graf P 3 -free. La intrare aceasta va primi un graf G = ({1,...,n},E)
Năm Chứng minh. Cách 1. Y H b. H c. BH c BM = P M. CM = Y H b
huỗi bài toán về họ đường tròn đi qua điểm cố định Nguyễn Văn inh Năm 2015 húng ta bắt đầu từ bài toán sau. ài 1. (US TST 2012) ho tam giác. là một điểm chuyển động trên. Gọi, lần lượt là các điểm trên,
Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation
Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation Florent Jousse To cite this version: Florent Jousse. Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation.
HONDA. Έτος κατασκευής
Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V
Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
Couplage dans les applications interactives de grande taille
Couplage dans les applications interactives de grande taille Jean-Denis Lesage To cite this version: Jean-Denis Lesage. Couplage dans les applications interactives de grande taille. Réseaux et télécommunications
ΛΙΓΕΣ ΣΚΕΨΕΙΣ ΓΙΑ ΤΗ ΖΩΓΡΑΦΙΚΗ ΤΟΥ ΓΙΑΝΝΗ ΣΤΕΦΑΝΑΚΙ
ΛΙΓΕΣ ΣΚΕΨΕΙΣ ΓΙΑ ΤΗ ΖΩΓΡΑΦΙΚΗ ΤΟΥ ΓΙΑΝΝΗ ΣΤΕΦΑΝΑΚΙ Τ Ε Χ Ν Η Θ Α Π Ε Ι Ν Α Ψ Ι Θ Υ Ρ Ι Σ Ο Υ Μ Ε Τ Η Ν Π Ρ Ο Σ Ω Π Ι Κ Η Μ Α Σ Ι Σ Τ Ο Ρ Ι Α Σ Τ Ο Α Φ Τ Ι Τ Η Σ Α Ι Ω Ν Ι Ο Τ Η Τ Α Σ. Ο S I M O N E M
V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
A[0] = 0; /* To μηδέν δεν έχει διαιρέτες */ for (i=1; i<n; i++) { S=0; for (d=1; d<=i; d++) if (i % d == 0) S += d; A[i] = S; }
TEI Λάρισας / ΣΤΕΦ Τμ. Τεχνολογίας Πληροφορικής & Τηλεπικοινωνιών B Εξεταστική Περίοδος, 19 Φεβρουαρίου 2009 ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ι Ηλίας. Κ. Σάββας Α 1) Να γράψετε ένα πρόγραμμα το οποίο να γεμίζει ένα ακέραιο
π } R 4. ctg:r\{kπ} R FuncŃii trigonometrice 1. DefiniŃii în triunghiul dreptunghic 2. ProprietãŃile funcńiilor trigonometrice 1.
Trigonometrie FuncŃii trigonometrice. DefiniŃii în triunghiul dreptunghic b c b sin B, cos B, tgb c C c ctgb, sin B cosc, tgb ctgc b b. ProprietãŃile funcńiilor trigonometrice. sin:r [-,] A c B sin(-x)
5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.
728!. -θ-cr " -;. '. UW -,2 =*- Os Os rsi Tf co co Os r4 Ι. C Ι m. Ι? U Ι. Ι os ν ) ϋ. Q- o,2 l g f 2-2 CT= ν**? 1? «δ - * * 5 Ι -ΐ j s a* " 'g cn" w *" " 1 cog 'S=o " 1= 2 5 ν s/ O / 0Q Ε!θ Ρ h o."o.
Muchia îndoită: se află în vârful muchiei verticale pentru ranforsare şi pentru protecţia cablurilor.
TRASEU DE CABLURI METALIC Tip H60 Lungimea unitară livrată: 3000 mm Perforaţia: pentru a uşura montarea şi ventilarea cablurilor, găuri de 7 30 mm în platbandă, iar distanţa dintre centrele găurilor consecutive
Εισαγωγή στους Αλγορίθμους Φροντιστήριο 7
Εισαγωγή στους Αλγορίθμους Φροντιστήριο 7 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
5.1. Noţiuni introductive
ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul
ΑΝΑΛΥΤΙΚΟΣ ΤΙΜΟΚΑΤΑΛΟΓΟΣ BMW / MINI (Ισχύει από 15/01/2018) ΚΙΒΩΤΙΟ ΤΑΧΥΤΗΤΩΝ ΚΥΒΙΣΜΟΣ ΙΣΧΥΣ (HP)
Υ F21 LCI - Σειρά 1 3θυρη 1W11 120i ΧΚ 1.998 184 131 21.941,48 33.000 1W31 125i ΑΚ 1.998 224 130 26.407,03 42.040 1W91 M140i ΧΚ 2.998 340 179 31.878,02 52.790 1P91 M140i xdrive ΑΚ 2.998 340 169 35.428,74
Αριθμός 235 Ο ΠΕΡΙ ΠΟΛΕΟΔΟΜΙΑΣ ΚΑΙ ΧΩΡΟΤΑΞΙΑΣ ΝΟΜΟΣ (ΝΟΜΟΙ 90 ΤΟΥ 1972 ΚΑΙ 56 ΤΟΥ 1982)
Ε.Ε.Πα.ΙΙΙ(Ι) 2214.Δ.Π. 25/97 Α. 171,1.8.97 Αιθμός 25 ΠΕΙ ΠΛΕΔΜΙΑΣ ΑΙ ΩΤΑΞΙΑΣ ΝΜΣ (ΝΜΙ 90 ΤΥ 1972 ΑΙ 56 ΤΥ 1982) Διάταγμα Διατήησης σύμφνα με τ άθ 8(1) Ασώντας τις εξυσίες πυ ηγύνται σ' αυτόν από τ εάφι
pa tre cân d-o ca pe us cat și din ră u ta a tea e gip te ni
Ήχος Γα pa tre cân d-o ca pe us cat și din ră u ta a tea e gip te ni i lor scă pând is ra e li tea nul stri ga: iz bă vi to ru lui și Dum ne ze u lui nos tru să-icân tăm fin ţi lor mu ce nici ru ga a ţi
Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].
Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie
VII.2. PROBLEME REZOLVATE
Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea
Integrale cu parametru
1 Integrle proprii cu prmetru 2 3 Integrle proprii cu prmetru Definiţi 1.1 Dcă f : [, b ] E R, E R este o funcţie cu propriette că pentru orice y E, funcţi de vribilă x x f (x, y) este integrbilă pe intervlul
LEM. Non-linear externalities in firm localization. Giulio Bottazzi Ugo Gragnolati * Fabio Vanni
LEM WORKING PAPER SERIES Non-linear externalities in firm localization Giulio Bottazzi Ugo Gragnolati * Fabio Vanni Institute of Economics, Scuola Superiore Sant'Anna, Pisa, Italy * University of Paris
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
Control confort. Variator de tensiune cu impuls Reglarea sarcinilor prin ap sare, W/VA
Control confort Variatoare rotative electronice Variator rotativ / cap scar 40-400 W/VA Variatoare rotative 60-400W/VA MGU3.511.18 MGU3.559.18 Culoare 2 module 1 modul alb MGU3.511.18 MGU3.559.18 fi ldeş