Integrale generalizate (improprii)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Integrale generalizate (improprii)"

Transcript

1 Integrle generlizte (improprii) Fie f : [, ] R, definită prin =, α > 0. Pentru u, funţi α f este integrilă pe intervlul [, u] şi u ln α+ α+ u u = ( α)u α α, α = ln u, α =. Dă treem l limită pentru u oţinem lim u u { α, α >, α. Anlog, pentru funţi f : (0, ] R,definită prin = α, α > 0 oţinem { lim α, α < u 0, α. u Definiţie: Fie f : [, ) R, integrilă pe [, u], u [, ). Spunem ă f u este integrilă pe [, ) dă eistă lim R. u Notăm: lim u not. = u pote fi şi, situţie în re doptăm notţi În mod nlog, pentru f : (, ] R, lim Eemple: ) d = α α, α > ; 2) d = α α, 0 < α < ; 3) d = 2. şi o numim integrlă generliztă. ( u u ). not. = +0.

2 Integrlele generlizte se împrt în : I. Integrle de spei I- u lim ; u lim u u ; + II. Integrle de spei II-.,,,, R. III. Mite (dă eistă mele integrle). ;. Dă f este integrilă pe [, ) spunem ă Dă f nu este integrilă pe [, ) spunem ă Definim F : [, ) R, F (u) = onverge. diverge. u numită funţi integrlelor prţile le funţiei f. Din modul în re fost definită estă funţie, onverge dă şi numi dă eistă lim u F (u) R. Teoremă (Cuhy) Funţi f : [, ) R, este integrilă pe [, ) dă şi numi dă pentru orie ε > 0, eistă ε [, ) stfel înât pentru orie, [ ε, ) vem < ε. Dem.: Deoree f este integrilă dă şi numi dă eistă limf (u) u R, pliăm teorem lui Cuhy pentru limite de funţii şi oţinem onluzi teoremei. Proprietăţi le integrlelor generlizte Fie f, g : [, ) R. ) Dă f, g sunt integrile tuni f + g şi λf sunt integrile. (λ R); 2) Dă f este integrilă pe [, ) şi [, ) tuni f este integrilă pe [, ) şi + ; 2

3 3) Dă f este integrilă pe [, ) şi [, ) tuni f este integrilă şi pe [, ) şi re lo +. Teoremă: Dă este onvergentă. Dem.: Deoree d este onvergentă tuni şi d este onvergentă, din Teorem Cuhy, pentru orie ε > 0, eistă ε [, ) stfel înât pentru orie, [ ε, ) vem d < ε. Cum d < ε, tot din Teorem Cuhy oţinem ă este onvergentă. Definiţie: ) este solut onvergentă dă d este onvergentă. 2) este simplu onvergentă (semionvergentă) dă este onvergentă şi nu este solut onvergentă. Oservţie: Teorem nterioră rtă ă solut onvergenţă impliă propriette de onvergenţă. Criterii de onvergenţă pentru integrle din funţii pozitive Fie f : [, ) R +, R, o funţie pozitivă. În est z funţi integrlelor prţile este resătore şi onvergentă dă şi numi dă F este mărginită. este 3

4 Criteriul de omprţie u ineglităţi: Fie f, g : [, ) R + stfel înât g() [, ). În este ondiţii u lo următorele: ) dă g()d este onvergentă tuni este onvergentă; ) dă este divergentă tuni Dem.:Deoree g() [, ) tuni F (u) = u g()d u >. ) Dă g()d este divergentă. u G(u) = g()d este onvergentă tuni G este mărginită superior, de unde se oţine ă F este mărginită superior, ee e ntreneză ă este onvergentă. ) Dă este divergentă tuni F este nemărginită superior şi um F (u) G(u), u > oţinem ă G este nemărginită superior, diă este divergentă. Criteriul de omprţie u limită: Fie f, g : [, ) R +. Dă eistă lim g() = l tuni ) l (0, ) = şi g()d u eeşi ntură; ) l = 0 şi ) l = şi g()d este onvergentă tuni g()d este divergentă tuni Dem.: Pentru zurile ) şi ), deoree eistă lim g() eistă δ > stfel înât şi ) Luând ε = l 2 l ε < < l + ε, [, ) u δ. g() g()d este onvergentă; este divergentă. = l, tuni ε > 0 şi ţinând sem de fptul ă g() 0 δ, oţinem ă l 3l g() < < g(), [, ) u δ. 2 2 Apliând um riteriul de omprţie u ineglităţi, oţinem ă g()d u eeşi ntură. 4

5 ) Luând ε = şi ţinând sem de fptul ă g() 0 δ, oţinem ă de unde rezultă ă g(), δ, este onvergentă deoree g()d este onvergentă. Pentru zul ), ε > 0 eistă δ (, ) înât pentru [, ) u δ.vem g() ε. Luând ε = şi ţinând sem de fptul ă g() 0 [, ) u δ, oţinem ă g(), δ, g()d este divergentă. de unde rezultă ă este divergentă deoree 5

Integrale cu parametru

Integrale cu parametru 1 Integrle proprii cu prmetru 2 3 Integrle proprii cu prmetru Definiţi 1.1 Dcă f : [, b ] E R, E R este o funcţie cu propriette că pentru orice y E, funcţi de vribilă x x f (x, y) este integrbilă pe intervlul

Διαβάστε περισσότερα

Seminariile 1 2 Capitolul I. Integrale improprii

Seminariile 1 2 Capitolul I. Integrale improprii Cpitolul I: Integrle improprii Lect. dr. Lucin Mticiuc Fcultte de Mtemtică Clcul integrl şi Aplicţii, Semestrul I Lector dr. Lucin MATICIUC Seminriile Cpitolul I. Integrle improprii. Să se studieze ntur

Διαβάστε περισσότερα

Analiza matematică, clasa a XI-a probleme rezolvate Rolul derivatei întâi

Analiza matematică, clasa a XI-a probleme rezolvate Rolul derivatei întâi Anliz mtemtică, cls XI- proleme rezolvte Rolul derivtei întâi Virgil-Mihil Zhri DefiniŃie: Punctele critice le unei funcńii derivile sunt rădăcinile (zerourile) derivtei întâi DefiniŃie: Fie f:i R, cu

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

CURS 11, Analiză matematică, semestrul I,

CURS 11, Analiză matematică, semestrul I, CURS, Anliză mtemtiă, semestrul I, 4 5 Integrle duble Fie R un domeniu ompt înhis şi mărginit. Să presupunem ă,,..., n este un şir finit de domenii ompte, fără punte interiore omune, stfel înât... n. Vom

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

CAPITOLUL VII EXTINDERI ALE CONCEPTULUI DE INTEGRALĂ DEFINITĂ

CAPITOLUL VII EXTINDERI ALE CONCEPTULUI DE INTEGRALĂ DEFINITĂ CAPITOLUL VII EXTINDERI ALE CONCEPTULUI DE INTEGRALĂ DEFINITĂ În teori Integrlei definite numită şi Integrl Riemnn, s- urmărit c, l numite funcţii rele de o vriilă relă, dte pe mulţimi din R, după o schemă

Διαβάστε περισσότερα

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice Educţi Mtemtică Vol. 1, Nr. (5), 59 68 Asupr unei metode pentru clculul unor integrle definite din functii trigonometrice Ion Alemn Astrct In this pper is presented one method of clcultion for the trigonometricl

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn.

Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn. 86 ECUAŢII 55 Vriile letore discrete Sut vriile letore cre iu o ifiitte umărilă de vlori Digrm uei vriile letore discrete re form f, p p p ude p = = Distriuţi Poisso Are digrm 0 e e e e!!! Se costtă că

Διαβάστε περισσότερα

Curs 2 Şiruri de numere reale

Curs 2 Şiruri de numere reale Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un

Διαβάστε περισσότερα

GEOMETRIE. Teorema (Teorema bisectoarei interioare) Fie triunghiul ABC, (AD bisectoarea interioară a unghiului A şi D (BC), atunci: DB =

GEOMETRIE. Teorema (Teorema bisectoarei interioare) Fie triunghiul ABC, (AD bisectoarea interioară a unghiului A şi D (BC), atunci: DB = 1. Relţii metrie în triunghiul orere 1.1. Teoreme le isetorelor GEOMETRIE Teorem 1.1.1. (Teorem isetorei interiore) Fie triunghiul B, (D isetore interioră unghiului şi D (B), tuni: DB B. D Demonstrţie.

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15

Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15 MĂSURI RELE Cursul 13 15 Măsuri reale Fie (,, µ) un spaţiu cu măsură completă şi f : R o funcţie -măsurabilă. Cum am văzut în Teorema 11.29, dacă f are integrală pe, atunci funcţia de mulţime ν : R, ν()

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

ME.09 Transformate Fourier prin sinus şi cosinus

ME.09 Transformate Fourier prin sinus şi cosinus ME.9 Trnsformte Fourier prin sinus şi cosinus Cuvinte cheie Trnsformre Fourier prin cosinus, trnsformre Fourier prin sinus, trnsformt Fourier prin sinus, trnsformt Fourier prin cosinus, formule de inversre,

Διαβάστε περισσότερα

ANALIZĂ MATEMATICĂ pentru examenul licenţă, manual valabil începând cu sesiunea iulie 2013 Specializarea Matematică informatică coordonator: Dorel I.

ANALIZĂ MATEMATICĂ pentru examenul licenţă, manual valabil începând cu sesiunea iulie 2013 Specializarea Matematică informatică coordonator: Dorel I. ANALIZĂ MATEMATICĂ pentru exmenul licenţă, mnul vlbil începând cu sesiune iulie 23 Specilizre Mtemtică informtică coordontor: Dorel I. Duc Cuprins Cpitolul. Serii de numere rele. Noţiuni generle 2. Serii

Διαβάστε περισσότερα

sin d = 8 2π 2 = 32 π

sin d = 8 2π 2 = 32 π .. Eerciţii reolvte. INTEGRALA E UPRAFAŢĂ E AL OILEA TIP. ÂMPURI OLENOIALE. Eerciţiul... ă se clculee dd dd dd, () fiind fţ eterioră sferei + + 4. oluţie. Avem: sin θ cos φ, sin θ sin φ, cos θ, θ[, π],

Διαβάστε περισσότερα

CURS I II. Capitolul I: Integrala definită. Primitive. 1 Integrabilitate Riemann. Criterii de integrabilitate

CURS I II. Capitolul I: Integrala definită. Primitive. 1 Integrabilitate Riemann. Criterii de integrabilitate Cpitolul I: Integrl definită. Primitive Conf. dr. Lucin Mticiuc Fcultte de Hidrotehnică, Geodezie şi Ingineri Mediului Anliz Mtemtică II, Semestrul II Conf. dr. Lucin MATICIUC CURS I II Cpitolul I: Integrl

Διαβάστε περισσότερα

Tema: şiruri de funcţii

Tema: şiruri de funcţii Tem: şiruri de fucţii. Clculţi limit (simplă) şirului de fucţii f : [ 0,], f ( ) R Avem lim f ( 0) = ir petru 0, vem lim f ( ) Î cocluzie, dcă otăm f: [ 0, ], f ( ) =, = 0 =, 0 + + = +, tuci lim f f =..

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

Ion CRĂCIUN ANALIZĂ MATEMATICĂ CALCUL INTEGRAL EDITURA PIM

Ion CRĂCIUN ANALIZĂ MATEMATICĂ CALCUL INTEGRAL EDITURA PIM Ion CRĂCIUN ANALIZĂ MATEMATICĂ CALCUL INTEGRAL EDITURA PIM IAŞI 27 2 Cuprins 1 Integrle improprii 9 1.1 Introducere............................ 9 1.2 Definiţi integrlei improprii................... 1 1.3

Διαβάστε περισσότερα

Lucian Maticiuc SEMINAR 1 3. Capitolul I: Integrala definită. Primitive. 1. Să se arate că. f (x) dx = 0. Rezolvare:

Lucian Maticiuc SEMINAR 1 3. Capitolul I: Integrala definită. Primitive. 1. Să se arate că. f (x) dx = 0. Rezolvare: Cpitolul I: Integrl definită. Primitive Conf. dr. Lucin Mticiuc Fcultte de Hidrotehnică, Geodezie şi Ingineri Mediului Anliz Mtemtică II, Semestrul II Conf. dr. Lucin MATICIUC. Să se rte că Rezolvre: SEMINAR

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

4. Integrale improprii cu parametru real

4. Integrale improprii cu parametru real 4. Itegrle improprii cu prmetru rel Fie f: [ b, ) [ cd, ] y [, itegrl improprie R cu < b +, stfel îcât petru fiecre b cd ] f (, ) ydeste covergetă. Atuci eistă o fucţie defiită pritr-o itegrlă improprie

Διαβάστε περισσότερα

EcuaŃii de gradul al doilea ax 2 + bx + c = 0, a,b,c R, a 0 1. Formule de rezolvare: > 0 b x =, x =, = b 2 4ac; sau

EcuaŃii de gradul al doilea ax 2 + bx + c = 0, a,b,c R, a 0 1. Formule de rezolvare: > 0 b x =, x =, = b 2 4ac; sau EcuŃii de grdul l doile x + x + c = 0,,,c R, 0 Formule de rezolvre: > 0 + x =, x =, = c; su ' + ' ' ' x =, x =, =, = c Formule utile în studiul ecuńiei de grdul l II-le: x + x = (x + x ) x x = S P 3 x

Διαβάστε περισσότερα

2 Ecuaţii diferenţiale Ecuaţia diferenţială de ordinul n... 55

2 Ecuaţii diferenţiale Ecuaţia diferenţială de ordinul n... 55 Cuprins 1 Integrl definită şi generlizări 3 1.1 Definiţie, proprietăţi, formule de clcul............... 3 1. Integrl curbilinie......................... 17 1.3 Integrl improprie.........................

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n.

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n. Semir 3 Serii Probleme rezolvte Problem 3 Să se studieze tur seriei Soluţie 3 Avem ieglitte = ) u = ) ) = v, Seri = v este covergetă fiid o serie geometrică cu rţi q = < Pe bz criteriului de comprţie cu

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l +

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l + Semnul local al unei funcţii care are limită. Propoziţie. Fie f : D (, d) R, x 0 D. Presupunem că lim x x 0 f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl,

Διαβάστε περισσότερα

MULTIMEA NUMERELOR REALE

MULTIMEA NUMERELOR REALE www.webmteinfo.com cu noi totul pre mi usor MULTIMEA NUMERELOR REALE office@ webmteinfo.com 1.1 Rdcin ptrt unui numr nturl ptrt perfect Ptrtul unui numr rtionl este totdeun pozitiv su zero (dic nenegtiv).

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

CAPITOLUL 1. În acest paragraf vom reaminti noţiunea de primitivă, proprietăţile primitivelor şi metodele generale de calcul ale acestora.

CAPITOLUL 1. În acest paragraf vom reaminti noţiunea de primitivă, proprietăţile primitivelor şi metodele generale de calcul ale acestora. Cp PRIMITIVE 5 CAPITOLUL PRIMITIVE METOE GENERALE E CALCUL ALE PRIMITIVELOR Î cest prgrf vom remiti oţiue de primitivă, proprietăţile primitivelor şi metodele geerle de clcul le cestor efiiţi Fie f : I,

Διαβάστε περισσότερα

2AM = AI + AJ EF. Aplicând lema de mai sus în triunghiurile ABD şi ACD avem

2AM = AI + AJ EF. Aplicând lema de mai sus în triunghiurile ABD şi ACD avem Conursul Gzet Mtemtiă și ViitoriOlimpii.ro Prolem 1. Fie D un punt moil pe ltur (BC) triunghiului ABC. În triunghiurile ABD şi ACD se însriu erurile C 1, respetiv C. Tngent omună exterioră (lt deât BC)

Διαβάστε περισσότερα

ANALIZĂ MATEMATICĂ Noţiuni teoretice şi probleme rezolvate. Mircea Olteanu

ANALIZĂ MATEMATICĂ Noţiuni teoretice şi probleme rezolvate. Mircea Olteanu @ ANALIZĂ MATEMATICĂ Noţiuni teoretice şi probleme rezolvte Mirce Oltenu Cuprins Integrle improprii şi cu prmetri 5. Noţiuni teoretice......................... 5. Integrle improprii.........................3

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi

Διαβάστε περισσότερα

TEMA 5: DERIVATE ŞI DIFERENȚIALE

TEMA 5: DERIVATE ŞI DIFERENȚIALE TEMA 5: DERIVATE ŞI DIFERENȚIALE 35 TEMA 5: DERIVATE ŞI DIFERENȚIALE Obiective: Deinire principlelor proprietăţi mtemtice le uncţiilor, le itelor de uncţii şi le uncţiilor continue Deinire principlelor

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

π } R 4. ctg:r\{kπ} R FuncŃii trigonometrice 1. DefiniŃii în triunghiul dreptunghic 2. ProprietãŃile funcńiilor trigonometrice 1.

π } R 4. ctg:r\{kπ} R FuncŃii trigonometrice 1. DefiniŃii în triunghiul dreptunghic 2. ProprietãŃile funcńiilor trigonometrice 1. Trigonometrie FuncŃii trigonometrice. DefiniŃii în triunghiul dreptunghic b c b sin B, cos B, tgb c C c ctgb, sin B cosc, tgb ctgc b b. ProprietãŃile funcńiilor trigonometrice. sin:r [-,] A c B sin(-x)

Διαβάστε περισσότερα

Lucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b.

Lucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b. Lucrare Soluţii 28 aprilie 2015 Varianta 1 I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2 Definiţie. Numărul întreg p se numeşte număr prim dacă p 0,

Διαβάστε περισσότερα

GHEORGHE PROCOPIUC ANALIZĂ MATEMATICĂ

GHEORGHE PROCOPIUC ANALIZĂ MATEMATICĂ GHEORGHE PROCOPIUC ANALIZĂ MATEMATICĂ IAŞI, 2002 Cuprins 1 ELEMENTE DE TEORIA SPAŢIILOR METRICE 6 1.1 Introducere................................... 6 1.1.1 Elemente de teori teori mulţimilor.................

Διαβάστε περισσότερα

CAPITOLUL 1. ELEMENTE DE ALGEBRA

CAPITOLUL 1. ELEMENTE DE ALGEBRA CAPITOLUL. ELEMENTE DE ALGEBRA. Mulţimi Definiţi.. (Cntor) Prin mulţime se înţelege un nsmlu de oiecte ine determinte şi distincte, cre formeză o entitte. Oiectele cre formeză o mulţime se numesc elementele

Διαβάστε περισσότερα

CURS 11: ALGEBRĂ Spaţii liniare euclidiene. Produs scalar real. Spaţiu euclidian. Produs scalar complex. Spaţiu unitar. Noţiunea de normă.

CURS 11: ALGEBRĂ Spaţii liniare euclidiene. Produs scalar real. Spaţiu euclidian. Produs scalar complex. Spaţiu unitar. Noţiunea de normă. Sala: 2103 Decembrie 2014 Conf. univ. dr.: Dragoş-Pătru Covei CURS 11: ALGEBRĂ Specializarea: C.E., I.E., S.P.E. Nota: Acest curs nu a fost supus unui proces riguros de recenzare pentru a fi oficial publicat.

Διαβάστε περισσότερα

def def punctul ( x, y )0R 2 de coordonate x = b a

def def punctul ( x, y )0R 2 de coordonate x = b a Cetrul de reutte rl-mhl Zhr CENTE E GEUTTE Î prtă este evoe să se luleze r plălor ple de ee vom det plăle ple u mulńm Ştm ă ms este o măsură ttăń de mtere dtr-u orp e ms repreztă o uńe m re soză eăre plă

Διαβάστε περισσότερα

REZUMAT CURS 3. i=1. Teorema 2.2. Daca f este (R)-integrabila pe [a, b] atunci f este marginita

REZUMAT CURS 3. i=1. Teorema 2.2. Daca f este (R)-integrabila pe [a, b] atunci f este marginita REZUMAT CURS 3. Clse de uctii itegrbile Teorem.. Dc :, b] R este cotiu tuci este itegrbil pe, b]. Teorem.2. Dc :, b] R este mooto tuci este itegrbil pe, b]. 2. Sume Riem. Criteriul de itegrbilitte Riem

Διαβάστε περισσότερα

1. ŞIRURI ŞI SERII DE NUMERE REALE

1. ŞIRURI ŞI SERII DE NUMERE REALE . ŞIRURI ŞI SERII DE NUMERE REALE. Eerciţii rezolvte Eerciţiul Stbiliţi dcă următorele şiruri sut fudmetle: ), N 5 b) + + + +, N * c) + + +, N * cos(!) d), N ( ) e), N Soluţii p p ) +p - < şi mjortul este

Διαβάστε περισσότερα

Marin Chirciu INEGALITĂŢI TRIGONOMETRICE DE LA INIŢIERE LA PERFORMANŢĂ EDITURA PARALELA 45

Marin Chirciu INEGALITĂŢI TRIGONOMETRICE DE LA INIŢIERE LA PERFORMANŢĂ EDITURA PARALELA 45 Main Chiiu INEGLITĂŢI TIGONOMETICE DE L INIŢIEE L PEFOMNŢĂ Cuins Consideații eliminae... 7 Soluţii Caitolul Inegalități u unghiui. Inegalitatea lui Jensen... 4 4 Caitolul Funții tigonometie ale jumătății

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)).

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)). Teoremă. (Y = f(x)). Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism Demonstraţie. f este continuă pe X: x 0 X, S Y (f(x 0 ), ε), S X (x 0, ε) aşa ca f(s X (x 0, ε)) = S Y (f(x 0 ), ε) : y

Διαβάστε περισσότερα

a) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A.

a) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A. Bac Variata Proil: mate-izica, iormatica, metrologie Subiectul I (3 p) Se cosidera matricele: X =, Y = ( ) si A= a) (3p) Sa se calculeze XY A b) (4p) Sa se calculeze determiatul si ragul matricei A c)

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

z a + c 0 + c 1 (z a)

z a + c 0 + c 1 (z a) 1 Serii Laurent (continuare) Teorema 1.1 Fie D C un domeniu, a D şi f : D \ {a} C o funcţie olomorfă. Punctul a este pol multiplu de ordin p al lui f dacă şi numai dacă dezvoltarea în serie Laurent a funcţiei

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

VII.2. PROBLEME REZOLVATE

VII.2. PROBLEME REZOLVATE Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea

Διαβάστε περισσότερα

SEMINAR TRANSFORMAREA FOURIER. 1. Probleme

SEMINAR TRANSFORMAREA FOURIER. 1. Probleme SEMINAR TRANSFORMAREA FOURIER. Probleme. Să se precizeze dacă funcţiile de mai jos sunt absolut integrabile pe R şi, în caz afirmativ să se calculeze { transformata Fourier., t a. σ(t), t < ; b. f(t) σ(t)

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

J F (ρ, ϕ, θ) = cos ϕ ρ sin ϕ 0. Teoremă (a diferenţiabilităţii compuse) (legea lanţului) Fie F : D deschis

J F (ρ, ϕ, θ) = cos ϕ ρ sin ϕ 0. Teoremă (a diferenţiabilităţii compuse) (legea lanţului) Fie F : D deschis 3) Coordonate sferice Fie funcţia vectorială F : R + [ π, π] [0, π) R 3, F (ρ, ϕ, θ) = (ρ sin ϕ cos θ, ρ sin ϕ sin θ, ρ cos ϕ). Observăm că F exprimă legătura dintre coordonatele carteziene şi coordonatele

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

TITULARIZARE 2002 Varianta 1

TITULARIZARE 2002 Varianta 1 TITULARIZARE 2002 Vrint 1 A. Omotetii plne: definiţie, oricre două triunghiuri omotetice sunt semene, mulţime omotetiilor de celşi centru formeză un grup belin izomorf cu grupul multiplictiv l numerelor

Διαβάστε περισσότερα

( ) ( ) ( ) Funcţii diferenţiabile. cos x cos x 2. Fie D R o mulţime deschisă f : D R şi x0 D. Funcţia f este

( ) ( ) ( ) Funcţii diferenţiabile. cos x cos x 2. Fie D R o mulţime deschisă f : D R şi x0 D. Funcţia f este o ( ) o ( ) sin π ( sec ) = = ; R 2 + kπ k Z cos cos 2 cos ( cosec ) = = ; R 2 { kπ k Z} sin sin ( arcsec ) = ; (, ) (, ) 2 ( arcosec ) = ; (, ) (, ) 2 Funcţii dierenţiabile. Fie D R o mulţime deschisă

Διαβάστε περισσότερα

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I. Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

Analiza matematica Specializarea Matematica vara 2010/ iarna 2011

Analiza matematica Specializarea Matematica vara 2010/ iarna 2011 Aaliza matematica Specializarea Matematica vara 010/ iara 011 MULTIPLE HOIE 1 Se cosidera fuctia Atuci derivata mita de ordi data de este egala cu 1 y Derivata partiala de ordi a lui i raport cu variabila

Διαβάστε περισσότερα

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1 FNCȚ DE ENERGE Fie un n-port care conține numai elemente paive de circuit: rezitoare dipolare, condenatoare dipolare și bobine cuplate. Conform teoremei lui Tellegen n * = * toate toate laturile portile

Διαβάστε περισσότερα

Capitolul 2. Integrala stochastică

Capitolul 2. Integrala stochastică Capitolul 2 Integrala stochastică 5 CAPITOLUL 2. INTEGRALA STOCHASTICĂ 51 2.1 Introducere În acest capitol vom prezenta construcţia integralei stochastice Itô H sdm s, unde M s este o martingală locală

Διαβάστε περισσότερα

CAPITOLUL 7 CONICE SI CUADRICE

CAPITOLUL 7 CONICE SI CUADRICE Conie şi udrie CAPITOLUL 7 CONICE SI CUADRICE Definiţie Mulţime H {(,,, n ) R n n n j i, ij, b i, R, ij ji, n n j i ij ij n i b i i } se numeşte ij hiperudriă (su hipersuprfţă) în R n. În zul n hiperudri

Διαβάστε περισσότερα

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt.

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt. liberi 1 liberi 2 3 4 Segment orientat liberi Fie S spaţiul geometric tridimensional cu axiomele lui Euclid. Orice pereche de puncte din S, notată (A, B) se numeşte segment orientat. Dacă A B, atunci direcţia

Διαβάστε περισσότερα

CONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ

CONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ CONCURS DE ADMITERE, 7 iulie 207 Proba scrisă la MATEMATICĂ SUBIECTUL I (30 puncte) ) (0 puncte) Să se arate că oricare ar

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă Coordonatori DANA HEUBERGER NICOLAE MUŞUROIA Nicolae Muşuroia Gheorghe Boroica Vasile Pop Dana Heuberger Florin Bojor MATEMATICĂ DE EXCELENŢĂ pentru concursuri, olimpiade şi centre de excelenţă Clasa a

Διαβάστε περισσότερα

1 Serii numerice Definiţii. Exemple... 45

1 Serii numerice Definiţii. Exemple... 45 Analizǎ matematicǎ Chiş Codruţa 2 Cuprins 1 Serii numerice 5 1.1 Definiţii. Exemple....................... 5 1.2 Criterii de convergenţǎ pentru serii cu termeni pozitivi... 8 1.3 Criterii de convergenţǎ

Διαβάστε περισσότερα

Conice - Câteva proprietǎţi elementare

Conice - Câteva proprietǎţi elementare Conice - Câteva proprietǎţi elementare lect.dr. Mihai Chiş Facultatea de Matematicǎ şi Informaticǎ Universitatea de Vest din Timişoara Viitori Olimpici ediţia a 5-a, etapa I, clasa a XII-a 1 Definiţii

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

CAPITOLUL 6 FORME LINIARE, BILINIARE ŞI PĂTRATICE. 6.1 Forme liniare

CAPITOLUL 6 FORME LINIARE, BILINIARE ŞI PĂTRATICE. 6.1 Forme liniare Algebră liniră CAPITOLUL 6 FORME LINIARE, BILINIARE ŞI PĂTRATICE 6 Forme linire Fie V un spţiu vectoril peste un corp K Definiţi 6 Se numeşte formă liniră su funcţionlă liniră o plicţie f : V K cre stisfce

Διαβάστε περισσότερα

Asemănarea triunghiurilor O selecție de probleme de geometrie elementară pentru gimnaziu Constantin Chirila Colegiul Naţional Garabet Ibrãileanu,

Asemănarea triunghiurilor O selecție de probleme de geometrie elementară pentru gimnaziu Constantin Chirila Colegiul Naţional Garabet Ibrãileanu, Asemănarea triunghiurilor O selecție de probleme de geometrie elementară pentru gimnaziu Constantin Chirila Colegiul Naţional Garabet Ibrãileanu, Iaşi Repere metodice ale predării asemănării în gimnaziu

Διαβάστε περισσότερα

Calcul diferenţial şi integral (notiţe de curs)

Calcul diferenţial şi integral (notiţe de curs) Clcul diferenţil şi integrl (notiţe de curs) Şt. Blint E. Kslik, L. Tǎnsie, A. Tomoiogă, I. Rodilǎ, N. Bonchiş, S. Mriş Cuprins 0 L ce pote fi util un curs de clcul diferenţil şi integrl pentru un student

Διαβάστε περισσότερα

Geometria triunghiului

Geometria triunghiului Geometri triunghiului 1 I Triunghiul ritrr Fie AB A c h m l β γ B D E A 1 Geometri triunghiului Formule de z pentru triunghiuri Notm prin:,, c lungimile lturilor B, A, respectiv AB; α, β, γ mrimile unghiurilor

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

Siruri de numere reale

Siruri de numere reale Siruri de numere reale efinitie. Un sir de elemente dintr-o multime M este o functie x : N M (sau x : N k M unde N k = {k, k +,...}). Un sir x : N M il vom nota cu (x n ) n N sau (x n ) n unde x n = x(n)

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

2.3. Inegalităţi şi limite Convergenţă, monotonie, mărginire Limite remarcabile Limita unei funcţii...

2.3. Inegalităţi şi limite Convergenţă, monotonie, mărginire Limite remarcabile Limita unei funcţii... Cuprins GEOMETRIE 1 Vectori 1 11 Segmente orientate Vectori în plan 1 12 Operaţii cu vectori 3 13 Vectori coliniari 8 14 Vectori de poziţie 10 15 Drepte paralele, concurente Colinearitate 12 16 Produsul

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

O INTRODUCERE ÎN GEOMETRIA MECANISMELOR

O INTRODUCERE ÎN GEOMETRIA MECANISMELOR O INTRODUCERE ÎN GEOMETRIA MECANISMELOR LIVIU I. NICOLAESCU ABSTRACT. În estă lurre disutăm teorem de universlitte lui Kempe legtă de posiilele onfigurţii le unui menism pln. CONTENTS Introduere 1 1. Menisme

Διαβάστε περισσότερα