ПРОЈЕКТОВАЊЕ СИСТЕМА ЗАШТИТЕ ОД БУКЕ ГЛАВНОГ ВЕНТИЛАТОРА ЗА ПРОВЕТРАВАЊЕ ЈАМЕ ЈАРАНДО - БАЉЕВАЦ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ПРОЈЕКТОВАЊЕ СИСТЕМА ЗАШТИТЕ ОД БУКЕ ГЛАВНОГ ВЕНТИЛАТОРА ЗА ПРОВЕТРАВАЊЕ ЈАМЕ ЈАРАНДО - БАЉЕВАЦ"

Transcript

1 ПОДЗЕМНИ РАДОВИ 15 (2006) UDK 62 РУДАРСКО-ГЕОЛОШКИ ФАКУЛТЕТ БЕОГРАД YU ISSN Стручни рад ПРОЈЕКТОВАЊЕ СИСТЕМА ЗАШТИТЕ ОД БУКЕ ГЛАВНОГ ВЕНТИЛАТОРА ЗА ПРОВЕТРАВАЊЕ ЈАМЕ ЈАРАНДО - БАЉЕВАЦ ИЗВОД Петровић Зоран 1, Радичевић Бранко 1, Бјелић Мишо 1 У раду су дати принципи пројектовања система за заштиту од буке, коју у свом окружењу ствара главни вентилатор за проветравање рударске јаме Јарандо у Баљевцу. На основу дозвољених нивоа буке у животној средини и фреквентне анализе буке, дефинисани су апсорбери звука. Такође, су дате смернице за даље смањење нивоа буке у окружењу извора буке. Кључне речи: заштита од буке, вентилатор, звучни апсорбери 1. УВОД Апсорпциони материјали и конструкције налазе све већу примену у грађевинарству, индустрији и модерној архитрктури. Њихова примена је посебно значајна у отклањању проблема буке како у радној тако и у животној средини. Циљ изградње система заштите од буке је санација буке коју у свом окружењу ствара главни вентилатор за проветравање јаме Јарандо, рудника ЈП ПЕУ Ресавица, Ибарски рудници каменог угља, Баљевац. Процена и мерење се врши на основу одредби Правилника о дозвољеном нивоу буке у животној средини, Сл. Гласник РС, бр. 54/92 као и стандарда JUS U.J6.090 i JUS U.J АНАЛИЗА ПОСТОЈЕЋЕГ СТАЊА СА СТАНОВИШТА БУКЕ 2.1. Извор буке Извор буке представља главни вентилатор за проветравање јаме Јарандо. Основне карактеристике главног вентилатора су: (тип: AV 1000; проток: Q=20m 3 /s; напор: h=1250pa; снага електромотора: P m =45 kw; број обртаја: 1460o/min). Вентилатор ради непрекидно током 24 часа Мерна места Стамбена јединица која је угрожена буком налази се на око 35m од апсорпционе коморе која представља доминантни извор буке. 1 Машински факултет Краљево, Краљево (petrovic.z@maskv.edu.yu; radicevic.b@maskv.edu.yu: bjelic.m@maskv.edu.yu )

2 38 Петровић З.; Радичевић Б.; Бјелић М.; Нивои буке у боравишним просторијама и спољашње буке утврђени су мерењем у најистуренијој просторији на првом спрату и у дворишту поменуте стамбене јединице Резултати мерења буке Из наведених резултата мерења, види се да коју при свом раду ствара главни вентилатор за проветравање јаме Јарандо у Баљевцу, угрожава околину буком, јер прелази дозвољене нивое спољашње и буке у боравишним просторијама m 35 m 40 m Управна зграда рудника Јарандо 2. Зграда вентилаторског постројења 3. Главни вентилатор 4. Дифузор апсорпционе коморе 5. Заштитни зид 6. Потпорни зид 7. Најближа стамбена јединица 8. Мерно место бр. 1 (MM1) 9. Мерно место бр. 2 (MM2) 10. Мерно место бр. 3 (MM3) Слика 1. Скица извора буке и мерних места Анализа постојећег стања са становишта буке је извршена на основу мерења нивоа буке на карактеристичним мерним тачкама, у дневним и ноћним условима. Еквивалентни ниво представља просечни, који у одређеном временском интервалу има исту звучну енергију као посматрана временски променљива бука. 1 T T LA() t /10 L =10log eq 10 dt 0 ( ) db A (1) где је: L A (t) временски променљив одређен применом А- тежинске криве, а Т - интервал мерења. ( ) eq( ) eq( ) L ( sp ) =10log 10 L u /10-10 L p /10 eq ( ) db A (2) Специфични звучног извора одређен је према изразу 2.

3 Пројектовање система заштите од буке главног вентилатора Мерно место Постојећи L eq(p) Укупни ниво буке L eq(u) MM Табела 1. Постојеће стање буке Специфични Дозвољени Оцена L eq(sp) дан ноћ MM MM MM ПРОЈЕКТОВАЊЕ СИСТЕМА ЗАШТИТЕ ОД БУКЕ Прелази Прелази Не пр. доз. ниво Прелази У циљу смањења нивоа буке у оквир дозвољених граница, планиране су и реализоване су следеће активности: 1. Изградња заштитног зида изнад зграде вентилаторског постројења на граници власништва према стамбеној јединици која је угрожена буком, 2. Затварање свих отвора на згради вентилаторског постројења у сва три одељења, са посебним освртом на отворе између зида и кровне конструкције, 3. Замена поломљених салонитних табли на крову објекта вентилаторског постројења (сва три одељења), 4. Замена кровне конструкције на згради коморе за пригушивање и амортизацију звука, 5. Изградња спуштеног плафона на згради коморе за пригушивање и амортизацију звука, 6. Постављање изолације на плафону и зидовима коморе за пригушивање и амортизацију звука Звучни апсорбери Због избора најефикаснијег начина и материјала за заштиту од буке, извршена је фреквентна анализа буке на карактеристичним мерним местима. На основу измерених проблематичних фреквенција одређује се тип звучног апсорбера. Са становишта заштите од буке најтеже је елиминисати буку на ниским фреквенцијама. У пракси се употребљавају три типа апсорбера: а) порозни; б) мембрански; в) резонаторски. P P a α = (3) u

4 40 Петровић З.; Радичевић Б.; Бјелић М.; Коефицијент апсорпције се дефинише као однос апсорбоване енергије у јединици времена P a, и укупне енергије у јединици времена, P u, коју донесе прогресивни талас на граничну површину. Слика 2. Избор звучних апсорбера у зависности од фреквенцијског спектра буке и коефицијента звучне апсорпције 3.2. Мембрански апсорбери Механички резонатори су системи који се састоје од мембране која може бити танка дрвена, метална, стаклена, кожна или пластична, причвршћене на зид преко носача и ваздушне коморе испуњене порозним материјалом која се налази иза плоче. Мембрана вибрира под утицајем звучних таласа при чему се троши звучна енергија. Мерно место (ММ1) је најкритичније са становишта буке, па је због тога изабрано као меродавно за утврђивање мера заштите од буке. На 1/3 октавном спектру буке на најкритичнијем мерном месту (ММ1), види се да су проблематични нивои буке на фреквенцијама: Hz коме одговара од 61.1 db и Hz коме одговара од od 61.4 db С обзиром на фреквенцијски спектар буке, највећи ефекат звучне апсорпције може се постићи помоћу мембранских или резонаторских апсорбера. Највећи губици енергије настају при резонанци: f r = M d (4) где је: М површинска маса мембране [kg/m 2 ], d дебљина ваздушне коморе [cm]. Коефицијент апсорпције ће се повећати ако се у простор ваздушне коморе смести апсорпциони материјал (обично није потребно по целој запремини).

5 Пројектовање система заштите од буке главног вентилатора Слика 3. Механички апсорбери без и са апсорпционим материјалом 3.3. Практична реализација мембранског апсорбера Имајући у виду да се највиши јавља на фреквенцији од 500 Hz, изабран је мембрански тип звучног апсорбера. Као апсорпциони материјал постављен је Азмафон А дебљине 20 mm, у комбинацији са Азма АД плочама, произвођача Азма Крагујевац. Слика 4. Апсорпционо фреквентна карактеристика за Азма АД плоче у комбинацији са АзмаФоном А 4. РЕЗУЛТАТИ МЕРЕЊА НИВОА БУКЕ И ФРЕКВЕНТНЕ АНАЛИЗЕ НАКОН РЕАЛИЗОВАНИХ МЕРА ЗАШТИТЕ ОД БУКЕ На фреквенцијском спектру буке уочава се велико смањење нивоа буке на свим фреквенцијама, осим у подручју најнижих фреквенција од 31.5 Hz do 250 Hz. Мерно место Табела 2. Бука након реализације система заштите од буке Постојећи L eq(p) Укупни ниво буке L eq(u) Специфични L eq(sp) Дозвољени дан ноћ MM MM Оцена Не прелази Не прелази

6 42 Петровић З.; Радичевић Б.; Бјелић М.; Nivo buke [db] Frekvencijski spektar buke ispred kuce Djokovica - pre i posle zastite Pre zastite Posle zastite Frekvencija [Hz] Слика 5. Фреквенцијски спектар буке на мерном месту ММ1, пре и након постављања звучне изолације. Након реализације мера заштите од буке, резултати мерења нивоа буке коју при свом раду ствара главни вентилатор за проветравање јаме Јарандо у Баљевцу, не прелазе дозвољене вредности које су дефинисане стандардима и Правилником. Даље смањење нивоа буке у подручју најнижих фреквенција, могуће је остварити применом резонантног апсорбера, за резонантну фреквенцију од 31.5 Hz. 5. ЗАКЉУЧАК Након реализације мера заштите од буке, резултати мерења нивоа буке коју при свом раду ствара главни вентилатор за проветравање јаме Јарандо у Баљевцу, показују да више не постоји угрожавање околине од овог звучног извора. Даље смањење нивоа буке у подручју најнижих фреквенција, могуће је остварити применом резонантног апсорбера. ЛИТЕРАТУРА [1] Петровић, З., Радичевић, Б., Бјелић, М., [2006]: Заштита од буке главног вентилатора за проветравање јаме Јарандо ЈП ПЕУ Ресавица, Ибарски рудници каменог угља Баљевац, Машински факултет Краљево; [2] Прашчевић, М., Цветковић, Д., [2005]:Бука у животној средини, Факултет заштите на раду у Нишу, Ниш; [3] Величковић, Д., [1990]: Бука и вибрације 2, Факултет заштите на раду у Нишу, Ниш; [4] Стандарди: JUS U.J6.090 i JUS U.J6.205; [5] Правилник о дозвољеном нивоу буке у животној средини, Сл. Гласник РС, бр. 54/92; [6]

A.D. ZAŠTITA NA RADU I ZAŠTITA ŽIVOTNE SREDINE BEOGRAD Beograd, Deskaševa 7 LABORATORIJA ZA BUKU, VIBRACIJE I SUDOVE POD PRITISKOM OПШТИНА ИНЂИЈА

A.D. ZAŠTITA NA RADU I ZAŠTITA ŽIVOTNE SREDINE BEOGRAD Beograd, Deskaševa 7 LABORATORIJA ZA BUKU, VIBRACIJE I SUDOVE POD PRITISKOM OПШТИНА ИНЂИЈА A.D. ZAŠTITA NA RADU I ZAŠTITA ŽIVOTNE SREDINE BEOGRAD Beograd, Deskaševa 7 LABORATORIJA ZA BUKU, VIBRACIJE I SUDOVE POD PRITISKOM Tel: 011/2418-155 Faks: 011/2418-992 Web: www.zastitabeograd.com E-mail:

Διαβάστε περισσότερα

налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm

налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm 1 Два тачкаста наелектрисања 1 400 p и 100p налазе се у диелектрику релативне диелектричне константе ε на међусобном растојању ( 1cm ) као на слици 1 Одредити силу на наелектрисање 3 100p када се оно нађе:

Διαβάστε περισσότερα

г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве

г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве в) дијагонала dd и страница aa квадрата dd = aa aa dd = aa aa = није рац. бр. нису самерљиве г) страница aa и пречник RR описаног круга правилног шестоугла RR = aa aa RR = aa aa = 1 јесте рац. бр. јесу

Διαβάστε περισσότερα

1.2. Сличност троуглова

1.2. Сличност троуглова математик за VIII разред основне школе.2. Сличност троуглова Учили смо и дефиницију подударности два троугла, као и четири правила (теореме) о подударности троуглова. На сличан начин наводимо (без доказа)

Διαβάστε περισσότερα

8.2 ЛАБОРАТОРИЈСКА ВЕЖБА 2 Задатак вежбе: Израчунавање фактора појачања мотора напонским управљањем у отвореној повратној спрези

8.2 ЛАБОРАТОРИЈСКА ВЕЖБА 2 Задатак вежбе: Израчунавање фактора појачања мотора напонским управљањем у отвореној повратној спрези Регулциј електромоторних погон 8 ЛАБОРАТОРИЈСКА ВЕЖБА Здтк вежбе: Изрчунвње фктор појчњ мотор нпонским упрвљњем у отвореној повртној спрези Увод Преносн функциј мотор којим се нпонски упрвљ Кд се з нулте

Διαβάστε περισσότερα

НИВОИ НЕЈОНИЗУЈУЋИХ ЗРАЧЕЊА У ОКОЛИНИ ТРАНСФОРМАТОРСКИХ СТАНИЦА 110/X kv

НИВОИ НЕЈОНИЗУЈУЋИХ ЗРАЧЕЊА У ОКОЛИНИ ТРАНСФОРМАТОРСКИХ СТАНИЦА 110/X kv НИВОИ НЕЈОНИЗУЈУЋИХ ЗРАЧЕЊА У ОКОЛИНИ ТРАНСФОРМАТОРСКИХ СТАНИЦА /X kv М. ГРБИЋ, Електротехнички институт Никола Тесла 1, Београд, Република Србија Д. ХРВИЋ, Електротехнички институт Никола Тесла, Београд,

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола i i i Милка Потребић др Милка Потребић, ванредни професор,

Διαβάστε περισσότερα

ИСПИТИВАЊЕ ЕЛЕКТРИЧНИХ МАШИНА. 6. Мерење буке и вибрација ЕМ

ИСПИТИВАЊЕ ЕЛЕКТРИЧНИХ МАШИНА. 6. Мерење буке и вибрација ЕМ Електротехнички факултет Енергетски одсек Катедра за енергетске претвараче и погоне ИСПИТИВАЊЕ ЕЛЕКТРИЧНИХ МАШИНА 6. Мерење буке и вибрација ЕМ Предавач: доц. др Младен Терзић Бука је нежељени звук. Појам

Διαβάστε περισσότερα

6.2. Симетрала дужи. Примена

6.2. Симетрала дужи. Примена 6.2. Симетрала дужи. Примена Дата је дуж АВ (слика 22). Тачка О је средиште дужи АВ, а права је нормална на праву АВ(p) и садржи тачку О. p Слика 22. Права назива се симетрала дужи. Симетрала дужи је права

Διαβάστε περισσότερα

ИЗВЕШТАЈ О СИСТЕМАТСКОМ ИСПИТИВАЊУ БУКЕ У ВРШЦУ ПРОЛЕЋНА СЕЗОНА 2018

ИЗВЕШТАЈ О СИСТЕМАТСКОМ ИСПИТИВАЊУ БУКЕ У ВРШЦУ ПРОЛЕЋНА СЕЗОНА 2018 Датум извештаја:07.06.2018. ЦЕНТАР ЗА ХИГИЈЕНУ И ХУМАНУ ЕКОЛОГИЈУ ОДЕЉЕЊЕ ХИГИЈЕНЕ ИЗВЕШТАЈ О СИСТЕМАТСКОМ ИСПИТИВАЊУ БУКЕ У ВРШЦУ ПРОЛЕЋНА СЕЗОНА 2018 Издање 3 С А Д Р Ж А Ј Ред. број Страна 1. УВОД 3

Διαβάστε περισσότερα

2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА

2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА . колоквијум. Наставни колоквијум Задаци за вежбање У свим задацима се приликом рачунања добија само по једна вредност. Одступање појединачне вредности од тачне вредности је апсолутна грешка. Вредност

Διαβάστε περισσότερα

Анализа Петријевих мрежа

Анализа Петријевих мрежа Анализа Петријевих мрежа Анализа Петријевих мрежа Мере се: Својства Петријевих мрежа: Досежљивост (Reachability) Проблем досежљивости се састоји у испитивању да ли се може достићи неко, жељено или нежељено,

Διαβάστε περισσότερα

Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја.

Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја. СЛУЧАЈНА ПРОМЕНЉИВА Једнодимензионална случајна променљива X је пресликавање у коме се сваки елементарни догађај из простора елементарних догађаја S пресликава у вредност са бројне праве Први корак у дефинисању

Διαβάστε περισσότερα

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ. VI Савијање кружних плоча Положај сваке тачке кружне плоче је одређен са поларним координатама и ϕ слика 61 Диференцијална једначина савијања кружне плоче је: ( ϕ) 1 1 w 1 w 1 w Z, + + + + ϕ ϕ K Пресечне

Διαβάστε περισσότερα

Предмет: Задатак 4: Слика 1.0

Предмет: Задатак 4: Слика 1.0 Лист/листова: 1/1 Задатак 4: Задатак 4.1.1. Слика 1.0 x 1 = x 0 + x x = v x t v x = v cos θ y 1 = y 0 + y y = v y t v y = v sin θ θ 1 = θ 0 + θ θ = ω t θ 1 = θ 0 + ω t x 1 = x 0 + v cos θ t y 1 = y 0 +

Διαβάστε περισσότερα

предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА

предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Висока техничка школа струковних студија у Нишу предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Садржај предавања: Систем

Διαβάστε περισσότερα

Стручни рад ПРИМЕНА МЕТОДЕ АНАЛИТИЧКИХ ХИЕРАРХИJСКИХ ПРОЦЕСА (АХП) КОД ИЗБОРА УТОВАРНО -ТРАНСПОРТНЕ МАШИНЕ

Стручни рад ПРИМЕНА МЕТОДЕ АНАЛИТИЧКИХ ХИЕРАРХИJСКИХ ПРОЦЕСА (АХП) КОД ИЗБОРА УТОВАРНО -ТРАНСПОРТНЕ МАШИНЕ ПОДЗЕМНИ РАДОВИ 15 (2006) 43-48 UDK 62 РУДАРСКО-ГЕОЛОШКИ ФАКУЛТЕТ БЕОГРАД YU ISSN 03542904 Стручни рад ПРИМЕНА МЕТОДЕ АНАЛИТИЧКИХ ХИЕРАРХИJСКИХ ПРОЦЕСА (АХП) КОД ИЗБОРА УТОВАРНО -ТРАНСПОРТНЕ МАШИНЕ ИЗВОД

Διαβάστε περισσότερα

Апсорпција γ зрачења

Апсорпција γ зрачења Универзитет у Крагујевцу Природно математички факултет Мр Владимир Марковић Предмет: Нуклеарна физика Експериментална вежба: Апсорпција γ зрачења Када сноп γ зрачења пролази кроз материју, његов интензитет

Διαβάστε περισσότερα

Р Е Ш Е Њ Е О ОДОБРЕЊУ ТИПА МЕРИЛА године

Р Е Ш Е Њ Е О ОДОБРЕЊУ ТИПА МЕРИЛА године СРБИЈА И ЦРНА ГОРА МИНИСТАРСТВО ЗА УНУТРАШЊЕ ЕКОНОМСКЕ ОДНОСЕ ЗАВОД ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ 11 000 Београд, Мике Аласа 14, поштански фах 384 телефон: (011) 328-2736, телефакс: (011) 181-668 На основу

Διαβάστε περισσότερα

Испитивања електричних и магнетских поља у околини трансформаторских станица 110/x kv

Испитивања електричних и магнетских поља у околини трансформаторских станица 110/x kv Стручни рад UDK:621.317.42:621.317.32:621.311.42 BIBLID: 0350-8528(2016),26 p.151-163 doi:10.5937/zeint26-12319 Испитивања електричних и магнетских поља у околини трансформаторских станица 110/x kv Маја

Διαβάστε περισσότερα

I Наставни план - ЗЛАТАР

I Наставни план - ЗЛАТАР I Наставни план - ЗЛААР I РАЗРЕД II РАЗРЕД III РАЗРЕД УКУО недељно годишње недељно годишње недељно годишње годишње Σ А1: ОАЕЗНИ ОПШЕОРАЗОНИ ПРЕДМЕИ 2 5 25 5 2 1. Српски језик и књижевност 2 2 4 2 2 1.1

Διαβάστε περισσότερα

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10 Tестирање хипотеза 5.час 30. март 2016. Боjана Тодић Статистички софтвер 2 30. март 2016. 1 / 10 Монте Карло тест Монте Карло методе су методе код коjих се употребљаваjу низови случаjних броjева за извршење

Διαβάστε περισσότερα

Закони термодинамике

Закони термодинамике Закони термодинамике Први закон термодинамике Први закон термодинамике каже да додавање енергије систему може бити утрошено на: Вршење рада Повећање унутрашње енергије Први закон термодинамике је заправо

Διαβάστε περισσότερα

TAЧКАСТА НАЕЛЕКТРИСАЊА

TAЧКАСТА НАЕЛЕКТРИСАЊА TЧКАСТА НАЕЛЕКТРИСАЊА Два тачкаста наелектрисања оптерећена количинама електрицитета и налазе се у вакууму као што је приказано на слици Одредити: а) Вектор јачине електростатичког поља у тачки А; б) Електрични

Διαβάστε περισσότερα

Писмени испит из Теорије површинских носача. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.

Писмени испит из Теорије површинских носача. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. Београд, 24. јануар 2012. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. dpl = 0.2 m P= 30 kn/m Линијско оптерећење се мења по синусном закону: 2. За плочу

Διαβάστε περισσότερα

Осцилације система са једним степеном слободе кретања

Осцилације система са једним степеном слободе кретања 03-ec-18 Осцилације система са једним степеном слободе кретања Опруга Принудна сила F(t) Вискозни пригушивач ( дампер ) 1 Принудна (пертурбациона) сила опруга Реституциона сила (сила еластичног отпора)

Διαβάστε περισσότερα

ЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису.

ЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису. ЛИНЕАРНА ФУНКЦИЈА 5.. Функција = a + b Функционалне зависности су веома значајне и са њиховим применама често се сусрећемо. Тако, већ су нам познате директна и обрнута пропорционалност ( = k; = k, k ),

Διαβάστε περισσότερα

Чуло слуха. Животиње: Осциловање ваздушног стуба. Код животиња доња и горња граница нису као код људи.

Чуло слуха. Животиње: Осциловање ваздушног стуба. Код животиња доња и горња граница нису као код људи. Звук Звук и бука Бука је звук који се појављује у време и на месту на коме га не желимо. То је законом дефинисан загађивач. Ниво буке зависи од типа окружења (канцеларија, фабрика стадион,...) фреквенција

Διαβάστε περισσότερα

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7.1. ДИОФАНТОВА ЈЕДНАЧИНА ху = n (n N) Диофантова једначина ху = n (n N) има увек решења у скупу природних (а и целих) бројева и њено решавање није проблем,

Διαβάστε περισσότερα

У к у п н о :

У к у п н о : ГОДИШЊИ (ГЛОБАЛНИ) ПЛАН РАДА НАСТАВНИКА Наставни предмет: ФИЗИКА Разред: Седми Ред.број Н А С Т А В Н А Т Е М А / О Б Л А С Т Број часова по теми Број часова за остале обраду типове часова 1. КРЕТАЊЕ И

Διαβάστε περισσότερα

Универзитет у Крагујевцу Факултет за машинство и грађевинарство у Краљеву Катедра за основне машинске конструкције и технологије материјала

Универзитет у Крагујевцу Факултет за машинство и грађевинарство у Краљеву Катедра за основне машинске конструкције и технологије материјала Теоријски део: Вежба број ТЕРМИЈСКА AНАЛИЗА. Термијска анализа је поступак који је 903.год. увео G. Tamman за добијање криве хлађења(загревања). Овај поступак заснива се на принципу промене топлотног садржаја

Διαβάστε περισσότερα

Рад садржи основне једначине за димензионисање

Рад садржи основне једначине за димензионисање Анализа прорачуна делова посуда под притиском према српским и светским стандардима, Део : Цилиндрични омотачи Александар Петровић, Никола Гверо Рад садржи основне једначине за димензионисање цилиндричних

Διαβάστε περισσότερα

Градска Управа за пољопривреду и заштиту животне средине. Трг Светог Димитрија 13. Сремска Митровица. Broj: Datum: год.

Градска Управа за пољопривреду и заштиту животне средине. Трг Светог Димитрија 13. Сремска Митровица. Broj: Datum: год. ЗАВОД ЗА ЈАВНО ЗДРАВЉЕ СРЕМСКА МИТРОВИЦА Стари шор 47 Mat.br. 08039801 Reg.br. 8238022472 šif.del. 86-90 PIB 100791703 ž.račun. 840-209667-75 tel/faks: 022/ 610-511, 636-509 e-mail: info@zdravlje-sm.org.rs

Διαβάστε περισσότερα

МОБИЛНЕ МАШИНЕ I. ttl. хидростатички системи, хидростатичке компоненте: вентили, главни разводници, командни разводници.

МОБИЛНЕ МАШИНЕ I. ttl. хидростатички системи, хидростатичке компоненте: вентили, главни разводници, командни разводници. МОБИЛНЕ МАШИНЕ I предавање 8.2 \ хидростатички системи, хидростатичке компоненте: вентили, главни разводници, командни разводници Хидростатички погонски системи N e M e e N h p Q F M m m v m m F o M v

Διαβάστε περισσότερα

ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ПРЕДМЕТА ОСНОВИ МЕХАНИКЕ ФЛУИДА

ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ПРЕДМЕТА ОСНОВИ МЕХАНИКЕ ФЛУИДА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ПРЕДМЕТА ОСНОВИ МЕХАНИКЕ ФЛУИДА Студент: Број индекса: Оверио: Нови Сад 014 1. СТРУЈАЊЕ ТЕЧНОСТИ 1.1 Опис лабораторијског постројења Лабораторијска вежба урадиће се на лабораторијском

Διαβάστε περισσότερα

Могућности и планови ЕПС на пољу напонско реактивне подршке. Излагач: Милан Ђорђевић, мастер.ел.тех.и рачунар. ЈП ЕПС Производња енергије

Могућности и планови ЕПС на пољу напонско реактивне подршке. Излагач: Милан Ђорђевић, мастер.ел.тех.и рачунар. ЈП ЕПС Производња енергије Могућности и планови ЕПС на пољу напонско реактивне подршке Излагач: Милан Ђорђевић, мастер.ел.тех.и рачунар. ЈП ЕПС Производња енергије 1 Обавезе ЈП ЕПС као КПС... ЗАКОН О ЕНЕРГЕТИЦИ ЧЛАН 94. Енергетски

Διαβάστε περισσότερα

Примена првог извода функције

Примена првог извода функције Примена првог извода функције 1. Одреди дужине страница два квадрата тако да њихов збир буде 14 а збир површина тих квадрата минималан. Ре: x + y = 14, P(x, y) = x + y, P(x) = x + 14 x, P (x) = 4x 8 Први

Διαβάστε περισσότερα

Р Е Ш Е Њ Е О ОДОБРЕЊУ ТИПА МЕРИЛА године

Р Е Ш Е Њ Е О ОДОБРЕЊУ ТИПА МЕРИЛА године САВЕЗНА РЕПУБЛИКА ЈУГОСЛАВИЈА САВЕЗНО МИНИСТАРСТВО ПРИВРЕДЕ И УНУТРАШЊЕ ТРГОВИНЕ САВЕЗНИ ЗАВОД ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ 11 000 Београд, Мике Аласа 14, поштански фах 384 телефон: (011) 328-2736, телефакс:

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2010/2011. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола Др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола Милка Потребић Др Милка Потребић, ванредни професор,

Διαβάστε περισσότερα

Градска Управа за пољопривреду и заштиту животне средине. Трг Светог Димитрија 13. Сремска Митровица. Broj: Datum: год.

Градска Управа за пољопривреду и заштиту животне средине. Трг Светог Димитрија 13. Сремска Митровица. Broj: Datum: год. ЗАВОД ЗА ЈАВНО ЗДРАВЉЕ СРЕМСКА МИТРОВИЦА Стари шор 47 Mat.br. 08039801 Reg.br. 8238022472 šif.del. 86-90 PIB 100791703 ž.račun. 840-209667-75 tel/faks: 022/ 610-511, 636-509 e-mail: info@zdravlje-sm.org.rs

Διαβάστε περισσότερα

МАШИНЕ НЕПРЕКИДНОГ ТРАНСПОРТА. ttl. тракасти транспортери, капацитет - учинак, главни отпори кретања. Машине непрекидног транспорта. предавање 2.

МАШИНЕ НЕПРЕКИДНОГ ТРАНСПОРТА. ttl. тракасти транспортери, капацитет - учинак, главни отпори кретања. Машине непрекидног транспорта. предавање 2. МАШИНЕ НЕПРЕКИДНОГ ТРАНСПОРТА предавање.3 тракасти транспортери, капацитет учинак, главни отпори кретања Капацитет Капацитет представља полазни параметар при прорачуну транспортера задаје се пројектним

Διαβάστε περισσότερα

Слика 1. Слика 1.2 Слика 1.1

Слика 1. Слика 1.2 Слика 1.1 За случај трожичног вода приказаног на слици одредити: а Вектор магнетне индукције у тачкама А ( и ( б Вектор подужне силе на проводник са струјом Систем се налази у вакууму Познато је: Слика Слика Слика

Διαβάστε περισσότερα

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 2 (13Е013ЕП2) октобар 2016.

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 2 (13Е013ЕП2) октобар 2016. ЕНЕРГЕТСКИ ПРЕТВАРАЧИ (3Е03ЕП) октобар 06.. Батерија напона B = 00 пуни се преко трофазног полууправљивог мосног исправљача, који је повезан на мрежу 3x380, 50 Hz преко трансформатора у спрези y, са преносним

Διαβάστε περισσότερα

ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда

ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда ОБЛАСТИ: ) Тачка ) Права Jov@soft - Март 0. ) Тачка Тачка је дефинисана (одређена) у Декартовом координатном систему са своје две коодринате. Примери: М(5, ) или М(-, 7) или М(,; -5) Jov@soft - Март 0.

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки

Διαβάστε περισσότερα

L кплп (Калем у кплу прпстпперипдичне струје)

L кплп (Калем у кплу прпстпперипдичне струје) L кплп (Калем у кплу прпстпперипдичне струје) i L u=? За коло са слике кроз калем ппзнате позната простопериодична струја: индуктивности L претпоставићемо да протиче i=i m sin(ωt + ψ). Услед променљиве

Διαβάστε περισσότερα

5.2. Имплицитни облик линеарне функције

5.2. Имплицитни облик линеарне функције математикa за VIII разред основне школе 0 Слика 6 8. Нацртај график функције: ) =- ; ) =,5; 3) = 0. 9. Нацртај график функције и испитај њен знак: ) = - ; ) = 0,5 + ; 3) =-- ; ) = + 0,75; 5) = 0,5 +. 0.

Διαβάστε περισσότερα

Школска 2010/2011 ДОКТОРСКЕ АКАДЕМСКЕ СТУДИЈЕ

Школска 2010/2011 ДОКТОРСКЕ АКАДЕМСКЕ СТУДИЈЕ Школска 2010/2011 ДОКТОРСКЕ АКАДЕМСКЕ СТУДИЈЕ Прва година ИНФОРМАТИЧКЕ МЕТОДЕ У БИОМЕДИЦИНСКИМ ИСТРАЖИВАЊИМА Г1: ИНФОРМАТИЧКЕ МЕТОДЕ У БИОМЕДИЦИНСКИМ ИСТРАЖИВАЊИМА 10 ЕСПБ бодова. Недељно има 20 часова

Διαβάστε περισσότερα

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни ТАЧКА. ПРАВА. РАВАН Талес из Милета (624 548. пре н. е.) Еуклид (330 275. пре н. е.) Хилберт Давид (1862 1943) 3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни Настанак геометрије повезује

Διαβάστε περισσότερα

ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ

ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ 1. Удео снаге и енергије ветра у производњи електричне енергије - стање и предвиђања у свету и Европи. 2. Навести називе најмање две међународне организације

Διαβάστε περισσότερα

ДИЈАГРАМИ И ТАБЛИЦЕ ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА ОДСЕК ЗА ПРОИЗВОДНО МАШИНСТВО ПРОЈЕКТОВАЊЕ ТЕХНОЛОГИЈЕ ТЕРМИЧКЕ ОБРАДЕ. Приредио: Александар Милетић

ДИЈАГРАМИ И ТАБЛИЦЕ ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА ОДСЕК ЗА ПРОИЗВОДНО МАШИНСТВО ПРОЈЕКТОВАЊЕ ТЕХНОЛОГИЈЕ ТЕРМИЧКЕ ОБРАДЕ. Приредио: Александар Милетић - ПТО ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА ОДСЕК ЗА ПРОИЗВОДНО МАШИНСТВО ПРОЈЕКТОВАЊЕ ТЕХНОЛОГИЈЕ ТЕРМИЧКЕ ОБРАДЕ ДИЈАГРАМИ И ТАБЛИЦЕ Приредио: Александар Милетић 1 С т р а н а - ПТО Садржај Пренос топлоте... 3 Цементација...15

Διαβάστε περισσότερα

Међулабораторијско поређење резултата. мерења магнетске индукције надземног вода напонског нивоа 400 kv. У

Међулабораторијско поређење резултата. мерења магнетске индукције надземног вода напонског нивоа 400 kv. У Стручни рад UDK:621.317.42 BIBLID:0350-8528(2012),22.p.209-221 doi:10.5937/zeint22-2336 Међулабораторијско поређење резултата мерења магнетске индукције надземног вода напонског нивоа 400 kv Маја Грбић

Διαβάστε περισσότερα

УСЛОВИ ГРАЂЕВИНСКЕ ФИЗИКЕ

УСЛОВИ ГРАЂЕВИНСКЕ ФИЗИКЕ Тематско поглавље 5.2 УСЛОВИ ГРАЂЕВИНСКЕ ФИЗИКЕ Проф. др Велиборка Богдановић Грађевинско-архитектонски факултет Универзитета у Нишу УСЛОВИ ГРАЂЕВИНСКЕ ФИЗИКЕ Пример прорачуна топлотно-заштитних својстава

Διαβάστε περισσότερα

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице.

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. КРУГ У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. Архимед (287-212 г.п.н.е.) 6.1. Централни и периферијски угао круга Круг

Διαβάστε περισσότερα

ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА

ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА Стандардна девијација показује расподелу резултата мерења око средње вредности, али не указује на облик расподеле. У табели 1 су дате вредности за 50 поновљених одређивања

Διαβάστε περισσότερα

10.3. Запремина праве купе

10.3. Запремина праве купе 0. Развијени омотач купе је исечак чији је централни угао 60, а тетива која одговара том углу је t. Изрази површину омотача те купе у функцији од t. 0.. Запремина праве купе. Израчунај запремину ваљка

Διαβάστε περισσότερα

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА Београд, 21.06.2014. За штап приказан на слици одредити најмању вредност критичног оптерећења P cr користећи приближан поступак линеаризоване теорије другог реда и: а) и један елемент, слика 1, б) два

Διαβάστε περισσότερα

b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је:

b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је: Пример 1. III Савијање правоугаоних плоча За правоугаону плочу, приказану на слици, одредити: a) израз за угиб, b) вредност угиба и пресечних сила у тачки 1 ако се користи само први члан реда усвојеног

Διαβάστε περισσότερα

Универзитет у Београду, Саобраћајни факултет Предмет: Паркирање. 1. вежба

Универзитет у Београду, Саобраћајни факултет Предмет: Паркирање. 1. вежба Универзитет у Београду, Саобраћајни факултет Предмет: Паркирање ОРГАНИЗАЦИЈА ПАРКИРАЛИШТА 1. вежба Место за паркирање (паркинг место) Део простора намењен, технички опремљен и уређен за паркирање једног

Διαβάστε περισσότερα

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: ОСНОВИ МЕХАНИКЕ студијски програм: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 2. Садржај предавања: Систем сучељних сила у равни

Διαβάστε περισσότερα

Факултет организационих наука Центар за пословно одлучивање. PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation)

Факултет организационих наука Центар за пословно одлучивање. PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation) Факултет организационих наука Центар за пословно одлучивање PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation) Студија случаја D-Sight Консултантске услуге за Изградња брзе пруге

Διαβάστε περισσότερα

ПОКАЗАТЕЉИ ЕФЕКТИВНОСТИ РАДА ЈАМСКЕ ВИСЕЋЕ ЖИЧАРЕ У РУДНИКУ ЛУБНИЦА -ЛУБНИЦА

ПОКАЗАТЕЉИ ЕФЕКТИВНОСТИ РАДА ЈАМСКЕ ВИСЕЋЕ ЖИЧАРЕ У РУДНИКУ ЛУБНИЦА -ЛУБНИЦА ПОДЗЕМНИ РАДОВИ 5 (2006) 7-26 UDK 62 РУДАРСКО-ГЕОЛОШКИ ФАКУЛТЕТ БЕОГРАД YU ISSN 03542904 ИЗВОД Стручни рад ПОКАЗАТЕЉИ ЕФЕКТИВНОСТИ РАДА ЈАМСКЕ ВИСЕЋЕ ЖИЧАРЕ У РУДНИКУ ЛУБНИЦА -ЛУБНИЦА Ристовић Ивица, Ђукановић

Διαβάστε περισσότερα

ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА

ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА 1. Допуни шта недостаје: а) 5m = dm = cm = mm; б) 6dm = m = cm = mm; в) 7cm = m = dm = mm. ПОЈАМ ПОВРШИНЕ. Допуни шта недостаје: а) 10m = dm = cm = mm ; б) 500dm = a

Διαβάστε περισσότερα

4. ЗАКОН ВЕЛИКИХ БРОЈЕВА

4. ЗАКОН ВЕЛИКИХ БРОЈЕВА 4. Закон великих бројева 4. ЗАКОН ВЕЛИКИХ БРОЈЕВА Аксиоматска дефиниција вероватноће не одређује начин на који ће вероватноће случајних догађаја бити одређене у неком реалном експерименту. Зато треба наћи

Διαβάστε περισσότερα

Писмени испит из Метода коначних елемената

Писмени испит из Метода коначних елемената Београд,.0.07.. За приказани билинеарни коначни елемент (Q8) одредити вектор чворног оптерећења услед задатог линијског оптерећења p. Користити природни координатни систем (ξ,η).. На слици је приказан

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 011/01. година ТЕСТ МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ ТРАПЕЗ Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце Ментор :Криста Ђокић, наставник математике Власотинце, 2011. године Трапез

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Тест Математика Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 00/0. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

АНАЛИЗА ТРОКРАКИХ РАСКРСНИЦА, РАЗЛИЧИТИХ ГЕОМЕТРИЈСКИХ КАРАКТЕРИСТИКА, ПРИМЕНОМ КОНФЛИКТНЕ ТЕХНИКЕ

АНАЛИЗА ТРОКРАКИХ РАСКРСНИЦА, РАЗЛИЧИТИХ ГЕОМЕТРИЈСКИХ КАРАКТЕРИСТИКА, ПРИМЕНОМ КОНФЛИКТНЕ ТЕХНИКЕ АНАЛИЗА ТРОКРАКИХ РАСКРСНИЦА, РАЗЛИЧИТИХ ГЕОМЕТРИЈСКИХ КАРАКТЕРИСТИКА, ПРИМЕНОМ КОНФЛИКТНЕ ТЕХНИКЕ THREE- ARMS CROSSROADS ANALYSIS, WITH DIFFERENT GEOMETRY, USING CONFLICT TECHNIQUE Душко Пешић 1, Милан

Διαβάστε περισσότερα

МЕДИЦИНА И ДРУШТВО МЕДИЦИНА ЗАСНОВАНА НА ДОКАЗИМА ШЕСТА ГОДИНА СТУДИЈА. школска 2016/2017.

МЕДИЦИНА И ДРУШТВО МЕДИЦИНА ЗАСНОВАНА НА ДОКАЗИМА ШЕСТА ГОДИНА СТУДИЈА. школска 2016/2017. МЕДИЦИНА ЗАСНОВАНА НА ДОКАЗИМА МЕДИЦИНА И ДРУШТВО ШЕСТА ГОДИНА СТУДИЈА школска 2016/2017. Предмет: МЕДИЦИНА ЗАСНОВАНА НА ДОКАЗИМА Предмет се вреднује са 4 ЕСПБ. Недељно има 3 часа активне наставе (2 часа

Διαβάστε περισσότερα

6.5 Површина круга и његових делова

6.5 Површина круга и његових делова 7. Тетива је једнака полупречнику круга. Израчунај дужину мањег одговарајућег лука ако је полупречник 2,5 сm. 8. Географска ширина Београда је α = 44 47'57", а полупречник Земље 6 370 km. Израчунај удаљеност

Διαβάστε περισσότερα

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима 50. Нацртај било које унакрсне углове. Преношењем утврди однос унакрсних углова. Какво тврђење из тога следи? 51. Нацртај угао чија је мера 60, а затим нацртај њему унакрсни угао. Колика је мера тог угла?

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ школска 016/017. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ

Διαβάστε περισσότερα

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ 8.. Линеарна једначина с две непознате Упознали смо појам линеарног израза са једном непознатом. Изрази x + 4; (x 4) + 5; x; су линеарни изрази. Слично, линеарни

Διαβάστε περισσότερα

САНАЦИОНО РЕШЕЊЕ ПОВЕЋАНИХ ВИБРАЦИЈА НОСЕЋЕ КОНСТРУКЦИЈЕ ВЕНТИЛАТОРА

САНАЦИОНО РЕШЕЊЕ ПОВЕЋАНИХ ВИБРАЦИЈА НОСЕЋЕ КОНСТРУКЦИЈЕ ВЕНТИЛАТОРА САНАЦИОНО РЕШЕЊЕ ПОВЕЋАНИХ ВИБРАЦИЈА НОСЕЋЕ КОНСТРУКЦИЈЕ ВЕНТИЛАТОРА Ђерђ Варју 1 Љиљана Тадић 2 Оливер Вајда 3 УДК: 624.042.3 : 621.63 DOI: 10.14415/zbornikGFS30.01 Резиме: У раду је приказано санационо

Διαβάστε περισσότερα

Анализа техно-економских услова изградње соларне електране на крову пословне зграде Електротехничког института Никола Тесла

Анализа техно-економских услова изградње соларне електране на крову пословне зграде Електротехничког института Никола Тесла Стручни рад UDK:621.311.243 BIBLID:0350-8528(2014),24.p.41-56 doi:10.5937/zeint24-4934 Анализа техно-економских услова изградње соларне електране на крову пословне зграде Електротехничког института Никола

Διαβάστε περισσότερα

Вежба 17 Kарактеристикa транзистора

Вежба 17 Kарактеристикa транзистора Вежба 17 Kарактеристикa транзистора Увод Проналазак транзистора означава почетак нове ере у електроници. Проналазачи транзистора Бардин (Bardeen), Братеин (Brattain) и Шокли (Shockley) су за своје откриће

Διαβάστε περισσότερα

2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ

2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ 2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ 2.1. МАТЕМАТИЧКИ РЕБУСИ Најједноставније Диофантове једначине су математички ребуси. Метод разликовања случајева код ових проблема се показује плодоносним, јер је раздвајање

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола Др Милка Потребић, ванредни професор, Теорија електричних кола, предавања, Универзитет у Београду Електротехнички факултет, 07. Вишефазне електричне системе је патентирао српски истраживач Никола Тесла

Διαβάστε περισσότερα

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре 0 6.. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре У обичном говору се често каже да су неки предмети симетрични. Примери таквих објеката, предмета, геометријских

Διαβάστε περισσότερα

ЗБИРКА РИЈЕШЕНИХ ЗАДАТАКА ИЗ МАТЕМАТИКЕ ЗА ПРИЈЕМНИ ИСПИТ

ЗБИРКА РИЈЕШЕНИХ ЗАДАТАКА ИЗ МАТЕМАТИКЕ ЗА ПРИЈЕМНИ ИСПИТ Универзитет у Источном Сарајеву Електротехнички факултет НАТАША ПАВЛОВИЋ ЗБИРКА РИЈЕШЕНИХ ЗАДАТАКА ИЗ МАТЕМАТИКЕ ЗА ПРИЈЕМНИ ИСПИТ Источно Сарајево,. године ПРЕДГОВОР Збирка задатака је првенствено намијењена

Διαβάστε περισσότερα

Ротационо симетрична деформација средње површи ротационе љуске

Ротационо симетрична деформација средње површи ротационе љуске Ротационо симетрична деформација средње површи ротационе љуске слика. У свакој тачки посматране средње површи, у општем случају, постоје два компонентална померања: v - померање у правцу тангенте на меридијалну

Διαβάστε περισσότερα

КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1

КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 Лабораторијска вежба број 1 МОНОФАЗНИ ФАЗНИ РЕГУЛАТОР СА ОТПОРНИМ И ОТПОРНО-ИНДУКТИВНИМ ОПТЕРЕЋЕЊЕМ

Διαβάστε περισσότερα

УНИВЕРЗИТЕТ У КРАГУЈЕВЦУ ФАКУЛТЕТ МЕДИЦИНСКИХ НАУКА. докторскa дисертацијa. др Звонко Живаљевић АУДИТИВНИ ЕФЕКТИ БОЈЕВОГ ГАЂАЊА ИЗ АУТОМАТСКЕ

УНИВЕРЗИТЕТ У КРАГУЈЕВЦУ ФАКУЛТЕТ МЕДИЦИНСКИХ НАУКА. докторскa дисертацијa. др Звонко Живаљевић АУДИТИВНИ ЕФЕКТИ БОЈЕВОГ ГАЂАЊА ИЗ АУТОМАТСКЕ УНИВЕРЗИТЕТ У КРАГУЈЕВЦУ ФАКУЛТЕТ МЕДИЦИНСКИХ НАУКА докторскa дисертацијa др Звонко Живаљевић АУДИТИВНИ ЕФЕКТИ БОЈЕВОГ ГАЂАЊА ИЗ АУТОМАТСКЕ ПУШКЕ КОД ПРОФЕСИОНАЛНИХ ВОЈНИХ ЛИЦА Ментор: проф. др Љубица

Διαβάστε περισσότερα

Експериментална истраживања ефеката различитих екрана на смањење магнетске индукције индустријске учестаности

Експериментална истраживања ефеката различитих екрана на смањење магнетске индукције индустријске учестаности Стручни рад UDK:621.317.42:621.316.97 BIBLID:0350-8528(2012),22.p.173-184 doi:10.5937/zeint22-2341 Експериментална истраживања ефеката различитих екрана на смањење магнетске индукције индустријске учестаности

Διαβάστε περισσότερα

ТЕХНИЧКО УПУТСТВО О НАЧИНУ ИСПИТИВАЊА И ПОСТУПКУ ОЦЕЊИВАЊА УСАГЛАШЕНОСТИ САОБРАЋАЈНИХ ЗНАКОВА СА ЗАХТЕВИМА СТАНДАРДА

ТЕХНИЧКО УПУТСТВО О НАЧИНУ ИСПИТИВАЊА И ПОСТУПКУ ОЦЕЊИВАЊА УСАГЛАШЕНОСТИ САОБРАЋАЈНИХ ЗНАКОВА СА ЗАХТЕВИМА СТАНДАРДА Булевар Краља Александра 282, Београд Број: БС 05 ТЕХНИЧКО УПУТСТВО О НАЧИНУ ИСПИТИВАЊА И ПОСТУПКУ ОЦЕЊИВАЊА УСАГЛАШЕНОСТИ САОБРАЋАЈНИХ ЗНАКОВА СА ЗАХТЕВИМА СТАНДАРДА НА ДРЖАВНИМ ПУТЕВИМА РЕПУБЛИКЕ СРБИЈЕ

Διαβάστε περισσότερα

Cook-Levin: SAT је NP-комплетан. Теодор Најдан Трифунов 305M/12

Cook-Levin: SAT је NP-комплетан. Теодор Најдан Трифунов 305M/12 Cook-Levin: SAT је NP-комплетан Теодор Најдан Трифунов 305M/12 1 Основни појмови Недетерминистичка Тјурингова машина (НТМ) је уређена седморка M = (Q, Σ, Γ, δ, q 0,, ) Q коначан скуп стања контролног механизма

Διαβάστε περισσότερα

Р Е Ш Е Њ Е О ОДОБРЕЊУ ТИПА МЕРИЛА

Р Е Ш Е Њ Е О ОДОБРЕЊУ ТИПА МЕРИЛА САВЕЗНА РЕПУБЛИКА ЈУГОСЛАВИЈА САВЕЗНО МИНИСТАРСТВО ПРИВРЕДЕ И УНУТРАШЊЕ ТРГОВИНЕ САВЕЗНИ ЗАВОД ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ 11 000 Београд, Мике Аласа 14, поштански фах 384 телефон: (011) 3282-736, телефакс:

Διαβάστε περισσότερα

2.3. Решавање линеарних једначина с једном непознатом

2.3. Решавање линеарних једначина с једном непознатом . Решимо једначину 5. ( * ) + 5 + Провера: + 5 + 0 5 + 5 +. + 0. Број је решење дате једначине... Реши једначину: ) +,5 ) + ) - ) - -.. Да ли су следеће једначине еквивалентне? Провери решавањем. ) - 0

Διαβάστε περισσότερα

Тангента Нека је дата крива C са једначином y = f (x)

Тангента Нека је дата крива C са једначином y = f (x) Dbić N Извод као појам се први пут појављује крајем XVII вијека у вези са израчунавањем неравномјерних кретања. Прецизније, помоћу извода је било могуће увести појам тренутне брзине праволинијског кретања.

Διαβάστε περισσότερα

2.1. Права, дуж, полуправа, раван, полураван

2.1. Права, дуж, полуправа, раван, полураван 2.1. Права, дуж, полуправа, раван, полураван Човек је за своје потребе градио куће, школе, путеве и др. Слика 1. Слика 2. Основа тих зграда је често правоугаоник или сложенија фигура (слика 3). Слика 3.

Διαβάστε περισσότερα

Семинарски рад из линеарне алгебре

Семинарски рад из линеарне алгебре Универзитет у Београду Машински факултет Докторске студије Милош Живановић дипл. инж. Семинарски рад из линеарне алгебре Београд, 6 Линеарна алгебра семинарски рад Дата је матрица: Задатак: a) Одредити

Διαβάστε περισσότερα

7. Модели расподела случајних променљивих ПРОМЕНЉИВИХ

7. Модели расподела случајних променљивих ПРОМЕНЉИВИХ 7. Модели расподела случајних променљивих 7. МОДЕЛИ РАСПОДЕЛА СЛУЧАЈНИХ ПРОМЕНЉИВИХ На основу природе појаве коју анализирамо, често можемо претпоставити да расподела случајне променљиве X припада једној

Διαβάστε περισσότερα

ЗАВРШНИ РАД КЛИНИЧКА МЕДИЦИНА 5. школска 2016/2017. ШЕСТА ГОДИНА СТУДИЈА

ЗАВРШНИ РАД КЛИНИЧКА МЕДИЦИНА 5. школска 2016/2017. ШЕСТА ГОДИНА СТУДИЈА ЗАВРШНИ РАД КЛИНИЧКА МЕДИЦИНА 5 ШЕСТА ГОДИНА СТУДИЈА школска 2016/2017. Предмет: ЗАВРШНИ РАД Предмет се вреднује са 6 ЕСПБ. НАСТАВНИЦИ И САРАДНИЦИ: РБ Име и презиме Email адреса звање 1. Јасмина Кнежевић

Διαβάστε περισσότερα

Р Ц4-07. Рачунарске провере расподеле магнетне индукције у близини енергетског трансформатора 10 kv / 0.4 kv без и са магнетним екраном

Р Ц4-07. Рачунарске провере расподеле магнетне индукције у близини енергетског трансформатора 10 kv / 0.4 kv без и са магнетним екраном Р Ц4-7 Рачунарске провере расподеле магнетне индукције у близини енергетског трансформатора 1 kv /.4 kv без и са магнетним екраном Марко Шоргић, Зоран Радаковић, Милан Савић, Ратко Ковачић Електротехнички

Διαβάστε περισσότερα

I Тачка 1. Растојање две тачке: 2. Средина дужи y ( ) ( ) 2. II Права 1. Једначина прамена правих 2. Једначина праве кроз две тачке ( )

I Тачка 1. Растојање две тачке: 2. Средина дужи y ( ) ( ) 2. II Права 1. Једначина прамена правих 2. Једначина праве кроз две тачке ( ) Шт треба знати пре почетка решавања задатака? АНАЛИТИЧКА ГЕОМЕТРИЈА У РАВНИ I Тачка. Растојање две тачке:. Средина дужи + ( ) ( ) + S + S и. Деоба дужи у односу λ: 4. Површина троугла + λ + λ C + λ и P

Διαβάστε περισσότερα

УПУТСТВО ЗА ОДРЕЂИВАЊЕ ВРСТЕ ДОКУМЕНАТА КОЈЕ ИЗРАЂУЈЕ ОПЕРАТЕР СЕВЕСО ПОСТРОЈЕЊА. август 2010.

УПУТСТВО ЗА ОДРЕЂИВАЊЕ ВРСТЕ ДОКУМЕНАТА КОЈЕ ИЗРАЂУЈЕ ОПЕРАТЕР СЕВЕСО ПОСТРОЈЕЊА. август 2010. УПУТСТВО ЗА ОДРЕЂИВАЊЕ ВРСТЕ ДОКУМЕНАТА КОЈЕ ИЗРАЂУЈЕ ОПЕРАТЕР СЕВЕСО ПОСТРОЈЕЊА август 2010. I. УВОД Сврха овог Упутства је да помогне оператерима који управљају опасним материјама, како да одреде да

Διαβάστε περισσότερα

УРЕДБУ О ГРАНИЧНИМ ВРЕДНОСТИМА ПРИОРИТЕТНИХ И ПРИОРИТЕТНИХ ХАЗАРДНИХ СУПСТАНЦИ КОЈЕ ЗАГАЂУЈУ ПОВРШИНСКЕ ВОДЕ И РОКОВИМА ЗА ЊИХОВО ДОСТИЗАЊЕ

УРЕДБУ О ГРАНИЧНИМ ВРЕДНОСТИМА ПРИОРИТЕТНИХ И ПРИОРИТЕТНИХ ХАЗАРДНИХ СУПСТАНЦИ КОЈЕ ЗАГАЂУЈУ ПОВРШИНСКЕ ВОДЕ И РОКОВИМА ЗА ЊИХОВО ДОСТИЗАЊЕ На основу члана 93. став 2. тачка 2) Закона о водама ( Службени гласник РС, бр. 30/10 и 93/12) и члана 17. став 1. и члана 42. став 1. Закона о Влади ( Службени гласник РС, бр. 55/05, 71/05, 101/07, 5/08,

Διαβάστε περισσότερα

Писмени испит из Теорије плоча и љуски. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.

Писмени испит из Теорије плоча и љуски. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. Београд, 24. јануар 2012. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. = 0.2 dpl = 0.2 m P= 30 kn/m Линијско оптерећење се мења по синусном закону: 2.

Διαβάστε περισσότερα