Παραδείγματα μελών υπό αξονική θλίψη

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Παραδείγματα μελών υπό αξονική θλίψη"

Transcript

1

2 Παραδείγματα μελών υπό αξονική θλίψη

3 Παραδείγματα μελών υπό αξονική θλίψη

4 Η έννοια του λυγισμού Λυγισμός είναι η ξαφνική, μεγάλη αύξηση των παραμορφώσεων ενός φορέα για μικρή αύξηση των επιβαλλόμενων φορτίων. P x EI P w L w

5 Προϋποθέσεις εμφάνισης λυγισμού Θλιπτικές τάσεις Μεγάλη λυγηρότητα o Μικρή διατομή συγκριτικά με το μήκος (για ραβδωτούς φορείς) o Μικρό πάχος συγκριτικά με το μήκος και το πλάτος (για επιφανειακούς φορείς)

6 Η έννοια του καμπτικού λυγισμού Σε θλιβόμενα μέλη Λυγισμός περί τον ισχυρό άξονα Λυγισμός περί τον ασθενή άξονα

7 Σε θλιβόμενα μέλη Η έννοια του τοπικού λυγισμού

8 Παράδειγμα αξονικά θλιβόμενης ράβδου

9 Διάγραμμα ελευθέρου σώματος Το κρίσιμο φορτίο λυγισμού μπορεί να υπολογιστεί αν διατυπώσουμε τις εξισώσεις ισορροπίας, καταστατικού νόμου του υλικού και συμβιβαστού των παραμορφώσεων, στην παραμορφωμένη κατάσταση της ράβδου αμέσως μετά το λυγισμό.

10 Κρίσιμα φορτία λυγισμού θλιβόμενης ράβδου 2 EIw'' Pw 0. k P/EI 2 w'' k w 0 w Asinkx Bcoskx w(0) 0 Asink0 Bcosk0 0 B 0 nπ sinkl 0 kl nπ k, n 1,2,3,... L k w(l) 0 AsinkL P n π n π EI P 2 cr,n 2 EI L L Κρίσιμο φορτίο λυγισμού ή φορτίο Euler Pcr π EI L 2 2

11 Ιδιομορφές λυγισμού θλιβόμενης ράβδου πx w x 1 =sin L P P EI 2 =π cr,1 L 2 EI 2 =4π cr,2 L 2 w 2 2πx x =sin L P EI 2 =9π cr,3 L 2 w 3 3πx x =sin L

12 1 η ιδιομορφή λυγισμού πλευρικά εξασφαλισμένης αμφιέρειστης θλιβόμενης ράβδου διατομής διπλού ταυ

13 2 η ιδιομορφή λυγισμού πλευρικά εξασφαλισμένης αμφιέρειστης θλιβόμενης ράβδου διατομής διπλού ταυ

14 3 η ιδιομορφή λυγισμού πλευρικά εξασφαλισμένης αμφιέρειστης θλιβόμενης ράβδου διατομής διπλού ταυ

15 Καμπύλη Euler EI P P π π L A EI/A 2 cr 2 cr 2 2 L i E σcr π E σ π L L /i cr 2 λ = L/i : λυγηρότητα της ράβδου σ E π λ 2 cr 2

16 Αστοχία από διαρροή

17 Αλληλεπίδραση λυγισμού - διαρροής λ =π E f 1 y Ποιότητα χάλυβα S235 S275 S355 λ

18 Αλληλεπίδραση λυγισμού - διαρροής x=σ/f y 1 λ=λ/λ 1 1

19 Σύγκριση με πειραματικά αποτελέσματα σ χ= f y 1 Αστοχία από διαρροή Πειραματικά αποτελέσματα Αστοχία από λυγισμό (καμπύλη Euler) 1 λ λ= λ 1

20 Έννοια αρχικών ατελειών Γεωμετρικής φύσεως τέλειος φορέας ατελής φορέας

21 Έννοια αρχικών ατελειών Λόγω εκκεντρότητας φόρτισης τέλειος φορέας ατελής φορέας

22 Έννοια αρχικών ατελειών Λόγω ανομοιογένειας υλικού Λόγω παραμενουσών τάσεων που μπορεί να οφείλονται σε: o Ανομοιόμορφη ψύξη που λαμβάνει χώρα μετά την εν θερμώ έλαση πρότυπων διατομών o Συγκόλληση όπου επίσης οι παραμένουσες τάσεις οφείλονται σε ανομοιόμορφη ψύξη o Διάνοιξη οπών και κοπή ελασμάτων (εν ψυχρώ ή με φλόγα οξυγόνου)

23 Παραμένουσες τάσεις Παραμένουσες τάσεις σε διατομές θερμής έλασης

24 Επιρροή παραμενουσών τάσεων στην εξάπλωση της διαρροής

25 Αλληλεπίδραση λυγισμού διαρροής με παρουσία ατελειών σ χ= f y 1 Αστοχία από διαρροή Πειραματικά αποτελέσματα Κανονιστικές καμπύλες λυγισμού Αστοχία από λυγισμό (καμπύλη Euler) 1 λ λ= λ 1

26 Υπολογισμός κανονιστικών καμπυλών λυγισμού Θλιβόμενη ράβδος με ισοδύναμες γεωμετρικές ατέλειες P P ημιτονοειδής αρχική ατέλεια ημιτονοειδές παραμορφωμένο σχήμα

27 Καμπύλες λυγισμού Ο μειωτικός συντελεστής χ καθορίζεται συναρτήσει της ανηγμένης λυγηρότητας και του συντελεστή ατελειών α σύμφωνα με τη σχέση 1 χ= Φ+ Φ -λ Φ=0,5 1+α λ-0,2 +λ 2

28 Καμπύλες λυγισμού Τιμές συντελεστή ατελειών α Καμπύλη λυγισμού a 0 a b c d Συντελεστής ατελειών α

29 Καμπύλες λυγισμού α 0 a b c d α 0 a b c d

30 Καμπύλες λυγισμού

31 Επιλογή καμπύλης λυγισμού

32 Επιλογή καμπύλης λυγισμού

33 Επιλογή καμπύλης λυγισμού

34 Έλεγχος μέλους υπό θλίψη κατά ΕΚ3 Ένα θλιβόμενο μέλος πρέπει να ελέγχεται έναντι λυγισμού ως εξής: NEd 1,0 N b,rd όπου N Ed η τιμή σχεδιασμού της θλιπτικής δύναμης N b,rd η αντοχή του θλιβόμενου μέλους σε λυγισμό όπου N b,rd χ A f = γ M1 y χ ο μειωτικός συντελεστής για την αντίστοιχη μορφή λυγισμού Α το εμβαδόν της διατομής f y το όριο διαρροής του υλικού γ Μ1 =1.00

35 Έλεγχος μέλους υπό θλίψη κατά ΕΚ3 L y λ y = i y L z λ z = i z λ y λ y = λ 1 λ z λ z = λ 1 Καμπύλη λυγισμού περί τον άξονα y Καμπύλη λυγισμού περί τον άξονα z χy χ z χ=min χ,χ y z

36 Τοπικός λυγισμός Θλιβόμενο μέλος Καμπτόμενο μέλος

37 Τοπικός λυγισμός Δοκιμή θλίψης υποστυλώματος με κοίλη τετραγωνική διατομή Πανεπιστήμιο McGill, Montreal Prof. D. Lignos Ιανουάριος 2014

38 Τοπικός λυγισμός

39 Τοπικός λυγισμός Δοκιμή θλίψης υποστυλώματος με διατομή διπλού ταυ Πανεπιστήμιο McGill, Montreal Prof. D. Lignos Mάρτιος 2014

40 Τοπικός λυγισμός

41 Προστασία από τοπικό λυγισμό με κατάταξη διατομών σε κατηγορίες Κατηγορία διατομής Μορφή Περιγραφή Μπορούν να σχηματίσουν πλαστική άρθρωση με την απαιτούμενη από την πλαστική ανάλυση δυνατότητα στροφής χωρίς μείωση της αντοχής τους Μπορούν να αναπτύξουν την πλαστική ροπή αντοχής τους, αλλά έχουν περιορισμένη δυνατότητα στροφής λόγω τοπικού λυγισμού Η τάση στην ακραία θλιβόμενη ίνα του χαλύβδινου μέλους μπορεί να φθάσει την αντοχή διαρροής, αλλά συμβαίνει τοπικός λυγισμός πριν την ανάπτυξη της πλαστικής ροπής αντοχής Συμβαίνει τοπικός λυγισμός πριν την ανάπτυξη της τάσης διαρροής

42 Κατάταξη των διατομών κατά ΕΚ3

43 Κατάταξη των διατομών κατά ΕΚ3

44 Κατάταξη των διατομών κατά ΕΚ3

45 Επιρροή συνοριακών συνθηκών στα κρίσιμα φορτία λυγισμού θλιβόμενης ράβδου Διαφορική εξίσωση 4 ης τάξης w '''' k 2 w '' 0 Γενική λύση: w Asinkx Bcoskx Cx D Συνοριακές συνθήκες Πάκτωση Άρθρωση Ελεύθερο άκρο w w =0 w w =0 w =V=0

46 Ισοδύναμο μήκος λυγισμού Κρίσιμο φορτίο P=π 2 EI cr 2 β L β συντελεστής ισοδύναμου μήκους λυγισμού βl ισοδύναμο μήκος λυγισμού (απόσταση 2 διαδοχικών σημείων καμπής της ελαστικής γραμμής της λυγισμένης ράβδου)

47 Μονόπακτη ράβδος P cr π 2 EI 0.7 2

48 Πρόβολος P cr π 2 EI 2 2

49 Πάκτωση κυλιόμενη πάκτωση P cr π 2 EI 2

50 Συντελεστές ισοδύναμου μήκους λυγισμού υποστυλωμάτων με συνήθεις συνθήκες στήριξης άκρων 1 η ιδιομορφή λυγισμού θλιβόμενων ράβδων με διάφορες συνοριακές συνθήκες Συντελεστής ισοδύναμου μήκους λυγισμού β Συνοριακές συνθήκες

51 Παράγοντες που επηρεάζουν τον συντελεστή ισοδύναμου μήκους λυγισμού Δυνατότητα σχετικής εγκάρσιας μετάθεσης των άκρων Ελευθερία στροφής των ακραίων κόμβων

52 Διάκριση πλαισίων σε μεταθετά και αμετάθετα Δυνατότητα μόρφωσης άρθρωσης ή σύνδεσης ροπής Αμετάθετο πλαίσιο

53 Διάκριση πλαισίων σε μεταθετά και αμετάθετα Δυνατότητα μόρφωσης άρθρωσης ή σύνδεσης ροπής Αμετάθετο πλαίσιο

54 Διάκριση πλαισίων σε μεταθετά και αμετάθετα Υποχρεωτικά μόρφωση σύνδεσης ροπής Μεταθετό πλαίσιο

55 Παράδειγμα αμφίπακτου μεταθετού μονώροφου πλαισίου ενός φατνώματος Γεωμετρία, συνοριακές συνθήκες και φορτία

56 Παράδειγμα αμφίπακτου μεταθετού μονώροφου πλαισίου ενός φατνώματος 1 η ιδιομορφή λυγισμού (αντισυμμετρική)

57 Παράδειγμα αμφίπακτου αμετάθετου μονώροφου πλαισίου ενός φατνώματος Γεωμετρία. συνοριακές συνθήκες και φορτία

58 Παράδειγμα αμφίπακτου αμετάθετου μονώροφου πλαισίου ενός φατνώματος 1 η ιδιομορφή λυγισμού (συμμετρική)

59 Παράδειγμα αμφίπακτου μεταθετού διώροφου πλαισίου τριών φατνωμάτων Γεωμετρία. συνοριακές συνθήκες και φορτία

60 Παράδειγμα αμφίπακτου μεταθετού διώροφου πλαισίου τριών φατνωμάτων 1 η ιδιομορφή λυγισμού (αντισυμμετρική)

61 Παράδειγμα αμφίπακτου αμετάθετου διώροφου πλαισίου τριών φατνωμάτων Γεωμετρία. συνοριακές συνθήκες και φορτία

62 Παράδειγμα αμφίπακτου αμετάθετου διώροφου πλαισίου τριών φατνωμάτων 1 η ιδιομορφή λυγισμού (συμμετρική)

63 Παράδειγμα μεταθετού μονώροφου πλαισίου μορφής Γ Γεωμετρία, συνοριακές συνθήκες και φορτία

64 Παράδειγμα μεταθετού μονώροφου πλαισίου μορφής Γ 1 η ιδιομορφή λυγισμού (με μετάθεση)

65 Παράδειγμα μεταθετού μονώροφου πλαισίου μορφής Γ Αν Ι 2 >>Ι 1 β=1

66 Παράδειγμα μεταθετού μονώροφου πλαισίου μορφής Γ Αν Ι 1 >>Ι 2 β=2

67 Παράδειγμα μεταθετού μονώροφου πλαισίου μορφής Γ Γενικά: 1 β 2. ανάλογα με τον λόγο δυσκαμψιών υποστυλώματος και ζυγώματος

68 Παράδειγμα αμετάθετου μονώροφου πλαισίου μορφής Γ Γεωμετρία, συνοριακές συνθήκες και φορτία

69 Παράδειγμα αμετάθετου μονώροφου πλαισίου μορφής Γ 1 η ιδιομορφή λυγισμού (χωρίς μετάθεση)

70 Παράδειγμα αμετάθετου μονώροφου πλαισίου μορφής Γ Αν Ι 2 >>Ι 1 β=0.5

71 Παράδειγμα αμετάθετου μονώροφου πλαισίου μορφής Γ Αν Ι 1 >>Ι 2 β=0.7

72 Παράδειγμα αμετάθετου μονώροφου πλαισίου μορφής Γ Γενικά: 0.5 β 0.7. ανάλογα με τον λόγο δυσκαμψιών υποστυλώματος και ζυγώματος

73 Συντελεστές ισοδύναμου μήκους λυγισμού υποστυλωμάτων πλαισίων

74 Συντελεστές ισοδύναμου μήκους λυγισμού υποστυλωμάτων πλαισίων Συντελεστές κατανομής K +K c 1 η= 1 K c +K 1 +K 11 +K 12 K +K c 2 η= 2 K c +K 2 +K 21 +K 22 όπου Κ οι δυσκαμψίες των μελών

75 Συντελεστές ισοδύναμου μήκους λυγισμού υποστυλωμάτων πλαισίων Για το υπό εξέταση υποστύλωμα και τα υποστυλώματα άνω και κάτω Για τις προσκείμενες δοκούς I I I K c=, K 1=, K 2= L L L c 1 2 c 1 2 I ij K ij=a L ij I ij : η ροπή αδράνειας του μέλους L ij : το μήκος του μέλους α: συντελεστής που εξαρτάται από την ύπαρξη αξονικής δύναμης και τις συνθήκες στροφικής δέσμευσης των απομακρυσμένων άκρων του μέλους

76 Συντελεστές ισοδύναμου μήκους λυγισμού υποστυλωμάτων πλαισίων Δοκοί που δεν υπόκεινται σε αξονικές δυνάμεις Συντελεστής α

77 Συντελεστές ισοδύναμου μήκους λυγισμού υποστυλωμάτων πλαισίων Δοκοί που υπόκεινται σε αξονικές δυνάμεις Συντελεστής α

78 Συντελεστές ισοδύναμου μήκους λυγισμού υποστυλωμάτων πλαισίων Μεταθετό πλαίσιο Αντισυμμετρική μορφή λυγισμού Διπλή καμπυλότητα

79 Συντελεστές ισοδύναμου μήκους λυγισμού υποστυλωμάτων πλαισίων Αμετάθετο πλαίσιο Συμμετρική μορφή λυγισμού Απλή καμπυλότητα

80 Συντελεστές ισοδύναμου μήκους λυγισμού υποστυλωμάτων πλαισίων Συντελεστής ισοδύναμου μήκους λυγισμού β για υποστυλώματα με αμετάθετα άκρα

81 Συντελεστές ισοδύναμου μήκους λυγισμού υποστυλωμάτων πλαισίων 2 β= η +η η +η η +η η η β= η +η η η Συντελεστής ισοδύναμου μήκους λυγισμού β για υποστυλώματα με αμετάθετα άκρα

82 Συντελεστές ισοδύναμου μήκους λυγισμού υποστυλωμάτων πλαισίων Συντελεστής ισοδύναμου μήκους λυγισμού β για υποστυλώματα με μεταθετά άκρα

83 Συντελεστές ισοδύναμου μήκους λυγισμού υποστυλωμάτων πλαισίων β= η +η η η η +η +0.6 η η Συντελεστής ισοδύναμου μήκους λυγισμού β για υποστυλώματα με μεταθετά άκρα

84 Η έννοια της πλευρικής εξασφάλισης Eξασφάλιση Eξασφάλιση μόνον εφόσον η αντίστοιχη τεγίδα/μηκίδα συνδέεται με τους διαγώνιους συνδέσμους

85 Η έννοια της πλευρικής εξασφάλισης Προοπτικό

86 Η έννοια της πλευρικής εξασφάλισης Κάτοψη

87 Η έννοια της πλευρικής εξασφάλισης Πλάγια όψη

Σιδηρές Κατασκευές Ι Διάλεξη 6 Θλιβόμενα μέλη. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών

Σιδηρές Κατασκευές Ι Διάλεξη 6 Θλιβόμενα μέλη. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών ιδηρές ατασκευές Διάλεξη 6 Θλιβόμενα μέλη χολή Πολιτικών ηχανικών ργαστήριο εταλλικών ατασκευών Άδεια Χρήσης ο παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. ια εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Ευστάθεια μελών μεταλλικών κατασκευών

Ευστάθεια μελών μεταλλικών κατασκευών Ευστάθεια μελών μεταλλικών κατασκευών Χάρης Ι. Γαντές Αναπληρωτής Καθηγητής Χαλύβδινες και Σύμμικτες Κατασκευές Επιστημονικό Σεμινάριο Μυτιλήνη 9-10 Οκτωβρίου 009 Περιεχόμενα παρουσίασης Εισαγωγή Μορφές

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι. Άσκηση 4: Θλιβόμενο υποστύλωμα. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών. Εργαστήριο Μεταλλικών Κατασκευών

Σιδηρές Κατασκευές Ι. Άσκηση 4: Θλιβόμενο υποστύλωμα. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών. Εργαστήριο Μεταλλικών Κατασκευών Σιδηρές Κατασκευές Ι Άσκηση 4: Θλιβόμενο υποστύλωμα Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ Διάλεξη 1 Πλευρικός λυγισμός. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών

Σιδηρές Κατασκευές ΙΙ Διάλεξη 1 Πλευρικός λυγισμός. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών ιδηρές ατασκευές Διάλεξη Πλευρικός λυγισμός χολή Πολιτικών ηχανικών ργαστήριο εταλλικών ατασκευών Άδεια Χρήσης ο παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. ια εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

ΟΚΑ από Ευστάθεια σε Κατασκευές από Σκυρόδεμα Φαινόμενα 2 ης Τάξης (Λυγισμός) ΟΚΑ από Ευστάθεια. ΟΚΑ από Ευστάθεια 29/5/2013

ΟΚΑ από Ευστάθεια σε Κατασκευές από Σκυρόδεμα Φαινόμενα 2 ης Τάξης (Λυγισμός) ΟΚΑ από Ευστάθεια. ΟΚΑ από Ευστάθεια 29/5/2013 ΟΚΑ από Ευστάθεια σε Κατασκευές από Σκυρόδεμα Φαινόμενα 2 ης Τάξης (Λυγισμός) ΟΚΑ από Ευστάθεια παρουσιάζεται σε κατασκευές οι οποίες περιλαμβάνουν δομικά στοιχεία μεγάλης λυγηρότητας με σημαντικές θλιπτικές

Διαβάστε περισσότερα

Πειραματική Αντοχή Υλικών Ενότητα:

Πειραματική Αντοχή Υλικών Ενότητα: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πειραματική Αντοχή Υλικών Ενότητα: Λυγισμός Κωνσταντίνος Ι.Γιαννακόπουλος Τμήμα Μηχανολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ανοξείδωτοι Χάλυβες - Μέρος 1.4 του Ευρωκώδικα 3 Ιωάννη Ραυτογιάννη Γιώργου Ιωαννίδη

Ανοξείδωτοι Χάλυβες - Μέρος 1.4 του Ευρωκώδικα 3 Ιωάννη Ραυτογιάννη Γιώργου Ιωαννίδη Ανοξείδωτοι Χάλυβες - Μέρος 1.4 του Ευρωκώδικα 3 Ιωάννη Ραυτογιάννη Γιώργου Ιωαννίδη 1. Εισαγωγή Οι ανοξείδωτοι χάλυβες ως υλικό κατασκευής φερόντων στοιχείων στα δομικά έργα παρουσιάζει διαφορές ως προ

Διαβάστε περισσότερα

Ευρωκώδικας EΝ 1993 Σχεδιασμός Μεταλλικών Κατασκευών

Ευρωκώδικας EΝ 1993 Σχεδιασμός Μεταλλικών Κατασκευών Χάρης Ι. Γαντές Αναπληρωτής Καθηγητής Εργαστήριο Μεταλλικών Κατασκευών Εθνικό Μετσόβιο Πολυτεχνείο Σχεδιασμός Κατασκευών με Ευρωκώδικες Εφαρμογές Εθνικά Προσαρτήματα Κέρκυρα Ιούνιος 2009 Περιεχόμενα παρουσίασης

Διαβάστε περισσότερα

ΔΟΚΙΜΗ ΛΥΓΙΣΜΟΥ. Σχήμα 1 : Κοιλοδοκοί από αλουμίνιο σε δοκιμή λυγισμού

ΔΟΚΙΜΗ ΛΥΓΙΣΜΟΥ. Σχήμα 1 : Κοιλοδοκοί από αλουμίνιο σε δοκιμή λυγισμού ΔΟΚΙΜΗ ΛΥΓΙΣΜΟΥ 1. Γενικά Κατά τη φόρτιση μιας ράβδου από θλιπτική αξονική δύναμη και με προοδευτική αύξηση του μεγέθους της δύναμης αυτής, η αναπτυσσόμενη τάση θλίψης θα περάσει από το όριο αναλογίας

Διαβάστε περισσότερα

Σχεδιασμός Μεταλλικών Κατασκευών

Σχεδιασμός Μεταλλικών Κατασκευών Χάρης Ι. Γαντές Αναπληρωτής Καθηγητής Εργαστήριο Μεταλλικών Κατασκευών Εθνικό Μετσόβιο Πολυτεχνείο Σχεδιασμός Κατασκευών με Ευρωκώδικες Εφαρμογές Εθνικά Προσαρτήματα Κέρκυρα Ιούνιος 2009 Περιεχόμενα παρουσίασης

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ

Σιδηρές Κατασκευές ΙΙ Σιδηρές Κατασκευές ΙΙ Άσκηση 1: Πλευρικός λυγισμός δοκού γέφυρας Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Γεωγραφική κατανομή σεισμικών δονήσεων τελευταίου αιώνα. Πού γίνονται σεισμοί?

Γεωγραφική κατανομή σεισμικών δονήσεων τελευταίου αιώνα. Πού γίνονται σεισμοί? Τι είναι σεισμός? Γεωγραφική κατανομή σεισμικών δονήσεων τελευταίου αιώνα Πού γίνονται σεισμοί? h

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Εισαγωγή ΚΕΦΑΛΑΙΟ 2 Αρχές σχεδιασμού ΚΕΦΑΛΑΙΟ 3 Συμπεριφορά και αντοχή διατομών... 81

ΚΕΦΑΛΑΙΟ 1 Εισαγωγή ΚΕΦΑΛΑΙΟ 2 Αρχές σχεδιασμού ΚΕΦΑΛΑΙΟ 3 Συμπεριφορά και αντοχή διατομών... 81 Περιεχόμενα ΚΕΦΑΛΑΙΟ 1 Εισαγωγή... 11 1.1 Γενικά...11 1.2 Χαλύβδινες διατομές ψυχρής έλασης...15 ΚΕΦΑΛΑΙΟ 2 Αρχές σχεδιασμού... 45 2.1 Οριακές καταστάσεις και έλεγχοι μη υπέρβασής τους...45 2.2 Προσδιορισμός

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΕΛΑΣΤΙΚΟΣ ΚΑΙ ΑΝΕΛΑΣΤΙΚΟΣ ΛΥΓΙΣΜΟΣ ΘΛΙΒΟΜΕΝΩΝ ΡΑΒ ΩΝ

ΚΕΦΑΛΑΙΟ ΕΛΑΣΤΙΚΟΣ ΚΑΙ ΑΝΕΛΑΣΤΙΚΟΣ ΛΥΓΙΣΜΟΣ ΘΛΙΒΟΜΕΝΩΝ ΡΑΒ ΩΝ ΚΕΦΑΛΑΙΟ 10 10 ΕΛΑΣΤΙΚΟΣ ΚΑΙ ΑΝΕΛΑΣΤΙΚΟΣ ΛΥΓΙΣΜΟΣ ΘΛΙΒΟΜΕΝΩΝ ΡΑΒ ΩΝ 10.1 Εισαγωγή Το πρόβλημα του λυγισμού αξονικά θλιβόμενης ράβδου αποτελεί το πλέον χαρακτηριστικό παράδειγμα λυγισμού και χρησιμοποιείται

Διαβάστε περισσότερα

Χ. ΖΕΡΗΣ Απρίλιος

Χ. ΖΕΡΗΣ Απρίλιος Χ. ΖΕΡΗΣ Απρίλιος 2016 1 Κατά την παραλαβή φορτίων στα υποστυλώματα υπάρχουν πρόσθετες παραμορφώσεις: Μονολιθικότητα Κατασκευαστικές εκκεντρότητες (ανοχές) Στατικές ροπές λόγω κατακορύφων Ηθελημένα έκκεντρα

Διαβάστε περισσότερα

ίνεται ποιότητα χάλυβα S355. Επιλογή καμπύλης λυγισμού Καμπύλη λυγισμού S 235 S 275 S 460 S 355 S 420 Λυγισμός περί τον άξονα y y a a a b t f 40 mm

ίνεται ποιότητα χάλυβα S355. Επιλογή καμπύλης λυγισμού Καμπύλη λυγισμού S 235 S 275 S 460 S 355 S 420 Λυγισμός περί τον άξονα y y a a a b t f 40 mm ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας ομοστατικής Εργαστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές Ι ιδάσκοντες :Χ. Γαντές.Βαμβάτσικος Π. Θανόπουλος Νοέμβριος 04 Άσκηση

Διαβάστε περισσότερα

ΕΛΑΣΤΙΚΟΣ ΛΥΓΙΣΜΟΣ ΥΠΟΣΤΥΛΩΜΑΤΩΝ

ΕΛΑΣΤΙΚΟΣ ΛΥΓΙΣΜΟΣ ΥΠΟΣΤΥΛΩΜΑΤΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΝΑΥΠΗΓΙΚΗΣ ΕΛΑΣΤΙΚΟΣ ΛΥΓΙΣΜΟΣ ΥΠΟΣΤΥΛΩΜΑΤΩΝ Λυγισμός - Ευστάθεια Κρίσιμο φορτίο λυγισμού Δρ. Σ. Π. Φιλόπουλος Εισαγωγή Μέχρι στιγμής στην ανάλυση των κατασκευών επικεντρώσαμε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΛΥΓΙΣΜΟΣ ΠΛΑΙΣΙΩΝ

ΚΕΦΑΛΑΙΟ ΛΥΓΙΣΜΟΣ ΠΛΑΙΣΙΩΝ ΚΕΦΑΛΑΙΟ 11 11 ΛΥΓΙΣΜΟΣ ΠΛΑΙΣΙΩΝ 11.1 Εισαγωγή Τα επίπεδα η χωρικά πλαίσια αποτελούν το συνηθέστερο στατικό σύστημα κτιριακών και άλλων κατασκευών, και παραλαμβάνουν τα επιβαλλόμενα φορτία αναπτύσσοντας

Διαβάστε περισσότερα

Κόμβοι πλαισιακών κατασκευών

Κόμβοι πλαισιακών κατασκευών Κόμβοι πλαισιακών κατασκευών Κόμβοι πλαισιακών κατασκευών Κόμβοι δοκού-υποστυλώματος Κόμβοι δοκού-δοκού Βάσεις υποστυλωμάτων Κοχλιωτοί Συγκολλητοί Κόμβοι δοκού - υποστυλώματος Με μετωπική πλάκα Με γωνιακά

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ

Σιδηρές Κατασκευές ΙΙ Σιδηρές Κατασκευές ΙΙ Άσκηση 1: Αντισεισμικός σχεδιασμός στεγάστρου με συνδέσμους δυσκαμψίας με εκκεντρότητα Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι. Άσκηση 3: Δικτύωμα πεζογέφυρας (θλιβόμενο άνω πέλμα) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών

Σιδηρές Κατασκευές Ι. Άσκηση 3: Δικτύωμα πεζογέφυρας (θλιβόμενο άνω πέλμα) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών Σιδηρές Κατασκευές Ι Άσκηση 3: Δικτύωμα πεζογέφυρας (θλιβόμενο άνω πέλμα) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΜΗ ΓΡΑΜΜΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ

ΚΕΦΑΛΑΙΟ 1 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΜΗ ΓΡΑΜΜΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΚΕΦΑΛΑΙΟ 1 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΜΗ ΓΡΑΜΜΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ 1.1 Εισαγωγή Κύριο μέλημα του μηχανικού είναι ο σχεδιασμός ασφαλών κατασκευών με τη μέγιστη δυνατή εξοικονόμηση υλικού και, κατ επέκταση, κόστους.

Διαβάστε περισσότερα

Λυγισμός Ευστάθεια (Euler και Johnson)

Λυγισμός Ευστάθεια (Euler και Johnson) Λυγισμός Ευστάθεια (Euler και Johnson) M z P z EI z P z P z z 0 και αν EI k EI P 0 z k z Η λύση της διαφορικής εξίσωσης έχει την μορφή: 1 sin z C kz C cos kz Αν οι οριακές συνθήκες είναι άρθρωση άρθρωση

Διαβάστε περισσότερα

Περιεχόμενα. 1 Εισαγωγή... 17

Περιεχόμενα. 1 Εισαγωγή... 17 Περιεχόμενα 1 Εισαγωγή... 17 1.1 Αντικείμενο... 17 1. Δομικά στοιχεία με σύμμικτη δράση... 17 1.3 Κτίρια από σύμμικτη κατασκευή... 19 1.4 Περιορισμοί... 19 Βάσεις σχεδιασμού... 1.1 Δομικά υλικά... 1.1.1

Διαβάστε περισσότερα

Μόρφωση χωρικών κατασκευών από χάλυβα

Μόρφωση χωρικών κατασκευών από χάλυβα Εθνικό Μετσόβιο Πολυτεχνείο Χάρης Ι. Γαντές Επίκουρος Καθηγητής Μόρφωση χωρικών κατασκευών από χάλυβα Επιστημονική Ημερίδα στα Πλαίσια της 4ης Διεθνούς Ειδικής Έκθεσης για τις Κατασκευές Αθήνα, 16 Μαίου

Διαβάστε περισσότερα

προς τον προσδιορισμό εντατικών μεγεθών, τα οποία μπορούν να υπολογιστούν με πολλά εμπορικά λογισμικά.

προς τον προσδιορισμό εντατικών μεγεθών, τα οποία μπορούν να υπολογιστούν με πολλά εμπορικά λογισμικά. ΜΕΤΑΛΛΟΝ [ ΑΝΤΟΧΗ ΑΜΦΙΑΡΘΡΩΤΩΝ ΚΥΚΛΙΚΩΝ ΤΟΞΩΝ ΚΟΙΛΗΣ ΚΥΚΛΙΚΗΣ ΔΙΑΤΟΜΗΣ ΥΠΟ ΟΜΟΙΟΜΟΡΦΑ ΚΑΤΑΝΕΜΗΜΕΝΟ ΚΑΤΑΚΟΡΥΦΟ ΦΟΡΤΙΟ ΚΑΤΑ ΤΟΝ ΕΚ3 Χάρης Ι. Γαντές Δρ. Πολιτικός Μηχανικός, Αναπληρωτής Καθηγητής & Χριστόφορος

Διαβάστε περισσότερα

Πίνακες Χαλύβδινων Διατομών (Ευρωκώδικας 3, EN :2005)

Πίνακες Χαλύβδινων Διατομών (Ευρωκώδικας 3, EN :2005) RUET sotware Πίνακες Χαλύβδινων Διατομών (Ευρωκώδικας 3, E1993-1-1:005) Πίνακες με όλες τις πρότυπες χαλύβδινες διατομές, διαστάσεις και ιδιότητες, κατάταξη, αντοχές, αντοχή σε καμπτικό και στρεπτοκαμπτικό

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ ΕΙΣΑΓΩΓΗ... 15

ΠΡΟΛΟΓΟΣ ΕΙΣΑΓΩΓΗ... 15 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 11 ΕΙΣΑΓΩΓΗ... 15 1. Εισαγωγικές έννοιες... 17 1.1 Φορτία... 17 1.2 Η φέρουσα συμπεριφορά των βασικών υλικών... 22 1.2.1 Χάλυβας... 23 1.2.2 Σκυρόδεμα... 27 1.3 Η φέρουσα συμπεριφορά

Διαβάστε περισσότερα

Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα θλίψης με λυγισμό

Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα θλίψης με λυγισμό Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα θλίψης με λυγισμό Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Περιεχόμενα Σχήμα 1 Στο

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ Άσκηση 14 Αντισεισμικός σχεδιασμός στεγάστρου με συνδέσμους δυσκαμψίας με εκκεντρότητα

Σιδηρές Κατασκευές ΙΙ Άσκηση 14 Αντισεισμικός σχεδιασμός στεγάστρου με συνδέσμους δυσκαμψίας με εκκεντρότητα ιδηρές ατασκευές Άσκηση ντισεισμικός σχεδιασμός στεγάστρου με συνδέσμους δυσκαμψίας με εκκεντρότητα χολή Πολιτικών ηχανικών ργαστήριο εταλλικών ατασκευών Άδεια Χρήσης ο παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

NFATEC L12 Unrestrained beams (11/05/2004) {LASTEDIT}Roger 11/05/04{/LASTEDIT} {LECTURE} {LTITLE}Unrestrained Beams{/LTITLE} {AUTHOR}Roger{/AUTHOR}

NFATEC L12 Unrestrained beams (11/05/2004) {LASTEDIT}Roger 11/05/04{/LASTEDIT} {LECTURE} {LTITLE}Unrestrained Beams{/LTITLE} {AUTHOR}Roger{/AUTHOR} NFATEC L12 Unrestrained beams (11/05/2004) {LASTEDIT}Roger 11/05/04{/LASTEDIT} {LECTURE} {LTITLE}Unrestrained Beams{/LTITLE} {AUTHOR}Roger{/AUTHOR} {EMAIL}r.j.plank@sheffield.ac.uk{/EMAIL} {OVERVIEW} οκοί

Διαβάστε περισσότερα

NFATEC L13 Columns (27/09/2004)

NFATEC L13 Columns (27/09/2004) NFATEC L13 Columns (27/09/2004) {LASTEDIT}Roger 27/09/2004{/LASTEDIT} {LECTURE} {LTITLE}Στύλοι{/LTITLE} {AUTHOR}John Ermopoulos{/AUTHOR} {EMAIL}jermop@central.ntua.gr{/EMAIL} {OVERVIEW} Κατασκευαστικά

Διαβάστε περισσότερα

Στατική Ανάλυση Ναυπηγικών Κατασκευών

Στατική Ανάλυση Ναυπηγικών Κατασκευών Στατική Ανάλυση Ναυπηγικών Κατασκευών Ενότητα 2: Ελαστικός λυγισμός πρισματικών φορέων Αλέξανδρος Θεοδουλίδης Η χρήση κολονών (υποστυλωμάτων) είναι πολύ διαδεδομένη στα πλοία καθ όσον χρησιμοποιούνται

Διαβάστε περισσότερα

ιαλέξεις Παρασκευή 8 Οκτωβρίου,, Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1

ιαλέξεις Παρασκευή 8 Οκτωβρίου,, Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1 ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 13-15 Εισαγωγή στις Παραµορφώσεις και Μετακινήσεις Τρίτη, 5, και Τετάρτη, 6 και Παρασκευή 8 Οκτωβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk

Διαβάστε περισσότερα

Ευρωκώδικας EΝ 1993 Σχεδιασμός Μεταλλικών Κατασκευών

Ευρωκώδικας EΝ 1993 Σχεδιασμός Μεταλλικών Κατασκευών Δομή - Βασικές Αρχές Ιούνιος 2009 Περιεχόμενα παρουσίασης Μέρη Ευρωκώδικα 3 Βασικές έννοιες o o o o o o o o Μηχανική συμπεριφορά δομικού χάλυβα Ποιότητες δομικού χάλυβα Σύγκριση χάλυβα με άλλα δομικά υλικά

Διαβάστε περισσότερα

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602)

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602) Τ.Ε.Ι. Θεσσαλίας Σχολή Τεχνολογικών Εφαρμογών (Σ.Τ.ΕΦ.) ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602) 3 η Διάλεξη Δημήτριος Ν. Χριστοδούλου Δρ. Πολιτικός Μηχανικός, M.Sc. Τ.Ε.Ι. Θεσσαλίας - Σχολή Τεχνολογικών Εφαρμογών

Διαβάστε περισσότερα

Δομική Σχεδίαση Πλοίου Ελαστικός λυγισμός πρισματικών φορέων

Δομική Σχεδίαση Πλοίου Ελαστικός λυγισμός πρισματικών φορέων ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ Δομική Σχεδίαση Πλοίου Ελαστικός λυγισμός πρισματικών φορέων Α. Θεοδουλίδης Η χρήση κολονών (υποστυλωμάτων) είναι πολύ διαδεδομένη

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ Άσκηση 2 Θλίψη και διαξονική κάμψη υποστυλώματος χωρικού πλαισίου. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών

Σιδηρές Κατασκευές ΙΙ Άσκηση 2 Θλίψη και διαξονική κάμψη υποστυλώματος χωρικού πλαισίου. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών ιδηρές ατασκευές Άσκηση Θλίψη και διαξονική κάμψη υποστυλώματος χωρικού πλαισίου χολή Πολιτικών ηχανικών ραστήριο εταλλικών ατασκευών Άδεια Χρήσης ο παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι Διάλεξη 7 Μέλη υπό εγκάρσια φορτία. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών

Σιδηρές Κατασκευές Ι Διάλεξη 7 Μέλη υπό εγκάρσια φορτία. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών ιδηρές ατασκευές Διάλεξη 7 έλη υπό εγκάρσια φορτία χολή Πολιτικών ηχανικών ργαστήριο εταλλικών ατασκευών Άδεια Χρήσης ο παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. ια εκπαιδευτικό

Διαβάστε περισσότερα

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1.

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1. ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ 1. Γενικά Με τη δοκιμή κάμψης ελέγχεται η αντοχή σε κάμψη δοκών από διάφορα

Διαβάστε περισσότερα

Επίλυση 2ας. Προόδου & ιάλεξη 12 η. Τρίτη 5 Οκτωβρίου,,

Επίλυση 2ας. Προόδου & ιάλεξη 12 η. Τρίτη 5 Οκτωβρίου,, ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 12 η Επίλυση 2ας Προόδου & Εισαγωγή στις Παραµορφώσεις και Μετακινήσεις Τρίτη 5 Οκτωβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk

Διαβάστε περισσότερα

Γενικές πληροφορίες μαθήματος: Τίτλος CE07_S04 Πιστωτικές. Φόρτος εργασίας μονάδες:

Γενικές πληροφορίες μαθήματος: Τίτλος CE07_S04 Πιστωτικές. Φόρτος εργασίας μονάδες: Γενικές πληροφορίες μαθήματος: Τίτλος Μεταλλικές Κωδικός CE07_S04 μαθήματος: Κατασκευές ΙI μαθήματος: Πιστωτικές Φόρτος εργασίας μονάδες: 5 150 (ώρες): Επίπεδο μαθήματος: Προπτυχιακό Μεταπτυχιακό Τύπος

Διαβάστε περισσότερα

Μέθοδος των Δυνάμεων

Μέθοδος των Δυνάμεων Μέθοδος των Δυνάμεων Εισαγωγή Μέθοδος των Δυνάμεων: Δ07-2 Η Μέθοδος των Δυνάμεων ή Μέθοδος Ευκαμψίας είναι μία μέθοδος για την ανάλυση γραμμικά ελαστικών υπερστατικών φορέων. Ανκαιημέθοδοςμπορείναεφαρμοστείσεπολλάείδηφορέων

Διαβάστε περισσότερα

Φαινόμενα 2ας τάξεως (Λυγισμός).

Φαινόμενα 2ας τάξεως (Λυγισμός). Φαινόμενα 2ας τάξεως (Λυγισμός). Περιεχόμενα: Α) Απόσπασμα από τον Ευρωκώδικα 2 (σελ 1-15) 5.1.4 Φαινόμενα δευτέρας τάξης 5.2 Γεωμετρικές ατέλειες 5.8 Επιρροές δευτέρας τάξεως σε στοιχεία με αξονικό φορτίο

Διαβάστε περισσότερα

6 ΣΙΔΗΡΕΣ ΚΑΤΑΣΚΕΥΕΣ ΤΟΜΟΣ ΙΙ

6 ΣΙΔΗΡΕΣ ΚΑΤΑΣΚΕΥΕΣ ΤΟΜΟΣ ΙΙ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...7 Παράδειγμα Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη, υπό ανεμοπίεση...9 Παράδειγμα Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη υπό αναρρόφηση

Διαβάστε περισσότερα

10,2. 1,24 Τυπική απόκλιση, s 42

10,2. 1,24 Τυπική απόκλιση, s 42 Ασκηση 3.1 (a) Αν μία ράβδος οπλισμού θεωρηθεί ότι λυγίζει μεταξύ δύο διαδοχικών συνδετήρων με μήκος λυγισμού το μισό της απόστασης, s w, των συνδετήρων, να υπολογισθεί η απόσταση συνδετήρων, s w, πέραν

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Cross. Διδάσκων: Γιάννης Χουλιάρας

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Cross. Διδάσκων: Γιάννης Χουλιάρας ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Cross Διδάσκων: Γιάννης Χουλιάρας Μέθοδος Cross Η μέθοδος Cross ή μέθοδος κατανομής των ροπών, χρησιμοποιείται για την επίλυση συνεχών δοκών και πλαισίων. Είναι παραλλαγή

Διαβάστε περισσότερα

ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ. (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά

ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ. (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά Γενικές πληροφορίες μαθήματος: Τίτλος Μεταλλικές Κωδικός CE09-S07 μαθήματος:

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ Διάλεξη 2 Μέλη υπό συνδυασμένη θλίψη και κάμψη. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών

Σιδηρές Κατασκευές ΙΙ Διάλεξη 2 Μέλη υπό συνδυασμένη θλίψη και κάμψη. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών ιδηρές ατασκευές Διάλεξη έλη υπό συνδυασμένη θλίψη και κάμψη χολή Πολιτικών ηχανικών ργαστήριο εταλλικών ατασκευών Άδεια Χρήσης ο παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. ια

Διαβάστε περισσότερα

ΛΥΣΕΙΣ άλυτων ΑΣΚΗΣΕΩΝ στην Αντοχή των Υλικών

ΛΥΣΕΙΣ άλυτων ΑΣΚΗΣΕΩΝ στην Αντοχή των Υλικών ΛΥΣΕΙΣ άλυτων ΑΣΚΗΣΕΩΝ στην Αντοχή των Υλικών Ασκήσεις για λύση Η ράβδος του σχήματος είναι ομοιόμορφα μεταβαλλόμενης κυκλικής 1 διατομής εφελκύεται αξονικά με δύναμη Ρ. Αν D d είναι οι διάμετροι των ακραίων

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΥΠΟΛΟΓΙΣΜΟΥ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ Κ. Β. ΣΠΗΛΙΟΠΟΥΛΟΣ Καθηγητής ΕΜΠ Πορεία επίλυσης. Ευρίσκεται

Διαβάστε περισσότερα

ΠEPIEXOMENA. σελ. iii ΠΡΟΛΟΓΟΣ KEΦAΛAIO 1 ΟΡΘΕΣ ΚΑΙ ΙΑΤΜΗΤΙΚΕΣ ΤΑΣΕΙΣ,

ΠEPIEXOMENA. σελ. iii ΠΡΟΛΟΓΟΣ KEΦAΛAIO 1 ΟΡΘΕΣ ΚΑΙ ΙΑΤΜΗΤΙΚΕΣ ΤΑΣΕΙΣ, v ΠEPIEXOMENA ΠΡΟΛΟΓΟΣ ΠEPIEXOMENA iii v KEΦAΛAIO 1 ΟΡΘΕΣ ΚΑΙ ΙΑΤΜΗΤΙΚΕΣ ΤΑΣΕΙΣ, ΣΧΕ ΙΑΣΜΟΣ ΟΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ 1 1.1 Εισαγωγή 1 1.2 H µέθοδος των τοµών 2 1.3 Ορισµός της τάσης 3 1.4 Ο τανυστής των τάσεων

Διαβάστε περισσότερα

Μάθημα: Στατική ΙΙ 9 Φεβρουαρίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Μάθημα: Στατική ΙΙ 9 Φεβρουαρίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 9 Φεβρουαρίου 011 Διδάσκων:, Ph.D. Διάρκεια εξέτασης :15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Διαβάστε περισσότερα

Νέα έκδοση προγράμματος STeel CONnections 2010.354

Νέα έκδοση προγράμματος STeel CONnections 2010.354 http://www.sofistik.gr/ Μεταλλικές και Σύμμικτες Κατασκευές Νέα έκδοση προγράμματος STeel CONnections 2010.354 Aξιότιμοι συνάδελφοι, Κυκλοφόρησε η νέα έκδοση του προγράμματος διαστασιολόγησης κόμβων μεταλλικών

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ. Αντοχή Υλικού

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ. Αντοχή Υλικού ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ Αντοχή Υλικού Ερρίκος Μουρατίδης (BSc, MSc) Σεπτέμβριος 015 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Εκτίμηση της στροφικής ικανότητας χαλύβδινων δοκών στις υψηλές θερμοκρασίες θεωρώντας την επιρροή των αρχικών γεωμετρικών ατελειών

Εκτίμηση της στροφικής ικανότητας χαλύβδινων δοκών στις υψηλές θερμοκρασίες θεωρώντας την επιρροή των αρχικών γεωμετρικών ατελειών Βόλος 29-3/9 & 1/1 211 Εκτίμηση της στροφικής ικανότητας χαλύβδινων δοκών στις υψηλές θερμοκρασίες θεωρώντας την επιρροή των αρχικών γεωμετρικών ατελειών Δάφνη Παντούσα και Ευριπίδης Μυστακίδης Εργαστήριο

Διαβάστε περισσότερα

1 η Επανάληψη ιαλέξεων

1 η Επανάληψη ιαλέξεων ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι 1 η Επανάληψη ιαλέξεων Στατική Ανάλυση Ισοστατικών Φορέων Τρίτη,, 28 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk ΠΠΜ

Διαβάστε περισσότερα

Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 3 Ιουλίου 202 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ( η περίοδος

Διαβάστε περισσότερα

f cd = θλιπτική αντοχή σχεδιασμού σκυροδέματος f ck = χαρακτηριστική θλιπτική αντοχή σκυροδέματος

f cd = θλιπτική αντοχή σχεδιασμού σκυροδέματος f ck = χαρακτηριστική θλιπτική αντοχή σκυροδέματος v ΣΥΜΒΟΛΑ Λατινικά A b A g A e A f = εμβαδόν ράβδου οπλισμού = συνολικό εμβαδόν διατομής = εμβαδόν περισφιγμένου σκυροδέματος στη διατομή = εμβαδόν διατομής συνθέτων υλικών A f,tot = συνολικό εμβαδόν συνθέτων

Διαβάστε περισσότερα

( Σχόλια) (Κείµ ενο) Κοντά Υποστυλώµατα Ορισµός και Περιοχή Εφαρµογής. Υποστυλώµατα µε λόγο διατµήσεως. α s 2,5

( Σχόλια) (Κείµ ενο) Κοντά Υποστυλώµατα Ορισµός και Περιοχή Εφαρµογής. Υποστυλώµατα µε λόγο διατµήσεως. α s 2,5 ( Σχόλια) (Κείµ ενο) 18.4.9 Κοντά Υποστυλώµατα 18.4.9 Κοντά Υποστυλώµατα 18.4.9.1 Ορισµός και Περιοχή Εφαρµογής N Sd Υποστυλώµατα µε λόγο διατµήσεως V Sd M Sd1 h N Sd M Sd2 V Sd L l s =M Sd /V Sd M Sd

Διαβάστε περισσότερα

Αντισεισμικός Σχεδιασμός Μεταλλικών Κτιρίων

Αντισεισμικός Σχεδιασμός Μεταλλικών Κτιρίων Αντισεισμικός Σχεδιασμός Μεταλλικών Κτιρίων 1. Γενικά Τα κριτήρια σχεδιασμού κτιρίων σε σεισμικές περιοχές είναι η προσφορά επαρκούς δυσκαμψίας, αντοχής και πλαστιμότητας. Η δυσκαμψία απαιτείται για την

Διαβάστε περισσότερα

ΝΕΕΣ ΔΥΝΑΤΟΤΗΤΕΣ CONSTEEL

ΝΕΕΣ ΔΥΝΑΤΟΤΗΤΕΣ CONSTEEL ΝΕΕΣ ΔΥΝΑΤΟΤΗΤΕΣ CONSTEEL Version 9.0 08. 04.201 5 www.ergocad.eu www. consteelsoftware.com ΠΕΡΙΕΧΟΜΕΝΑ 1. ΜΟΝΑΔΙΚΕΣ ΛΕΙΤΟΥΡΓΙΕΣ 3 1.1 ΟΔΗΓΟΣ ΓΩΝΙΑΣ ΚΟΜΒΟΥ ΠΛΑΙΣΙΟΥ.3 1.2 ΑΥΤΟΜΑΤΗ ΕΠΙΛΟΓΗ ΤΟΥ ΚΑΘΟΡΙΣΤΙΚΟΥ

Διαβάστε περισσότερα

Νοέμβριος 2008. Άσκηση 5 Δίνεται αμφίπακτη δοκός μήκους L=6,00m με διατομή IPE270 από χάλυβα S235.

Νοέμβριος 2008. Άσκηση 5 Δίνεται αμφίπακτη δοκός μήκους L=6,00m με διατομή IPE270 από χάλυβα S235. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας Δομοστατικής Εργαστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές Ι Διδάσκοντες : Ι Βάγιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ

Διαβάστε περισσότερα

Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων. Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης

Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων. Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης Εισαγωγή Παραμορφώσεις Ισοστατικών Δοκών και Πλαισίων: Δ22-2 Οι κατασκευές, όταν υπόκεινται σε εξωτερική φόρτιση, αναπτύσσουν

Διαβάστε περισσότερα

Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ ]

Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ ] Οριακή Κατάσταση Αστοχίας έναντι Κάμψης με ή χωρίς ορθή δύναμη ΓΙΑΝΝΟΠΟΥΛΟΣ ΠΛΟΥΤΑΡΧΟΣ Δρ. Πολ. Μηχανικός Αν. Καθηγητής Ε.Μ.Π. Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ 1992-1-1

Διαβάστε περισσότερα

ιάλεξη 7 η, 8 η και 9 η

ιάλεξη 7 η, 8 η και 9 η ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 7 η, 8 η και 9 η Ανάλυση Ισοστατικών οκών και Πλαισίων Τρίτη,, 21, Τετάρτη,, 22 και Παρασκευή 24 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy

Διαβάστε περισσότερα

AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ

AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ (ΚΕΦ. 6-11) 371 AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ (ΚΕΦ. 6-11) ΑΣΚΗΣΗ 1 Το µηκυνσιόµετρο στο σηµείο Α της δοκού του σχήµατος καταγράφει θλιπτική παραµόρφωση ίση µε 0.05. Πόση

Διαβάστε περισσότερα

ιαλέξεις 24-27 Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Πέτρος Κωµοδρόµος

ιαλέξεις 24-27 Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Πέτρος Κωµοδρόµος ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 24-27 Αρχή υνατών Έργων (Α Ε) Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 και Τρίτη, 9 Νοεµβρίου, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk

Διαβάστε περισσότερα

Περιεχ μενα. Πρόλογος Κεφάλαιο 1 Εισαγωγή Κεφάλαιο 2 Βάσεις σχεδιασμού... 27

Περιεχ μενα. Πρόλογος Κεφάλαιο 1 Εισαγωγή Κεφάλαιο 2 Βάσεις σχεδιασμού... 27 Περιεχ μενα Πρόλογος... 9 Πρόλογος 3 ης έκδοσης... 11 Κεφάλαιο 1 Εισαγωγή... 13 1.1 Γενικά Ιστορική αναδρομή... 13 1.2 Aρχές λειτουργίας ορισμοί... 20 Κεφάλαιο 2 Βάσεις σχεδιασμού... 27 2.1 Εισαγωγή...

Διαβάστε περισσότερα

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ ΕΛΕΓΧΟΥ ΙΑΤΟΜΗΣ - ΜΕΛΟΥΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ 3

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ ΕΛΕΓΧΟΥ ΙΑΤΟΜΗΣ - ΜΕΛΟΥΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ 3 ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ ΕΛΕΓΧΟΥ ΙΑΤΟΜΗΣ - ΜΕΛΟΥΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ 3 ΗΡΑΚΛΕΙΟ ΜΑΡΤΙΟΣ 1999 Α. ΑΝΤΟΧΗ ΙΑΤΟΜΗΣ 1.ΕΦΕΛΚΥΣΜΟΣ ( 5.4.3 ). N t.rd = min { N pl. Rd = A f y / γ M0, N u.

Διαβάστε περισσότερα

3.2 Οδηγίες χρήσης του προγράμματος πεπερασμένων στοιχείων RATe ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ RATe

3.2 Οδηγίες χρήσης του προγράμματος πεπερασμένων στοιχείων RATe ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ RATe 3.2 Οδηγίες χρήσης του προγράμματος πεπερασμένων στοιχείων RATe 67 3.2 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ RATe Στις επόμενες σελίδες παρουσιάζεται βήμα-βήμα ο τρόπος με τον οποίο μπορεί

Διαβάστε περισσότερα

ΕΝΙΣΧΥΣΗ ΚΑΤΑΣΚΕΥΩΝ ΜΕ ΧΡΗΣΗ ΔΙΚΤΥΩΤΩΝ ΣΥΝΔΕΣΜΩΝ

ΕΝΙΣΧΥΣΗ ΚΑΤΑΣΚΕΥΩΝ ΜΕ ΧΡΗΣΗ ΔΙΚΤΥΩΤΩΝ ΣΥΝΔΕΣΜΩΝ ΕΝΙΣΧΥΣΗ ΚΑΤΑΣΚΕΥΩΝ ΜΕ ΧΡΗΣΗ ΔΙΚΤΥΩΤΩΝ ΣΥΝΔΕΣΜΩΝ ΔΙΓΕΝΗΣ ΣΠΥΡΟΣ Περίληψη Σκοπός της εργασίας είναι η περιγραφή της συμπεριφοράς διαφόρων διατάξεων δικτυωτών συνδέσμων σε πλευρικά επιβαλλόμενα φορτία. Στο

Διαβάστε περισσότερα

Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m

Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m μέσα στο επίπεδο του πλαισίου, 0.4m κάθετα σ αυτό. Τα γωνιακά υποστυλώματα είναι διατομής 0.4x0.4m. Υπάρχουν

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. 1. ΟΙ ΓΡΑΜΜΙΚΟΙ ΦΟΡΕΙΣ Εισαγωγή Συστήματα συντεταγμένων. 7

ΠΕΡΙΕΧΟΜΕΝΑ. 1. ΟΙ ΓΡΑΜΜΙΚΟΙ ΦΟΡΕΙΣ Εισαγωγή Συστήματα συντεταγμένων. 7 Στατική των γραμμικών φορέων ix ΠΕΡΙΕΧΟΜΕΝΑ σελ. 1. ΟΙ ΓΡΑΜΜΙΚΟΙ ΦΟΡΕΙΣ. 1 1.1 Εισαγωγή.. 3 1.2 Συστήματα συντεταγμένων. 7 2. Η ΚΙΝΗΣΗ ΚΑΙ Η ΣΤΗΡΙΞΗ ΤΟΥ ΔΙΣΚΟΥ ΑΝΤΙΔΡΑΣΕΙΣ 13 2.1 Η κίνηση και η στήριξη

Διαβάστε περισσότερα

Πλαστική Κατάρρευση Δοκών

Πλαστική Κατάρρευση Δοκών Πλαστική Κατάρρευση Δοκών ΠΕΡΙΕΧΟΜΕΝΑ Σταδιακή Μελέτη Πλαστικής Κατάρρευσης o Παράδειγμα 1 (ισοστατικός φορέας) o Παράδειγμα 2 (υπερστατικός φορέας) Αμεταβλητότητα Φορτίου Πλαστικής Κατάρρευσης Προσδιορισμός

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή. Διδάσκων: Γιάννης Χουλιάρας

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή. Διδάσκων: Γιάννης Χουλιάρας ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή Διδάσκων: Γιάννης Χουλιάρας Επίλυση υπερστατικών φορέων Για την επίλυση των ισοστατικών φορέων (εύρεση αντιδράσεων και μεγεθών έντασης) αρκούν

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Η εντατική κατάσταση στην οποία βρίσκεται μία δοκός, που υποβάλλεται σε εγκάρσια φόρτιση, λέγεται κάμψη. Αμφιέριστη δοκός Πρόβολος Κατά την καταπόνηση σε κάμψη αναπτύσσονται καμπτικές ροπές, οι

Διαβάστε περισσότερα

Κεφάλαιο 3 Κινητοί ατενείς φορείς με απολύτως στερεά τμήματα

Κεφάλαιο 3 Κινητοί ατενείς φορείς με απολύτως στερεά τμήματα ΜΕΘΟΔΟΣ ΜΕΤΑΚΙΝΗΣΕΩΝ - ΑΣΚΗΣΕΙΣ Κεφάλαιο Κεφάλαιο Κινητοί ατενείς φορείς με απολύτως στερεά τμήματα Σύνοη Οι ασκήσεις 7 και 8 του κεφαλαίου αυτού αφορούν σε κινητούς ατενείς φορείς, οι οποίοι συμπεριλαμβάνουν

Διαβάστε περισσότερα

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση:

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: S d R d Η εν λόγω ανίσωση εφαρμόζεται και ελέγχεται σε κάθε εντατικό μέγεθος

Διαβάστε περισσότερα

Σχήμα 1: Διάταξη δοκιμίου και όργανα μέτρησης 1 BUILDNET

Σχήμα 1: Διάταξη δοκιμίου και όργανα μέτρησης 1 BUILDNET Παραμετρική ανάλυση κοχλιωτών συνδέσεων με μετωπική πλάκα χρησιμοποιώντας πεπερασμένα στοιχεία Χριστόφορος Δημόπουλος, Πολιτικός Μηχανικός, Υποψήφιος Διδάκτωρ ΕΜΠ Περίληψη Η εν λόγω εργασία παρουσιάζει

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΕΛΤΙΩΣΗΣ ΤΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΚΤΙΡΙΟΥ ΣΕ ΕΝΔΕΧΟΜΕΝΟ ΣΧΗΜΑΤΙΣΜΟ ΜΑΛΑΚΟΥ ΟΡΟΦΟΥ ΜΕΣΩ ΕΛΑΣΤΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΜΕΛΕΤΗ ΒΕΛΤΙΩΣΗΣ ΤΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΚΤΙΡΙΟΥ ΣΕ ΕΝΔΕΧΟΜΕΝΟ ΣΧΗΜΑΤΙΣΜΟ ΜΑΛΑΚΟΥ ΟΡΟΦΟΥ ΜΕΣΩ ΕΛΑΣΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Μελέτη βελτίωσης της συμπεριφοράς κτιρίου σε ενδεχόμενο σχηματισμό μαλακού ορόφου μέσω ελαστικής ανάλυσης ΜΕΛΕΤΗ ΒΕΛΤΙΩΣΗΣ ΤΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΚΤΙΡΙΟΥ ΣΕ ΕΝΔΕΧΟΜΕΝΟ ΣΧΗΜΑΤΙΣΜΟ ΜΑΛΑΚΟΥ ΟΡΟΦΟΥ ΜΕΣΩ ΕΛΑΣΤΙΚΗΣ

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ

Σιδηρές Κατασκευές ΙΙ Σιδηρές Κατασκευές ΙΙ Άσκηση 13: Αντισεισμικός σχεδιασμός στεγάστρου με οριζόντιους και κατακόρυφους συνδέσμους δυσκαμψίας Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Εξαιτίας της συνιστώσας F X αναπτύσσεται εντός του υλικού η ορθή τάση σ: N σ = A N 2 [ / ] Εξαιτίας της συνιστώσας F Υ αναπτύσσεται εντός του υλικού η διατμητική τάση τ: τ = mm Q 2 [ N / mm ] A

Διαβάστε περισσότερα

ΕΠΙΔΡΑΣΗ ΓΕΙΤΟΝΙΚΟΥ ΚΤΙΡΙΟΥ ΣΤΗΝ ΑΠΟΤΙΜΗΣΗ ΚΑΤΑΣΚΕΥΩΝ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ

ΕΠΙΔΡΑΣΗ ΓΕΙΤΟΝΙΚΟΥ ΚΤΙΡΙΟΥ ΣΤΗΝ ΑΠΟΤΙΜΗΣΗ ΚΑΤΑΣΚΕΥΩΝ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ Επίδραση Γειτονικού Κτιρίου στην Αποτίμηση Κατασκευών Ο/Σ ΕΠΙΔΡΑΣΗ ΓΕΙΤΟΝΙΚΟΥ ΚΤΙΡΙΟΥ ΣΤΗΝ ΑΠΟΤΙΜΗΣΗ ΚΑΤΑΣΚΕΥΩΝ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΒΑΣΙΛΕΙΑΔΗ ΜΙΧΑΕΛΑ Μεταπτυχιακή Φοιτήτρια Π.Π., mikaelavas@gmail.com

Διαβάστε περισσότερα

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ 2. ΣΤΑΤΙΚΗ Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στη δοκό του σχήματος: Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στον φορέα του σχήματος: Ασκήσεις υπολογισμού τάσεων Άσκηση 1 η (Αξονικός εφελκυσμός

Διαβάστε περισσότερα

Μέθοδοι των Μετακινήσεων

Μέθοδοι των Μετακινήσεων Μέθοδοι των Μετακινήσεων Εισαγωγή Μέθοδοι των Μετακινήσεων: Δ14-2 Στη Μέθοδο των Δυνάμεων (ή Ευκαμψίας), που έχουμε ήδη μελετήσει, επιλέγουμε ως άγνωστα υπερστατικά μεγέθη αντιδράσεις ή εσωτερικές δράσεις.

Διαβάστε περισσότερα

1 Εισαγωγή Γενικά Συμβολισμοί Επεξηγήσεις Ισχύοντες κανονισμοί και προδιαγραφές 35

1 Εισαγωγή Γενικά Συμβολισμοί Επεξηγήσεις Ισχύοντες κανονισμοί και προδιαγραφές 35 Περιεχόμενα 1 Εισαγωγή 11 1.1 Γενικά... 11 1. Συμβολισμοί Επεξηγήσεις... 1 Μόρφωση συμμίκτων γεφυρών 17.1 Γενικά... 17. Ολόσωμες και κιβωτιοειδείς δοκοί... 19..1 Πυκνά διατεταγμένες σιδηροδοκοί διατομής

Διαβάστε περισσότερα

Άσκηση 1. Παράδειγμα απλά οπλισμένης πλάκας

Άσκηση 1. Παράδειγμα απλά οπλισμένης πλάκας Άσκηση 1. Παράδειγμα απλά οπλισμένης πλάκας Δίνεται ο ξυλότυπος του σχήματος που ακολουθεί καθώς και τα αντίστοιχα μόνιμα και κινητά φορτία των πλακών. Ζητείται η διαστασιολόγηση των πλακών, συγκεκριμένα:

Διαβάστε περισσότερα

Υ.ΠΕ.ΧΩ.Δ.Ε. Ημερίδα Ευρωκωδίκων EC6. Ε. Βιντζηλαίου, Σχολή Π.Μ./ΕΜΠ

Υ.ΠΕ.ΧΩ.Δ.Ε. Ημερίδα Ευρωκωδίκων EC6. Ε. Βιντζηλαίου, Σχολή Π.Μ./ΕΜΠ Υ.ΠΕ.ΧΩ.Δ.Ε. Ημερίδα Ευρωκωδίκων EC6 Ε. Βιντζηλαίου, Σχολή Π.Μ./ΕΜΠ ΚΕΙΜΕΝΑ ΕΥΡΩΚΩΔΙΚΑ 6 ΜΕΡΟΣ 1-1: ΚΑΝΟΝΕΣ ΓΙΑ ΤΟΝ ΣΧΕΔΙΑΣΜΟ ΚΑΤΑΣΚΕΥΩΝ ΑΠΟ ΩΠΛΙΣΜΕΝΗ ΚΑΙ ΑΟΠΛΗ ΤΟΙΧΟΠΟΙΙΑ (σε φάση ψηφίσεως από τις χώρες-μέλη)

Διαβάστε περισσότερα

ΣYMMIKTEΣ KATAΣKEYEΣ KAI OPIZONTIA ΦOPTIA

ΣYMMIKTEΣ KATAΣKEYEΣ KAI OPIZONTIA ΦOPTIA ΣYMMIKTEΣ KATAΣKEYEΣ KAI OPIZONTIA ΦOPTIA Άρης Αβδελάς, Καθηγητής Εργαστήριο Μεταλλικών Κατασκευών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τα δομικά συστήματα στις σύμμικτες κτιριακές κατασκευές, αποτελούνται

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΦΟΡΕΩΝ ΜΕ ΒΑΣΗ ΤΟΝ ΕΥΡΩΚΩΔΙΚΑ 2 ΕΝ ΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ Ε. ΜΑΚΡΥΚΩΣΤΑΣ ΠΟΛΙΤΙΚΟΣ ΜΗΧΑΝΙΚΟΣ Ε.Μ.Π.

ΣΧΕΔΙΑΣΜΟΣ ΦΟΡΕΩΝ ΜΕ ΒΑΣΗ ΤΟΝ ΕΥΡΩΚΩΔΙΚΑ 2 ΕΝ ΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ Ε. ΜΑΚΡΥΚΩΣΤΑΣ ΠΟΛΙΤΙΚΟΣ ΜΗΧΑΝΙΚΟΣ Ε.Μ.Π. ΣΧΕΔΙΑΣΜΟΣ ΦΟΡΕΩΝ ΜΕ ΒΑΣΗ ΤΟΝ ΕΥΡΩΚΩΔΙΚΑ 2 ΕΝ 1992-1-1 ΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ ΤΕΧΝΙΚΟΕΠΙΜΕΛΗΤΗΡΙΟΕΛΛΑΔΟΣ ΕΛΛΗΝΙΚΟ ΤΜΗΜΑ ΣΚΥΡΟΔΕΜΑΤΟΣ ΣΧΕΔΙΑΣΜΟΣ ΦΟΡΕΩΝ ΜΕ ΒΑΣΗ ΤΟΝ ΕΥΡΩΚΩΔΙΚΑ 2 ΕΝ 1992-1-1 ΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ ΤΕΧΝΙΚΟ

Διαβάστε περισσότερα

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602)

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602) Τ.Ε.Ι. Θεσσαλίας Σχολή Τεχνολογικών Εφαρμογών (Σ.Τ.ΕΦ.) ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602) 5 η Διάλεξη Δημήτριος Ν. Χριστοδούλου Δρ. Πολιτικός Μηχανικός, M.Sc. Τ.Ε.Ι. Θεσσαλίας - Σχολή Τεχνολογικών Εφαρμογών

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 3 ΜΗ ΓΡΑΜΜΙΚΟΤΗΤΑ ΓΕΩΜΕΤΡΙΑΣ

ΚΕΦΑΛΑΙΟ 3 3 ΜΗ ΓΡΑΜΜΙΚΟΤΗΤΑ ΓΕΩΜΕΤΡΙΑΣ ΚΕΦΑΛΑΙΟ 3 3 ΜΗ ΓΡΑΜΜΙΚΟΤΗΤΑ ΓΕΩΜΕΤΡΙΑΣ 3.1 Εισαγωγή Στο Κεφάλαιο 1 εξηγήθηκε ήδη η έννοια της μη γραμμικότητας γεωμετρίας που συνδέεται με μεγάλες αποκλίσεις της παραμορφωμένης γεωμετρίας του φορέα από

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΝΕΑΣ ΚΑΤΑΣΚΕΥΗΣ (Ε.Α.Κ Ε.Κ.Ω.Σ. 2000) ΤΕΝΤΟΛΟΥΡΗΣ ΕΥΑΓΓΕΛΟΣ ΚΑΛΟΓΕΡΟΠΟΥΛΟΥ ΓΕΩΡΓΙΑ

ΕΛΕΓΧΟΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΝΕΑΣ ΚΑΤΑΣΚΕΥΗΣ (Ε.Α.Κ Ε.Κ.Ω.Σ. 2000) ΤΕΝΤΟΛΟΥΡΗΣ ΕΥΑΓΓΕΛΟΣ ΚΑΛΟΓΕΡΟΠΟΥΛΟΥ ΓΕΩΡΓΙΑ ΕΛΕΓΧΟΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΝΕΑΣ ΚΑΤΑΣΚΕΥΗΣ (Ε.Α.Κ. 2003 Ε.Κ.Ω.Σ. 2000) ΑΠΟΤΙΜΩΜΕΝΗΣ ΜΕ pushover ΑΝΑΛΥΣΗ ΚΑΤΑ ΚΑΝ.ΕΠΕ. ΤΕΝΤΟΛΟΥΡΗΣ ΕΥΑΓΓΕΛΟΣ ΚΑΛΟΓΕΡΟΠΟΥΛΟΥ ΓΕΩΡΓΙΑ Περίληψη Σκοπός της παρούσης εργασίας είναι

Διαβάστε περισσότερα

Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης

Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Περιεχόμενα Σχήμα 1 Α. Ασημακόπουλος

Διαβάστε περισσότερα

ΕΠΙΡΡΟΗ ΔΙΑΦΟΡΩΝ ΠΑΡΑΓΟΝΤΩΝ ΣΤΑ ΠΑΡΑΜΟΡΦΩΣΙΑΚΑ ΜΕΓΕΘΗ ΔΟΜΙΚΟΥ ΣΤΟΙΧΕΙΟΥ ΚΑΙ ΣΥΓΚΡΙΣΗ ΜΕ ΤΥΠΟΥΣ ΚΑΝ.ΕΠΕ

ΕΠΙΡΡΟΗ ΔΙΑΦΟΡΩΝ ΠΑΡΑΓΟΝΤΩΝ ΣΤΑ ΠΑΡΑΜΟΡΦΩΣΙΑΚΑ ΜΕΓΕΘΗ ΔΟΜΙΚΟΥ ΣΤΟΙΧΕΙΟΥ ΚΑΙ ΣΥΓΚΡΙΣΗ ΜΕ ΤΥΠΟΥΣ ΚΑΝ.ΕΠΕ Επιρροή διαφόρων παραγόντων στα παραμορφωσιακά μεγέθη δομικού στοιχείου και σύγκριση με τύπους ΚΑΝ.ΕΠΕ ΕΠΙΡΡΟΗ ΔΙΑΦΟΡΩΝ ΠΑΡΑΓΟΝΤΩΝ ΣΤΑ ΠΑΡΑΜΟΡΦΩΣΙΑΚΑ ΜΕΓΕΘΗ ΔΟΜΙΚΟΥ ΣΤΟΙΧΕΙΟΥ ΚΑΙ ΣΥΓΚΡΙΣΗ ΜΕ ΤΥΠΟΥΣ ΚΑΝ.ΕΠΕ

Διαβάστε περισσότερα

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602)

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602) Τ.Ε.Ι. Θεσσαλίας Σχολή Τεχνολογικών Εφαρμογών (Σ.Τ.ΕΦ.) ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602) 1 η Διάλεξη Δημήτριος Ν. Χριστοδούλου Δρ. Πολιτικός Μηχανικός, M.Sc. Σκοπός και Στόχος του μαθήματος Στόχος του μαθήματος

Διαβάστε περισσότερα

ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής. Διδάσκων: Γιάννης Χουλιάρας

ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής. Διδάσκων: Γιάννης Χουλιάρας ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής Διδάσκων: Γιάννης Χουλιάρας Ισοστατικά πλαίσια με συνδέσμους (α) (β) Στατική επίλυση ισοστατικών πλαισίων

Διαβάστε περισσότερα

20/10/2016. Δρ. Σωτήρης Δέμης. Εργαστηριακές Σημειώσεις Κάμψη Ξυλινης Δοκού. Πανεπιστημιακός Υπότροφος

20/10/2016. Δρ. Σωτήρης Δέμης. Εργαστηριακές Σημειώσεις Κάμψη Ξυλινης Δοκού. Πανεπιστημιακός Υπότροφος Εργαστηριακές Σημειώσεις Κάμψη Ξυλινης Δοκού Δρ. Σωτήρης Δέμης Πανεπιστημιακός Υπότροφος Τσιμεντοπολτός Περιλαμβάνονται διαγράμματα από τα βιβλία «Μηχανική των Υλικών» και «Δομικά Υλικά» του Αθανάσιου

Διαβάστε περισσότερα

Αντοχή γωνιακών σε κάμψη και θλίψη

Αντοχή γωνιακών σε κάμψη και θλίψη ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Αντοχή γωνιακών σε κάμψη και θλίψη ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Ιωάννης Χ. Κριαράς Επιβλέπων: Ιωάννης Βάγιας Αθήνα, Ιούλιος

Διαβάστε περισσότερα