ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή. Διδάσκων: Γιάννης Χουλιάρας
|
|
- Ἀναίτις Αγγελοπούλου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή Διδάσκων: Γιάννης Χουλιάρας
2 Επίλυση υπερστατικών φορέων Για την επίλυση των ισοστατικών φορέων (εύρεση αντιδράσεων και μεγεθών έντασης) αρκούν οι συνθήκες ισορροπίας. Για την επίλυση των υπερστατικών φορέων πρέπει εκτός από τις συνθήκες ισορροπίας να διατυπωθούν επιπλέον συνθήκες ίσες σε αριθμό με το βαθμό στατικής αοριστίας n. Ενώ για τη διατύπωση των συνθηκών ισορροπίας απαιτείται να ληφθεί υπόψη μόνο η γεωμετρία του φορέα, για τις επιπλέον συνθήκες, εκτός από τη γεωμετρία πρέπει να ληφθούν υπόψη και οι ιδιότητες του υλικού, από το οποίο είναι κατασκευασμένος ο φορέας. Αυτές εκφράζονται με τα ελαστικά χαρακτηριστικά που είναι το μέτρο ελαστικότητας, η διατομή, και η ροπή αδράνειας της διατομής.
3 Μέθοδοι υπολογισμού των υπερστατικών φορέων Κλασικές μέθοδοι: Μέθοδος δυνάμεων (μέθοδος ευκαμψίας) Μέθοδος μετακινήσεων Μέθοδος Cross (μέθοδος κατανομής των ροπών) Μητρωικές μέθοδοι: Μητρωική μέθοδος δυνάμεων Μητρωική μέθοδος μετακινήσεων (μέθοδος δυσκαμψίας) Μέθοδος των πεπερασμένων στοιχείων
4 Μέθοδοι υπολογισμού υπερστατικών φορέων
5 Μέθοδος δυνάμεων (α) Η επίλυση ενός υπερστατικού φορέα με τη μέθοδο δυνάμεων βασίζεται στην αναγωγή του προβλήματος στον υπολογισμό ενός άλλου πιο απλού φορέα που ονομάζεται Στατικό Κύριο Σύστημα (ΣΚΣ), το οποίο είναι μικρότερης υπερστατικότητας από τον αρχικό φορέα και συνήθως είναι ένας ισοστατικός φορέας. Η αναγωγή αυτή γίνεται με την κατάλυση ενός αριθμού κατάλληλων δεσμικών ράβδων (συνδέσμων), τόσων ώστε να προκύψει ένα ΣΚΣ που λύνεται με γνωστό τρόπο. Η κατάλυση δεσμικών ράβδων έχει ως συνέπεια το μηδενισμό στο ΣΚΣ των άγνωστων δυνάμεων που αυτές μεταβίβαζαν. Οι δυνάμεις αυτές ονομάζονται υπεράριθμες δυνάμεις και είναι οι άγνωστοι του προβλήματος. Παράλληλα με την κατάλυση αυτών των δεσμικών ράβδων επιτρέπονται στο ΣΚΣ οι μετακινήσεις που αυτές απαγόρευαν.
6 Μέθοδος δυνάμεων (β) Οι επιλύουσες εξισώσεις της μεθόδου προκύπτουν από τις συνθήκες συμβιβαστού των μετακινήσεων με τους περιορισμούς που επιβάλουν οι πραγματικοί σύνδεσμοι του προς επίλυση υπερστατικού φορέα. Στις εξισώσεις αυτές, οι μετακινήσεις που πρέπει να συμβιβαστούν εκφράζονται συναρτήσει των άγνωστων υπεράριθμων δυνάμεων, οι οποίες στη συνέχεια προσδιορίζονται με την επίλυση του συστήματος εξισώσεων που προκύπτει. Μετά τον υπολογισμό των υπεράριθμων δυνάμεων η εντατική κατάσταση του πραγματικού φορέα προκύπτει με επίλυση του ΣΚΣ για το εξωτερικό αίτιο και ταυτόχρονη εφαρμογή στις θέσεις των καταλυθέντων συνδέσμων των γνωστών πλέον υπεράριθμων δυνάμεων που αυτοί μεταβιβάζουν στον πραγματικό υπερστατικό φορέα.
7 Μέθοδος μετακινήσεων (α) Η επίλυση ενός υπερστατικού φορέα με τη μέθοδο αυτή βασίζεται στην αναγωγή του προβλήματος στον υπολογισμό ενός άλλου πιο απλού φορέα που ονομάζεται Κινηματικό ή Γεωμετρικό Κύριο Σύστημα (ΓΚΣ), που είναι μεγαλύτερης υπερστατικότητας από τον αρχικό φορέα. Η αναγωγή αυτή γίνεται με την προσθήκη υποθετικών δεσμικών ράβδων, τόσων ώστε να προκύψει το ΓΚΣ που αποτελείται από αμφίπακτες και μονόπακτες δοκούς και υπολογίζεται εύκολα. Η προσθήκη αυτών των δεσμικών ράβδων έχει ως συνέπεια να μηδενίζονται οι άγνωστες μετακινήσεις των κόμβων του φορέα, που είναι και οι άγνωστοι του προβλήματος. Επίσης, οι σύνδεσμοι που προστίθενται στους κόμβους μεταβιβάζουν αντιδράσεις που ανατρέπουν την ισορροπία των κόμβων του αρχικού φορέα στον οποίο δεν υπάρχουν αυτοί οι σύνδεσμοι.
8 Μέθοδος μετακινήσεων (β) Οι επιλύουσες εξισώσεις της μεθόδου προκύπτουν από τις συνθήκες μηδενισμού των αντιδράσεων που μεταβιβάζουν οι πρόσθετες υποθετικές δεσμικές ράβδοι. Σε αυτές τις εξισώσεις ισορροπίας οι εσωτερικές δυνάμεις εκφράζονται συναρτήσει των άγνωστων μετακινήσεων, οι οποίες στη συνέχεια βρίσκονται με την επίλυση του συστήματος εξισώσεων που προκύπτει. Μετά τον υπολογισμό των μετακινήσεων των κόμβων, η εντατική κατάσταση του πραγματικού φορέα προκύπτει βάσει της αρχής της επαλληλίας.
9 Μέθοδος Castigliano Η μέθοδος Castigliano (μέθοδος του ελάχιστου έργου) για την επίλυση υπερστατικών φορέων βασίζεται στο θεώρημα του Castigliano: Οι αντιδράσεις που αναπτύσσονται σ έναν υπερστατικό φορέα πρέπει να έχουν εκείνες τις τιμές, οι οποίες καθιστούν την ελαστική του ενέργεια ελάχιστη. Η εσωτερική ελαστική ενέργεια ενός φορέα προκύπτει από την παραμόρφωσή του υπό την επίδραση των εξωτερικών φορτίων. Η μέθοδος Castigliano είναι εφαρμόσιμη σε πλαισιωτούς και δικτυωτούς φορείς. Είναι όμως περιπλοκότερη από νεώτερες μεθόδους και γι αυτό έχει χάσει την πρακτική αξία που είχε άλλοτε.
10 Καταναγκασμοί Τα εξωτερικά φορτία και οι καταναγκασμοί προκαλούν μετακινήσεις και εντάσεις και στους υπερστατικούς φορείς. Εσωτερικοί καταναγκασμοί από: Μεταβολή της θερμοκρασίας του φορέα Διαφορές συναρμογής μελών του φορέα Εξωτερικοί καταναγκασμοί από: Μετακίνηση στηρίξεων του φορέα.
11 Παραμορφώσεις των υλικών Συμπεριφορά των υλικών υπό την επίδραση εξωτερικών φορτίων ή εσωτερικών παραμορφώσεων: Ελαστική συμπεριφορά: Παραμόρφωση του υλικού υπό την επίδραση ενός αιτίου και εξαφάνιση της παραμόρφωσης μετά την αφαίρεση του αιτίου. Κανένα δομικό υλικό δεν είναι απόλυτα ελαστικό. Ανελαστική συμπεριφορά: Παραμονή μόνιμων παραμορφώσεων μετά την απομάκρυνση των φορτίων. Για την αποφυγή μόνιμων παραμορφώσεων στις κατασκευές, περιορίζουμε τις τάσεις του υλικού κάτω από το όριο ελαστικότητας. Διάγραμμα τάσεων παραμορφώσεων. Η επίλυση των γραμμικών φορέων στη στατική γίνεται με την παραδοχή γραμμικά ελαστικού υλικού.
12 Ελαστική γραμμή Ελαστική γραμμή καλείται ο παραμορφωμένος από εξωτερικά φορτία ή καταναγκασμούς άξονας του φορέα. Συνήθως όμως, ως ελαστική γραμμή χαρακτηρίζεται η γραμμή των βυθίσεων (κατακόρυφων μετατοπίσεων) υ ή η γραμμή των οριζόντιων μετατοπίσεων u. Η ελαστική γραμμή προσδιορίζεται με τη μέθοδο Mohr.
13 Σημασία της ελαστικής γραμμής Ενώ ένα σκαρίφημα της ελαστικής γραμμής είναι πολύ χρήσιμο για την αντίληψη της μορφής του φορέα μετά την παραμόρφωση, σπάνια χρειάζεται ο ακριβής υπολογισμός της. Συνήθως αρκούν οι τιμές ορισμένων χαρακτηριστικών μετατοπίσεων που υπολογίζονται με τη μέθοδο του μοναδιαίου φορτίου. Αντίθετα, απαιτείται ο ακριβής υπολογισμός της ελαστικής γραμμής ενός φορέα για τον καθορισμό των γραμμών επιρροής. Στη συνέχεια περιγράφεται μία μέθοδος υπολογισμού της ελαστικής γραμμής.
14 Ελαστική γραμμή αμφιέρειστης δοκού Για να βρεθεί η ελαστική γραμμή U,α μιας αμφιέρειστης δοκού αυτή πρέπει να φορτιστεί με το ελαστικό φορτίο W,α. Τότε η γραμμή των τεμνουσών δυνάμεων Q(W,α) έχει σε κάθε σημείο τεταγμένη ίση με τη γωνία κλίσης φ,α της ελαστικής γραμμής U,α και η γραμμή των ροπών κάμψης Μ(W,α) συμπίπτει με τη ζητούμενη ελαστική γραμμή U,α, δηλαδή φ,α = Q(W,α), U,α = Μ(W,α) Δηλαδή, η ελαστική γραμμή μιας οριζόντιας αμφιέρειστης δοκού με οριζόντια κύλιση, ταυτίζεται με το διάγραμμα των ροπών λόγω του ελαστικού φορτίου w. Οι θετικές κατακόρυφες μετατοπίσεις (βυθίσεις) v, έχουν φορά προς τα κάτω (σύμφωνη με τα φορτία βαρύτητας). Στον επόμενους πίνακες δίνονται τα ελαστικά φορτία για διάφορες περιπτώσεις του αιτίου α.
15 λαστικό φορτίο και ελαστική ραμμή αμφιέρειστης δοκού
16 Ελαστικά φορτία & ελαστικές γραμμές ισοστατικών φορέων
17 Ελαστικά φορτία ισοστατικών φορέων
18 Βασικές περιπτώσεις φόρτισης, ελαστικού φορτίου W (διάγραμμα M/EI) και ελαστικής γραμμής αμφιέρειστης δοκού
19 Ελαστική γραμμή τμήματος δοκού Αν σε μια δοκό, που ανήκει σε οποιοδήποτε φορέα, είναι γνωστές οι βυθίσεις U Α,α και U Β,α στα άκρα ενός τμήματός της ΑΒ μήκους l, τότε η ελαστική γραμμή U,α του τμήματος ΑΒ προκύπτει αν με αφετηρία την κλείουσα (ευθεία γραμμή που εμφανίζει στα άκρα του διαστήματος l τεταγμένες U Α,α και U Β,α ) σχεδιάσουμε την ελαστική γραμμή της υποκατάστατης αμφιέρειστης δοκού, δηλαδή το διάγραμμα των ροπών κάμψης Μ(W,α). Προκύπτει ότι: όπου M op =0, η ελαστική γραμμή U P παρουσιάζει σημείο καμπής όπου M op < 0, η ελαστική γραμμή U P στρέφει τα κοίλα προς τα κάτω όπου M op > 0, η ελαστική γραμμή U P στρέφει τα κοίλα προς τα πάνω.
20 Οι συναρτήσεις ω Ο υπολογισμός των τεταγμένων της ελαστικής γραμμής Uw αμφιέρειστης δοκού, που το διάγραμμα των ροπών κάμψης της M op είναι ορθογώνιο, τριγωνικό, παραβολικό ή άλλου συνήθους σχήματος, μπορεί να γίνει με τη βοήθεια των συναρτήσεων ω. Ένα οποιοδήποτε διάγραμμα ροπών κάμψης Μ, Ρ με μέγιστη τεταγμένη Μ δίνει βυθίσεις U, Μ, που υπολογίζονται με τον τύπο U, Μ = (l 2 M/K EJ)ω, όπου Κ ένας σταθερός συντελεστής που εξαρτάται από τη μορφή του διαγράμματος των ροπών κάμψης. Ο αδιάστατος ω είναι συνάρτηση του λόγου x/l και λαμβάνεται από πίνακα. Στον επόμενο πίνακα δίνεται η εξίσωση της ελαστικής γραμμής U, Μ αμφιέρειστης δοκού για διάφορες μορφές του διαγράμματος των ροπών κάμψης Μ, Ρ. Με τον πίνακα αυτόν και της αρχής της επαλληλίας μπορούν να αντιμετωπιστούν και πιο σύνθετες περιπτώσεις.
21 Τιμές συναρτήσεων ω
22 Εξισώσεις ελαστικής γραμμής αμφιέρειστης δοκού για διάφορα διαγράμματα Μ, Ρ
23 Ελαστική γραμμή φορέων (α) 1. Υπολογισμός διαγράμματος ροπών κάμψης Μ,α του φορέα για το αίτιο α. Μ,α =0 για καταναγκασμούς σε ισοστατικό φορέα. 2. Υπολογισμός των μετατοπίσεων των χαρακτηριστικών σημείων με τη μέθοδο του μοναδιαίου φορτίου. 3. Προσδιορισμός της κλείουσας της ελαστικής γραμμής (σύνδεση με ευθύγραμμα τμήματα των μετατοπίσεων των χαρακτηριστικών σημείων). 4. Θεώρηση των τμημάτων μεταξύ των χαρακτηριστικών σημείων του φορέα ως αμφιέρειστων και υπολογισμός των πρόσθετων μετατοπίσεων λόγω του ελαστικού φορτίου. Υποδιαίρεση κάθε τμήματος σε επιμέρους τμήματα και υπολογισμός των πρόσθετων μετατοπίσεων v(x) με τις συναρτήσεις ω.
24 Ελαστική γραμμή φορέων (β) 5. Αλγεβρική πρόσθεση των τιμών των μετατοπίσεων στα ενδιάμεσα σημεία κάθε τμήματος του φορέα. Εναλλακτικά, με γραφική λύση, σχεδιάζεται η κλείουσα κάθε τμήματος και αναρτώνται από αυτή οι τιμές των πρόσθετων μετατοπίσεων. 6. Κατά τη σχεδίαση της ελαστικής γραμμής επιλέγεται κλίμακα των μετατοπίσεων τάξεις μεγέθους μεγαλύτερη της κλίμακας των μηκών του φορέα, εφόσον οι μετατοπίσεις είναι της τάξης mm έως cm.
25 Παραδείγματα ελαστικών γραμμών
26 Στατική συμπεριφορά κατασκευών
27 Διάγραμμα ροπών Ελαστική γραμμή (α)
28 ιάγραμμα ροπών Ελαστική γραμμή (β)
ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής. Διδάσκων: Γιάννης Χουλιάρας
ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής Διδάσκων: Γιάννης Χουλιάρας Ισοστατικά πλαίσια με συνδέσμους (α) (β) Στατική επίλυση ισοστατικών πλαισίων
ΠΕΡΙΕΧΟΜΕΝΑ. 1. ΟΙ ΓΡΑΜΜΙΚΟΙ ΦΟΡΕΙΣ Εισαγωγή Συστήματα συντεταγμένων. 7
Στατική των γραμμικών φορέων ix ΠΕΡΙΕΧΟΜΕΝΑ σελ. 1. ΟΙ ΓΡΑΜΜΙΚΟΙ ΦΟΡΕΙΣ. 1 1.1 Εισαγωγή.. 3 1.2 Συστήματα συντεταγμένων. 7 2. Η ΚΙΝΗΣΗ ΚΑΙ Η ΣΤΗΡΙΞΗ ΤΟΥ ΔΙΣΚΟΥ ΑΝΤΙΔΡΑΣΕΙΣ 13 2.1 Η κίνηση και η στήριξη
Μέθοδος των Δυνάμεων
Μέθοδος των Δυνάμεων Εισαγωγή Μέθοδος των Δυνάμεων: Δ07-2 Η Μέθοδος των Δυνάμεων ή Μέθοδος Ευκαμψίας είναι μία μέθοδος για την ανάλυση γραμμικά ελαστικών υπερστατικών φορέων. Ανκαιημέθοδοςμπορείναεφαρμοστείσεπολλάείδηφορέων
ΑΣΚΗΣΗ 17 ΔΕΔΟΜΕΝΑ: Δίνονται: = cm ΕΠΙΛΥΣΗ: Ερώτημα α. k = 6000kN m. Μέθοδος των Δυνάμεων:
ΑΣΚΗΣΗ 7 ΔΕΔΟΜΕΝΑ: Στο φορέα του σχήματος ζητούνται: α) να χαραχθούν τα διαγράμματα M, Q (2.5 μονάδες) β) να υπολογιστεί το μέτρο και η φορά της κατακόρυφης μετατόπισης στο μέσο του τμήματος (23) ( μονάδα)
ΟΛΟΣΩΜΑ ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q. Διδάσκων: Γιάννης Χουλιάρας
ΟΛΟΣΩΜΑ ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Διδάσκων: Γιάννης Χουλιάρας Διάφοροι τύποι ολόσωμων ισοστατικών πλαισίων Ισορροπία κόμβων ΣF x = 0 N 1 + N 2 cosθ + Q 2 sinθ N 3
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΥΠΟΛΟΓΙΣΜΟΥ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ Κ. Β. ΣΠΗΛΙΟΠΟΥΛΟΣ Καθηγητής ΕΜΠ Πορεία επίλυσης. Ευρίσκεται
Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 3 Ιουλίου 202 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ( η περίοδος
ιάλεξη 7 η, 8 η και 9 η
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 7 η, 8 η και 9 η Ανάλυση Ισοστατικών οκών και Πλαισίων Τρίτη,, 21, Τετάρτη,, 22 και Παρασκευή 24 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy
ΘΕΜΑ 1 ΔΕΔΟΜΕΝΑ: Δίνονται: = cm ΕΠΙΛΥΣΗ: Ερώτημα α. k = 6000kN m. Μέθοδος των Δυνάμεων:
ΔΕΔΟΜΕΝΑ: ΘΕΜΑ Στο φορέα του σχήματος ζητούνται: α) να χαραχθούν τα διαγράμματα, Q (2.5 μονάδες) β) να υπολογιστεί το μέτρο και η φορά της κατακόρυφης μετατόπισης στο μέσο του τμήματος (23) ( μονάδα) Δίνονται:
Μέθοδος των Δυνάμεων (συνέχεια)
Μέθοδος των Δυνάμεων (συνέχεια) Υποχωρήσεις Στηρίξεων Μέθοδος των Δυνάμεων: Οι υποχωρήσεις στηρίξεων, η θερμοκρασιακή μεταβολή και τα κατασκευαστικά λάθη προκαλούν ένταση στους υπερστατικούς φορείς. Η
Πλαστική Κατάρρευση Δοκών
Πλαστική Κατάρρευση Δοκών ΠΕΡΙΕΧΟΜΕΝΑ Σταδιακή Μελέτη Πλαστικής Κατάρρευσης o Παράδειγμα 1 (ισοστατικός φορέας) o Παράδειγμα 2 (υπερστατικός φορέας) Αμεταβλητότητα Φορτίου Πλαστικής Κατάρρευσης Προσδιορισμός
ιαλέξεις 30-34 Μέθοδοι των δυνάµεων Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Στατική Ανάλυση των Κατασκευών Ι 1
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 30-34 Μέθοδοι επίλυσης υπερστατικών φορέων: Μέθοδοι των δυνάµεων Τρίτη, 16, Τετάρτη, 17, Παρασκευή 19 Τρίτη, 23, και Τετάρτη 24 Νοεµβρίου 2004 Πέτρος
ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Cross. Διδάσκων: Γιάννης Χουλιάρας
ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Cross Διδάσκων: Γιάννης Χουλιάρας Μέθοδος Cross Η μέθοδος Cross ή μέθοδος κατανομής των ροπών, χρησιμοποιείται για την επίλυση συνεχών δοκών και πλαισίων. Είναι παραλλαγή
ΑΣΚΗΣΗ 6. Διαλέγουμε ως υπερστατικά μεγέθη τις κατακόρυφες αντιδράσεις στις τρεις αριστερές στηρίξεις.
Άσκηση 6 Μέθοδος των υνάμεων ΑΣΚΗΣΗ 6 ΕΟΜΕΝΑ: Για τη δοκό του σχήματος με ίσα ανοίγματα και ροπές αδρανείας σταθερές αλλά όχι ίδιες σε κάθε άνοιγμα, ζητείται να μορφωθεί το διάγραμμα ροπών κάμψεως. 6 mm
ιαλέξεις Παρασκευή 8 Οκτωβρίου,, Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 13-15 Εισαγωγή στις Παραµορφώσεις και Μετακινήσεις Τρίτη, 5, και Τετάρτη, 6 και Παρασκευή 8 Οκτωβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk
Μάθημα: Στατική ΙΙ 9 Φεβρουαρίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 9 Φεβρουαρίου 011 Διδάσκων:, Ph.D. Διάρκεια εξέτασης :15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ
ιαλέξεις 24-27 Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Πέτρος Κωµοδρόµος
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 24-27 Αρχή υνατών Έργων (Α Ε) Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 και Τρίτη, 9 Νοεµβρίου, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk
ΠΡΟΛΟΓΟΣ ΕΙΣΑΓΩΓΗ... 15
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 11 ΕΙΣΑΓΩΓΗ... 15 1. Εισαγωγικές έννοιες... 17 1.1 Φορτία... 17 1.2 Η φέρουσα συμπεριφορά των βασικών υλικών... 22 1.2.1 Χάλυβας... 23 1.2.2 Σκυρόδεμα... 27 1.3 Η φέρουσα συμπεριφορά
1. Ανασκόπηση Μεθόδων Ευκαμψίας (δυνάμεων)
ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 1. Ανασκόπηση Μεθόδων Ευκαμψίας (δυνάμεων) Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος Κωμοδρόμος 1 Θέματα Μέθοδος
2. Επίλυση Δικτυωμάτων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων)
ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 2. Επίλυση Δικτυωμάτων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων) Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος Κωμοδρόμος,
Κεφάλαιο 2 Κινητοί ατενείς φορείς με ή χωρίς ελαστικές στηρίξεις/πακτώσεις
ΜΕΘΟΔΟΣ ΜΕΤΑΚΙΝΗΣΕΩΝ - ΑΣΚΗΣΕΙΣ Κεφάλαιο Κεφάλαιο Κινητοί ατενείς φορείς με ή χωρίς ελαστικές στηρίξεις/πακτώσεις Σύνοη Οι ασκήσεις έως 6 του κεφαλαίου αυτού, αφορούν σε κινητούς ατενείς φορείς. Στην Άσκηση
Εισαγωγικές Έννοιες (Επανάληψη): Δ02-2. Ισοστατικότητα
Εισαγωγικές Έννοιες Ισοστατικότητα Εισαγωγικές Έννοιες (Επανάληψη): Δ02-2 Ισοστατικός (ή στατικά ορισμένος) λέγεται ο φορέας που ο προσδιορισμός της εντατικής του κατάστασης είναι δυνατός βάσει μόνο των
2. Επίλυση Δικτυωμάτων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων)
ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 2. Επίλυση Δικτυωμάτων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων) Εαρινό εξάμηνο 2019 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος Κωμοδρόμος
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΚΑΤΑΛΟΓΟΣ ΑΣΚΗΣΕΩΝ.. 1. Σύνοψη των βημάτων επίλυσης φορέων με τη ΜΜ.. xiv. 2. Συμβάσεις προσήμων...
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΚΑΤΑΛΟΓΟΣ ΑΣΚΗΣΕΩΝ.. iii. Σύνοψη των βημάτων επίλυσης φορέων με τη ΜΜ.. xi. Συμβάσεις προσήμων.... Τοπικό και καθολικό σύστημα αναφοράς. xiii. Συμβατικά θετικές φορές εξωτερικών εντασιακών
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ A. 1 Εισαγωγή στην Ανάλυση των Κατασκευών 3
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ A 1 Εισαγωγή στην Ανάλυση των Κατασκευών 3 1.1 Κατασκευές και δομοστατική 3 1.2 Διαδικασία σχεδίασης κατασκευών 4 1.3 Βασικά δομικά στοιχεία 6 1.4 Είδη κατασκευών 8 1.4.1 Δικτυώματα 8
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 015 3. Δοκοί (φορτία NQM) Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 3. Δοκοί (φορτία NQΜ)/ Μηχανική Υλικών 1 Σκοποί ενότητας Να εξοικειωθεί ο φοιτητής με τα διάφορα είδη φορτίων.
Κεφάλαιο 10 Προσδιορισμός των βαθμών ελευθερίας
Κεφάλαιο 0 Προσδιορισμός των βαθμών ελευθερίας Σύνοψη Η άσκηση 0, που περιέχεται στο κεφάλαιο αυτό, αναφέρεται σε μία μεγάλη σειρά απλών και σύνθετων στατικών φορέων, για τους οποίους ζητείται ο προσδιορισμός
ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ. ΘΕΜΑ 1 ο (35%) Να επιλυθεί ο υπερστατικός φορέας του σχήματος χρησιμοποιώντας τη μέθοδο των παραμορφώσεων.
ΤΕΧΝΟΛΟΙΚΟ ΕΚΠΙΔΕΥΤΙΚΟ ΙΔΡΥΜ ΘΗΝΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΙΚΩΝ ΕΦΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 8 Φεβρουαρίου Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΤΩΝ ΡΠΤΗ ΕΞΕΤΣΗ ( η περίοδος χειμερινού
Κεφάλαιο 5 Φορείς με στοιχεία πεπερασμένης δυστένειας
Κεφάλαιο Φορείς με στοιχεία πεπερασμένης δυστένειας Σύνοψη Οι ασκήσεις 0, και του κεφαλαίου αυτού αφορούν σε κινητούς ατενείς φορείς, οι οποίοι συμπεριλαμβάνουν μεταξύ άλλων και στοιχεία πεπερασμένης δυστένειας
Κεφάλαιο 1 Πάγιοι ατενείς φορείς υπό εξωτερικά φορτία και καταναγκασμούς
ΜΕΘΟΔΟΣ ΜΕΤΑΚΙΝΗΣΕΩΝ - ΑΣΚΗΣΕΙΣ Κεφάλαιο Κεφάλαιο Πάγιοι ατενείς φορείς υπό εξωτερικά φορτία και καταναγκασμούς Σύνοψη Οι ασκήσεις έως του κεφαλαίου αυτού αφορούν σε πάγιους ατενείς φορείς. Στην Άσκηση
Μέθοδοι των Μετακινήσεων
Μέθοδοι των Μετακινήσεων Εισαγωγή Μέθοδοι των Μετακινήσεων: Δ14-2 Στη Μέθοδο των Δυνάμεων (ή Ευκαμψίας), που έχουμε ήδη μελετήσει, επιλέγουμε ως άγνωστα υπερστατικά μεγέθη αντιδράσεις ή εσωτερικές δράσεις.
Κεφάλαιο 3 Κινητοί ατενείς φορείς με απολύτως στερεά τμήματα
ΜΕΘΟΔΟΣ ΜΕΤΑΚΙΝΗΣΕΩΝ - ΑΣΚΗΣΕΙΣ Κεφάλαιο Κεφάλαιο Κινητοί ατενείς φορείς με απολύτως στερεά τμήματα Σύνοη Οι ασκήσεις 7 και 8 του κεφαλαίου αυτού αφορούν σε κινητούς ατενείς φορείς, οι οποίοι συμπεριλαμβάνουν
Α.Π.Θ.- ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ- ΣΤΑΤΙΚΗ ΙΙΙ - 19 ΣΕΠΤΕΜΒΡΙΟΥ 2008
1 Α.Π.Θ.- ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ- ΣΤΑΤΙΚΗ ΙΙΙ - 19 ΣΕΠΤΕΜΒΡΙΟΥ 008 ΘΕΜΑ 1o Για τον φορέα του σχήματος ζητούνται: Tο Γεωμετρικό Κύριο Σύστημα με τα ελάχιστα άγνωστα μεγέθη. Το μητρώο δυσκαμψίας Κ του
ΛΥΣΕΙΣ άλυτων ΑΣΚΗΣΕΩΝ στην Αντοχή των Υλικών
ΛΥΣΕΙΣ άλυτων ΑΣΚΗΣΕΩΝ στην Αντοχή των Υλικών Ασκήσεις για λύση Η ράβδος του σχήματος είναι ομοιόμορφα μεταβαλλόμενης κυκλικής 1 διατομής εφελκύεται αξονικά με δύναμη Ρ. Αν D d είναι οι διάμετροι των ακραίων
2.1 Παραμορφώσεις ανομοιόμορφων ράβδων
ΑΞΟΝΙΚΗ ΦΟΡΤΙΣΗ 9 Αξονική φόρτιση. Παραμορφώσεις ανομοιόμορφων ράβδων. Ελαστική ράβδος ΑΒ μήκους, Γ B μέτρου ελαστικότητας Ε και / συντελεστή θερμικής διαστολής α, είναι πακτωμένη στα σημεία Α και Β και
Μέθοδος Επικόμβιων Μετατοπίσεων
Μέθοδος Επικόμβιων Μετατοπίσεων Εισαγωγή Μέθοδος Επικόμβιων Μετατοπίσεων: Δ18-2 Τα περισσότερα προγράμματα Η/Υ έχουνωςθεμελιώδηβάση τους τη Μέθοδο Επικόμβιων Μετατοπίσεων. Στη Μέθοδο των Επικόμβιων Μετατοπίσεων,
4. Επίλυση Δοκών και Πλαισίων με τις
ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 4. Επίλυση Δοκών και Πλαισίων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων) Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2016
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2016 A2. Δικτυώματα Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr A2. Δικτυώματα/ Μηχανική Υλικών 1 Τι είναι ένα δικτύωμα Είναι ένα σύστημα λεπτών,
Μέθοδος των Δυνάμεων (συνέχεια)
Μέθοδος των υνάμεων (συνέχεια) Παράδειγμα Π8-1 Μέθοδος των υνάμεων: 08-2 Να υπολογιστούν οι αντιδράσεις και να σχεδιαστεί το διάγραμμα ροπών κάθε μέλους του πλαισίου. [ΕΙ σταθερό] Το πλαίσιο στο σχήμα
Μέθοδος των Δυνάμεων (συνέχεια)
Μέθοδος των Δυνάμεων (συνέχεια) Δοκοί σε Ελαστικές Στηρίξεις Μέθοδος των Δυνάμεων: Δ10-2 Οι στηρίξεις κάποιων φορέων είναι δυνατό να μετακινηθούν υπό την επίδραση της εξωτερικής φόρτισης. Για παράδειγμα,
ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΠΙΠΕ ΟΙ ΙΚΤΥΩΤΟΙ ΙΣΟΣΤΑΤΙΚΟΙ ΦΟΡΕΙΣ ΕΙΣΑΓΩΓΗ-ΜΟΡΦΩΣΗ ΙΚΤΥΩΜΑΤΩΝ
ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΠΙΠΕ ΟΙ ΙΚΤΥΩΤΟΙ ΙΣΟΣΤΑΤΙΚΟΙ ΦΟΡΕΙΣ ΕΙΣΑΓΩΓΗ-ΜΟΡΦΩΣΗ ΙΚΤΥΩΜΑΤΩΝ Στην Τεχνική Μηχανική Ι μελετώνται επίπεδα δικτυώματα. Τα δικτυώματα είναι φορείς που απαρτίζονται από ευθύγραμμες ράβδους
Μέθοδοι Ανάλυσης Απλών Δοκών & Πλαισίων (2)
Μέθοδοι Ανάλυσης Απλών Δοκών & Πλαισίων (2) ΠΕΡΙΕΧΟΜΕΝΑ Πλαστική Κατάρρευση Υπερστατικής Δοκού Πλαστική Κατάρρευση Συνεχούς Δοκού Η Εξίσωση Δυνατών Εργων Θεωρήματα Πλαστικής Ανάλυσης Θεωρία Μηχανισμών
ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής
ΤΕΧΝΟΛΟΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΙΚΩΝ ΕΦΑΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 5 Ιουνίου 1 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης :15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΡΑΠΤΗ
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 017 3. Διαγράμματα NQM Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr Α3. Διαγράμματα NQΜ/ Μηχανική Υλικών 1 Σκοποί ενότητας Να εξοικειωθεί ο φοιτητής
1 η Επανάληψη ιαλέξεων
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι 1 η Επανάληψη ιαλέξεων Στατική Ανάλυση Ισοστατικών Φορέων Τρίτη,, 28 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk ΠΠΜ
Μέθοδοι Ανάλυσης Απλών Δοκών & Πλαισίων (1)
Μέθοδοι Ανάλυσης Απλών Δοκών & Πλαισίων (1) ΠΕΡΙΕΧΟΜΕΝΑ Πλαστική Κατάρρευση Υπερστατικής Δοκού Πλαστική Κατάρρευση Συνεχούς Δοκού Η Εξίσωση Δυνατών Εργων Θεωρήματα Πλαστικής Αναλυσης Θεωρία Μηχανισμών
ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2005 ΘΕΜΑ 1
ΔΕΔΟΜΕΝΑ: ΘΕΜΑ 1 Στο φορέα του σχήματος ζητούνται: α) να χαραχθούν τα διαγράμματα Μ, Q, N (3.5 μονάδες) β) η κατακόρυφη βύθιση του κόμβου 7 λόγω της φόρτισης και μιας ομοιόμορφης μείωσης της θερμοκρασίας
Επίλυση 2ας. Προόδου & ιάλεξη 12 η. Τρίτη 5 Οκτωβρίου,,
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 12 η Επίλυση 2ας Προόδου & Εισαγωγή στις Παραµορφώσεις και Μετακινήσεις Τρίτη 5 Οκτωβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 016 3. Διαγράμματα NQM Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr Α3. Διαγράμματα NQΜ/ Μηχανική Υλικών 1 Σκοποί ενότητας Να εξοικειωθεί ο φοιτητής
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018 A2. Δικτυώματα Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr A2. Δικτυώματα/ Μηχανική Υλικών 1 Τι είναι ένα δικτύωμα Είναι ένα σύστημα λεπτών,
ΕΣΩΤΕΡΙΚΕΣ ΕΛΕΥΘΕΡΩΣΕΙΣ ΜΕΘΟΔΟΣ ΣΥΝΔΥΑΣΜΕΝΩΝ ΚΟΜΒΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΕΣΩΤΕΡΙΚΕΣ ΕΛΕΥΘΕΡΩΣΕΙΣ ΜΕΘΟΔΟΣ ΣΥΝΔΥΑΣΜΕΝΩΝ ΚΟΜΒΩΝ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ
Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων (συνέχεια)
Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων (συνέχεια) ο Θεώρημα Castigliano Δ06- Το ο ΘεώρημαCastigliano αποτελεί μια μέθοδο υπολογισμού της μετακίνησης (μετάθεσης ή στροφής) ενός σημείου του φορέα είτε
Κεφάλαιο 4 Συγκριτική επίλυση φορέων με και χωρίς ατένεια
ΜΕΘΟΔΟΣ ΜΕΤΑΙΝΗΣΕΩΝ ΑΣΗΣΕΙΣ εφάλαιο εφάλαιο Συγκριτική επίλυση φορέων με και χωρίς ατένεια Σύνοψη Η άσκηση 9, που περιέχεται στο κεφάλαιο αυτό, αφορά στον υπολογισμό ενός δίστυλου κινητού πλαισίου για
ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΚΗΣ ΙΙ. Δοκοί, Πλαίσια, Δικτυώματα, Γραμμές Επιρροής και Υπερστατικοί Φορείς
ΤΧΝΟΛΟΙΚΟ ΚΠΑΙΥΤΙΚΟ ΙΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΧΝΟΛΟΙΚΩΝ ΦΑΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΑΣΚΗΣΙΣ ΣΤΑΤΙΚΗΣ ΙΙ οκοί, Πλαίσια, ικτυώματα, ραμμές πιρροής και Υπερστατικοί Φορείς, Ph.D. Μάρτιος 11 Ασκήσεις
sin ϕ = cos ϕ = tan ϕ =
Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΟΜΙΚΩΝ ΕΡΓΩΝ ΜΗΧΑΝΙΚΗ 1 ΠΑΡΑ ΕΙΓΜΑ 1 ΚΑΤΑΣΚΕΥΗ ΙΑΓΡΑΜΜΑΤΩΝ MQN ΣΕ ΟΚΟ ιδάσκων: Αριστοτέλης Ε. Χαραλαµπάκης Εισαγωγή Με το παράδειγµα αυτό αναλύεται
Μάθημα: Στατική ΙΙ 30 Ιουνίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 3 Ιουνίου 11 Διδάσκων:, Ph.D. Διάρκεια εξέτασης :15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ (1
Μάθημα: Στατική ΙΙ 6 Οκτωβρίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 6 Οκτωβρίου 11 Διδάσκων:, Ph.D. Διάρκεια εξέτασης :15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ
4.5 Αµφιέρειστες πλάκες
Τόµος B 4.5 Αµφιέρειστες πλάκες Οι αµφιέρειστες πλάκες στηρίζονται σε δύο απέναντι παρυφές, όπως η s1 στην εικόνα της 4.1. Αν µία αµφιέρειστη πλάκα στηρίζεται επιπρόσθετα σε µία ή δύο ακόµη παρυφές και
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΕΠΕΞΗΓΗΜΑΤΙΚΟ ΣΗΜΕΙΩΜΑ... xxv ΚΑΤΑΛΟΓΟΣ ΣΥΜΒΟΛΩΝ... xxvi σελ. 1. ΤΟ ΑΝΤΙΚΕΙΜΕΝΟ ΤΗΣ ΣΤΑΤΙΚΗΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ... 1-1 1.1 Ο ρόλος της Στατικής στον σχεδιασμό των κατασκευών... 1-3 1.1.1
ΑΣΚΗΣΗ 14. Για το πλαίσιο του σχήματος με τεθλασμένο ζύγωμα ζητείται να μορφωθούν τα διαγράμματα M, Q, για τη δεδομένη φόρτιση.
ΑΣΚΗΣΗ 14 ΔΕΔΟΕΝΑ: Για το πλαίσιο του σχήματος με τεθλασμένο ζύγωμα ζητείται να μορφωθούν τα διαγράμματα,, για τη δεδομένη φόρτιση. ΕΠΙΛΥΣΗ: Ο φορέας είναι συμμετρικός ως προς άξονα με τυχαία φόρτιση.
2. Μέθοδοι δυσκαμψίας (μετακινήσεων) για επίλυση δικτυωμάτων
ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 2. Μέθοδοι δυσκαμψίας (μετακινήσεων) για επίλυση δικτυωμάτων Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος Κωμοδρόμος
ΑΣΚΗΣΗ 8. Για το φορέα του σχήματος να μορφωθούν τα διαγράμματα M, Q, N για ομοιόμορφο φορτίο και θερμοκρασιακή φόρτιση.
ΑΣΚΗΣΗ 8 ΕΟΜΕΝΑ: Για το φορέα του σχήματος να μορφωθούν τα διαγράμματα, Q, N για ομοιόμορφο φορτίο και θερμοκρασιακή φόρτιση. ίνονται: 50 KNm I/ A 0, T T 5 C 0 h 0,5m 5 C l l 0m T a t 5 C / C ΕΠΙΛΥΣΗ:
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 1. Εισαγωγικές έννοιες στην μηχανική των υλικών Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενο μαθήματος Μηχανική των Υλικών: τμήμα των θετικών επιστημών που
Π. Ασβεστάς Γ. Λούντος Τμήμα Τεχνολογίας Ιατρικών Οργάνων
Π. Ασβεστάς Γ. Λούντος Τμήμα Τεχνολογίας Ιατρικών Οργάνων Χρήσιμοι Σύνδεσμοι Σημειώσεις μαθήματος: http://medisp.bme.teiath.gr/eclass/ E-mail: gloudos@teiath.gr ΚΑΤΑΝΕΜΗΜΕΝΕΣ ΔΥΝΑΜΕΙΣ Κέντρο βάρους μάζας
Σημειώσεις του μαθήματος Μητρωϊκή Στατική
ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙΔΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σημειώσεις του μαθήματος Μητρωϊκή Στατική Π. Γ. Αστερής Αθήνα, Μάρτιος 017 Περιεχόμενα Κεφάλαιο 1 Ελατήρια σε σειρά... 1.1 Επιλογή μονάδων και καθολικού
ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΚΗΣ ΙΙI
ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΠΑΡΑΡΤΗΜΑ ΤΡΙΚΑΛΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΚΗΣ ΙΙI ΓΡΗΓΟΡΙΟΣ ΜΑΝΟΥΚΑΣ Δρ. Πολιτικός Μηχανικός ΤΡΙΚΑΛΑ, ΔΕΚΕΜΒΡΙΟΣ 4 ΠΕΡΙΕΧΟΜΕΝΑ. Η ΜΕΘΟΔΟΣ ΤΩΝ ΤΡΙΩΝ ΡΟΠΩΝ.... Η ΜΕΘΟΔΟΣ
ΑΣΚΗΣΗ 6 - ΔΙΚΤΥΩΤΗ ΚΑΤΑΣΚΕΥΗ
ΑΣΚΗΣΗ - ΔΙΚΤΥΩΤΗ ΚΑΤΑΣΚΕΥΗ Να γίνει πλήρης ανάλυση του μεταλλικού δικτυώματος του σχήματος. Ολες οι συνδέσεις των ράβδων στους κόμβους είναι αρθρωτού τύπου. Επί πλέον, ο ένας εκ των άνω κόμβων μπορεί
ΚΕΦΑΛΑΙΟ. Οι γραμμικοί φορείς. 1.1 Εισαγωγή 1.2 Συστήματα συντεταγμένων
ΚΕΦΑΛΑΙΟ 1 Οι γραμμικοί φορείς 1.1 Εισαγωγή 1.2 Συστήματα συντεταγμένων 2 1. Οι γραμμικοί φορείς 1.1 Εισαγωγή 3 1.1 Εισαγωγή Για να γίνει ο υπολογισμός μιας κατασκευής, θα πρέπει ο μελετητής μηχανικός
Ενότητα: Υπολογισμός διατμητικών τάσεων
ΔΙΑΜΗΚΗΣ ΑΝΤΟΧΗ ΠΛΟΙΟΥ Ενότητα: Υπολογισμός διατμητικών τάσεων Α. Θεοδουλίδης Υπολογισμός διατμητικών τάσεων Η ύπαρξη διατμητικών τάσεων οφείλεται στην διατμητική δύναμη Q(x): Κατανομή διατμητικών τάσεων
ΕΛΑΣΤΙΚΟΣ ΛΥΓΙΣΜΟΣ ΥΠΟΣΤΥΛΩΜΑΤΩΝ
ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΝΑΥΠΗΓΙΚΗΣ ΕΛΑΣΤΙΚΟΣ ΛΥΓΙΣΜΟΣ ΥΠΟΣΤΥΛΩΜΑΤΩΝ Λυγισμός - Ευστάθεια Κρίσιμο φορτίο λυγισμού Δρ. Σ. Π. Φιλόπουλος Εισαγωγή Μέχρι στιγμής στην ανάλυση των κατασκευών επικεντρώσαμε
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 2. Δικτυώματα Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 2. Δικτυώματα/ Μηχανική Υλικών 1 Σκοποί ενότητας Να είναι σε θέση ο φοιτητής να μπορεί να ελέγχει την ισο-στατικότητα
Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1
Σχήμα 1 Η εντατική κατάσταση στην οποία βρίσκεται μία δοκός, που υποβάλλεται σε εγκάρσια φόρτιση, λέγεται κάμψη. Αμφιέριστη δοκός Πρόβολος Κατά την καταπόνηση σε κάμψη αναπτύσσονται καμπτικές ροπές, οι
Επαναλήψεις. Τετάρτη, 1 & Παρασκευή,, 3 εκεµβρίου 2004. komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk. Πέτρος Κωµοδρόµος
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι Επαναλήψεις Τετάρτη, 1 & Παρασκευή,, 3 εκεµβρίου 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Στατική Ανάλυση των Κατασκευών Ι 1 Θέµατα
ΚΑΤΑΛΟΓΟΣ ΑΣΚΗΣΕΩΝ. Έλεγχος της κινηματικής ευστάθειας (στερεότητας) σύνθετων γραμμικών φορέων με τη μέθοδο της εναλλαγής (δεσμικών) ράβδων
ΚΑΤΑΛΟΓΟΣ ΑΣΚΗΣΕΩΝ ΣΕΙΡΑ Α: ΣΕΙΡΑ B: ΣΕΙΡΑ Γ: ΣΕΙΡΑ Δ: ΣΕΙΡΑ Ε: Εποπτικός έλεγχος στήριξης (κινηματικής ευστάθειας ή στερεότητας στήριξης) γραμμικών φορέων στο επίπεδο (δίσκων) και στον χώρο (σωμάτων).
Κεφάλαιο 1 Έλεγχος της κινηματικής ευστάθειας και υπολογισμός των αντιδράσεων στήριξης
Κεφάλαιο Έλεγχος της κινηματικής ευστάθειας και υπολογισμός των αντιδράσεων στήριξης Σύνοψη Οι ασκήσεις του κεφαλαίου αυτού αφορούν τον έλεγχο της κινηματικής ευστάθειας, δηλαδή της στερεότητας, γραμμικών
ΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : --, :-: ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΟΝΟΜΑ :......
ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΚΑΙ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΟΙΧΕΙΩΝ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ασκήσεις προηγούμενων
ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης
5.1. Μορφές κάµψης ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης Η γενική κάµψη (ή κάµψη), κατά την οποία εµφανίζεται στο φορέα (π.χ. δοκό) καµπτική ροπή (Μ) και τέµνουσα δύναµη (Q) (Σχ. 5.1.α).
Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : , 12:00-15:00 ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : --, :-: ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΑΡ. ΜΗΤΡ :.......
ιάλεξη 3 η komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Πέτρος Κωµοδρόµος Παρασκευή, 10 Σεπτεµβρίου,, 2004
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 3 η Ισορροπία, στατικότητα και εντατικά µεγέθη κατασκευών Παρασκευή, 10 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk
Ανάλυση Ισοστατικών ικτυωµάτων
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 5 η και 6 η Ανάλυση Ισοστατικών ικτυωµάτων Τετάρτη,, 15, Παρασκευή, 17 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk
Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων. Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης
Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης Εισαγωγή Παραμορφώσεις Ισοστατικών Δοκών και Πλαισίων: Δ22-2 Οι κατασκευές, όταν υπόκεινται σε εξωτερική φόρτιση, αναπτύσσουν
ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ
ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ ΔΙΔΑΣΚΩΝ: ΓΚΟΥΝΤΑΣ Δ. ΙΩΑΝΝΗΣ ΤΜΗΜΑ: ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ / ΚΑΤΕΥΘΥΝΣΗ ΑΝΤΙΡΡΥΠΑΝΣΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης CreatveCommons. Για
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΧΩΡΙΚΑ ΠΛΑΙΣΙΑ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ Περιεχόμενα. Εισαγωγή. Παρουσίαση
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018 Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr 1 Περιεχόμενα ενότητας Α Βασικές έννοιες Στατική υλικού σημείου Αξιωματικές αρχές Νόμοι Νεύτωνα
ΠΠΜ 220: Στατική Ανάλυση Κατασκευών Ι
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος Γενικές οδηγίες: Ακαδηµαϊκό Έτος 2004 Χειµερινό Εξάµηνο ΠΠΜ 220: Στατική Ανάλυση Κατασκευών Ι 3 η Σειρά Ασκήσεων
ΙΣΟΣΤΑΤΙΚΟΙ ΦΟΡΕΙΣ - ΑΣΚΗΣΕΙΣ Κεφάλαιο 2. Κεφάλαιο 2. Υπολογισμός εντασιακών μεγεθών
ΙΣΟΣΤΑΤΙΚΟΙ ΦΟΡΕΙΣ ΑΣΚΗΣΕΙΣ Κεφάλαιο Κεφάλαιο Υπολογισμός εντασιακών μεγεθών Σύνοψη Στο κεφάλαιο αυτό, το οποίο κατέχει κεντρική θέση στο παρόν βιβλίο, παρουσιάζονται οι βασικές μέθοδοι της Στατικής για
ΕΠΙΠΕ Α ΙΚΤΥΩΜΑΤΑ. ομική Μηχανική Ι. Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΡΧΙΤΕΚΤΟΝΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΣΥΝΘΕΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΙXΜΗΣ ΕΠΙΠΕ Α ΙΚΤΥΩΜΑΤΑ Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ ομική Μηχανική Ι 1 Περιεχόμενα 1. Εισαγωγή 2. Μόρφωση επίπεδων
ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ
ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ & ΚΑΤΑΣΚΕΥΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ έκδοση DΥΝI-DCMB_2016b Copyright
ΚΑΤΑΣΚΕΥΗ ΑΝΤΙΣΤΟΙΧΟΥ ΔΙΚΤΥΩΜΑΤΟΣ ΦΟΡΕΑ. 3δ=3*6=18>ξ+σ=5+12=17. Άρα το αντίστιχο δικτύωμα είναι μια φορά κινητό.
1 Α.Π.Θ.- ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ - ΣΤΑΤΙΚΗ ΙΙΙ - ΦΕΒΡΟΥΑΡΙΟΣ 2009 ΘΕΜΑ 1o Για τον φορέα του σχήματος, να υπολογιστούν και σχεδιαστούν τα πλήρη διαγράμματα Μ όλων των στοιχείων του φορέα, λόγω ταυτόχρονης
Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων
Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων Εισαγωγή Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων: Δ03-2 Οι ενεργειακές μέθοδοι αποτελούν τη βάση για υπολογισμό των μετακινήσεων, καθώς η μετακίνηση εισέρχεται
Γενικευμένα Mονοβάθμια Συστήματα
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Γενικευμένα Mονοβάθμια Συστήματα Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Δυναμική Ανάλυση Ραβδωτών Φορέων 1 1. Είδη γενικευμένων μονοβαθμίων συστημάτων xu
Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων (συνέχεια)
Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων (συνέχεια) Παράδειγμα Π4-1 Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων: Δ04-2 Χρησιμοποιώντας την ΑΔΕ, να υπολογιστούν οι μετακινήσεις δ x και δ y του κόμβου
Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση:
Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: S d R d Η εν λόγω ανίσωση εφαρμόζεται και ελέγχεται σε κάθε εντατικό μέγεθος
Π. Ασβεστάς Γ. Λούντος Τμήμα Τεχνολογίας Ιατρικών Οργάνων
Π. Ασβεστάς Γ. Λούντος Τμήμα Τεχνολογίας Ιατρικών Οργάνων Χρήσιμοι Σύνδεσμοι Σημειώσεις μαθήματος: http://medisp.bme.teiath.gr/eclass/ E-mail: gloudos@teiath.gr Σύνθεση και Ανάλυση Δυνάμεων και Ροπών
Ενότητα: Διαμήκης Αντοχή Πλοίου- Ορθές τάσεις λόγω κάμψης
ΔΙΑΜΗΚΗΣ ΑΝΤΟΧΗ ΠΛΟΙΟΥ Ενότητα: Διαμήκης Αντοχή Πλοίου- Ορθές τάσεις λόγω κάμψης Α. Θεοδουλίδης Η αντοχή του πλοίου Διαμήκης αντοχή Εγκάρσια αντοχή Τοπική αντοχή Ανάλυση του σύνθετου εντατικού πεδίου Πρωτεύουσες,
ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ
2. ΣΤΑΤΙΚΗ Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στη δοκό του σχήματος: Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στον φορέα του σχήματος: Ασκήσεις υπολογισμού τάσεων Άσκηση 1 η (Αξονικός εφελκυσμός
ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΚΗΣ ΙΙ
ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΠΑΡΑΡΤΗΜΑ ΤΡΙΚΑΛΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΚΗΣ ΙΙ ΓΡΗΓΟΡΙΟΣ ΜΑΝΟΥΚΑΣ Δρ. Πολιτικός Μηχανικός ΤΡΙΚΑΛΑ, ΑΠΡΙΛΙΟΣ 014 ΠΕΡΙΕΧΟΜΕΝΑ 1. ΕΙΣΑΓΩΓΗ...3 1.1 Το στατικό πρόβλημα...
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι Ακαδηµαϊκό Έτος 2004 Χειµερινό Εξάµηνο Τελική Εξέταση 8:30-11:30 π.µ.
Ασκήσεις 1. Με τα δεδομένα του παρακάτω πίνακα: Τιμή (Ρ) Ποσότητα (Q D )
2 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ 1. Ποια είναι η επιδίωξη του καταναλωτή και ποιοι παράγοντες την περιορίζουν; 2. Ποιος καταναλωτής ονομάζεται ορθολογικός και πότε λέμε ότι βρίσκεται σε ισορροπία; 3. Να διατυπώσετε