ΠΡΟΣΟΜΟΙΩΣΗ ΚΟΙΛΩΝ ΔΙΑΤΟΜΩΝ Ω.Σ. ΜΕ ΑΜΙΓΩΣ ΜΕΤΑΛΛΙΚΕΣ ΔΙΑΤΟΜΕΣ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΤΟΠΙΚΟΥ ΛΥΓΙΣΜΟΥ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΡΟΣΟΜΟΙΩΣΗ ΚΟΙΛΩΝ ΔΙΑΤΟΜΩΝ Ω.Σ. ΜΕ ΑΜΙΓΩΣ ΜΕΤΑΛΛΙΚΕΣ ΔΙΑΤΟΜΕΣ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΤΟΠΙΚΟΥ ΛΥΓΙΣΜΟΥ"

Transcript

1 ΠΡΟΣΟΜΟΙΩΣΗ ΚΟΙΛΩΝ ΔΙΑΤΟΜΩΝ Ω.Σ. ΜΕ ΑΜΙΓΩΣ ΜΕΤΑΛΛΙΚΕΣ ΔΙΑΤΟΜΕΣ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΤΟΠΙΚΟΥ ΛΥΓΙΣΜΟΥ Εμμανουήλ Γ. Τσιομπάνος a, Άννα A. Μαρινοπούλου, Δημήτριος Θ. Παχούμης, Ευάγγελος Γ. Γαλούσης, Χρίστος Ν. Κάλφας d a MS Πολιτικός Μηχανικός Υποψ. Διδ., MS Πολιτικός Μηχανικός Καθηγητής Δ.Π.Θ. d Επικ. Καθηγητής Δ.Π.Θ. Εργαστήριο Μεταλλικών Κατασκευών Δ.Π.Θ Ξάνθη, Ελλάς mslgroup@ivil.dut.gr 1. ΠΕΡΙΛΗΨΗ Στην εργασία αυτή επιχειρείται η προσομοίωση διατομών Ω.Σ. με αμιγώς μεταλλικές ιδεατές διατομές για τη μελέτη φαινομένων τοπικών λυγισμών. Η ιδεατή διατομή, που επιλέγεται για την προσομοίωση, έχει το ίδιο ορθογωνικό σχήμα με την αρχική διατομή αλλά διαφορετικές διαστάσεις. Οι άγνωστες διαστάσεις της ιδεατής διατομής υπολογίζονται από το σύστημα των εξισώσεων, που προκύπτει από τις συνθήκες ισοδυναμίας των αξονικών και καμπτικών ακαμψιών της αρχικής και της ιδεατής διατομής. Η λύση του συστήματος είναι κλειστή και εκφράζεται συναρτήσει των γεωμετρικών και μηχανικών παραμέτρων της αρχικής διατομής. Για επιβεβαίωση της προτεινόμενης μεθοδολογίας, γίνονται αναλύσεις με πεπερασμένα στοιχεία τόσο της διατομής Ω.Σ. όσο και της ιδεατής διατομής, από τις οποίες υπολογίζονται οι τιμές της αξονικής και της εγκάρσιας παραμόρφωσης. Από τη σχετική σύγκλιση των τιμών αυτών ενισχύεται η αξιοπιστία της προτεινόμενης μεθοδολογίας προσομοίωσης. Έτσι, η εν λόγω μεθοδολογία μπορεί να αποτελέσει έναν εύχρηστο τρόπο αντικατάστασης των κοίλων διατομών Ω.Σ με αμιγώς ιδεατές χαλύβδινες, με σκοπό να χρησιμοποιηθεί για τη μελέτη φαινομένων τοπικών λυγισμών των κοίλων διατομών Ω.Σ. σύμφωνα με την μεθοδολογία που ακολουθείται για τις λεπτότοιχες χαλύβδινες διατομές.. ΕΙΣΑΓΩΓΗ Σε δομικά στοιχεία από ωπλισμένο σκυρόδεμα τα φαινόμενα τοπικών λυγισμών δεν έχουν διερευνηθεί επαρκώς λόγω της πολυπλοκότητας της συμπεριφοράς των δύο υλικών, σκυροδέματος και χάλυβα οπλισμού. Τα φαινόμενα αυτά καθίστανται ιδιαίτερα κρίσιμα σε υψηλά βάθρα γεφυρών, όπου οι διατομές είναι κοίλες ορθογωνικές, με παρειές σχετικά μικρού πάχους. Στην παρούσα εργασία γίνεται μια προσπάθεια προσομοίωσης των διατομών αυτών με ισοδύναμες αμιγώς χαλύβδινες διατομές, προκειμένου με τον τρόπο 38

2 αυτό το πρόβλημα του φαινομένου τοπικού λυγισμού των διατομών Ω.Σ. να μεταφερθεί και να αντιμετωπισθεί ως πρόβλημα λεπτότοιχων χαλύβδινων διατομών, για τις οποίες υπάρχει εκτεταμένη έρευνα των αντίστοιχων φαινομένων. Η προσομοίωση γίνεται με κατάλληλη προσαρμογή της μεθόδου που έχει αναπτυχθεί για την προσομοίωση σύμμικτων διατομών υποστυλωμάτων μερικώς εγκιβωτισμένων σε σκυρόδεμα με αμιγώς χαλύβδινες διατομές [1,]. Η ταυτόσημη συμπεριφορά της διατομής του Ω.Σ. και της ιδεατής απαιτεί την ικανοποίηση των ακολούθων συνθηκών ισοδυναμίας: 1. Η αξονική ακαμψία της ιδεατής διατομής να προσεγγίζει την αντίστοιχη ακαμψία της διατομής Ω.Σ... Οι καμπτικές ακαμψίες και ως προς τους δύο κεντροβαρικούς άξονες της ιδεατής διατομής να προσεγγίζουν τις αντίστοιχες ακαμψίες της διατομής Ω.Σ. 3. ΑΝΑΛΥΤΙΚΟΣ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΙΔΕΑΤΗΣ ΔΙΑΤΟΜΗΣ Η ιδεατή χαλύβδινη διατομή που προσομοιώνει πλήρως την κοίλη διατομή Ω.Σ. είναι επίσης μία κοίλη διατομή του ιδίου σχήματος αλλά με διαφορετικές εσωτερικές και εξωτερικές διαστάσεις (Σχ. 1). Για την πλήρη και επακριβή περιγραφή της ιδεατής διατομής χρειάζεται να προσδιοριστούν τέσσερις γεωμετρικές διαστάσεις, οι δύο εξωτερικές 1 και 1 και οι δύο εσωτερικές και. Σημειώνεται ότι τα οριζόντια και τα κάθετα ελάσματα, που μορφώνουν την ιδεατή διατομή, δεν έχουν, κατ ανάγκη, το ίδιο πάχος. Οι άγνωστες αυτές διαστάσεις προσδιορίζονται από τις αλγεβρικές εξισώσεις, που προκύπτουν από τα τρία κριτήρια ισοδυναμίας των ακαμψιών τους, που αναφέρθηκαν προηγουμένως. Δεδομένου ότι οι εξισώσεις αυτές είναι τρεις, ενώ οι άγνωστες γεωμετρικές διαστάσεις είναι τέσσερις, ως τέταρτη εξίσωση θεωρείται ο ακόλουθος γεωμετρικός περιορισμός: t t 1 α α< 1 (1) z z t 1 t y y y 1 y z z σχ. 1. Προσομοίωση κοίλης διατομής Ο.Σ με ιδεατή χαλύβδινη διατομή 39

3 3.1 Αξονικές ακαμψίες Οι αξονικές ακαμψίες της διατομής Ο.Σ. και της ιδεατής διατομής είναι, αντίστοιχα: EA E A E A E A EA E A () s+ s s και a a όπου ο δείκτης α αντιστοιχεί στο δομικό χάλυβα, ο στο σκυρόδεμα και ο s στο χάλυβα οπλισμού. Από την απαίτηση ισοδυναμίας των ακαμψιών προκύπτει η εξίσωση: EaAa EA EAs+ EsAs (3) Με την εισαγωγή του λόγου ψ των μέτρων ελαστικότητας σκυροδέματος και χάλυβα λαμβάνεται: Aa ψa ψ As+ As (4) Από τις σχέσεις (1) και (4) προκύπτει: 1 α ψa ψ A + A (5) 1 1 s s Για την αδιαστατοποίηση της σχέσης (5) εισάγονται οι παράμετροι β και η, οι οποίες εκφράζουν τους λόγους των εξωτερικών διαστάσεων της αρχικής διατομής προς τις αντίστοιχες διαστάσεις της ιδεατής διατομής. Είναι δε: η η (6) 1 1 β 1 1 β (7) Από τις σχέσεις (5), (6) και (7) και λαμβάνοντας υπόψη και την (1), προκύπτει: ψa ψas As ( 1 α ) βη + (8) Η παράμετρος ρ s εκφράζει το ποσοστό του οπλισμού σε σχέση με τη διατομή του σκυροδέματος: A s A s ρs (9) A Από τις σχέσεις (8) και (9) προκύπτει: 1 α βηψ 1 ρ +ρ (10) ( s) s Το δεύτερο μέρος της εξίσωσης αυτής εξαρτάται μόνο από τα γεωμετρικά μεγέθη και από τις ιδιότητες των υλικών της διατομής Ω.Σ. και έτσι μπορεί να αντικατασταθεί από μία σταθερά. Επειδή δε, όπως φαίνεται από τον ορισμό της παραμέτρου ρ s με τη σχέση (9), η ρ s είναι πολύ μικρότερη της μονάδος, η σταθερά έχει πάντοτε θετική τιμή: d ψ 1 ρ +ρ (11) x,r s s Με τη θεώρηση αυτή από τη σχέση (11) προκύπτει η πρώτη εξίσωση μεταξύ των αγνώστων παραμέτρων β και η, που σχετίζονται άμεσα με τις διαστάσεις 1 και 1 της ιδεατής διατομής. Η εξίσωση αυτή εκφράζει σε αδιάστατη μορφή την ισοδυναμία των αξονικών ακαμψιών της αρχικής διατομής Ω.Σ. και της ιδεατής διατομής και είναι η ακόλουθη : 1 α βη d x,r (1) 3. Καμπτικές ακαμψίες Η ισοδυναμία των καμπτικών ακαμψιών ως προς τον ισχυρό άξονα y-y της αρχικής διατομής από Ω.Σ και της ιδεατής χαλύβδινης διατομής ορίζεται από την εξίσωση: E I E I E I + E I (13) a a,y,y s,y s s,y a 330

4 Η σχέση αυτή, αν εισαχθεί ο λόγος των μέτρων ελαστικότητας ψ, υπολογισθεί η ακαμψία της ιδεατής διατομής I a,y και ληφθούν υπόψη οι σχέσεις (1), γίνεται: ( 1 α ) ψi,y ψ I,y+ I,y (14) 1 Με την εισαγωγή των αδιάστατων παραμέτρων η και β από τις σχέσεις (6) και (7), αντίστοιχα, προκύπτει: ψi,y ψi 4 3 s,y Is,y ( 1 α ) βη + (15) Ο λόγος της ακαμψίας των ράβδων οπλισμού I s,y προς εκείνη της διατομής του σκυροδέματος I,y εκφράζεται από το αντίστοιχο μέγεθος θ (πολύ μικρότερο της μονάδος) ως εξής: Is,y Is,y θ (16) 3 I 1,y Με τη θεώρηση αυτή η σχέση (15) μετασχηματίζεται σε: α βη ψ 1 θ +θ (17) Το δεύτερο μέρος της εξίσωσης αυτής εξαρτάται και πάλι μόνο από τις γεωμετρικές και μηχανικές παραμέτρους της αρχικής διατομής και αντικαθίσταται με τη θετική σταθερά: d ψ 1 θ +θ (18) y,r Από τη σχέση (17) προκύπτει η δεύτερη εξίσωση μεταξύ των αγνώστων παραμέτρων β και η, που σχετίζονται άμεσα με τις διαστάσεις 1 και 1 της ιδεατής διατομής. Η εξίσωση αυτή εκφράζει σε αδιάστατη μορφή την ισοδυναμία των καμπτικών ακαμψιών ως προς τον άξονα y-y και είναι: α βη d y,r (19) Με τον ίδιο τρόπο προκύπτει η εξίσωση: 4 3 ( 1 α ) β η d z,r (0) η οποία εκφράζει την ισοδυναμία των καμπτικών ακαμψιών ως προς τον άξονα z-z και όπου η ποσότητα d z,r είναι, επίσης, μία θετική ποσότητα, αντίστοιχη με την d y,r, η οποία ορίζεται από τη σχέση: d ψ 1 δ +δ (1) με z,r I I s,z s,z δ () 3 I,z 1 Από τις συνθήκες ισοδυναμίας των αξονικών και καμπτικών ακαμψιών προέκυψε το σύστημα των εξισώσεων (1), (19) και (0) με αγνώστους τις αδιάστατες παραμέτρους β, η και α. Το σύστημα αυτό επιδέχεται κλειστή λύση, από την οποία προκύπτουν οι ζητούμενες διαστάσεις 1, 1, και της ιδεατής διατομής [3]. Από την επίλυση του συστήματος λαμβάνεται: d y,r dx,r dz,r d d x,r y,rdz,r η, β και βη (3) ( α ) ( α ) d ( α ) και σε συνδυασμό με την εξίσωση (1) προκύπτει: 4 ( 1 α ) dx,r α d d y,r z,r x,r (4) 331

5 Οι παράμετροι d, d y, R και d z, R που έχουν ορισθεί με τις σχέσεις (11), (18) και (1), αντίστοιχα, είναι δοσμένες θετικές ποσότητες, που εξαρτώνται από τις γεωμετρικές και μηχανικές παραμέτρους της διατομής Ω.Σ.. Κατά συνέπεια το ίδιο ισχύει και για την ποσότητα στο δεύτερο μέλος της (4), η οποία μπορεί να αντικατασταθεί με τη δοσμένη θετική παράμετρο Κ που ορίζεται ως: 4 dx,r K (5) d d y,r z,r Λαμβάνοντας υπόψη τη σχέση (5), η επίλυση της εξίσωσης (4) ως προς α δίνει: 1 K α (6) K Κατόπιν αυτού, από τις σχέσεις (3) προκύπτουν οι τιμές των η και β, αντίστοιχα, οι οποίες είναι: y,r η (7) d d x,r z,r β (8) x,r Οι σχέσεις (6), (7) και (8) αποτελούν τους αλγορίθμους υπολογισμού των αδιάστατων αγνώστων α, η και β, αντίστοιχα, οι οποίοι ελήφθησαν αντί των ζητούμενων διαστάσεων 1, 1, και της ιδεατής διατομής. Αν ληφθούν υπόψη οι σχέσεις (1), (6) και (7), με τις οποίες έχουν ορισθεί οι παράμετροι α, η και β, προκύπτουν οι σχέσεις του πιν.1, με τις οποίες είναι δυνατόν να υπολογισθούν οι διαστάσεις 1, 1, και της ιδεατής διατομής. Ο υπολογισμός γίνεται με τη βοήθεια των σταθερών παραμέτρων d, d y, R, d z, R και Κ, οι οποίες έχουν συγκεκριμένες τιμές, εξαρτώμενες από τις γεωμετρικές ιδιότητες και τις μηχανικές σταθερές των υλικών της αρχικής διατομής. Στην ειδική περίπτωση που η διατομή του εξ ωπλισμένου σκυροδέματος υποστυλώματος είναι τετραγωνικού σχήματος, τετραγωνική θα είναι και η ιδεατή χαλύβδινη διατομή. Έτσι, οι άγνωστες διαστάσεις της ιδεατής διατομής περιορίζονται σε δύο, την εξωτερική και την εσωτερική διάσταση 1 και των πλευρών του τετραγώνου. Είναι προφανές επίσης ότι όλες οι παρειές του τετραγώνου θα έχουν το ίδιο πάχος. Το ενιαίο πάχος t των πλευρών της τετραγωνικής ιδεατής διατομής δίνεται απευθείας από την παρακάτω σχέση [3]: 1 K 1 K d y,r t (31) d x,r Εξωτερικό ύψος ιδεατής χαλύβδινης διατομής 1 1 d y, R Εξωτερικό πλάτος ιδεατής χαλύβδινης διατομής 1 1 d z, R Εσωτερικό πλάτος ιδεατής χαλύβδινης διατομής 1 d y, R πιν 1. Τύποι υπολογισμού διαστάσεων ιδεατής διατομής Εσωτερικό πλάτος ιδεατής χαλύβδινης διατομής 1 d z, R 33

6 4. ΕΛΕΓΧΟΣ ΤΗΣ ΑΞΙΟΠΙΣΤΙΑΣ ΜΕ ΠΕΠΕΡΑΣΜΕΝΑ ΣΤΟΙΧΕΙΑ Για τον έλεγχο της αξιοπιστίας της μεθοδολογίας προσομοίωσης, που αναπτύχθηκε παραπάνω, έγινε ανάλυση με πεπερασμένα στοιχεία, με την χρήση του προγράμματος ABAQUS. Στον πιν. αναγράφονται οι διαστάσεις και οι ποιότητες των υλικών της αρχικής τετραγωνικής διατομής Ω.Σ., καθώς και οι διαστάσεις της ιδεατής διατομής που προκύπτουν με εφαρμογή των τύπων υπολογισμού του πιν. 1. Επίσης, παρουσιάζονται τα είδη των πεπερασμένων στοιχείων που χρησιμοποιήθηκαν για την ανάλυση. Σημειώνεται ότι η ανάλυση της προσομοιωμένης διατομής έγινε τόσο με sell όσο και με solid elements, προκειμένου να διαπιστωθεί το είδος του στοιχείου είναι πιο κατάλληλο για την περίπτωση. ΜΟΝΤΕΛΟ 1 Α Β ΥΛΙΚΟ ΟΠΛΙΣΜΕΝΟ ΣΚΥΡΟΔΕΜΑ ΧΑΛΥΒΑΣ ΧΑΛΥΒΑΣ ΔΙΑΣΤΑΣΕΙΣ (mm) 3000x3000x50 811x811x31 811x811x31 ΠΟΙΟΤΗΤΕΣ ΥΛΙΚΩΝ C40 / S500 / Φ0 S 35 S 35 ΠΕΠΕΡΑΣΜΕΝΑ ΣΤΟΙΧΕΙΑ solid elements sell elements C3D8R S4R πιν.. Μοντέλα FEM ανάλυσης solid elements C3D8R Από την ανάλυση ελήφθησαν οι τιμές αξονικής και εγκάρσιας παραμόρφωσης που παρουσιάζει το κάθε μοντέλο στο ίδιο κατακόρυφο θλιπτικό φορτίο και σχεδιάσθηκαν τα διαγράμματα φορτίου παραμόρφωσης που παρουσιάζονται στα σχ. και σχ. 3. Οπως φαίνεται από τα διαγράμματα αυτά, υπάρχει πρακτική ταύτιση των καμπύλων τους. Τούτο, άλλωστε, αποδεικνύεται και από τον υπολογισμό των αποκλίσεων που παρουσιάζεται στον πιν. 3. Η σύγκλιση αυτή των παραμορφώσεων αποδεικνύει ότι η αρχική διατομή Ω.Σ. και η ιδεατή χαλύβδινη διατομή παρουσιάζουν την ίδια συμπεριφορά, τουλάχιστον στον ελαστικό κλάδο, που είναι το ζητούμενο για τον τελικό στόχο της μελέτης φαινομένων τοπικού λυγισμού, δεδομένου ότι τα φαινόμενα αυτά αποτελούν πρώιμες μορφές αστοχίας. Επιπλέον από τον πίν. 3 προκύπτει ότι οι μικρότερες αποκλίσεις εμφανίζονται μεταξύ του 333

7 ΔΙΑΓΡΑΜΜΑ ΔΥΝΑΜΗΣ - ΑΞΟΝΙΚΗΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΔΙΑΓΡΑΜΜΑ ΔΥΝΑΜΗΣ - ΕΓΚΑΡΣΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΔΥΝΑΜΗ (ΚΝ ) ΔΥΝΑΜ Η (ΚΝ) ΜΟΝΤΕΛΟ ΜΟΝΤΕΛΟ -Α ΜΟΝΤΕΛΟ -Β ΑΞΟΝΙΚΗ ΠΑΡΑΜΟΡΦΩΣΗ (mm) σχ. Διάγραμμα αξονικών παραμορφώσεων ΜΟΝΤΕΛΟ ΜΟΝΤΕΛΟ -Α ΜΟΝΤΕΛΟ -Β ΕΓΚΑΡΣΙΑ ΠΑΡΑΜΟΡΦΩΣΗ (mm) σχ. 3 Διάγραμμα εγκάρσιων παραμορφώσεων ΜΟΝΤΕΛΑ ΑΞΟΝΙΚΗ ΠΑΡΑΜΟΡΦΩΣΗ ΑΠΟΚΛΙΣΕΙΣ % ΕΓΚΑΡΣΙΑ ΠΑΡΑΜΟΡΦΩΣΗ 1-(Α) (Β) πιν. 3. Αποκλίσεις μεταξύ των μοντέλων μοντέλου 1 (διατομή σκυροδέματος) και του μοντέλου -Α (μεταλλική διατομή με στοιχεία sell). Αυτό σημαίνει ότι, για τη διερεύνηση των φαινομένων τοπικών λυγισμών σε διατομές οπλισμένου σκυροδέματος, οι ισοδύναμες ιδεατές μεταλλικές διατομές είναι ορθότερο να προσομοιώνονται με στοιχεία κελύφους (sell elements). 5. ΣΥΜΠΕΡΑΣΜΑΤΑ Με το παρόν άρθρο προτείνεται μία απλή και εύχρηστη μέθοδος προσομοίωσης κοίλων διατομών Ω.Σ με αμιγώς χαλύβδινες κοίλες ιδεατές διατομές. Δίνονται απλές εξισώσεις υπολογισμού των γεωμετρικών διαστάσεων της ιδεατής διατομής με βάση τις γεωμετρικές και μηχανικές παραμέτρους της διατομής Ω.Σ. Η προτεινόμενη μέθοδος φαίνεται να είναι αρκετά αξιόπιστη δεδομένου ότι οι αποκλίσεις των τιμών της αξονικής και της εγκάρσιας παραμόρφωσης από την ανάλυση με πεπερασμένα στοιχεία είναι μικρότερες του 1%, όταν για την ανάλυση της ιδεατής χαλύβδινης διατομής χρησιμοποιούνται sell elements. Με βάση τη μέθοδο αυτή είναι δυνατόν τα φαινόμενα τοπικών λυγισμών των διατομών Ω.Σ να μελετηθούν και να αντιμετωπισθούν με τις θεωρίες που εφαρμόζονται στις χαλύβδινες λεπτότοιχες διατομές. 6. ΠΑΡΑΠΟΜΠΕΣ [1] Μarinopoulou A, Κalfas C., «Simulation of Composite Steel-Conrete Column wit Steel Column», Proeedings of 5 t National Conferene on Metal Strutures, volume I, p , Xanti Greee

8 [] Μarinopoulou A, Balopoulos V, Κalfas C., «Simulation of Partially Enased Composite Steel-Conrete Columns wit Steel Columns», Journal of Construtional Steel Resear 007; 63: [3] Τσιομπάνος Εμμανουήλ, «Προσομοίωση κοίλων διατομών Ο.Σ με αμιγώς μεταλλικές διατομές για την επίλυση προβλημάτων τοπικών λυγισμών» Μετ. Διατριβή Οκτώβριος

9 0,6 0,5 0,4 K 0,3 SIMULATION OF RC COLUMN WITH PURE STEEL COLUMN OF FICTI- TIOUS CROSS-SECTION FOR CHECKING LOCAL BUCKLING OF R.C SECTION Emmanuel G. Tsiompanos a, Anna A. Μarinopoulou, Dimitrios T. Paoumis, Evangelos G. Galoussis, Cristos Ν. Κalfas d a MS Civil Engineer Pd. Cand., MS Civil Engineer Professor of DUTH d Assistant Professor of DUTH Steel Strutures Laoratory of DUTH Xanti, Greee mslgroup@ivil.dut.gr 1. SUMMARY In tis paper, a metodology for simulating RC olumns wit pure steel olumns of fititious ross-setion for eking loal ukling of R.C setion is suggested. Te proposed metodology is ased on te equivalene of axial stiffness and prinipal entroidal flexural stiffnesses etween te two different types of setion onsidered erein. Te fititious setion is of te same sape as te atual setion ut of different dimensions, wi are otained in losed form. Te relations tat give te unknown dimensions of te fititious ross-setion are ased on te geometri and meanial parameters of te atual RC ross-setion. Parametri FEM analysis is arried out in order to estalis te reliaility of te proposed metodology of simulation. Te relative errors in te alulated results, su as axial and lateral deformation, do not exeed 4%, wi are witin te aeptale limits for pratial appliations. To onlude, te proposed metodology of simulation is inevitaly reliale and an e used for purposes of eking loal ukling of RC olumns. 336

ΠΕΙΡΑΜΑΤΙΚΟΣ ΕΛΕΓΧΟΣ ΣΥΜΜΙΚΤΩΝ ΔΙΑΤΟΜΩΝ ΥΠΟΣΤΥΛΩΜΑΤΩΝ ΚΑΙ ΑΝΤΙΣΤΟΙΧΩΝ ΙΔΕΑΤΩΝ ΑΜΙΓΩΣ ΧΑΛΥΒΔΙΝΩΝ

ΠΕΙΡΑΜΑΤΙΚΟΣ ΕΛΕΓΧΟΣ ΣΥΜΜΙΚΤΩΝ ΔΙΑΤΟΜΩΝ ΥΠΟΣΤΥΛΩΜΑΤΩΝ ΚΑΙ ΑΝΤΙΣΤΟΙΧΩΝ ΙΔΕΑΤΩΝ ΑΜΙΓΩΣ ΧΑΛΥΒΔΙΝΩΝ ΠΕΙΡΑΜΑΤΙΚΟΣ ΕΛΕΓΧΟΣ ΣΥΜΜΙΚΤΩΝ ΔΙΑΤΟΜΩΝ ΥΠΟΣΤΥΛΩΜΑΤΩΝ ΚΑΙ ΑΝΤΙΣΤΟΙΧΩΝ ΙΔΕΑΤΩΝ ΑΜΙΓΩΣ ΧΑΛΥΒΔΙΝΩΝ Άννα Α. Μαρινοπούλου a, Χρίστος Ν. Κάλφας b, Ευάγγελος Γ. Γαλούσης c, Δημήτριος Θ. Παχούμης a a Υποψ. Διδ.,

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑΤΙΚΟΣ ΕΛΕΓΧΟΣ ΚΟΙΛΟ ΟΚΩΝ ΠΛΗΡΩΜΕΝΩΝ ΜΕ ΣΚΥΡΟ ΕΜΑ ΚΑΙ ΤΩΝ ΑΝΤΙΣΤΟΙΧΩΝ Ι ΕΑΤΩΝ ΑΜΙΓΩΣ ΧΑΛΥΒ ΙΝΩΝ

ΠΕΙΡΑΜΑΤΙΚΟΣ ΕΛΕΓΧΟΣ ΚΟΙΛΟ ΟΚΩΝ ΠΛΗΡΩΜΕΝΩΝ ΜΕ ΣΚΥΡΟ ΕΜΑ ΚΑΙ ΤΩΝ ΑΝΤΙΣΤΟΙΧΩΝ Ι ΕΑΤΩΝ ΑΜΙΓΩΣ ΧΑΛΥΒ ΙΝΩΝ ΠΕΙΡΑΜΑΤΙΚΟΣ ΕΛΕΓΧΟΣ ΚΟΙΛΟ ΟΚΩΝ ΠΛΗΡΩΜΕΝΩΝ ΜΕ ΣΚΥΡΟ ΕΜΑ ΚΑΙ ΤΩΝ ΑΝΤΙΣΤΟΙΧΩΝ Ι ΕΑΤΩΝ ΑΜΙΓΩΣ ΧΑΛΥΒ ΙΝΩΝ Άννα Α. Μαρινοπούλου a, Χρίστος Ν. Κάλφας b, ηµήτριος Θ. Παχούµης a a ρ. Πολιτικός Μηχανικός b Αναπλ.

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΜΠΕΡΙΦΟΡΑΣ ΣΥΓΚΟΛΛΗΤΟΥ ΚΟΜΒΟΥ ΣΥΜΜΙΚΤΗΣ ΔΟΚΟΥ ΣΕ ΣΥΜΜΙΚΤΟ Ή ΜΕΤΑΛΛΙΚΟ ΥΠΟΣΤΥΛΩΜΑ ΜΕ ΧΡΗΣΗ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ

ΜΕΛΕΤΗ ΣΥΜΠΕΡΙΦΟΡΑΣ ΣΥΓΚΟΛΛΗΤΟΥ ΚΟΜΒΟΥ ΣΥΜΜΙΚΤΗΣ ΔΟΚΟΥ ΣΕ ΣΥΜΜΙΚΤΟ Ή ΜΕΤΑΛΛΙΚΟ ΥΠΟΣΤΥΛΩΜΑ ΜΕ ΧΡΗΣΗ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΜΕΛΕΤΗ ΣΥΜΠΕΡΙΦΟΡΑΣ ΣΥΓΚΟΛΛΗΤΟΥ ΚΟΜΒΟΥ ΣΥΜΜΙΚΤΗΣ ΔΟΚΟΥ ΣΕ ΣΥΜΜΙΚΤΟ Ή ΜΕΤΑΛΛΙΚΟ ΥΠΟΣΤΥΛΩΜΑ ΜΕ ΧΡΗΣΗ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ Καλλιόπη Δ. Στεφανάκη a, Χρίστος Ν. Κάλφας b, Δημήτριος Θ. Παχούμης c, Ιωάννης

Διαβάστε περισσότερα

ΠΡΟΣΟΜΟΙΩΣΗ ΥΠΟΣΤΥΛΩΜΑΤΩΝ ΑΠΟ ΚΟΙΛΟΔΟΚΟΥΣ ΠΛΗΡΩΜΕΝΕΣ ΜΕ ΣΚΥΡΟΔΕΜΑ ΜΕ ΑΜΙΓΩΣ ΧΑΛΥΒΔΙΝΕΣ ΔΙΑΤΟΜΕΣ ΚΟΙΛΟΔΟΚΩΝ

ΠΡΟΣΟΜΟΙΩΣΗ ΥΠΟΣΤΥΛΩΜΑΤΩΝ ΑΠΟ ΚΟΙΛΟΔΟΚΟΥΣ ΠΛΗΡΩΜΕΝΕΣ ΜΕ ΣΚΥΡΟΔΕΜΑ ΜΕ ΑΜΙΓΩΣ ΧΑΛΥΒΔΙΝΕΣ ΔΙΑΤΟΜΕΣ ΚΟΙΛΟΔΟΚΩΝ ΠΡΟΣΟΜΟΙΩΣΗ ΥΠΟΣΤΥΛΩΜΑΤΩΝ ΑΠΟ ΚΟΙΛΟΔΟΚΟΥΣ ΠΛΗΡΩΜΕΝΕΣ ΜΕ ΣΚΥΡΟΔΕΜΑ ΜΕ ΑΜΙΓΩΣ ΧΑΛΥΒΔΙΝΕΣ ΔΙΑΤΟΜΕΣ ΚΟΙΛΟΔΟΚΩΝ Άννα Α. Μαρινοπούλου, Χρίστος Ν. Κάλφας b, Βίκτωρ Δ. Μπαλόπουλος b, Ευάγγελος Γ. Γαλούσης c Υποψ.

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ ΕΙΣΑΓΩΓΗ... 15

ΠΡΟΛΟΓΟΣ ΕΙΣΑΓΩΓΗ... 15 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 11 ΕΙΣΑΓΩΓΗ... 15 1. Εισαγωγικές έννοιες... 17 1.1 Φορτία... 17 1.2 Η φέρουσα συμπεριφορά των βασικών υλικών... 22 1.2.1 Χάλυβας... 23 1.2.2 Σκυρόδεμα... 27 1.3 Η φέρουσα συμπεριφορά

Διαβάστε περισσότερα

ΠΡΟΒΛΕΨΗ ΑΣΤΟΧΙΑΣ ΤΗΣ ΔΙΕΠΙΦΑΝΕΙΑΣ ΕΝΙΣΧΥΜΕΝΟΥ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΜΕ ΧΡΗΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ANSYS

ΠΡΟΒΛΕΨΗ ΑΣΤΟΧΙΑΣ ΤΗΣ ΔΙΕΠΙΦΑΝΕΙΑΣ ΕΝΙΣΧΥΜΕΝΟΥ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΜΕ ΧΡΗΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ANSYS 9 o Φοιτητικό Συνέδριο , Μάρτιος 2003 ΠΡΟΒΛΕΨΗ ΑΣΤΟΧΙΑΣ ΤΗΣ ΔΙΕΠΙΦΑΝΕΙΑΣ ΕΝΙΣΧΥΜΕΝΟΥ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΜΕ ΧΡΗΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ANSYS ΛΑΜΠΡΟΠΟΥΛΟΣ ΑΝΔΡΕΑΣ - ΤΣΙΟΥΛΟΥ ΟΥΡΑΝΙΑ Περίληψη

Διαβάστε περισσότερα

10,2. 1,24 Τυπική απόκλιση, s 42

10,2. 1,24 Τυπική απόκλιση, s 42 Ασκηση 3.1 (a) Αν μία ράβδος οπλισμού θεωρηθεί ότι λυγίζει μεταξύ δύο διαδοχικών συνδετήρων με μήκος λυγισμού το μισό της απόστασης, s w, των συνδετήρων, να υπολογισθεί η απόσταση συνδετήρων, s w, πέραν

Διαβάστε περισσότερα

προς τον προσδιορισμό εντατικών μεγεθών, τα οποία μπορούν να υπολογιστούν με πολλά εμπορικά λογισμικά.

προς τον προσδιορισμό εντατικών μεγεθών, τα οποία μπορούν να υπολογιστούν με πολλά εμπορικά λογισμικά. ΜΕΤΑΛΛΟΝ [ ΑΝΤΟΧΗ ΑΜΦΙΑΡΘΡΩΤΩΝ ΚΥΚΛΙΚΩΝ ΤΟΞΩΝ ΚΟΙΛΗΣ ΚΥΚΛΙΚΗΣ ΔΙΑΤΟΜΗΣ ΥΠΟ ΟΜΟΙΟΜΟΡΦΑ ΚΑΤΑΝΕΜΗΜΕΝΟ ΚΑΤΑΚΟΡΥΦΟ ΦΟΡΤΙΟ ΚΑΤΑ ΤΟΝ ΕΚ3 Χάρης Ι. Γαντές Δρ. Πολιτικός Μηχανικός, Αναπληρωτής Καθηγητής & Χριστόφορος

Διαβάστε περισσότερα

ΛΥΣΕΙΣ άλυτων ΑΣΚΗΣΕΩΝ στην Αντοχή των Υλικών

ΛΥΣΕΙΣ άλυτων ΑΣΚΗΣΕΩΝ στην Αντοχή των Υλικών ΛΥΣΕΙΣ άλυτων ΑΣΚΗΣΕΩΝ στην Αντοχή των Υλικών Ασκήσεις για λύση Η ράβδος του σχήματος είναι ομοιόμορφα μεταβαλλόμενης κυκλικής 1 διατομής εφελκύεται αξονικά με δύναμη Ρ. Αν D d είναι οι διάμετροι των ακραίων

Διαβάστε περισσότερα

ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ ΚΑΝΕΠΕ ΜΕ ΠΕΙΡΑΜΑΤΙΚΑ ΔΕΔΟΜΕΝΑ ΑΠΟ ΕΝΙΣΧΥΣΕΙΣ ΔΟΚΩΝ ΜΕ ΙΟΠ

ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ ΚΑΝΕΠΕ ΜΕ ΠΕΙΡΑΜΑΤΙΚΑ ΔΕΔΟΜΕΝΑ ΑΠΟ ΕΝΙΣΧΥΣΕΙΣ ΔΟΚΩΝ ΜΕ ΙΟΠ ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ ΚΑΝΕΠΕ ΜΕ ΠΕΙΡΑΜΑΤΙΚΑ ΔΕΔΟΜΕΝΑ ΑΠΟ ΕΝΙΣΧΥΣΕΙΣ ΔΟΚΩΝ ΜΕ ΙΟΠ ΜΠΕΡΝΑΚΟΣ ΑΝΤΩΝΙΟΣ Περίληψη Στόχος της παρούσας εργασίας είναι η πρακτική εφαρμογή αναλυτικών προβλέψεων του ΚΑΝΕΠΕ

Διαβάστε περισσότερα

ΣYMMIKTEΣ KATAΣKEYEΣ KAI OPIZONTIA ΦOPTIA

ΣYMMIKTEΣ KATAΣKEYEΣ KAI OPIZONTIA ΦOPTIA ΣYMMIKTEΣ KATAΣKEYEΣ KAI OPIZONTIA ΦOPTIA Άρης Αβδελάς, Καθηγητής Εργαστήριο Μεταλλικών Κατασκευών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τα δομικά συστήματα στις σύμμικτες κτιριακές κατασκευές, αποτελούνται

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΜΠΕΡΙΦΟΡΑΣ ΚΟΜΒΟΥ ΣΥΜΜΙΚΤΗΣ ΔΟΚΟΥ ΣΕ ΜΕΤΑΛΛΙΚΟ ΥΠΟΣΤΥΛΩΜΑ

ΜΕΛΕΤΗ ΣΥΜΠΕΡΙΦΟΡΑΣ ΚΟΜΒΟΥ ΣΥΜΜΙΚΤΗΣ ΔΟΚΟΥ ΣΕ ΜΕΤΑΛΛΙΚΟ ΥΠΟΣΤΥΛΩΜΑ ΜΕΛΕΤΗ ΣΥΜΠΕΡΙΦΟΡΑΣ ΚΟΜΒΟΥ ΣΥΜΜΙΚΤΗΣ ΔΟΚΟΥ ΣΕ ΜΕΤΑΛΛΙΚΟ ΥΠΟΣΤΥΛΩΜΑ Ιωάννης Ζ. Ευθυμίου a, Δημήτριος Θ. Παχούμης b, Χρίστος Ν. Κάλφας c, Ευάγγελος Γ. Γαλούσης d,άννα A. Μαρινοπούλου b a MSc Πολιτικός Μηχανικός

Διαβάστε περισσότερα

ΟΚΑ από Ευστάθεια σε Κατασκευές από Σκυρόδεμα Φαινόμενα 2 ης Τάξης (Λυγισμός) ΟΚΑ από Ευστάθεια. ΟΚΑ από Ευστάθεια 29/5/2013

ΟΚΑ από Ευστάθεια σε Κατασκευές από Σκυρόδεμα Φαινόμενα 2 ης Τάξης (Λυγισμός) ΟΚΑ από Ευστάθεια. ΟΚΑ από Ευστάθεια 29/5/2013 ΟΚΑ από Ευστάθεια σε Κατασκευές από Σκυρόδεμα Φαινόμενα 2 ης Τάξης (Λυγισμός) ΟΚΑ από Ευστάθεια παρουσιάζεται σε κατασκευές οι οποίες περιλαμβάνουν δομικά στοιχεία μεγάλης λυγηρότητας με σημαντικές θλιπτικές

Διαβάστε περισσότερα

3.2 Οδηγίες χρήσης του προγράμματος πεπερασμένων στοιχείων RATe ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ RATe

3.2 Οδηγίες χρήσης του προγράμματος πεπερασμένων στοιχείων RATe ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ RATe 3.2 Οδηγίες χρήσης του προγράμματος πεπερασμένων στοιχείων RATe 67 3.2 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ RATe Στις επόμενες σελίδες παρουσιάζεται βήμα-βήμα ο τρόπος με τον οποίο μπορεί

Διαβάστε περισσότερα

Σέρρες 20-1-2006. Βαθμολογία:

Σέρρες 20-1-2006. Βαθμολογία: Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι (Εργαστήριο) Διδάσκοντες: Λιαλιαμπής Ι., Μελισσανίδης Σ., Παναγόπουλος Γ. A Σέρρες 20-1-2006 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία:

Διαβάστε περισσότερα

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ 2. ΣΤΑΤΙΚΗ Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στη δοκό του σχήματος: Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στον φορέα του σχήματος: Ασκήσεις υπολογισμού τάσεων Άσκηση 1 η (Αξονικός εφελκυσμός

Διαβάστε περισσότερα

ΑΝΤΟΧΗ ΣΥΜΜΙΚΤΩΝ ΥΠΟΣΤΥΛΩΜΑΤΩΝ ΣΕ ΕΚΚΕΝΤΡΗ ΦΟΡΤΙΣΗ

ΑΝΤΟΧΗ ΣΥΜΜΙΚΤΩΝ ΥΠΟΣΤΥΛΩΜΑΤΩΝ ΣΕ ΕΚΚΕΝΤΡΗ ΦΟΡΤΙΣΗ ΑΝΤΟΧΗ ΣΥΜΜΙΚΤΩΝ ΥΠΟΣΤΥΛΩΜΑΤΩΝ ΣΕ ΕΚΚΕΝΤΡΗ ΦΟΡΤΙΣΗ Γεώργιος Χατζηγεωργίου Επίκουρος Καθηγητής Τµήµα Μηχανικών Περιβάλλοντος, ηµοκρίτειο Πανεπιστήµιο Θράκης Ξάνθη, Ελλάδα e-mail: ghatzig@env.duth.gr Αστέριος

Διαβάστε περισσότερα

Σχήμα 1: Διάταξη δοκιμίου και όργανα μέτρησης 1 BUILDNET

Σχήμα 1: Διάταξη δοκιμίου και όργανα μέτρησης 1 BUILDNET Παραμετρική ανάλυση κοχλιωτών συνδέσεων με μετωπική πλάκα χρησιμοποιώντας πεπερασμένα στοιχεία Χριστόφορος Δημόπουλος, Πολιτικός Μηχανικός, Υποψήφιος Διδάκτωρ ΕΜΠ Περίληψη Η εν λόγω εργασία παρουσιάζει

Διαβάστε περισσότερα

ΕΠΙΡΡΟΗ ΔΙΑΦΟΡΩΝ ΠΑΡΑΓΟΝΤΩΝ ΣΤΑ ΠΑΡΑΜΟΡΦΩΣΙΑΚΑ ΜΕΓΕΘΗ ΔΟΜΙΚΟΥ ΣΤΟΙΧΕΙΟΥ ΚΑΙ ΣΥΓΚΡΙΣΗ ΜΕ ΤΥΠΟΥΣ ΚΑΝ.ΕΠΕ

ΕΠΙΡΡΟΗ ΔΙΑΦΟΡΩΝ ΠΑΡΑΓΟΝΤΩΝ ΣΤΑ ΠΑΡΑΜΟΡΦΩΣΙΑΚΑ ΜΕΓΕΘΗ ΔΟΜΙΚΟΥ ΣΤΟΙΧΕΙΟΥ ΚΑΙ ΣΥΓΚΡΙΣΗ ΜΕ ΤΥΠΟΥΣ ΚΑΝ.ΕΠΕ Επιρροή διαφόρων παραγόντων στα παραμορφωσιακά μεγέθη δομικού στοιχείου και σύγκριση με τύπους ΚΑΝ.ΕΠΕ ΕΠΙΡΡΟΗ ΔΙΑΦΟΡΩΝ ΠΑΡΑΓΟΝΤΩΝ ΣΤΑ ΠΑΡΑΜΟΡΦΩΣΙΑΚΑ ΜΕΓΕΘΗ ΔΟΜΙΚΟΥ ΣΤΟΙΧΕΙΟΥ ΚΑΙ ΣΥΓΚΡΙΣΗ ΜΕ ΤΥΠΟΥΣ ΚΑΝ.ΕΠΕ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ *

ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ * ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ * 1 η σειρά ΑΣΚΗΣΗ 1 Ζητείται ο έλεγχος σε κάμψη μιάς δοκού ορθογωνικής διατομής 250/600 (δηλ. Πλάτους 250 mm και ύψους 600 mm) για εντατικά μεγέθη: Md = 100 KNm Nd = 12 KN Προσδιορίστε

Διαβάστε περισσότερα

Στατική Ανάλυση Ναυπηγικών Κατασκευών

Στατική Ανάλυση Ναυπηγικών Κατασκευών Στατική Ανάλυση Ναυπηγικών Κατασκευών Ενότητα 2: Ελαστικός λυγισμός πρισματικών φορέων Αλέξανδρος Θεοδουλίδης Η χρήση κολονών (υποστυλωμάτων) είναι πολύ διαδεδομένη στα πλοία καθ όσον χρησιμοποιούνται

Διαβάστε περισσότερα

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 5-6 ΔΙΑΛΕΞΗ 7 Πεδιλοδοκοί και Κοιτοστρώσεις..6 Πεδιλοδοκοί και Κοιτοστρώσεις Η θεμελίωση μπορεί να γίνει με πεδιλοδοκούς ή κοιτόστρωση

Διαβάστε περισσότερα

Δομική Σχεδίαση Πλοίου Ελαστικός λυγισμός πρισματικών φορέων

Δομική Σχεδίαση Πλοίου Ελαστικός λυγισμός πρισματικών φορέων ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ Δομική Σχεδίαση Πλοίου Ελαστικός λυγισμός πρισματικών φορέων Α. Θεοδουλίδης Η χρήση κολονών (υποστυλωμάτων) είναι πολύ διαδεδομένη

Διαβάστε περισσότερα

Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 3 Ιουλίου 202 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ( η περίοδος

Διαβάστε περισσότερα

0.3m. 12m N = N = 84 N = 8 N = 168 N = 32. v =0.2 N = 15. tot

0.3m. 12m N = N = 84 N = 8 N = 168 N = 32. v =0.2 N = 15. tot ΚΕΦΑΛΑΙΟ : Αριθµητικές Εφαρµογές... Παράδειγµα γ: Ελαστική ευστάθεια πασσαλοθεµελίωσης Το παράδειγµα αυτό αφορά την µελέτη της ελαστικής ευστάθειας φορέως θεµελίωσης, ο οποίος αποτελείται από µια πεδιλοδοκό

Διαβάστε περισσότερα

Υπολογιστική διερεύνηση της επιρροής του δείκτη συμπεριφοράς (q factor) στις απαιτήσεις χάλυβα σε πολυώροφα πλαισιακά κτίρια Ο/Σ σύμφωνα με τον EC8

Υπολογιστική διερεύνηση της επιρροής του δείκτη συμπεριφοράς (q factor) στις απαιτήσεις χάλυβα σε πολυώροφα πλαισιακά κτίρια Ο/Σ σύμφωνα με τον EC8 Ελληνική Επιστημονική Εταιρία Ερευνών Σκυροδέματος () ΤΕΕ / Τμήμα Κεντρικής Μακεδονίας Υπολογιστική διερεύνηση της επιρροής του δείκτη συμπεριφοράς (q factor) στις απαιτήσεις χάλυβα σε πολυώροφα πλαισιακά

Διαβάστε περισσότερα

ΑΣΤΟΧΙΑ ΚΟΝΤΩΝ ΥΠΟΣΤΥΛΩΜΑΤΩΝ ΜΕΘΟΔΟΙ ΕΝΙΣΧΥΣΗΣ

ΑΣΤΟΧΙΑ ΚΟΝΤΩΝ ΥΠΟΣΤΥΛΩΜΑΤΩΝ ΜΕΘΟΔΟΙ ΕΝΙΣΧΥΣΗΣ Αστοχία Κοντών Υποστυλωμάτων Μέθοδοι Ενίσχυσης ΑΣΤΟΧΙΑ ΚΟΝΤΩΝ ΥΠΟΣΤΥΛΩΜΑΤΩΝ ΜΕΘΟΔΟΙ ΕΝΙΣΧΥΣΗΣ ΣΠΑΝΟΣ ΚΩΝΣΤΑΝΤΙΝΟΣ Περίληψη Στην παρούσα εργασία εξετάζεται η αστοχία των κοντών υποστυλωμάτων όπως προκύπτει

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Εξαιτίας της συνιστώσας F X αναπτύσσεται εντός του υλικού η ορθή τάση σ: N σ = A N 2 [ / ] Εξαιτίας της συνιστώσας F Υ αναπτύσσεται εντός του υλικού η διατμητική τάση τ: τ = mm Q 2 [ N / mm ] A

Διαβάστε περισσότερα

b 2 ΠΑΠΑΔΟΠΟΥΛΟΣ ΘΕΟΔΩΡΟΣ

b 2 ΠΑΠΑΔΟΠΟΥΛΟΣ ΘΕΟΔΩΡΟΣ 7 ο Φοιτητικό Συνέδριο «Επισκευές Κατασκευών 1», Μάρτιος 21 ΑΡΙΘΜΗΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ : ΕΝΙΣΧΥΣΗ ΜΕ ΙΝΟΠΛΙΣΜΕΝΑ ΠΟΛΥΜΕΡΗ, ΕΛΕΓΧΟΣ ΜΗΚΟΥΣ ΑΓΚΥΡΩΣΗΣ, ΕΛΕΓΧΟΣ ΔΙΑΤΜΗΤΙΚΩΝ ΤΑΣΕΩΝ ΑΠΟΣΧΙΣΗΣ, ΔΙΑΤΜΗΤΙΚΗ ΕΝΙΣΧΥΣΗ

Διαβάστε περισσότερα

ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΠΙΡΡΟΗΣ ΤΩΝ ΛΕΠΙΔΩΝ ΕΝΙΣΧΥΣΗΣ ΚΟΡΜΟΥ ΣΕ ΚΟΧΛΙΩΤΗ ΣΥΝΔΕΣΗ ΡΟΠΗΣ ΔΟΚΟΥ-ΥΠΟΣΤΥΛΩΜΑΤΟΣ

ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΠΙΡΡΟΗΣ ΤΩΝ ΛΕΠΙΔΩΝ ΕΝΙΣΧΥΣΗΣ ΚΟΡΜΟΥ ΣΕ ΚΟΧΛΙΩΤΗ ΣΥΝΔΕΣΗ ΡΟΠΗΣ ΔΟΚΟΥ-ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΠΙΡΡΟΗΣ ΤΩΝ ΛΕΠΙΔΩΝ ΕΝΙΣΧΥΣΗΣ ΚΟΡΜΟΥ ΣΕ ΚΟΧΛΙΩΤΗ ΣΥΝΔΕΣΗ ΡΟΠΗΣ ΔΟΚΟΥ-ΥΠΟΣΤΥΛΩΜΑΤΟΣ Βάγια Δ. Αλέξη a, Χρίστος Ν. Κάλφας b, Δημήτριος Θ. Παχούμης c, Χρήστος Ε. Σοφίας d a MSc Πολιτικός Μηχανικός

Διαβάστε περισσότερα

Δομική Σχεδίαση Πλοίου Εισαγωγή στη Θεωρία Πλακών

Δομική Σχεδίαση Πλοίου Εισαγωγή στη Θεωρία Πλακών ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ Δομική Σχεδίαση Πλοίου Εισαγωγή στη Θεωρία Πλακών Α. Θεοδουλίδης Κατηγοριοποίηση ελασμάτων στη Μηχανική 2 Υποθέσεις Kirchoff 1. Υλικό

Διαβάστε περισσότερα

ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ

ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΛΥΣΕΩΝ ΚΑΝΟΝΙΣΤΙΚΩΝ ΙΑΤΑΞΕΩΝ ΚΑΙ

Διαβάστε περισσότερα

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση:

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: S d R d Η εν λόγω ανίσωση εφαρμόζεται και ελέγχεται σε κάθε εντατικό μέγεθος

Διαβάστε περισσότερα

Λυγισμός Ευστάθεια (Euler και Johnson)

Λυγισμός Ευστάθεια (Euler και Johnson) Λυγισμός Ευστάθεια (Euler και Johnson) M z P z EI z P z P z z 0 και αν EI k EI P 0 z k z Η λύση της διαφορικής εξίσωσης έχει την μορφή: 1 sin z C kz C cos kz Αν οι οριακές συνθήκες είναι άρθρωση άρθρωση

Διαβάστε περισσότερα

Πίνακες σχεδιασμού σύμμικτων πλακών με τραπεζοειδές χαλυβδόφυλλο SYMDECK 100

Πίνακες σχεδιασμού σύμμικτων πλακών με τραπεζοειδές χαλυβδόφυλλο SYMDECK 100 Πίνακες σχεδιασμού σύμμικτων πλακών με τραπεζοειδές χαλυβδόφυλλο SYMDECK 100 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΠΑΤΡΑ 26504 Ομάδα εκτέλεσης έργου: Αθανάσιος

Διαβάστε περισσότερα

6 ΣΙΔΗΡΕΣ ΚΑΤΑΣΚΕΥΕΣ ΤΟΜΟΣ ΙΙ

6 ΣΙΔΗΡΕΣ ΚΑΤΑΣΚΕΥΕΣ ΤΟΜΟΣ ΙΙ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...7 Παράδειγμα Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη, υπό ανεμοπίεση...9 Παράδειγμα Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη υπό αναρρόφηση

Διαβάστε περισσότερα

Μέθοδος των Δυνάμεων

Μέθοδος των Δυνάμεων Μέθοδος των Δυνάμεων Εισαγωγή Μέθοδος των Δυνάμεων: Δ07-2 Η Μέθοδος των Δυνάμεων ή Μέθοδος Ευκαμψίας είναι μία μέθοδος για την ανάλυση γραμμικά ελαστικών υπερστατικών φορέων. Ανκαιημέθοδοςμπορείναεφαρμοστείσεπολλάείδηφορέων

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ-ΕΠΙΠΕΔΑ ΠΛΑΙΣΙΑ

ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ-ΕΠΙΠΕΔΑ ΠΛΑΙΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ-ΕΠΙΠΕΔΑ ΠΛΑΙΣΙΑ Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Μ. Nεραντζάκη Αναπλ. Καθηγήτρια

Διαβάστε περισσότερα

«Αριθμητική και πειραματική μελέτη της διεπιφάνειας χάλυβασκυροδέματος στις σύμμικτες πλάκες με χαλυβδόφυλλο μορφής»

«Αριθμητική και πειραματική μελέτη της διεπιφάνειας χάλυβασκυροδέματος στις σύμμικτες πλάκες με χαλυβδόφυλλο μορφής» ΠΕΡΙΛΗΨΗ ΤΗΣ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ «Αριθμητική και πειραματική μελέτη της διεπιφάνειας χάλυβασκυροδέματος στις σύμμικτες πλάκες με χαλυβδόφυλλο μορφής» του Θεμιστοκλή Τσαλκατίδη, Δρ. Πολιτικού Μηχανικού

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΒΡΑΧΕΩΣ ΠΡΟΒΟΛΟΥ ΜΕ ΒΑΣΗ ΤΟΝ ΕΝ1992 [EC 2]

ΣΧΕΔΙΑΣΜΟΣ ΒΡΑΧΕΩΣ ΠΡΟΒΟΛΟΥ ΜΕ ΒΑΣΗ ΤΟΝ ΕΝ1992 [EC 2] ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΩΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΩΠΛΙΣΜΕΝΟ ΣΚΥΡΟΔΕΜΑ ΙΙ ΣΧΕΔΙΑΣΜΟΣ ΒΡΑΧΕΩΣ ΠΡΟΒΟΛΟΥ ΜΕ ΒΑΣΗ ΤΟΝ ΕΝ1992 [EC 2] Βραχύς πρόβολος

Διαβάστε περισσότερα

Χ. ΖΕΡΗΣ Απρίλιος

Χ. ΖΕΡΗΣ Απρίλιος Χ. ΖΕΡΗΣ Απρίλιος 2016 1 Κατά την παραλαβή φορτίων στα υποστυλώματα υπάρχουν πρόσθετες παραμορφώσεις: Μονολιθικότητα Κατασκευαστικές εκκεντρότητες (ανοχές) Στατικές ροπές λόγω κατακορύφων Ηθελημένα έκκεντρα

Διαβάστε περισσότερα

ΜΗ ΓΡΑΜΜΙΚΗ ΔΥΝΑΜΙΚΗ ΑΝΑΛΥΣΗ ΔΕΚΑΟΡΟΦΟΥ ΣΥΜΜΙΚΤΟΥ ΠΛΑΙΣΙΟΥ. Εργαστήριο Μεταλλικών Κατασκευών Δ.Π.Θ Ξάνθη, Ελλάς e-mail : mslgroup@civil.duth.

ΜΗ ΓΡΑΜΜΙΚΗ ΔΥΝΑΜΙΚΗ ΑΝΑΛΥΣΗ ΔΕΚΑΟΡΟΦΟΥ ΣΥΜΜΙΚΤΟΥ ΠΛΑΙΣΙΟΥ. Εργαστήριο Μεταλλικών Κατασκευών Δ.Π.Θ Ξάνθη, Ελλάς e-mail : mslgroup@civil.duth. ΜΗ ΓΡΑΜΜΙΚΗ ΔΥΝΑΜΙΚΗ ΑΝΑΛΥΣΗ ΔΕΚΑΟΡΟΦΟΥ ΣΥΜΜΙΚΤΟΥ ΠΛΑΙΣΙΟΥ Καλλιόπη Δ. Στεφανάκη a, Χρίστος Ν. Κάλφας b, Δημήτριος Θ. Παχούμης c, Άννα Α. Μαρινοπούλου c a Υποψ. Διδ., MSc Πολιτικός Μηχανικός b Αναπλ. Καθηγητής

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ. Οι γραμμικοί φορείς. 1.1 Εισαγωγή 1.2 Συστήματα συντεταγμένων

ΚΕΦΑΛΑΙΟ. Οι γραμμικοί φορείς. 1.1 Εισαγωγή 1.2 Συστήματα συντεταγμένων ΚΕΦΑΛΑΙΟ 1 Οι γραμμικοί φορείς 1.1 Εισαγωγή 1.2 Συστήματα συντεταγμένων 2 1. Οι γραμμικοί φορείς 1.1 Εισαγωγή 3 1.1 Εισαγωγή Για να γίνει ο υπολογισμός μιας κατασκευής, θα πρέπει ο μελετητής μηχανικός

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΣΥΜΜΙΚΤΩΝ ΠΛΑΚΩΝ ΠΕΡΙΕΧΟΜΕΝΑ

ΣΧΕΔΙΑΣΜΟΣ ΣΥΜΜΙΚΤΩΝ ΠΛΑΚΩΝ ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΕΧΟΜΕΝΑ 1. ΕΙΣΑΓΩΓΗ... 3 2. ΓΕΝΙΚΕΣ ΠΑΡΑΜΕΤΡΟΙ... 5 3. ΔΙΑΤΟΜΕΣ ΧΑΛΥΒΔΟΦΥΛΛΩΝ... 6 4. ΟΠΛΙΣΜΟΣ ΣΥΜΜΙΚΤΗΣ ΠΛΑΚΑΣ... 9 5. ΦΟΡΤΙΑ... 9 6. ΑΝΑΛΥΣΗ... 11 7. ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ... 11 8. ΤΕΥΧΟΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ...

Διαβάστε περισσότερα

Ενότητα: Υπολογισμός διατμητικών τάσεων

Ενότητα: Υπολογισμός διατμητικών τάσεων ΔΙΑΜΗΚΗΣ ΑΝΤΟΧΗ ΠΛΟΙΟΥ Ενότητα: Υπολογισμός διατμητικών τάσεων Α. Θεοδουλίδης Υπολογισμός διατμητικών τάσεων Η ύπαρξη διατμητικών τάσεων οφείλεται στην διατμητική δύναμη Q(x): Κατανομή διατμητικών τάσεων

Διαβάστε περισσότερα

ΑΠΟΚΑΤΑΣΤΑΣΗ ΑΝΕΠΑΡΚΩΝ ΜΗΚΩΝ ΠΑΡΑΘΕΣΗΣ ΜΕ ΣΥΝΘΕΤΑ ΥΛΙΚΑ. ΣΥΓΚΡΙΣΗ ΚΑΝ.ΕΠΕ. ΚΑΙ EC8-3.

ΑΠΟΚΑΤΑΣΤΑΣΗ ΑΝΕΠΑΡΚΩΝ ΜΗΚΩΝ ΠΑΡΑΘΕΣΗΣ ΜΕ ΣΥΝΘΕΤΑ ΥΛΙΚΑ. ΣΥΓΚΡΙΣΗ ΚΑΝ.ΕΠΕ. ΚΑΙ EC8-3. ΑΠΟΚΑΤΑΣΤΑΣΗ ΑΝΕΠΑΡΚΩΝ ΜΗΚΩΝ ΠΑΡΑΘΕΣΗΣ ΜΕ ΣΥΝΘΕΤΑ ΥΛΙΚΑ. ΣΥΓΚΡΙΣΗ ΚΑΝ.ΕΠΕ. ΚΑΙ EC8-3. ΡΑΥΤΟΠΟΥΛΟΥ ΜΑΡΙΝΑ Περίληψη Οι κανονισμοί που ασχολούνται με τις επεμβάσεις κτιρίων στη χώρα μας είναι ο ΚΑΝ.ΕΠΕ. και

Διαβάστε περισσότερα

ΕΝΙΣΧΥΣΗ ΥΠΟΣΤΥΛΩΜΑΤΩΝ ΜΕ ΣΥΝΘΕΤΑ ΥΛΙΚΑ ΠΕΡΙΣΦΙΓΞΗ

ΕΝΙΣΧΥΣΗ ΥΠΟΣΤΥΛΩΜΑΤΩΝ ΜΕ ΣΥΝΘΕΤΑ ΥΛΙΚΑ ΠΕΡΙΣΦΙΓΞΗ ΕΝΙΣΧΥΣΗ ΥΠΟΣΤΥΛΩΜΑΤΩΝ ΜΕ ΣΥΝΘΕΤΑ ΥΛΙΚΑ ΠΕΡΙΣΦΙΓΞΗ ΓΟΥΣΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ Περίληψη Η συγκεκριμένη εργασία αναφέρεται στην τεχνική ενίσχυσης υποστυλωμάτων με σύνθετα υλικά, με κάποια εξειδίκευση στη λειτουργία

Διαβάστε περισσότερα

Εκτίμηση της στροφικής ικανότητας χαλύβδινων δοκών στις υψηλές θερμοκρασίες θεωρώντας την επιρροή των αρχικών γεωμετρικών ατελειών

Εκτίμηση της στροφικής ικανότητας χαλύβδινων δοκών στις υψηλές θερμοκρασίες θεωρώντας την επιρροή των αρχικών γεωμετρικών ατελειών Βόλος 29-3/9 & 1/1 211 Εκτίμηση της στροφικής ικανότητας χαλύβδινων δοκών στις υψηλές θερμοκρασίες θεωρώντας την επιρροή των αρχικών γεωμετρικών ατελειών Δάφνη Παντούσα και Ευριπίδης Μυστακίδης Εργαστήριο

Διαβάστε περισσότερα

ΑΠΑΙΤΟΥΜΕΝΟ ΥΛΙΚΟ ΠΕΡΙΣΦΙΓΞΗΣ. ΣΥΓΚΡΙΣΗ ΚΑΝ.ΕΠΕ. ΚΕΦ ΜΕ ΚΕΦ ΓΙΑ ΤΗΝ ΕΠΙΤΕΥΞΗ ΣΤΟΧΕΥΜΕΝΗΣ ΓΩΝΙΑΣ ΣΤΡΟΦΗΣ ΧΟΡ ΗΣ θ d.

ΑΠΑΙΤΟΥΜΕΝΟ ΥΛΙΚΟ ΠΕΡΙΣΦΙΓΞΗΣ. ΣΥΓΚΡΙΣΗ ΚΑΝ.ΕΠΕ. ΚΕΦ ΜΕ ΚΕΦ ΓΙΑ ΤΗΝ ΕΠΙΤΕΥΞΗ ΣΤΟΧΕΥΜΕΝΗΣ ΓΩΝΙΑΣ ΣΤΡΟΦΗΣ ΧΟΡ ΗΣ θ d. ΑΠΑΙΤΟΥΜΕΝΟ ΥΛΙΚΟ ΠΕΡΙΣΦΙΓΞΗΣ. ΣΥΓΚΡΙΣΗ ΚΑΝ.ΕΠΕ. ΚΕΦ. 7-7.2.4.1 ΜΕ ΚΕΦ. 8-8.2.3 ΓΙΑ ΤΗΝ ΕΠΙΤΕΥΞΗ ΣΤΟΧΕΥΜΕΝΗΣ ΓΩΝΙΑΣ ΣΤΡΟΦΗΣ ΧΟΡ ΗΣ θ d. ΑΝ ΡΕΟΠΟΥΛΟΣ ΜΑΡΙΟΣ ΚΑΒΒΑ Α ΙΩΑΝΝΑ Περίληψη Η παρούσα εργασία έχει

Διαβάστε περισσότερα

ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΠΙΡΡΟΗΣ ΤΟΥ ΜΕΓΕΘΟΥΣ ΤΗΣ ΔΙΑΤΟΜΗΣ ΔΟΚΟΥ ΣΤΗ ΣΥΜΠΕΡΙΦΟΡΑ ΚΟΧΛΙΩΤΗΣ ΣΥΝΔΕΣΗΣ ΜΕ ΑΠΟΜΕΙΩΜΕΝΑ ΠΕΛ- ΜΑΤΑ

ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΠΙΡΡΟΗΣ ΤΟΥ ΜΕΓΕΘΟΥΣ ΤΗΣ ΔΙΑΤΟΜΗΣ ΔΟΚΟΥ ΣΤΗ ΣΥΜΠΕΡΙΦΟΡΑ ΚΟΧΛΙΩΤΗΣ ΣΥΝΔΕΣΗΣ ΜΕ ΑΠΟΜΕΙΩΜΕΝΑ ΠΕΛ- ΜΑΤΑ ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΠΙΡΡΟΗΣ ΤΟΥ ΜΕΓΕΘΟΥΣ ΤΗΣ ΔΙΑΤΟΜΗΣ ΔΟΚΟΥ ΣΤΗ ΣΥΜΠΕΡΙΦΟΡΑ ΚΟΧΛΙΩΤΗΣ ΣΥΝΔΕΣΗΣ ΜΕ ΑΠΟΜΕΙΩΜΕΝΑ ΠΕΛ- ΜΑΤΑ Κωνσταντίνος Ν. Κονδυλίδης a, Χρήστος Ε. Σοφίας b, Δημήτριος Θ. Παχούμης b, Χρίστος Ν.

Διαβάστε περισσότερα

Πίνακες σχεδιασμού σύμμικτων πλακών με τραπεζοειδές χαλυβδόφυλλο SYMDECK 50

Πίνακες σχεδιασμού σύμμικτων πλακών με τραπεζοειδές χαλυβδόφυλλο SYMDECK 50 Πίνακες σχεδιασμού σύμμικτων πλακών με τραπεζοειδές χαλυβδόφυλλο SYMDECK 50 Εγχειρίδιο σχεδιασμού σύμμικτων πλακών σύμφωνα με τον Ευρωκώδικα 3 (ΕΝ 1993.01.03:2006) και τον Ευρωκώδικα 4 (EN 1994.01.04:

Διαβάστε περισσότερα

ΠΕΡΙΛΗΨΗ ΕΞΑΣΦΑΛΙΣΗ ΠΛΑΣΤΙΜΟΤΗΤΑΣ ΣΕ ΝΕΕΣ ΚΑΙ ΥΦΙΣΤΑΜΕΝΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΣΚΥΡΟΔΕΜΑ ΠΟΥ ΑΠΑΙΤΟΥΝ ΕΠΙΣΚΕΥΗ Η ΕΝΙΣΧΥΣΗ

ΠΕΡΙΛΗΨΗ ΕΞΑΣΦΑΛΙΣΗ ΠΛΑΣΤΙΜΟΤΗΤΑΣ ΣΕ ΝΕΕΣ ΚΑΙ ΥΦΙΣΤΑΜΕΝΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΣΚΥΡΟΔΕΜΑ ΠΟΥ ΑΠΑΙΤΟΥΝ ΕΠΙΣΚΕΥΗ Η ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΟ ΠΡΟΓΡΑΜΜΑ: ΕΞΑΣΦΑΛΙΣΗ ΠΛΑΣΤΙΜΟΤΗΤΑΣ ΣΕ ΝΕΕΣ ΚΑΙ ΥΦΙΣΤΑΜΕΝΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΣΚΥΡΟΔΕΜΑ ΠΟΥ ΑΠΑΙΤΟΥΝ ΕΠΙΣΚΕΥΗ Η ΕΝΙΣΧΥΣΗ ΑΝΑΘΕΣΗ: ΟΡΓΑΝΙΣΜΟΣ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΠΡΟΣΤΑΣΙΑΣ (Ο.Α.Σ.Π.)

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΔΙΠΛΟΥ ΚΕΛΥΦΟΥΣ ΓΙΑ ΤΟ ΚΤΙΡΙΟ ΤΗΣ ΣΤΕΓΗΣ ΓΡΑΜΜΑΤΩΝ ΚΑΙ ΤΕΧΝΩΝ ΤΟΥ ΙΔΡΥΜΑΤΟΣ ΩΝΑΣΗ

ΜΕΛΕΤΗ ΔΙΠΛΟΥ ΚΕΛΥΦΟΥΣ ΓΙΑ ΤΟ ΚΤΙΡΙΟ ΤΗΣ ΣΤΕΓΗΣ ΓΡΑΜΜΑΤΩΝ ΚΑΙ ΤΕΧΝΩΝ ΤΟΥ ΙΔΡΥΜΑΤΟΣ ΩΝΑΣΗ ΜΕΛΕΤΗ ΔΙΠΛΟΥ ΚΕΛΥΦΟΥΣ ΓΙΑ ΤΟ ΚΤΙΡΙΟ ΤΗΣ ΣΤΕΓΗΣ ΓΡΑΜΜΑΤΩΝ ΚΑΙ ΤΕΧΝΩΝ ΤΟΥ ΙΔΡΥΜΑΤΟΣ ΩΝΑΣΗ Κωστίκας Χρήστος Πολιτικός μηχανικός ΕΜΠ ΟΜΕΤΕ ΑΕ Αθήνα, Ελλάς e-mail : ckostikas@omete,gr Διονύσιος Κουμουράς Πολιτικός

Διαβάστε περισσότερα

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1.

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1. ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ 1. Γενικά Με τη δοκιμή κάμψης ελέγχεται η αντοχή σε κάμψη δοκών από διάφορα

Διαβάστε περισσότερα

Πρόβλεψη συµπεριφοράς διεπιφάνειας υποστυλώµατος ενισχυµένου µε πρόσθετες στρώσεις οπλισµένου σκυροδέµατος

Πρόβλεψη συµπεριφοράς διεπιφάνειας υποστυλώµατος ενισχυµένου µε πρόσθετες στρώσεις οπλισµένου σκυροδέµατος Πρόβλεψη συµπεριφοράς διεπιφάνειας υποστυλώµατος ενισχυµένου µε πρόσθετες στρώσεις οπλισµένου σκυροδέµατος Α.Π.Λαµπρόπουλος, Ο.Θ.Τσιούλου Φοιτητές Τµήµατος Πολιτικών Μηχανικών Πανεπιστηµίου Πατρών Σ.Η.

Διαβάστε περισσότερα

Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα θλίψης με λυγισμό

Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα θλίψης με λυγισμό Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα θλίψης με λυγισμό Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Περιεχόμενα Σχήμα 1 Στο

Διαβάστε περισσότερα

Η ΣΗΜΑΣΙΑ ΤΗΣ ΜΗ ΓΡΑΜΜΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΓΙΑ ΤΟΝ ΣΧΕ ΙΑΣΜΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ

Η ΣΗΜΑΣΙΑ ΤΗΣ ΜΗ ΓΡΑΜΜΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΓΙΑ ΤΟΝ ΣΧΕ ΙΑΣΜΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ Η ΣΗΜΑΣΙΑ ΤΗΣ ΜΗ ΓΡΑΜΜΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΓΙΑ ΤΟΝ ΣΧΕ ΙΑΣΜΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ Μεταπτυχιακή Εργασία

Διαβάστε περισσότερα

ΑΠΟΚΑΤΑΣΤΑΣΗ ΑΝΕΠΑΡΚΩΝ ΑΝΑΜΟΝΩΝ ΥΠΟΣΤΥΛΩΜΑΤΟΣ. ΓΕΩΡΓΑΚΟΠΟΥΛΟΣ ΝΙΚΟΛΑΟΣ Προπτυχιακός Φοιτητής Π.Π.,

ΑΠΟΚΑΤΑΣΤΑΣΗ ΑΝΕΠΑΡΚΩΝ ΑΝΑΜΟΝΩΝ ΥΠΟΣΤΥΛΩΜΑΤΟΣ. ΓΕΩΡΓΑΚΟΠΟΥΛΟΣ ΝΙΚΟΛΑΟΣ Προπτυχιακός Φοιτητής Π.Π., Αποκατάσταση Ανεπαρκών Αναμονών ΑΠΟΚΑΤΑΣΤΑΣΗ ΑΝΕΠΑΡΚΩΝ ΑΝΑΜΟΝΩΝ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΓΕΩΡΓΑΚΟΠΟΥΛΟΣ ΝΙΚΟΛΑΟΣ Προπτυχιακός Φοιτητής Π.Π., nikosgeorgakopoulos94@gmail.com Περίληψη Η παρούσα εργασία στοχεύει στην

Διαβάστε περισσότερα

Επιρροή του διαμήκους οπλισμού των ακραίων περισφιγμένων περιοχών, στην αντοχή τοιχωμάτων μεγάλης δυσκαμψίας

Επιρροή του διαμήκους οπλισμού των ακραίων περισφιγμένων περιοχών, στην αντοχή τοιχωμάτων μεγάλης δυσκαμψίας Επιρροή του διαμήκους οπλισμού των ακραίων περισφιγμένων περιοχών, στην αντοχή τοιχωμάτων μεγάλης δυσκαμψίας Γεώργιος Κωνσταντινίδης Πολιτικός Μηχανικός MSc, DIC, PhD, Αττικό Μετρό Α.Ε. email gkonstantinidis@ametro.gr

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή. Διδάσκων: Γιάννης Χουλιάρας

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή. Διδάσκων: Γιάννης Χουλιάρας ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή Διδάσκων: Γιάννης Χουλιάρας Επίλυση υπερστατικών φορέων Για την επίλυση των ισοστατικών φορέων (εύρεση αντιδράσεων και μεγεθών έντασης) αρκούν

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΜΟΣ ΑΝΤΟΧΗΣ ΠΕΡΙΣΦΙΓΜΕΝΩN ΥΠΟΣΤΥΛΩΜΑΤΩΝ ΜΕ ΙΝΟΠΛΙΣΜΕΝΑ ΠΟΛΥΜΕΡΗ (F.R.P.)

ΥΠΟΛΟΓΙΣΜΟΣ ΑΝΤΟΧΗΣ ΠΕΡΙΣΦΙΓΜΕΝΩN ΥΠΟΣΤΥΛΩΜΑΤΩΝ ΜΕ ΙΝΟΠΛΙΣΜΕΝΑ ΠΟΛΥΜΕΡΗ (F.R.P.) 7o Φοιτητικό Συνέδριο «Επισκευές κατασκευών 01»,Μάρτιος 2001 ΟΜΑΔΑ Β6 ΥΠΟΛΟΓΙΣΜΟΣ ΑΝΤΟΧΗΣ ΠΕΡΙΣΦΙΓΜΕΝΩN ΥΠΟΣΤΥΛΩΜΑΤΩΝ ΜΕ ΙΝΟΠΛΙΣΜΕΝΑ ΠΟΛΥΜΕΡΗ (F.R.P.) Περίληψη Η εργασία που ακολουθεί ασχολείται με την

Διαβάστε περισσότερα

Μερικά στοιχεία για τις Σύμμικτες Κατασκευές από τον Ευρωκώδικα 8

Μερικά στοιχεία για τις Σύμμικτες Κατασκευές από τον Ευρωκώδικα 8 Μερικά στοιχεία για τις Σύμμικτες Κατασκευές από τον Ευρωκώδικα 8 Α. ΑΒΔΕΛΑΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Α.Π.Θ. Α. ΑΒΔΕΛΑΣ 1986: Οδηγίες Σχεδιασμού της ECCS (European Convention

Διαβάστε περισσότερα

Μάθημα: Στατική ΙΙ 9 Φεβρουαρίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Μάθημα: Στατική ΙΙ 9 Φεβρουαρίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 9 Φεβρουαρίου 011 Διδάσκων:, Ph.D. Διάρκεια εξέτασης :15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Διαβάστε περισσότερα

ΣΥΜΠΕΡΙΦΟΡΑ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΕΝΙΣΧΥΜΕΝΟΥ ΜΕ ΜΑΝΔΥΑ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ

ΣΥΜΠΕΡΙΦΟΡΑ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΕΝΙΣΧΥΜΕΝΟΥ ΜΕ ΜΑΝΔΥΑ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ Συμπεριφορά Υποστυλώματος Ενισχυμένου με Μανδύα Οπλισμένου Σκυροδέματος ΣΥΜΠΕΡΙΦΟΡΑ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΕΝΙΣΧΥΜΕΝΟΥ ΜΕ ΜΑΝΔΥΑ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΜΙΛΤΙΑΔΗΣ Γ. ΜΠΙΡΜΠΑΣ Περίληψη Τα υποστυλώματα από οπλισμένο

Διαβάστε περισσότερα

Πειραµατική µελέτη της αντοχής σύµµικτων πλακών σκυροδέµατος

Πειραµατική µελέτη της αντοχής σύµµικτων πλακών σκυροδέµατος Πειραµατική µελέτη της αντοχής σύµµικτων πλακών σκυροδέµατος Φ. Κ. Περδικάρης Καθηγητής, Τµήµα Πολιτικών Μηχανικών, Πανεπιστήµιο Θεσσαλίας Ε. Σ. Μυστακίδης Αναπληρωτής Καθηγητής, Τµήµα Πολιτικών Μηχανικών,

Διαβάστε περισσότερα

Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ ]

Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ ] Οριακή Κατάσταση Αστοχίας έναντι Κάμψης με ή χωρίς ορθή δύναμη ΓΙΑΝΝΟΠΟΥΛΟΣ ΠΛΟΥΤΑΡΧΟΣ Δρ. Πολ. Μηχανικός Αν. Καθηγητής Ε.Μ.Π. Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ 1992-1-1

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι. Άσκηση 3: Δικτύωμα πεζογέφυρας (θλιβόμενο άνω πέλμα) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών

Σιδηρές Κατασκευές Ι. Άσκηση 3: Δικτύωμα πεζογέφυρας (θλιβόμενο άνω πέλμα) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών Σιδηρές Κατασκευές Ι Άσκηση 3: Δικτύωμα πεζογέφυρας (θλιβόμενο άνω πέλμα) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Νέα έκδοση προγράμματος STeel CONnections 2010.354

Νέα έκδοση προγράμματος STeel CONnections 2010.354 http://www.sofistik.gr/ Μεταλλικές και Σύμμικτες Κατασκευές Νέα έκδοση προγράμματος STeel CONnections 2010.354 Aξιότιμοι συνάδελφοι, Κυκλοφόρησε η νέα έκδοση του προγράμματος διαστασιολόγησης κόμβων μεταλλικών

Διαβάστε περισσότερα

Περιεχ μενα. Πρόλογος Κεφάλαιο 1 Εισαγωγή Κεφάλαιο 2 Βάσεις σχεδιασμού... 27

Περιεχ μενα. Πρόλογος Κεφάλαιο 1 Εισαγωγή Κεφάλαιο 2 Βάσεις σχεδιασμού... 27 Περιεχ μενα Πρόλογος... 9 Πρόλογος 3 ης έκδοσης... 11 Κεφάλαιο 1 Εισαγωγή... 13 1.1 Γενικά Ιστορική αναδρομή... 13 1.2 Aρχές λειτουργίας ορισμοί... 20 Κεφάλαιο 2 Βάσεις σχεδιασμού... 27 2.1 Εισαγωγή...

Διαβάστε περισσότερα

Εργαστήριο Μεταλλικών Κατασκευών Δ.Π.Θ Ξάνθη, Ελλάς

Εργαστήριο Μεταλλικών Κατασκευών Δ.Π.Θ Ξάνθη, Ελλάς ΑΝΑΛΥΣΗ ΣΥΝΔΕΣΗΣ RBS ΜΕ ΟΠΕΣ ΔΙΑΦΟΡΩΝ ΔΙΑΜΕΤΡΩΝ ΚΑΙ ΔΙΑΤΑΞΕΩΝ ΣΤΑ ΠΕΛΜΑΤΑ ΜΕ FEM Δημήτριος Θ. Παχούμης a Χρίστος Κ. Ζεμπίλης b, Στέφανος Χ. Δημητριάδης b, Χρίστος Ν. Κάλφας c, Ευάγγελος Γ. Γαλούσης d,

Διαβάστε περισσότερα

Διερεύνηση της επίδρασης του προσομοιώματος στην ανάλυση κτηρίου Ο/Σ κατά ΕΚ8 ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Διερεύνηση της επίδρασης του προσομοιώματος στην ανάλυση κτηρίου Ο/Σ κατά ΕΚ8 ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ Διερεύνηση της επίδρασης του προσομοιώματος στην ανάλυση κτηρίου Ο/Σ κατά ΕΚ8 ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ του ΠΑΠΑΝΔΡΕΟΥ Σ ΝΙΚΟΛΑΟΥ Επιβλέπων:

Διαβάστε περισσότερα

«ΦΑΕΘΩΝ: Λογισμικό για Ανάλυση Κρίσιμων Διατμητικά Υποστυλωμάτων Οπλισμένου Σκυροδέματος»

«ΦΑΕΘΩΝ: Λογισμικό για Ανάλυση Κρίσιμων Διατμητικά Υποστυλωμάτων Οπλισμένου Σκυροδέματος» «ΦΑΕΘΩΝ: Λογισμικό για Ανάλυση Κρίσιμων Διατμητικά Υποστυλωμάτων Οπλισμένου Σκυροδέματος» Κωνσταντίνος Γ. Μεγαλοοικονόμου Ερευνητής Μηχανικός Κέντρο Συστημάτων Έγκαιρης Προειδοποίησης Γερμανικό Ερευνητικό

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΚΑΙ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΟΙΧΕΙΩΝ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ασκήσεις προηγούμενων

Διαβάστε περισσότερα

Παραδείγματα μελών υπό αξονική θλίψη

Παραδείγματα μελών υπό αξονική θλίψη Παραδείγματα μελών υπό αξονική θλίψη Παραδείγματα μελών υπό αξονική θλίψη Η έννοια του λυγισμού Λυγισμός είναι η ξαφνική, μεγάλη αύξηση των παραμορφώσεων ενός φορέα για μικρή αύξηση των επιβαλλόμενων φορτίων.

Διαβάστε περισσότερα

ίνεται ποιότητα χάλυβα S355. Επιλογή καμπύλης λυγισμού Καμπύλη λυγισμού S 235 S 275 S 460 S 355 S 420 Λυγισμός περί τον άξονα y y a a a b t f 40 mm

ίνεται ποιότητα χάλυβα S355. Επιλογή καμπύλης λυγισμού Καμπύλη λυγισμού S 235 S 275 S 460 S 355 S 420 Λυγισμός περί τον άξονα y y a a a b t f 40 mm ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας ομοστατικής Εργαστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές Ι ιδάσκοντες :Χ. Γαντές.Βαμβάτσικος Π. Θανόπουλος Νοέμβριος 04 Άσκηση

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2016

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2016 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2016 A2. Δικτυώματα Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr A2. Δικτυώματα/ Μηχανική Υλικών 1 Τι είναι ένα δικτύωμα Είναι ένα σύστημα λεπτών,

Διαβάστε περισσότερα

EYPΩKΩΔIKAΣ 4 ΣYMMIKTA YΠOΣTYΛΩMATA

EYPΩKΩΔIKAΣ 4 ΣYMMIKTA YΠOΣTYΛΩMATA EYPΩKΩΔIKAΣ 4 ΣYMMIKTA YΠOΣTYΛΩMATA Mέθοδοι υπολογισμού υποστυλωμάτων κατά EC4 H Γενική Mέθοδος H Aπλουστευμένη Mέθοδος Γενική Mέθοδος: Περιλαμβάνει και υποστυλώματα διατομής μη συμμετρικής ή μη ομοιόμορφης

Διαβάστε περισσότερα

Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων. Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης

Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων. Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης Εισαγωγή Παραμορφώσεις Ισοστατικών Δοκών και Πλαισίων: Δ22-2 Οι κατασκευές, όταν υπόκεινται σε εξωτερική φόρτιση, αναπτύσσουν

Διαβάστε περισσότερα

ΕΛΑΣΤΙΚΟΣ ΛΥΓΙΣΜΟΣ ΥΠΟΣΤΥΛΩΜΑΤΩΝ

ΕΛΑΣΤΙΚΟΣ ΛΥΓΙΣΜΟΣ ΥΠΟΣΤΥΛΩΜΑΤΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΝΑΥΠΗΓΙΚΗΣ ΕΛΑΣΤΙΚΟΣ ΛΥΓΙΣΜΟΣ ΥΠΟΣΤΥΛΩΜΑΤΩΝ Λυγισμός - Ευστάθεια Κρίσιμο φορτίο λυγισμού Δρ. Σ. Π. Φιλόπουλος Εισαγωγή Μέχρι στιγμής στην ανάλυση των κατασκευών επικεντρώσαμε

Διαβάστε περισσότερα

Περιεχόμενα. 1 Εισαγωγή... 17

Περιεχόμενα. 1 Εισαγωγή... 17 Περιεχόμενα 1 Εισαγωγή... 17 1.1 Αντικείμενο... 17 1. Δομικά στοιχεία με σύμμικτη δράση... 17 1.3 Κτίρια από σύμμικτη κατασκευή... 19 1.4 Περιορισμοί... 19 Βάσεις σχεδιασμού... 1.1 Δομικά υλικά... 1.1.1

Διαβάστε περισσότερα

ΔΟΚΙΜΗ ΛΥΓΙΣΜΟΥ. Σχήμα 1 : Κοιλοδοκοί από αλουμίνιο σε δοκιμή λυγισμού

ΔΟΚΙΜΗ ΛΥΓΙΣΜΟΥ. Σχήμα 1 : Κοιλοδοκοί από αλουμίνιο σε δοκιμή λυγισμού ΔΟΚΙΜΗ ΛΥΓΙΣΜΟΥ 1. Γενικά Κατά τη φόρτιση μιας ράβδου από θλιπτική αξονική δύναμη και με προοδευτική αύξηση του μεγέθους της δύναμης αυτής, η αναπτυσσόμενη τάση θλίψης θα περάσει από το όριο αναλογίας

Διαβάστε περισσότερα

ΜΗ- ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΜΕΤΑΛΛΙΚΩΝ ΠΛΑΙΣΙΩΝ ΓΙΑ ΤΟ ΣΥΝΔΥΑΣΜΕΝΟ ΣΕΝΑΡΙΟ ΤΗΣ ΠΥΡΚΑΓΙΑΣ ΜΕΤΑ ΑΠΟ ΣΕΙΣΜΙΚΑ ΓΕΓΟΝΟΤΑ

ΜΗ- ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΜΕΤΑΛΛΙΚΩΝ ΠΛΑΙΣΙΩΝ ΓΙΑ ΤΟ ΣΥΝΔΥΑΣΜΕΝΟ ΣΕΝΑΡΙΟ ΤΗΣ ΠΥΡΚΑΓΙΑΣ ΜΕΤΑ ΑΠΟ ΣΕΙΣΜΙΚΑ ΓΕΓΟΝΟΤΑ Βόλος 29-3/9 & 1/1 211 ΜΗ- ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΜΕΤΑΛΛΙΚΩΝ ΠΛΑΙΣΙΩΝ ΓΙΑ ΤΟ ΣΥΝΔΥΑΣΜΕΝΟ ΣΕΝΑΡΙΟ ΤΗΣ ΠΥΡΚΑΓΙΑΣ ΜΕΤΑ ΑΠΟ ΣΕΙΣΜΙΚΑ ΓΕΓΟΝΟΤΑ Δάφνη Παντούσα, Msc, Υπ. Διδάκτωρ Ευριπίδης Μυστακίδης, Αναπληρωτής Καθηγητής

Διαβάστε περισσότερα

Αποκατάσταση Υποστυλωμάτων με Ανεπαρκή Μήκη Μάτισης ΑΠΟΚΑΤΑΣΤΑΣΗ ΥΠΟΣΤΥΛΩΜΑΤΩΝ ΜΕ ΑΝΕΠΑΡΚΗ ΜΗΚΗ ΜΑΤΙΣΗΣ

Αποκατάσταση Υποστυλωμάτων με Ανεπαρκή Μήκη Μάτισης ΑΠΟΚΑΤΑΣΤΑΣΗ ΥΠΟΣΤΥΛΩΜΑΤΩΝ ΜΕ ΑΝΕΠΑΡΚΗ ΜΗΚΗ ΜΑΤΙΣΗΣ Αποκατάσταση Υποστυλωμάτων με Ανεπαρκή Μήκη Μάτισης ΑΠΟΚΑΤΑΣΤΑΣΗ ΥΠΟΣΤΥΛΩΜΑΤΩΝ ΜΕ ΑΝΕΠΑΡΚΗ ΜΗΚΗ ΜΑΤΙΣΗΣ ΛΥΡΑΣ ΒΑΣΙΛΕΙΟΣ Προπτυχιακός Φοιτητής Π.Π., civ7339@upnet.gr ΜΠΑΧΡΑΣ ΣΕΡΑΦΕΙΜ Προπτυχιακός Φοιτητής

Διαβάστε περισσότερα

Άσκηση 1. Παράδειγμα απλά οπλισμένης πλάκας

Άσκηση 1. Παράδειγμα απλά οπλισμένης πλάκας Άσκηση 1. Παράδειγμα απλά οπλισμένης πλάκας Δίνεται ο ξυλότυπος του σχήματος που ακολουθεί καθώς και τα αντίστοιχα μόνιμα και κινητά φορτία των πλακών. Ζητείται η διαστασιολόγηση των πλακών, συγκεκριμένα:

Διαβάστε περισσότερα

ΔΙΕΡΕΥΝΗΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΤΗΣ ΑΠΟΡΡΟΗΣ ΤΩΝ ΟΜΒΡΙΩΝ ΣΕ ΚΡΙΣΙΜΕΣ ΓΙΑ ΤΗΝ ΑΣΦΑΛΕΙΑ ΠΕΡΙΟΧΕΣ ΤΩΝ ΟΔΙΚΩΝ ΧΑΡΑΞΕΩΝ

ΔΙΕΡΕΥΝΗΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΤΗΣ ΑΠΟΡΡΟΗΣ ΤΩΝ ΟΜΒΡΙΩΝ ΣΕ ΚΡΙΣΙΜΕΣ ΓΙΑ ΤΗΝ ΑΣΦΑΛΕΙΑ ΠΕΡΙΟΧΕΣ ΤΩΝ ΟΔΙΚΩΝ ΧΑΡΑΞΕΩΝ ΔΙΕΡΕΥΝΗΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΤΗΣ ΑΠΟΡΡΟΗΣ ΤΩΝ ΟΜΒΡΙΩΝ ΣΕ ΚΡΙΣΙΜΕΣ ΓΙΑ ΤΗΝ ΑΣΦΑΛΕΙΑ ΠΕΡΙΟΧΕΣ ΤΩΝ ΟΔΙΚΩΝ ΧΑΡΑΞΕΩΝ Ν. Ε. Ηλιού Αναπληρωτής Καθηγητής Τμήματος Πολιτικών Μηχανικών Πανεπιστημίου Θεσσαλίας Γ. Δ.

Διαβάστε περισσότερα

20/10/2016. Δρ. Σωτήρης Δέμης. Εργαστηριακές Σημειώσεις Κάμψη Ξυλινης Δοκού. Πανεπιστημιακός Υπότροφος

20/10/2016. Δρ. Σωτήρης Δέμης. Εργαστηριακές Σημειώσεις Κάμψη Ξυλινης Δοκού. Πανεπιστημιακός Υπότροφος Εργαστηριακές Σημειώσεις Κάμψη Ξυλινης Δοκού Δρ. Σωτήρης Δέμης Πανεπιστημιακός Υπότροφος Τσιμεντοπολτός Περιλαμβάνονται διαγράμματα από τα βιβλία «Μηχανική των Υλικών» και «Δομικά Υλικά» του Αθανάσιου

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι. Άσκηση 8: Στύλος πινακίδας σήμανσης υπό στρέψη. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών

Σιδηρές Κατασκευές Ι. Άσκηση 8: Στύλος πινακίδας σήμανσης υπό στρέψη. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών Σιδηρές Κατασκευές Ι Άσκηση 8: Στύλος πινακίδας σήμανσης υπό στρέψη Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΑ ΠΡΟΣΟΜΟΙΩΜΑΤΑ ΣΥΜΠΕΡΙΦΟΡΑΣ ΜΕΛΩΝ ΑΠΟ ΓΩΝΙΑΚΑ ΨΥΧΡΗΣ ΕΛΑΣΗΣ ΜΕ ΚΟΧΛΙΩΣΗ ΣΤΟ ΕΝΑ ΣΚΕΛΟΣ ΤΟΥΣ

ΑΡΙΘΜΗΤΙΚΑ ΠΡΟΣΟΜΟΙΩΜΑΤΑ ΣΥΜΠΕΡΙΦΟΡΑΣ ΜΕΛΩΝ ΑΠΟ ΓΩΝΙΑΚΑ ΨΥΧΡΗΣ ΕΛΑΣΗΣ ΜΕ ΚΟΧΛΙΩΣΗ ΣΤΟ ΕΝΑ ΣΚΕΛΟΣ ΤΟΥΣ ΑΡΙΘΜΗΤΙΚΑ ΠΡΟΣΟΜΟΙΩΜΑΤΑ ΣΥΜΠΕΡΙΦΟΡΑΣ ΜΕΛΩΝ ΑΠΟ ΓΩΝΙΑΚΑ ΨΥΧΡΗΣ ΕΛΑΣΗΣ ΜΕ ΚΟΧΛΙΩΣΗ ΣΤΟ ΕΝΑ ΣΚΕΛΟΣ ΤΟΥΣ Ιωάννης Γ. Ραυτογιάννης Αναπληρωτής Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΗ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΚΑΝΟΝΙΣΜΟΥ ΣΕ ΠΟΛΥΩΡΟΦΑ ΚΤΙΡΙΑ ΜΕ ΜΕΙΚΤΟ ΦΕΡΟΝΤΑ ΟΡΓΑΝΙΣΜΟ

ΕΦΑΡΜΟΓΗ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΚΑΝΟΝΙΣΜΟΥ ΣΕ ΠΟΛΥΩΡΟΦΑ ΚΤΙΡΙΑ ΜΕ ΜΕΙΚΤΟ ΦΕΡΟΝΤΑ ΟΡΓΑΝΙΣΜΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι.) ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΕΦΑΡΜΟΓΗ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΚΑΝΟΝΙΣΜΟΥ ΣΕ ΠΟΛΥΩΡΟΦΑ ΚΤΙΡΙΑ ΜΕ ΜΕΙΚΤΟ ΦΕΡΟΝΤΑ ΟΡΓΑΝΙΣΜΟ

Διαβάστε περισσότερα

Επαλήθευση πεδιλοδοκού Εισαγωγή δεδομένων

Επαλήθευση πεδιλοδοκού Εισαγωγή δεδομένων Επαλήθευση πεδιλοδοκού Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 02.11.2005 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : Συντελεστές EN 199211 : Καθιζήσεις Μέθοδος

Διαβάστε περισσότερα

Πειραματική Αντοχή Υλικών Ενότητα:

Πειραματική Αντοχή Υλικών Ενότητα: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πειραματική Αντοχή Υλικών Ενότητα: Λυγισμός Κωνσταντίνος Ι.Γιαννακόπουλος Τμήμα Μηχανολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Άσκηση 2. Παράδειγμα μονοπροέχουσας απλά οπλισμένης πλάκας

Άσκηση 2. Παράδειγμα μονοπροέχουσας απλά οπλισμένης πλάκας Άσκηση. Παράδειγμα μονοπροέχουσας απλά οπλισμένης πλάκας Δίνεται ο ξυλότυπος του σχήματος που ακολουθεί καθώς και τα αντίστοιχα μόνιμα και κινητά φορτία των πλακών. Ζητείται η διαστασιολόγηση των πλακών,

Διαβάστε περισσότερα

ΖΗΤΗΜΑ 1 ο (μονάδες 3.0)

ΖΗΤΗΜΑ 1 ο (μονάδες 3.0) Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Α Σέρρες 26-6-2009 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία: ΖΗΤΗΜΑ 1 ο (μονάδες 3.0)

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 6 - ΔΙΚΤΥΩΤΗ ΚΑΤΑΣΚΕΥΗ

ΑΣΚΗΣΗ 6 - ΔΙΚΤΥΩΤΗ ΚΑΤΑΣΚΕΥΗ ΑΣΚΗΣΗ - ΔΙΚΤΥΩΤΗ ΚΑΤΑΣΚΕΥΗ Να γίνει πλήρης ανάλυση του μεταλλικού δικτυώματος του σχήματος. Ολες οι συνδέσεις των ράβδων στους κόμβους είναι αρθρωτού τύπου. Επί πλέον, ο ένας εκ των άνω κόμβων μπορεί

Διαβάστε περισσότερα

Συµπεριφορά συγκολλήσεων ράβδων οπλισµού σκυροδέµατος, Κ.Γ. Τρέζος, M-A.H. Μενάγια, 1

Συµπεριφορά συγκολλήσεων ράβδων οπλισµού σκυροδέµατος, Κ.Γ. Τρέζος, M-A.H. Μενάγια, 1 Συµπεριφορά συγκολλήσεων ράβδων οπλισµού σκυροδέµατος Κ.Γ. Τρέζος, M-A.H. Μενάγια Εργαστήριο Ωπλισµένου Σκυροδέµατος Ε.Μ.Π. Λέξεις κλειδιά: Ράβδοι οπλισµού σκυροδέµατος, συγκολλήσεις, ΠΕΡΙΛΗΨΗ: Στην παρούσα

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΥΠΟΛΟΓΙΣΜΟΥ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ Κ. Β. ΣΠΗΛΙΟΠΟΥΛΟΣ Καθηγητής ΕΜΠ Πορεία επίλυσης. Ευρίσκεται

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΑΝΑΛΥΤΙΚΩΝ ΣΧΕΣΕΩΝ ΥΠΟΛΟΓΙΣΜΟΥ ΔΕΙΚΤΗ ΠΛΑΣΤΙΜΟΤΗΤΑΣ ΚΑΜΠΥΛΟΤΗΤΩΝ ΟΡΘΟΓΩΝΙΚΩΝ ΔΙΑΤΟΜΩΝ Ο.Σ. ΣΕ ΔΙΑΞΟΝΙΚΗ ΚΑΜΨΗ ΜΕ ΟΡΘΗ ΔΥΝΑΜΗ

ΑΝΑΠΤΥΞΗ ΑΝΑΛΥΤΙΚΩΝ ΣΧΕΣΕΩΝ ΥΠΟΛΟΓΙΣΜΟΥ ΔΕΙΚΤΗ ΠΛΑΣΤΙΜΟΤΗΤΑΣ ΚΑΜΠΥΛΟΤΗΤΩΝ ΟΡΘΟΓΩΝΙΚΩΝ ΔΙΑΤΟΜΩΝ Ο.Σ. ΣΕ ΔΙΑΞΟΝΙΚΗ ΚΑΜΨΗ ΜΕ ΟΡΘΗ ΔΥΝΑΜΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΑΝΑΠΤΥΞΗ ΑΝΑΛΥΤΙΚΩΝ ΣΧΕΣΕΩΝ ΥΠΟΛΟΓΙΣΜΟΥ ΔΕΙΚΤΗ ΠΛΑΣΤΙΜΟΤΗΤΑΣ ΚΑΜΠΥΛΟΤΗΤΩΝ ΟΡΘΟΓΩΝΙΚΩΝ ΔΙΑΤΟΜΩΝ Ο.Σ. ΣΕ ΔΙΑΞΟΝΙΚΗ ΚΑΜΨΗ ΜΕ ΟΡΘΗ ΔΥΝΑΜΗ ΔΙΑΤΡΙΒΗ

Διαβάστε περισσότερα

Ασύνδετοι τοίχοι. Σύνδεση εγκάρσιων τοίχων. Σύνδεση εγκάρσιων τοίχων & διάφραγμα στη στέψη τοίχων

Ασύνδετοι τοίχοι. Σύνδεση εγκάρσιων τοίχων. Σύνδεση εγκάρσιων τοίχων & διάφραγμα στη στέψη τοίχων ΛΕΙΤΟΥΡΓΙΑ ΤΡΙΣΔΙΑΣΤΑΤΟΥ ΚΙΒΩΤΙΟΥ Οι σεισμικές δυνάμεις ασκούνται στο κτίριο κατά τις 2 οριζόντιες διευθύνσεις. Για ένα τοίχο η μία δύναμη είναι παράλληλη στο επίπεδό του (εντός επιπέδου) και η άλλη κάθετη

Διαβάστε περισσότερα

Μικρή επανάληψη Χ. Ζέρης Δεκέμβριος

Μικρή επανάληψη Χ. Ζέρης Δεκέμβριος Μικρή επανάληψη 2 Βασικές παράμετροι : Γεωμετρία Εντατικά μεγέθη στο ΚΒ Καταστατικές σχέσεις υλικού Μετατόπιση του σημείου εφαρμογής των εξωτερικών δράσεων: Γενική περίπτωση Μας διευκολύνει στην αντιμετώπιση

Διαβάστε περισσότερα

Ε.202-2: ΕΓΧΕΙΡΙΔΙΟ ΜΑΘΗΜΑΤΟΣ (ΘΕΩΡΙΑ, ΑΣΚΗΣΕΙΣ ΠΡΑΞΕΙΣ, ΕΡΓΑΣΤΗΡΙΟ)

Ε.202-2: ΕΓΧΕΙΡΙΔΙΟ ΜΑΘΗΜΑΤΟΣ (ΘΕΩΡΙΑ, ΑΣΚΗΣΕΙΣ ΠΡΑΞΕΙΣ, ΕΡΓΑΣΤΗΡΙΟ) ΚΩΔΙΚΟΣ: Ε.202-2 ΕΝΤΥΠΑ ΣΥΣΤΗΜΑΤΟΣ ΠΟΙΟΤΗΤΑΣ ΕΝΤΥΠΟ: ΕΓΧΕΙΡΙΔΙΟ ΜΑΘΗΜΑΤΟΣ ΕΚΔΟΤΗΣ: ΥΠΕΥΘΥΝΟΣ ΣΥΝΤΑΞΗΣ ΕΓΧΕΙΡΙΔΙΟΥ Ε.202-2: ΕΓΧΕΙΡΙΔΙΟ ΜΑΘΗΜΑΤΟΣ (ΘΕΩΡΙΑ, ΑΣΚΗΣΕΙΣ ΠΡΑΞΕΙΣ, ΕΡΓΑΣΤΗΡΙΟ) A ΜΕΡΟΣ 1. ΓΕΝΙΚΑ

Διαβάστε περισσότερα