Κεφάλαιο 3 ο Ακολουθιακά Κυκλώματα με ολοκληρωμένα ΤΤL
|
|
- ÆΑἴθων Μιχαηλίδης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Κεφάλαιο 3 ο Ακολουθιακά Κυκλώματα με ολοκληρωμένα ΤΤL 3.1 Εισαγωγή στα FLIP FLOP Θεωρητικό Υπόβαθρο Τα σύγχρονα ακολουθιακά κυκλώματα με τα οποία θα ασχοληθούμε στο εργαστήριο των Ψηφιακών συστημάτων 2, αφορούν ψηφιακά συστήματα τα οποία περιέχουν συνήθως συνδυαστικά κυκλώματα. Επιπλέον αυτά τα κυκλώματα, περιέχουν στοιχεία μνήμης, τα οποία και κάνουν όλο το σύστημα να είναι ακολουθιακό. Μια σχηματική διάταξη ενός τέτοιου ακολουθιακού κυκλώματος φαίνεται στην παρακάτω εικόνα (Εικόνα ). Εικόνα 3.1: Σχηματική διάταξη ακολουθιακού κυκλώματος Παρατηρώντας την παραπάνω διάταξη, εξάγουμε το συμπέρασμα ότι αποτελείται από, ένα συνδυαστικό κύκλωμα συνδεδεμένο με στοιχεία μνήμης σε ένα σχηματισμό βρόγχου ανάδρασης. Με το όρο στοιχεία μνήμης, εννοούμε συσκευές που μπορούν να αποθηκεύουν δυαδικές πληροφορίες μέσα τους. Η αποθηκευμένη πληροφορία ονομάζεται κατάσταση του κυκλώματος (συστήματος) Ένα ακολουθιακό κύκλωμα δέχεται πληροφορίες από τις εξωτερικές του εισόδους. Οι είσοδοι, σε συνδυασμό με την παρούσα κατάσταση των στοιχείων μνήμης, καθορίζουν τις τιμές των εξόδων. Επίσης αυτές καθορίζουν το πώς θα αλλάξει η κατάσταση των στοιχείων μνήμης. Συμπεράσματα: σε ένα σύγχρονο ακολουθιακό κύκλωμα, η έξοδος είναι συνάρτηση όχι μόνο των εισόδων του, αλλά και της παρούσας κατάστασης των στοιχείων μνήμης του. Η επόμενη κατάσταση αυτών των στοιχείων μνήμης είναι κι αυτή συνάρτηση τόσο των εισόδων όσο και της παρούσας κατάστασης. Καταλήγουμε δηλαδή ότι, για την περιγραφή ενός των ακολουθιακών κυκλωμάτων δεν φτάνει να κοιτάξει κανείς μόνο τις παρούσες τιμές των εισόδων και εξόδων, αλλά πρέπει να μελετήσουμε μια ολόκληρη χρονική ακολουθία εισόδων, εξόδων και καταστάσεων. Ένα σύγχρονο ακολουθιακό κύκλωμα πρέπει εξ ορισμού, να χρησιμοποιεί σήματα τα οποία επηρεάζουν τα στοιχεία μνήμης του σε διακριτές στιγμές του χρόνου μόνο. Πρακτικά αυτό επιτυγχάνεται μέσω μιας «γεννήτριας κύριου ρολογιού», η οποία τροφοδοτεί το σύστημα με μια περιοδική σειρά «παλμών ρολογιού». Αυτά τα κυκλώματα που χρησιμοποιούν παλμούς συγχρονισμού που εφαρμόζονται σε στοιχεία μνήμης ονομάζονται «ακολουθιακά κυκλώματα με ρολόι». Τα στοιχεία μνήμης που χρησιμοποιούνται στα ακολουθιακά κυκλώματα με ρολόι λέγονται FLIP FLOP. Πρόκειται δηλαδή για δυαδικά κύτταρα που μπορούν να αποθηκεύσουν ένα bit πληροφορίες. Τα FLIP FLOP έχουν συνήθως δύο εξόδους, μία για την τιμή του bit που είναι αποθηκευμένο μέσα τους και μια για το συμπλήρωμά της. Δυαδικές πληροφορίες μπορούν να καταχωρηθούν στο flip flop με διάφορους τρόπους, και έτσι έχουμε διάφορους τύπους flip flop. Ειδοποιός διαφορά ανάμεσα στους διάφορους τύπους flip flop είναι ο αριθμός των εισόδων που έχουν και ο τρόπος με το οποίο αυτές οι είσοδοι επηρεάζουν την δυαδική τους κατάσταση. Οι συνηθέστεροι τύποι flip flop με τους οποίους θα ασχοληθούμε και στο εργαστήριο είναι οι παρακάτω: J K flip flop D flip flop T flip flop
2 Είναι προφανές ότι οι παραπάνω τύποι των flip flop υπάρχουν στο εργαστήριο με την μορφή ολοκληρωμένου (chip), και ονομασία ανάλογη με τον τύπο Πειραματικό Μέρος 1. Υπολογίστε θεωρητικά και πειραματικά τον πίνακα αληθείας του παρακάτω κυκλώματος Οι πύλες NΑΝD βρίσκονται στο ολοκληρωμένο Άσκηση Αυτοαξιολόγησης Άσκηση για το σπίτι Διαδραστικό πρόγραμμα 3.1 Υπολογίστε τον πίνακα αληθείας του παρακάτω κυκλώματος. S 3 1 CP R 4 2 Άσκηση Αυτοαξιολόγησης Διαδραστικό πρόγραμμα ΚΥΚΛΩΜΑΤΑ J-K, D, T, FLIP FLOP Θεωρητικό Υπόβαθρο
3 Τα flip-flop τύπου J K είναι μια πιο εξελιγμένη μορφή του τύπου R S, εξελιγμένη κατά το ότι η απροσδιόριστη κατάσταση που έχει τον τύπο R S προσδιορίζεται στον τύπο J K. Οι είσοδοι J και K συμπεριφέρονται σαν τις εισόδους R S η J θέτει (set) το flipflop και το Κ μηδενίζει (clear). Εάν όμως διεγείρουμε και την J και την Κ ταυτόχρονα, τότε το flipflop αλλάζει κατάσταση και πάει στην συμπληρωματική αυτής στην οποία ήταν αν ήταν =1 γίνεται =0 και αντίστροφα. Χαρακτηριστικός πίνακας J-Kflip-flop J K (t+1) 0 0 (t) (t) Το γραφικό σύμβολο του J-KFlip-Flop Ck J J Pr F-F Η λειτουργία τωνpreset και clear K K Cr Το γραφικό σύμβολο του J-KFlip-Flop φαίνεται παραπάνω και περιέχεται στα ολοκληρωμένα 74LS76. Τα σήματα Ρreset και Clear είναι αυτά που καθορίζουν τις εισόδους σύμφωνα με τον παραπάνω πίνακα. Οι είσοδοι αυτές λέγονται και άμεσες είσοδοι καθώς επενεργούν στην έξοδο ασύγχρονα με το ρολόι. Το μεν preset ή directset θέτει την έξοδο (στο 1 ) το δε clear ή directreset το επαναφέρει στο μηδέν. Αλληλεπίδραση Με link στο 74LS76 να δίνουμε το datasheet του ολοκληρωμένουd FLIP FLOP Ένας τρόπος εξάλειψης της ανεπιθύμητης συμπεριφοράς στην απροσδιόριστη κατάσταση είναι να εξασφαλιστεί ότι ποτέ δεν θα γίνουν και οι δύο είσοδοι ίσες με 1. Αυτό συμβαίνει στο Dflip-flop το οποίο έχει μία είσοδο D και το ρολόι. Χαρακτηριστικός πίνακας Dflip-flop D (t+1) Το γραφικό σύμβολο του DFlip-Flop Άσκηση Αυτοαξιολόγησης Πειραματικό Μέρος Διαδραστικό πρόγραμμα Να επαληθευτεί πειραματικά ο χαρακτηριστικός πίνακας του FLIP FLOP τύπου J-K με παλμό ρολογιού με χρήση του ολοκληρωμένου κυκλώματος 7476.
4 2. Να επαληθευτεί πειραματικά ο χαρακτηριστικός πίνακας του FLIP FLOP τύπου D με παλμό ρολογιού με χρήση του ολοκληρωμένου κυκλώματος Άσκηση 1 Άσκηση Αυτοαξιολόγησης Διαδραστικό πρόγραμμα 3.3 Έχοντας υπόψιν το pinout του ολοκληρωμένου κυκλώματος 74LS74 που φαίνεται παρακάτω, προσδιορίστε τις κατάλληλες τιμές που πρέπει να τεθούν στα pin προκειμένου να λειτουργεί το flipflop 1: a) 7 b) 14 c) 4 d) 1 e) Ποια λογική τιμή θα πάρουμε στο pin 5 εάν το pin 2 συνδεθεί στο ground? f) Ποια λογική τιμή θα πάρουμε στο pin 6 εάν το pin 2 συνδέσουμε 5V? Άσκηση 2 Υπολογίστε τον πίνακα καταστάσεων του παρακάτω κυκλώματος. Υπόδειξη: οι έξοδοι A, B εξαρτώνται από την παρούσα κατάσταση και τις τιμές των εισόδων Ja, Ka, Jb, Kb. Συμπληρώστε τον παρακάτω πίνακα.
5 Pr J K A F-F Clr Pr 1 J K B F-F CLK Clr Εικόνα 3.2: Κύκλωμα πειράματος με βασικά Flip-Flop A(t) B(t) JA KA JB KB A(t+1) B(t+1) Άσκηση Αυτοαξιολόγησης Διαδραστικό πρόγραμμα Ανάλυση σύγχρονου ακολουθιακού κυκλώματος Θεωρητικό Υπόβαθρο Θα εξετάσουμε τη μεθοδολογία που ακολουθούμε για την ανάλυση ενός σύγχρονου ακολουθιακού κυκλώματος με βάση το ενδεικτικό κύκλωμα που ακολουθεί: Προσδιορίστε το διάγραμμα ροής του παρακάτω κυκλώματος. Για να φτάσετε στο στόχο σας, συμπληρώστε τον πίνακα καταστάσεων ο οποίος περιλαμβάνει την παρούσα και επόμενη κατάσταση των εξόδων των flipflop, τις εισόδους του κυκλώματος (για παράδειγμα x, y, z) και τις εισόδους των flip-flop. Συνήθως οι τιμές των εισόδων των flip-flop εξαρτώνται από την παρούσα κατάσταση και τις τιμές των εισόδων.
6 Εικόνα 3.3: Κύκλωμα παραδείγματος ανάλυσης σύγχρονων συνδυαστικών κυκλωμάτων ΒΗΜΑ 1. Βρίσκουμε τις εξισώσεις των σημάτων εισόδων των flip-flop (εδώ JA, KA, JB, KB) από το κύκλωμα. Άσκηση Αυτοαξιολόγησης Διαδραστικό πρόγραμμα 3.5 ΒΗΜΑ 2. Συμπληρώνουμε τον πίνακα καταστάσεων κατάλληλα και υπολογίζουμε την επόμενη κατάσταση με βάση τις παρούσες καταστάσεις και τις διεγέρσεις. Πιο αναλυτικά για κάθε πιθανό συνδυασμό τιμών των εισόδων και της παρούσας κατάστασης, υπολογίζουμε τις τιμές των εισόδων των flip-flop και εν συνεχεία την επόμενη κατάσταση των flip-flop. Παρούσα κατάσταση Επόμενη Κατάσταση Διέγερση x A(t) B(t) A(t+1) B(t+1) J A K A J B K B Πίνακας 3.4: Πίνακας καταστάσεων του κυκλώματος που φαίνεται στην Εικόνα Άσκηση Αυτοαξιολόγησης
7 Διαδραστικό πρόγραμμα 3.6 Αφού συμπληρώστε τις στήλες JA, KA, JB, KB, ελέγξτε την ορθότητα των εξόδων A(t+1), B(t+1) ΒΗΜΑ 3. Τέλος το διάγραμμα ροής φαίνεται παρακάτω: Πειραματικό Μέρος Να επαληθευτεί πειραματικά το παραπάνω διάγραμμα ροής. Άσκηση 1. Υπολογίστε το διάγραμμα ροής του παρακάτω κυκλώματος. x J SET a b K CLR 1 J SET B K CLR 2. Υπολογίστε το διάγραμμα ροής του παρακάτω κυκλώματος.
8 3. Υπολογίστε το διάγραμμα ροής και τον πίνακα καταστάσεων του παρακάτω κυκλώματος. Ποια η χρησιμότητα του κυκλώματος αυτού? 3.4 Σχεδίαση σύγχρονου ακολουθιακού κυκλώματος σχεδίαση μετρητή Θεωρητικό Υπόβαθρο Ένα ακολουθιακό κύκλωμα που περνάει από μια προδιαγραμμένη ακολουθία καταστάσεων, όταν του εφαρμόσουμε παλμούς στην είσοδο, λέγεται «μετρητής» (counter). Οι παλμοί εισόδου, που τους λέμε «παλμούς μέτρησης» μπορεί να είναι παλμοί ρολογιού ή μπορεί να προέρχονται από μία εξωτερική πηγή και μπορεί να έρχονται σε κανονικά ή ακανόνιστα χρονικά διαστήματα. Σε ένα μετρητή η ακολουθία των καταστάσεων μπορεί να είναι η δυαδική σειρά μέτρησης ή μια οποιαδήποτε άλλη σειρά. Μετρητές βρίσκουμε σχεδόν σε όλα τα ψηφιακά μηχανήματα. Τους χρησιμοποιούμε για να μετράμε πόσες φορές συμβαίνει κάποιο γεγονός ή για την δημιουργία ακολουθιών χρονισμού για τον έλεγχο των λειτουργιών ενός ψηφιακού συστήματος. Από τις διάφορες ακολουθίες μέτρησης που μπορεί να έχει ένας μετρητής, η απλούστερη και η ευρύτερα διαδεδομένη είναι η απλή δυαδική σειρά μέτρησης. Ένας τέτοιος μετρητής λέγεται «δυαδικός μετρητής». Ένας «δυαδικός μετρητής» των n-bits αποτελείται από n flip-flops και μπορεί να μετράει στο δυαδικό από το 0 εώς το 2 n -1. Μεθοδολογία σχεδίασης Στη συνέχεια θα διατυπώσουμε τη μεθοδολογία σχεδίασης και θα χρησιμοποιήσουμε για παράδειγμα τη σχεδίαση ενός δυαδικού μετρητή των 2-bits ο οποίος εκτελεί φθίνουσα κυκλική μέτρηση για κύκλωμα με J- Kflip-flop. ΒΗΜΑ 1. Προσδιορίζουμε το πλήθος των flip-flop που θα χρησιμοποιήσουμε. Στο παράδειγμά μας θα χρησιμοποιήσουμε 2 flip-flop καθώς θέλουμε να σχεδιάσουμε μετρητή των 2-bit. ΒΗΜΑ 2. Με βάση τη ζητούμενη λειτουργία, συμπληρώνουμε τις στήλες του πίνακα καταστάσεων που περιγράφουν την παρούσα και επόμενη κατάσταση για όλες τις πιθανές τιμές της παρούσας κατάστασης. Σε περίπτωση που για κάποια τιμή της παρούσας κατάστασης δεν προσδιορίζει η εκφώνηση την επιθυμητή τιμή της επόμενης κατάστασης, συμπληρώνουμε X, δηλαδή αδιάφορους όρους. Για το παράδειγμά μας συμπληρώνουμε τις 4 πρώτες στήλες, όπως φαίνεται παρακάτω.
9 ΒΗΜΑ 3. Με βάση τον πίνακα διέγερσης των flip-flop που χρησιμοποιούμε, συμπληρώνουμε τις στήλες που αντιστοιχούν στις εισόδους των flip-flop. Οι πίνακες διέγερσης για τα J-K kai D flip-flop φαίνονται στον ακόλουθο πίνακα. (t+1) D (t) (t+1) J K x X 1 0 x x 0 ΒΗΜΑ 4. Βρίσκουμε την εξίσωση που εκφράζει τις εισόδους των flip-flop σαν συνάρτηση της παρούσας κατάστασης και των εξωτερικών εισόδων του κυκλώματος (αν υπάρχουν). Επισημαίνεται ότι για να βρούμε την απλούστερη δυνατή εξίσωση, χρησιμοποιούμε χάρτη Καρνώ.
10 Στο παράδειγμά μας: JA B A X X JA=B KA B A X X KA=B JB B A X 1 1 X JB=1 KB B A X 1 1 X KB=1 ΒΗΜΑ 5 Σχεδιάζουμε το κύκλωμα. Το κύκλωμα του παραδείγματός μας φαίνεται παρακάτω.
11 3.4.2 Πειραματικό Μέρος Να επαληθευτεί πειραματικά ότι το παραπάνω κύκλωμα εκτελεί την επιθυμητή λειτουργία. Άσκηση 1. Να σχεδιασθεί μετρητής 3-bit ο οποίος εκτελεί φθίνουσα μέτρηση a. με J-Kflip-flop b. με Dflip-flop. 2. Να σχεδιασθεί μετρητής BCD ο οποίος εκτελεί αύξουσα μέτρηση. 3.5 Αυτοδιόρθωση και σχεδίαση μετρητή με είσοδο Θεωρητικό Υπόβαθρο Οι απαιτήσεις σχεδίασης ενός μετρητή περιγράφουν μια ακολουθία καταστάσεων η οποία αλλιώς ονομάζεται κύκλος καταστάσεων. Όταν οι απαιτήσεις δεν περιγράφουν την επόμενη κατάσταση για κάθε πιθανή τιμή της παρούσας κατάστασης, προκύπτει το ζήτημα των μεταβάσεων για τις τιμές κατάστασης εκτός κύκλου (που δεν έχουν προδιαγεγραμμένη επόμενη κατάσταση). Για παράδειγμα, αν μας ζητηθεί να σχεδιασθεί ένας μετρητής που εκτελεί τις μεταβάσεις , οι απαιτήσεις σχεδίασης δεν ορίζουν ποια πρέπει να είναι η επόμενη κατάσταση όταν το κύκλωμα βρεθεί (πιθανότατα με τη χρήση των ασύγχρονων σημάτων presetkaiclear) στην κατάσταση 2. Αν το κύκλωμα βρεθεί σε κατάσταση εκτός κύκλου και η επόμενη κατάσταση είναι κατάσταση του κύκλου, τότε λέμε ότι το κύκλωμα αυτοδιορθώνεται. Αν το κύκλωμα για (έστω και μια) κατάσταση εκτός κύκλου, δεν οδηγείται σε κατάσταση του κύκλου, λέμε ότι το κύκλωμα δεν αυτοδιορθώνεται. Σε περίπτωση που μας ζητηθεί να σχεδιάσουμε ένα κύκλωμα και δεν ορίζεται τι γίνεται στις καταστάσεις εκτός κύκλου, οφείλουμε να ελέγξουμε αν το κύκλωμα αυτοδιορθώνεται, αφού πρώτα σχεδιάσουμε το κύκλωμα, όπως θα γίνει στο ακόλουθο παράδειγμα. Παράδειγμα Να σχεδιαστεί ένα σύγχρονο κύκλωμα με χρήση J-K flipflop, που να μετράει κυκλικά προς τα πάνω τους αριθμούς: Λύση ΒΗΜΑ 1.
12 Στο παράδειγμά μας θα χρησιμοποιήσουμε 3 flip-flop για να μπορούν να κωδικοποιηθούν οι αριθμοί 0 ως και 7. ΒΗΜΑ 2 και 3. Συμπληρώνουμε τον πίνακα καταστάσεων, όπως φαίνεται παρακάτω. Παρούσα κατάσταση Επόμενη κατάσταση Διέγερση A(t) B(t) C(t) A(t+1) B(t+1) C(t+1) JA KA JB KB JC KC X 1 X 1 X X X X X X X X X X X X X X X X X X X X X 1 X X X X X X X X X X X 0 1 X X X X X X X X X X X X 1 X 1 X 1 ΒΗΜΑ 4. Στο παράδειγμά μας: JA B C A X 1 X 1 X X X X JA=B KA B C A X X 1 X 1 X 0 X X KA=B JB B C A X X X 1 X 1 X X JB=1 KB B C A X X 1 X 1 X X 1 X KB=1 JC B C A X X X 1 X X X X JC=1 KC B C
13 A X X 0 X 1 X 0 1 X KC=A*B ΒΗΜΑ 5 Σχεδιάζουμε το κύκλωμα. KA JA A Pr F-F Cr Pr 1 JB A F-F 1 KB Cr Pr 1 JC A F-F KC CLK Cr Βήμα 6: έλεγχος αυτοδιόρθωσης Συμπληρώνω τις γραμμές του πίνακα καταστάσεων για τις οποίες υπήρχαν αδιάφοροι όροι δηλαδή για τις τιμές της παρούσας κατάστασης που δεν οριζόταν η επόμενη. Με βάση το κύκλωμα είμαστε σε θέση να συμπληρώσουμε τις τιμές των εισόδων των flip-flop και στη συνέχεια την επόμενη κατάσταση. A(t) B(t) C(t) A(t+1) B(t+1) C(t+1) JA KA JB KB JC KC Παρατηρούμε ότι ενώ για τις τιμές 1, 2 και 4 της παρούσας κατάστασης, η επόμενη κατάσταση είναι 3, 5, και 7 αντίστοιχα (δηλαδή τιμές του κύκλου), αυτό δεν ισχύει για την κατάσταση 6. Όταν το κύκλωμα βρεθεί στην κατάσταση 6, η επόμενη κατάσταση είναι η κατάσταση 1, η οποία είναι εκτός κύκλου. Άρα το κύκλωμα δεν αυτοδιορθώνεται σε ένα παλμό ρολογιού. Στον επόμενο όμως παλμό ρολογιού το κύκλωμαθα μεταβεί στην
14 κατάσταση 3, η οποία είναι κατάσταση του κύκλου. Δηλαδή η αλληλουχία είναι Στην περίπτωση αυτή λέμε ότι το κύκλωμα αυτοδιορθώνεται μετά από 2 παλμούς ρολογιού Πειραματικό Μέρος 1. Να σχεδιαστεί και να υλοποιηθεί σύγχρονο κύκλωμα 2- bit με D FlipFlop που να μετρά μικρούς ή μεγάλους αριθμούς ανάλογα με την τιμή κατάλληλου εξωτερικού σήματος ελέγχου. Για παράδειγμα: Για x=0 να μετρά τους αριθμούς : Για x=1 να μετρά τους αριθμούς :10 11 Ασκήσεις 1. Να σχεδιαστεί και να υλοποιηθεί σύγχρονο κύκλωμα 3- bit με D FlipFlop που να μετρά άρτιους και περιττούς αριθμούς ανάλογα με την τιμή κατάλληλου εξωτερικού σήματος ελέγχου. Για παράδειγμα: Για x=0 να μετρά τους άρτιους αριθμούς Για x=1 να μετρά τους περιττούς αριθμούς 2. Να σχεδιαστεί και να υλοποιηθεί σύγχρονο κύκλωμα 3- bit με J-K FlipFlop που να μετρά άρτιους και περιττούς αριθμούς ανάλογα με την τιμή κατάλληλου εξωτερικού σήματος ελέγχου.
15 3.6 Bιβλιογραφία Ασημάκης Ν., Ψηφιακά Ηλεκτρονικά, Εκδόσεις GUTENBERG, «ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ» ΜΟRRISMANO, ISBN13: , Εκδόσεις Παπασωτηρίου, Κεφάλαια 5, 6, και 7
ΑΣΚΗΣΗ 9. Tα Flip-Flop
ΑΣΚΗΣΗ 9 Tα Flip-Flop 9.1. ΣΚΟΠΟΣ Η κατανόηση της λειτουργίας των στοιχείων μνήμης των ψηφιακών κυκλωμάτων. Τα δομικά στοιχεία μνήμης είναι οι μανδαλωτές (latches) και τα Flip-Flop. 9.2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ
Διαβάστε περισσότεραΑΣΚΗΣΗ 10 ΣΧΕΔΙΑΣΗ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ
ΑΣΚΗΣΗ ΣΧΕΔΙΑΣΗ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ.. ΣΚΟΠΟΣ Η σχεδίαση ακολουθιακών κυκλωμάτων..2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ.2.. ΑΛΓΟΡΙΘΜΟΣ ΣΧΕΔΙΑΣΗΣ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Τα ψηφιακά κυκλώματα με μνήμη ονομάζονται ακολουθιακά.
Διαβάστε περισσότεραΨηφιακά Συστήματα. 9. Μετρητές
Ψηφιακά Συστήματα 9. Μετρητές Βιβλιογραφία 1. Φανουράκης Κ., Πάτσης Γ., Τσακιρίδης Ο., Θεωρία και Ασκήσεις Ψηφιακών Ηλεκτρονικών, ΜΑΡΙΑ ΠΑΡΙΚΟΥ & ΣΙΑ ΕΠΕ, 2016. [59382199] 2. Floyd Thomas L., Ψηφιακά ηλεκτρονικά,
Διαβάστε περισσότερα7.1 Θεωρητική εισαγωγή
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 7 ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΜΑΝ ΑΛΩΤΕΣ FLIP FLOP Σκοπός: Η κατανόηση της λειτουργίας των βασικών ακολουθιακών κυκλωµάτων. Θα µελετηθούν συγκεκριµένα: ο µανδαλωτής (latch)
Διαβάστε περισσότερα6.1 Καταχωρητές. Ένας καταχωρητής είναι μια ομάδα από f/f αλλά μπορεί να περιέχει και πύλες. Καταχωρητής των n ψηφίων αποτελείται από n f/f.
6. Καταχωρητές Ένας καταχωρητής είναι μια ομάδα από f/f αλλά μπορεί να περιέχει και πύλες. Καταχωρητής των n ψηφίων αποτελείται από n f/f. Καταχωρητής 4 ψηφίων Καταχωρητής με παράλληλη φόρτωση Η εισαγωγή
Διαβάστε περισσότεραΠανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Καταχωρητές και Μετρητές 2. Επιμέλεια Διαφανειών: Δ.
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Καταχωρητές και Μετρητές Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Εισαγωγή Καταχωρητής: είναι μία ομάδα από δυαδικά κύτταρα αποθήκευσης
Διαβάστε περισσότεραΚεφάλαιο 6. Σύγχρονα και ασύγχρονα ακολουθιακά κυκλώματα
Κεφάλαιο 6 Σύγχρονα και ασύγχρονα ακολουθιακά κυκλώματα 6.1 Εισαγωγή Η εκτέλεση διαδοχικών λειτουργιών απαιτεί τη δημιουργία κυκλωμάτων που μπορούν να αποθηκεύουν πληροφορίες, στα ενδιάμεσα στάδια των
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τµήµα Εφαρµοσµένης Πληροφορικής & Πολυµέσων. Ψηφιακή Σχεδίαση. Κεφάλαιο 5: Σύγχρονη Ακολουθιακή
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τµήµα Εφαρµοσµένης Πληροφορικής & Πολυµέσων Ψηφιακή Σχεδίαση Κεφάλαιο 5: Σύγχρονη Ακολουθιακή Λογική Σύγχρονα Ακολουθιακά Κυκλώµατα Είσοδοι Συνδυαστικό κύκλωµα
Διαβάστε περισσότεραΑΣΚΗΣΗ 7 FLIP - FLOP
ΑΣΚΗΣΗ 7 FLIP - FLOP Αντικείμενο της άσκησης: Η κατανόηση της δομής και λειτουργίας των Flip Flop. Flip - Flop Τα Flip Flop είναι δισταθή λογικά κυκλώματα με χαρακτηριστικά μνήμης και είναι τα πλέον βασικά
Διαβάστε περισσότεραΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ
ΣΧΟΛΗ ΑΣΠΑΙΤΕ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ 1) Οι σύγχρονοι μετρητές υλοποιούνται με Flip-Flop τύπου T
Διαβάστε περισσότεραΑΣΚΗΣΗ 10 ΣΥΓΧΡΟΝΟΙ ΑΠΑΡΙΘΜΗΤΕΣ
ΑΣΚΗΣΗ ΣΥΓΧΡΟΝΟΙ ΑΠΑΡΙΘΜΗΤΕΣ Στόχος της άσκησης: Η διαδικασία σχεδίασης σύγχρονων ακολουθιακών κυκλωμάτων. Χαρακτηριστικό παράδειγμα σύγχρονων ακολουθιακών κυκλωμάτων είναι οι σύγχρονοι μετρητές. Τις αδυναμίες
Διαβάστε περισσότερα8.1 Θεωρητική εισαγωγή
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 8 ΣΤΟΙΧΕΙΑ ΜΝΗΜΗΣ ΚΑΤΑΧΩΡΗΤΕΣ Σκοπός: Η µελέτη της λειτουργίας των καταχωρητών. Θα υλοποιηθεί ένας απλός στατικός καταχωρητής 4-bit µε Flip-Flop τύπου D και θα µελετηθεί
Διαβάστε περισσότεραΠανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Ακολουθιακή Λογική. Επιμέλεια Διαφανειών: Δ.
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Ακολουθιακή Λογική Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Εισαγωγή Είσοδοι Συνδυαστικό Κύκλωμα Έξοδοι Στοιχεία Μνήμης Κατάσταση
Διαβάστε περισσότεραΑΣΚΗΣΗ 9 ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ (COUNTERS)
ΑΣΚΗΣΗ 9 ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ (COUNTERS) Αντικείμενο της άσκησης: H σχεδίαση και η χρήση ασύγχρονων απαριθμητών γεγονότων. Με τον όρο απαριθμητές ή μετρητές εννοούμε ένα ακολουθιακό κύκλωμα με FF, οι καταστάσεις
Διαβάστε περισσότεραΕλίνα Μακρή
Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,
Διαβάστε περισσότεραΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ
ΣΧΟΛΗ ΑΣΠΑΙΤΕ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ 1) Οι απαριθμητές ή μετρητές (counters) είναι κυκλώματα που
Διαβάστε περισσότερα5. Σύγχρονα Ακολουθιακά Κυκλώματα
5. Σύγχρονα Ακολουθιακά Κυκλώματα Ακολουθιακό (sequential) λέμε το σύστημα που περιέχει στοιχεία μνήμης, δηλ. κυκλώματα αποθήκευσης δυαδικής πληροφορίας Γενικό διάγραμμα ακολουθιακού κυκλώματος - Αποτελείται
Διαβάστε περισσότεραK24 Ψηφιακά Ηλεκτρονικά 9: Flip-Flops
K24 Ψηφιακά Ηλεκτρονικά 9: TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΧΝΟΛΟΓΙΚΟ Περιεχόμενα 1 2 3 Γενικά Ύστερα από τη μελέτη συνδυαστικών ψηφιακών κυκλωμάτων, θα μελετήσουμε
Διαβάστε περισσότεραΑκολουθιακό κύκλωμα Η έξοδος του κυκλώματος εξαρτάται από τις τιμές εισόδου ΚΑΙ από την προηγούμενη κατάσταση του κυκλώματος
1 Συνδυαστικό κύκλωμα Η έξοδος του κυκλώματος εξαρτάται ΜΟΝΟ από τις εισόδους του Εάν γνωρίζουμε τις τιμές των εισόδων του κυκλώματος, τότε μπορούμε να προβλέψουμε ακριβώς τις εξόδους του Ακολουθιακό κύκλωμα
Διαβάστε περισσότεραΨηφιακά Συστήματα. 7. Κυκλώματα Μνήμης
Ψηφιακά Συστήματα 7. Κυκλώματα Μνήμης Βιβλιογραφία 1. Φανουράκης Κ., Πάτσης Γ., Τσακιρίδης Ο., Θεωρία και Ασκήσεις Ψηφιακών Ηλεκτρονικών, ΜΑΡΙΑ ΠΑΡΙΚΟΥ & ΣΙΑ ΕΠΕ, 2016. [59382199] 2. Floyd Thomas L., Ψηφιακά
Διαβάστε περισσότεραΚυκλώµατα. Εισαγωγή. Συνδυαστικό Κύκλωµα
6 η Θεµατική Ενότητα : Σύγχρονα Ακολουθιακά Κυκλώµατα Εισαγωγή Είσοδοι Συνδυαστικό Κύκλωµα Έξοδοι Στοιχεία Μνήµης Κατάσταση Ακολουθιακού Κυκλώµατος : περιεχόµενα στοιχείων µνήµης Η έξοδος εξαρτάται από
Διαβάστε περισσότεραΑσύγχρονοι Απαριθμητές. Διάλεξη 7
Ασύγχρονοι Απαριθμητές Διάλεξη 7 Δομή της διάλεξης Εισαγωγή στους Απαριθμητές Ασύγχρονος Δυαδικός Απαριθμητής Ασύγχρονος Δεκαδικός Απαριθμητής Ασύγχρονος Δεκαδικός Απαριθμητής με Latch Ασκήσεις 2 Ασύγχρονοι
Διαβάστε περισσότεραΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΕΦΑΡΜΟΓΕΣ ΚΑΤΑΧΩΡΗΤΩΝ ΟΛΙΣΘΗΣΗΣ
ΣΧΟΛΗ ΑΣΠΑΙΤΕ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΕΦΑΡΜΟΓΕΣ ΚΑΤΑΧΩΡΗΤΩΝ ΟΛΙΣΘΗΣΗΣ ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ Στο διπλανό σχήμα φαίνεται το διάγραμμα ακροδεκτών
Διαβάστε περισσότεραΑνάλυση Σύγχρονων Ακολουθιακών Κυκλωμάτων
Ανάλυση Σύγχρονων Ακολουθιακών Κυκλωμάτων Με τον όρο ανάλυση ενός κυκλώματος εννοούμε τον προσδιορισμό της συμπεριφοράς του κάτω από συγκεκριμένες συνθήκες λειτουργίας. Έτσι, για ένα συνδυαστικό κύκλωμα,
Διαβάστε περισσότεραΆσκηση 3 Ένα νέο είδος flip flop έχει τον ακόλουθο πίνακα αληθείας : I 1 I 0 Q (t+1) Q (t) 1 0 ~Q (t) Κατασκευάστε τον πίνακα
Άσκηση Δίδονται οι ακόλουθες κυματομορφές ρολογιού και εισόδου D που είναι κοινή σε ένα D latch και ένα D flip flop. Το latch είναι θετικά ενεργό, ενώ το ff θετικά ακμοπυροδοτούμενο. Σχεδιάστε τις κυματομορφές
Διαβάστε περισσότεραΑρχιτεκτονικές Υπολογιστών
ΑΡΧΙΤΕΚΤΟΝΙΚΕΣ ΥΠΟΛΟΓΙΣΤΩΝ Μάθηµα: Αρχιτεκτονικές Υπολογιστών FLIP-FLOPS ΣΥΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΙΑ ΙΚΑΣΙΑ ΑΝΑΛΥΣΗΣ ΚΑΙ ΣΧΕ ΙΑΣΗ ΣΑΚ ιδάσκων: Αναπλ. Καθ. Κ. Λαµπρινουδάκης clam@uipi.gr Αρχιτεκτονικές
Διαβάστε περισσότεραΑκολουθιακό κύκλωμα Η έξοδος του κυκλώματος εξαρτάται από τις τιμές εισόδου ΚΑΙ από την προηγούμενη κατάσταση του κυκλώματος
1 Συνδυαστικό κύκλωμα Η έξοδος του κυκλώματος εξαρτάται ΜΟΝΟ από τις εισόδους του Εάν γνωρίζουμε τις τιμές των εισόδων του κυκλώματος, τότε μπορούμε να προβλέψουμε ακριβώς τις εξόδους του Ακολουθιακό κύκλωμα
Διαβάστε περισσότεραΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2008
ΗΜΥ-211: Εργαστήριο Σχεδιασμού Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2009 Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches), Flip-FlopsFlops και Μετρητές Ριπής Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων
Διαβάστε περισσότεραΠανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ψηφιακή Σχεδίαση Ενότητα 9: Ελαχιστοποίηση και Κωδικοποίηση Καταστάσεων, Σχεδίαση με D flip-flop, Σχεδίαση με JK flip-flop, Σχεδίαση με T flip-flop Δρ. Μηνάς
Διαβάστε περισσότεραΚυκλώµατα. Εισαγωγή. Συνδυαστικό Κύκλωµα
6 η Θεµατική Ενότητα : Σύγχρονα Ακολουθιακά Κυκλώµατα Εισαγωγή Είσοδοι Συνδυαστικό Κύκλωµα Έξοδοι Στοιχεία Μνήµης Κατάσταση Ακολουθιακού Κυκλώµατος : περιεχόµενα στοιχείων µνήµης Η έξοδος εξαρτάται από
Διαβάστε περισσότεραΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ
Θεµατική Ενότητα ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Ακαδηµαϊκό Έτος 2006 2007 Γραπτή Εργασία #2 Ηµεροµηνία Παράδοσης 28-0 - 2007 ΠΛΗ 2: Ψηφιακά Συστήµατα ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ Άσκηση : [5 µονάδες] Έχετε στη
Διαβάστε περισσότεραΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΚΑΡΑΓΚΙΑΟΥΡΗΣ ΝΙΚΟΛΑΟΣ
ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ 3/02/2019 ΚΑΡΑΓΚΙΑΟΥΡΗΣ ΝΙΚΟΛΑΟΣ ΘΕΜΑ 1 ο 1. Να γράψετε στο τετράδιό σας το γράμμα καθεμιάς από τις παρακάτω προτάσεις και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή ή τη λέξη ΛΑΘΟΣ, αν είναι
Διαβάστε περισσότεραΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops 1
ΗΜΥ-211: Εργαστήριο Σχεδιασμού Ψηφιακών Συστημάτων Ακολουθιακά Κυκλώματα (συν.) Κυκλώματα που Κυκλώματα που αποθηκεύουν εξετάσαμε μέχρι τώρα πληροφορίες Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches), Flip-FlopsFlops
Διαβάστε περισσότεραΚ. ΕΥΣΤΑΘΙΟΥ, Γ. ΠΑΠΑΔΟΠΟΥΛΟΣ ΠΑΤΡΑ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ & ΥΠΟΛΟΓΙΣΤΩΝ ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΣΗΜΕΙΩΣΕΙΣ ΑΠΑΡΙΘΜΗΤΕΣ Κ. ΕΥΣΤΑΘΙΟΥ, Γ. ΠΑΠΑΔΟΠΟΥΛΟΣ
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΕΧΟΜΕΝΑ.3 ΑΣΥΓΧΡΟΝΟΣ ΔYΑΔΙΚΟΣ ΑΠΑΡΙΘΜΗΤΗΣ.5 ΑΣΥΓΧΡΟΝΟΣ ΔΕΚΑΔΙΚΟΣ ΑΠΑΡΙΘΜΗΤΗΣ.7 ΑΣΥΓΧΡΟΝΟΣ ΔΕΚΑΔΙΚΟΣ ΑΠΑΡΙΘΜΗΤΗΣ ΜΕ LATCH.
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ & ΥΠΟΛΟΓΙΣΤΩΝ ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΣΗΜΕΙΩΣΕΙΣ ΑΠΑΡΙΘΜΗΤΕΣ Κ. ΕΥΣΤΑΘΙΟΥ, Γ. ΠΑΠΑΔΟΠΟΥΛΟΣ
Διαβάστε περισσότερα100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ
100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 1) Να μετατρέψετε τον δεκαδικό αριθμό (60,25) 10, στον αντίστοιχο δυαδικό 11111,11 111001,01 111100,01 100111,1 111100,01 2)
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 11
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι.) ΛΑΜΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΤΟΜΕΑΣ ΥΠΟΔΟΜΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Δρ. ΑΣΗΜΑΚΗΣ ΝΙΚΟΛΑΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗ
Διαβάστε περισσότεραΕισαγωγή στην πληροφορική
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 4: Ψηφιακή Λογική, Άλγεβρα Boole, Πίνακες Αλήθειας (Μέρος B) Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Διαβάστε περισσότεραΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ. Να μελετηθεί η λειτουργία του ακόλουθου κυκλώματος. Ποιος ο ρόλος των εισόδων του (R και S) και πού βρίσκει εφαρμογή; S Q
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΛΑΜΑΤΑΣ = ΠΑΡΑΡΤΗΜΑ ΣΠΑΡΤΗΣ = ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Συμπληρώνεται από τον διδάσκοντα (2.0) 2 (2.5) 3 (3.0) 4 (2.5) Σ ΕΞΕΤΑΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ
Διαβάστε περισσότεραf(x, y, z) = y z + xz
Λύσεις θεμάτων Εξεταστικής Περιόδου Ιανουαρίου Φεβρουαρίου 27 ΘΕΜΑ Ο (2, μονάδες) Δίνεται η λογική συνάρτηση : f (, y, z ) = ( + y )(y + z ) + y z. Να συμπληρωθεί ο πίνακας αλήθειας της συνάρτησης. (,
Διαβάστε περισσότεραΣχεδίαση Ψηφιακών Συστηµάτων
Σχεδίαση Ψηφιακών Συστηµάτων Πανεπιστήμιο Δυτικής Αττικής Τμήμα Μηχανικών Πληροφορικής και Υπολογιστών Γιάννης Βογιατζής Πάνος Καρκαζής 27-28 Παρουσίαση 4 η : Ψηφιακή Σχεδίαση Μέρος 3 Ανάλυση και Σχεδίαση
Διαβάστε περισσότεραΗ κανονική μορφή της συνάρτησης που υλοποιείται με τον προηγούμενο πίνακα αληθείας σε μορφή ελαχιστόρων είναι η Q = [A].
Κανονική μορφή συνάρτησης λογικής 5. Η κανονική μορφή μιας λογικής συνάρτησης (ΛΣ) ως άθροισμα ελαχιστόρων, από τον πίνακα αληθείας προκύπτει ως εξής: ) Παράγουμε ένα [A] όρων από την κάθε σειρά για την
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Κ. Δεμέστιχας Εργαστήριο Πληροφορικής Γεωπονικό Πανεπιστήμιο Αθηνών Επικοινωνία μέσω e-mail: cdemest@aua.gr, cdemest@cn.ntua.gr 1 5. ΑΛΓΕΒΡΑ BOOLE ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΜΕΡΟΣ Β 2 Επαναληπτική
Διαβάστε περισσότεραΑ. ΣΚΟΔΡΑΣ ΠΛΗ21 ΟΣΣ#2. 14 Δεκ 2008 ΠΑΤΡΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ 2008 Α. ΣΚΟΔΡΑΣ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ
ΠΛΗ21 ΟΣΣ#2 14 Δεκ 2008 ΠΑΤΡΑ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ 7-segment display 7-segment display 7-segment display Αποκωδικοποιητής των 7 στοιχείων (τμημάτων) (7-segment decoder) Κύκλωμα αποκωδικοποίησης του στοιχείου
Διαβάστε περισσότεραΥπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM).
Μνήμες Ένα από τα βασικά πλεονεκτήματα των ψηφιακών συστημάτων σε σχέση με τα αναλογικά, είναι η ευκολία αποθήκευσης μεγάλων ποσοτήτων πληροφοριών, είτε προσωρινά είτε μόνιμα Οι πληροφορίες αποθηκεύονται
Διαβάστε περισσότεραΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΥΓΧΡΟΝΗ ΑΚΟΛΟΥΘΙΑΚΗ ΛΟΓΙΚΗ 2017, Δρ. Ηρακλής Σπηλιώτης Ακολουθιακά κυκλώματα Η πλειονότητα των ψηφιακών συσκευών (τηλέφωνα, δέκτες GPS, φωτογραφικές μηχανές, υπολογιστές κ.α.),
Διαβάστε περισσότεραΣτοιχεία Μνήμης, JKκαιD (Flip-Flops) Μετρητής Ριπής (Ripple Counter)
ΗΜΥ211 Εργαστήριο Ψηφιακών Συστηµάτων Στοιχεία Μνήμης, JKκαιD (Flip-Flops) Μετρητής Ριπής (Ripple Counter) ιδάσκων: ρ. Γιώργος Ζάγγουλος Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Διαβάστε περισσότεραΑπαριθμητές. Παραδείγματα Απαριθμητής Modulo 4 ελαττούμενης δυαδικής μέτρησης (2 F-F).
Απαριθμητές Ακολουθιακά συστήματα που περνούν από μια συγκεκριμένη ακολουθία καταστάσεων. Συνήθως μετρούν τους παλμούς του clock, γι αυτό λέγονται απαριθμητές. Άλλες εφαρμογές: α)διαίρεση συχνότητας Απαριθμητής
Διαβάστε περισσότεραΣχεδιασμός Ψηφιακών Συστημάτων
ΗΜΥ 2: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 27 Νοε-7 ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 27 Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches) και Flip-Flops Flops Διδάσκουσα:
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 6 ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ. 6.1 Εισαγωγή
ΚΕΦΑΛΑΙΟ 6 ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 6. Εισαγωγή Τα ψηφιακά κυκλώματα διακρίνονται σε συνδυαστικά και ακολουθιακά. Τα κυκλώματα που εξετάσαμε στα προηγούμενα κεφάλαια ήταν συνδυαστικά. Οι τιμές των
Διαβάστε περισσότεραΣύγχρονοι Απαριθμητές. Διάλεξη 8
Σύγχρονοι Απαριθμητές Διάλεξη 8 Δομή της διάλεξης Εισαγωγή Σύγχρονος Δυαδικός Απαριθμητής Σύγχρονος Δεκαδικός Απαριθμητής Προγραμματιζόμενοι Απαριθμητές Ασκήσεις 2 Σύγχρονοι Απαριθμητές Εισαγωγή 3 Εισαγωγή
Διαβάστε περισσότερα8. Στοιχεία μνήμης. Οι δυο έξοδοι του FF είναι συμπληρωματικές σημειώνονται δε σαν. Όταν αναφερόμαστε στο FF εννοούμε πάντα την κανονική έξοδο Q.
8. ΣΟΙΧΕΙΑ ΜΝΗΜΗΣ 8. Εισαγωγή Στα συνδυαστικά κυκλώματα, που μελετήσαμε έως τώρα, δεν υπήρχε κάποια διαδικασία ανάδρασης (Feed Back) -δηλαδή οδήγηση της εξόδου των στοιχείων στην είσοδό τους- επομένως
Διαβάστε περισσότερα3 η Θεµατική Ενότητα : Σύγχρονα Ακολουθιακά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός
3 η Θεµατική Ενότητα : Σύγχρονα Ακολουθιακά Κυκλώµατα Επιµέλεια διαφανειών: Χρ. Καβουσιανός Εισαγωγή Είσοδοι Συνδυαστικό Κύκλωµα Έξοδοι Στοιχεία Μνήµης Κατάσταση Ακολουθιακού Κυκλώµατος : περιεχόµενα στοιχείων
Διαβάστε περισσότεραΠανεπιστήµιο Κύπρου DEPARTMENT OF COMPUTER SCIENCE
Πανεπιστήµιο Κύπρου DEPARTMENT OF OMPUTER SIENE S 121 Ψηφιακά Εργαστήρια LAB EXERISE 4 Sequential Logic Χρίστος ιονυσίου Σωτήρης ηµητριάδης Άνοιξη 2002 Εργαστήριο 4 Sequential ircuits A. Στόχοι Ο σκοπός
Διαβάστε περισσότεραΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΟΙ ΚΑΤΑΧΩΡΗΤΕΣ ΚΑΙ Η ΥΛΟΠΟΙΗΣΗ ΤΟΥΣ ΜΕ FLIP-FLOP ΚΑΙ ΠΥΛΕΣ
ΑΣΠΑΙΤΕ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΗΣ & ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ & μ-υπολογιστων ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΟΙ ΚΑΤΑΧΩΡΗΤΕΣ ΚΑΙ Η ΥΛΟΠΟΙΗΣΗ ΤΟΥΣ ΜΕ FLIP-FLOP ΚΑΙ ΠΥΛΕΣ Θεωρητικό
Διαβάστε περισσότεραΗλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα κανονικής εξέτασης 2017
Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα κανονικής εξέτασης 2017 Θέμα 1ο (3 μονάδες) Υλοποιήστε το ακoλουθιακό κύκλωμα που περιγράφεται από το κατωτέρω διάγραμμα καταστάσεων,
Διαβάστε περισσότεραΑΠΟ ΤΑ ΘΕΜΑΤΑ ΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΚΕΦΑΛΑΙΟ 7-8 (ΚΑΤΑΧΩΡΗΤΕΣ & ΑΠΑΡΙΘΜΗΤΕΣ)
ΑΠΟ ΤΑ ΘΕΜΑΤΑ ΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2009 205 ΚΕΦΑΛΑΙΟ 7-8 (ΚΑΤΑΧΩΡΗΤΕΣ & ΑΠΑΡΙΘΜΗΤΕΣ) ΑΠΟ ΘΕΜΑ Α Ερωτήσεις. Γιατί στους ασύγχρονους απαριθμητές τα flip-flops δεν αλλάζουν ταυτόχρονα κατάσταση; 2. Να
Διαβάστε περισσότεραΚαταστάσεων. Καταστάσεων
8 η Θεµατική Ενότητα : Εισαγωγή Ησχεδίαση ενός ψηφιακού συστήµατος µπορεί να διαιρεθεί σε δύο µέρη: τα κυκλώµατα επεξεργασίας δεδοµένων και τα κυκλώµατα ελέγχου. Το κύκλωµα ελέγχου δηµιουργεί σήµατα για
Διαβάστε περισσότεραΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ. Να μελετηθεί η λειτουργία του ακόλουθου κυκλώματος. Ποιος ο ρόλος των εισόδων του (R και S) και πού βρίσκει εφαρμογή; R Q
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΛΑΜΑΤΑΣ = ΠΑΡΑΡΤΗΜΑ ΣΠΑΡΤΗΣ = ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Συμπληρώνεται από τον διδάσκοντα (2.0) 2 (2.5) 3 (3.0) 4 (2.5) Σ ΕΞΕΤΑΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ
Διαβάστε περισσότεραK15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων
K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού
Διαβάστε περισσότεραΕργαστήριο Ψηφιακής Σχεδίασης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Εργαστήριο Ψηφιακής Σχεδίασης 8 Εργαστηριακές Ασκήσεις Χρ. Καβουσιανός Επίκουρος Καθηγητής 2014 Εργαστηριακές Ασκήσεις Ψηφιακής Σχεδίασης 2 Εργαστηριακές Ασκήσεις
Διαβάστε περισσότερα13. ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ
13. ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΑΚΟΛΟΥΘΙΑΚΟ ΚΥΚΛΩΜΑ ΣΥΓΧΡΟΝΟ ΑΚΟΛΟΥΘΙΑΚΟ ΚΥΚΛΩΜΑ ΣΧΕ ΙΑΣΗ ΣΥΓΧΡΟΝΟΥ
Διαβάστε περισσότερα7 η Θεµατική Ενότητα : Καταχωρητές, Μετρητές και Μονάδες Μνήµης
7 η Θεµατική Ενότητα : Καταχωρητές, Μετρητές και Εισαγωγή Καταχωρητής: είναι µία οµάδα από δυαδικά κύτταρα αποθήκευσης και από λογικές πύλες που διεκπεραιώνουν την µεταφορά πληροφοριών. Οι µετρητές είναι
Διαβάστε περισσότεραK24 Ψηφιακά Ηλεκτρονικά 10: Ακολουθιακά Κυκλώματα
K24 Ψηφιακά Ηλεκτρονικά : TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΧΝΟΛΟΓΙΚΟ Περιεχόμενα 2 3 Γενικά Όπως είδαμε και σε προηγούμενα μαθήματα, ένα ψηφιακό κύκλωμα ονομάζεται
Διαβάστε περισσότεραΗ συχνότητα f των παλµών 0 και 1 στην έξοδο Q n είναι. f Qn = 1/(T cl x 2 n+1 )
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 9 ΥΑ ΙΚΟΙ ΑΠΑΡΙΘΜΗΤΕΣ Σκοπός: Η µελέτη της λειτουργίας των απαριθµητών. Υλοποίηση ασύγχρονου απαριθµητή 4-bit µε χρήση JK Flip-Flop. Κατανόηση της αλλαγής του υπολοίπου
Διαβάστε περισσότεραΗλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα κανονικής εξέτασης Θέμα 1ο (3 μονάδες)
Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα κανονικής εξέτασης 2016 Θέμα 1ο (3 μονάδες) Υλοποιήστε το ακoλουθιακό κύκλωμα που περιγράφεται από το ανωτέρω διάγραμμα καταστάσεων,
Διαβάστε περισσότεραΣυνδυαστικά Λογικά Κυκλώματα
Συνδυαστικά Λογικά Κυκλώματα Ένα συνδυαστικό λογικό κύκλωμα συντίθεται από λογικές πύλες, δέχεται εισόδους και παράγει μία ή περισσότερες εξόδους. Στα συνδυαστικά λογικά κυκλώματα οι έξοδοι σε κάθε χρονική
Διαβάστε περισσότεραΕλίνα Μακρή
Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,
Διαβάστε περισσότεραΕισαγωγή στην Πληροφορική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Εισαγωγή στην Πληροφορική Ενότητα 3: Ψηφιακή Λογική ΙI Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Διαβάστε περισσότεραΑΣΚΗΣΗ 8 ΠΟΛΥΠΛΕΚΤΕΣ ( MULTIPLEXERS - MUX) ΑΠΟΠΛΕΚΤΕΣ (DEMULTIPLEXERS - DEMUX)
ΑΣΚΗΣΗ 8 ΠΟΛΥΠΛΕΚΤΕΣ ( MULTIPLEXERS - MUX) ΑΠΟΠΛΕΚΤΕΣ (DEMULTIPLEXERS - DEMUX) 8.1. ΣΚΟΠΟΣ Η κατανόηση της λειτουργίας των πολυπλεκτών και αποπλεκτών και της χρήσης αυτών των ολοκληρωμένων κυκλωμάτων (Ο.Κ.)
Διαβάστε περισσότεραΣύγχρονα ακολουθιακά κυκλώματα. URL:
DeÔtero Ex mhno FoÐthshc Σύγχρονα ακολουθιακά κυκλώματα Ge rgioc. Alexandrìpouloc Lèktorac P.D. 47/8 e-mail: alexandg@uop.gr URL: http://users.iit.demokritos.gr/~alexandg Tm ma Epist mhc kai TeqnologÐac
Διαβάστε περισσότεραΕνότητα ΑΡΧΕΣ ΑΚΟΛΟΥΘΙΑΚΗΣ ΛΟΓΙΚΗΣ LATCHES & FLIP-FLOPS
Ενότητα ΑΡΧΕΣ ΑΚΟΛΟΥΘΙΑΚΗΣ ΛΟΓΙΚΗΣ LATCHES & FLIP-FLOPS Γενικές Γραμμές Ακολουθιακή Λογική Μεταστάθεια S-R RLatch h( (active high h&l low) S-R Latch with Enable Latch Flip-Flop Ασύγχρονοι είσοδοι PRESET
Διαβάστε περισσότερα14. ΑΠΑΡΙΘΜΗΤΕΣ. e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1
14. ΑΠΑΡΙΘΜΗΤΕΣ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 ΑΠΑΡΙΘΜΗΤΕΣ ΤΡΟΠΟΣ ΥΛΟΠΟΙΗΣΗΣ KAI ΡΟΗ ΑΠΑΡΙΘΜΗΣΗΣ ΣΧΕ ΙΑΣΗ ΣΥΓΧΡΟΝΟΥ ΥΑ ΙΚΟΥ ΑΠΑΡΙΘΜΗΤΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ
Διαβάστε περισσότερα«Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο Διάλεξη 8 η : Μηχανές Πεπερασμένων Κaταστάσεων σε FPGAs
ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανικών Πληροφορικής ΤΕ Εργαστήριο Σχεδίασης Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων «Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο 2016-2017 Διάλεξη 8 η :
Διαβάστε περισσότεραΑΣΚΗΣΗ 3 ΣΥΝΔΥΑΣΤΙΚΑ ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ: ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ
ΑΣΚΗΣΗ 3 ΣΥΝΔΥΑΣΤΙΚΑ ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ: ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ Αντικείμενο της άσκησης: Μεθοδολογία ανάλυσης και σχεδίασης συνδυαστικών λογικών κυκλωμάτων και λειτουργική εξομοίωση με το λογισμικό EWB. Συνδυαστικά
Διαβάστε περισσότεραΠανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Συνδυαστική Λογική. Επιμέλεια Διαφανειών: Δ.
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Συνδυαστική Λογική Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Ψηφιακά Κυκλώματα Τα ψηφιακά κυκλώματα διακρίνονται σε συνδυαστικά (combinational)
Διαβάστε περισσότερα15 ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 18 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:
Διαβάστε περισσότεραβαθµίδων µε D FLIP-FLOP. Μονάδες 5
Κεφάλαιιο: 6 ο Τίίτλος Κεφαλαίίου:: Μανταλωτές & Flip Flop (Ιούνιος 2004 ΤΕΕ Ηµερήσιο) Να σχεδιάσετε καταχωρητή δεξιάς ολίσθησης τεσσάρων βαθµίδων µε D FLIP-FLOP. Μονάδες 5 (Ιούνιος 2005 ΤΕΕ Ηµερήσιο)
Διαβάστε περισσότεραΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ
Τμήμα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρματης Τηλεπικοινωνίας ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Μάθημα 6: Απαριθµητές (µετρητές) Διδάσκων: Καθηγητής Ν. Φακωτάκης Ακολουθιακά κυκλώµατα Σύγχρονα (οδηγούµενα από
Διαβάστε περισσότεραΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Γ ΕΠΑΛ 14 / 04 / 2019
Γ ΕΠΑΛ 14 / 04 / 2019 ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ 1 ο 1. Να γράψετε στο τετράδιό σας το γράμμα καθεμιάς από τις παρακάτω προτάσεις και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή ή τη λέξη ΛΑΘΟΣ, αν είναι λανθασμένη.
Διαβάστε περισσότεραΨηφιακά Συστήματα. 8. Καταχωρητές
Ψηφιακά Συστήματα 8. Καταχωρητές Βιβλιογραφία 1. Φανουράκης Κ., Πάτσης Γ., Τσακιρίδης Ο., Θεωρία και Ασκήσεις Ψηφιακών Ηλεκτρονικών, ΜΑΡΙΑ ΠΑΡΙΚΟΥ & ΣΙΑ ΕΠΕ, 2016. [59382199] 2. Floyd Thomas L., Ψηφιακά
Διαβάστε περισσότεραΘέμα 1ο (3 μονάδες) Υλοποιήστε το ακoλουθιακό κύκλωμα που περιγράφεται από το κατωτέρω διάγραμμα
Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα επαναληπτικής εξέτασης 2016 Θέμα 1ο (3 μονάδες) Υλοποιήστε το ακoλουθιακό κύκλωμα που περιγράφεται από το κατωτέρω διάγραμμα καταστάσεων,
Διαβάστε περισσότεραΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ
ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ FLIP-FLOP ΤΟ ΒΑΣΙΚΟ FLIP-FLOP ΧΡΟΝΙΖΟΜΕΝΑ FF ΤΥΠΟΥ FF ΤΥΠΟΥ D FLIP-FLOP Τ FLIP-FLOP ΠΥΡΟΔΟΤΗΣΗ ΤΩΝ FLIP-FLOP ΚΥΡΙΟ - ΕΞΑΡΤΗΜΕΝΟ FLIP-FLOP ΑΚΜΟΠΥΡΟΔΟΤΟΥΜΕΝΑ FLIP-FLOP ΚΥΚΛΩΜΑΤΑ
Διαβάστε περισσότεραΑΣΚΗΣΗ 8 ΚΑΤΑΧΩΡΗΤΕΣ - REGISTERS
ΑΣΚΗΣΗ 8 ΚΑΤΑΧΩΡΗΤΕΣ - REGISTERS Αντικείμενο της άσκησης: Η σχεδίαση και λειτουργία συστημάτων προσωρινής αποθήκευσης (Kαταχωρητές- Registers). Για την αποθήκευση μιας πληροφορίας του ενός ψηφίου (bit)
Διαβάστε περισσότεραΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Καταχωρητές 1
ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Καταχωρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Καταχωρητές Παράλληλης Φόρτωσης Καταχωρητές
Διαβάστε περισσότερα26-Nov-09. ΗΜΥ 210: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο Καταχωρητές 1. Διδάσκουσα: Μαρία Κ. Μιχαήλ
ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2009 Καταχωρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Καταχωρητές Παράλληλης
Διαβάστε περισσότεραe-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ
e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ 1. Να μετατρέψετε τον δεκαδικό 16.25 σε δυαδικό. 2. Να μετατρέψετε τον δεκαδικό 18.75 σε δυαδικό και τον δεκαδικό 268 σε δεκαεξαδικό. 3. Να βρεθεί η βάση εκείνου του αριθμητικού
Διαβάστε περισσότερα7. Ψηφιακά Ηλεκτρονικά
1 7. Ψηφιακά Ηλεκτρονικά 7.1 Εισαγωγή Στα προηγούμενα μελετήσαμε τη λειτουργία του τρανζίστορ στην ενεργό περιοχή, χαρακτηριστικό της οποίας είναι ότι τα σήματα εισόδου και εξόδου μπορούν να λάβουν συνεχείς
Διαβάστε περισσότεραΜνήμη και Προγραμματίσιμη Λογική
Μνήμη και Προγραμματίσιμη Λογική Η μονάδα μνήμης είναι ένα στοιχείο κυκλώματος στο οποίο μεταφέρονται ψηφιακές πληροφορίες προς αποθήκευση και από το οποίο μπορούμε να εξάγουμε αποθηκευμένες πληροφορίες
Διαβάστε περισσότεραΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Μετρητές 1
ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Μετρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Μετρητής Ριπής Σύγχρονος υαδικός Μετρητής
Διαβάστε περισσότερα6 η Θεµατική Ενότητα : Σχεδίαση Συστηµάτων σε Επίπεδο Καταχωρητή
6 η Θεµατική Ενότητα : Σχεδίαση Συστηµάτων σε Επίπεδο Καταχωρητή Εισαγωγή Η σχεδίαση ενός ψηφιακού συστήµατος ως ακολουθιακή µηχανή είναι εξαιρετικά δύσκολη Τµηµατοποίηση σε υποσυστήµατα µε δοµικές µονάδες:
Διαβάστε περισσότερα5.1 Θεωρητική εισαγωγή
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 5 ΚΩ ΙΚΟΠΟΙΗΣΗ BCD Σκοπός: Η κατανόηση της µετατροπής ενός τύπου δυαδικής πληροφορίας σε άλλον (κωδικοποίηση/αποκωδικοποίηση) µε τη µελέτη της κωδικοποίησης BCD
Διαβάστε περισσότεραΠερίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο Μετρητής Ριπής (Ripple Counter) Μετρητές (Counters) Μετρητής Ριπής (συν.
ΗΜΥ-2: Λογικός Σχεδιασµός Εαρινό Κεφάλαιο 7 ii: Μετρητές Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Μετρητής Ριπής Περίληψη Σύγχρονος υαδικός Μετρητής Σχεδιασµός µε Flip-Flops
Διαβάστε περισσότεραΑΣΚΗΣΗ 6 ΑΠΟΚΩΔΙΚΟΠΟΙΗΕΣ ( DECODERS )
6.1. ΣΚΟΠΟΣ ΑΣΠΑΙΤΕ Εργαστήριο Ψηφιακών Συστημάτων & Μικροϋπολογιστών ΑΣΚΗΣΗ 6 ΑΠΟΚΩΔΙΚΟΠΟΙΗΕΣ ( ECOERS ) Η κατανόηση της λειτουργίας των αποκωδικοποιητών και των εφαρμογών τους. 6.2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ Ο
Διαβάστε περισσότεραFlip-Flop: D Control Systems Laboratory
Flip-Flop: Control Systems Laboratory Είναι ένας τύπος συγχρονιζόμενου flip- flop, δηλαδή ενός flip- flop όπου οι έξοδοί του δεν αλλάζουν μόνο με αλλαγή των εισόδων R, S αλλά χρειάζεται ένας ωρολογιακός
Διαβάστε περισσότεραΜετρητής Ριπής ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ. Αναφορά 9 ης. εργαστηριακής άσκησης: ΑΦΡΟΔΙΤΗ ΤΟΥΦΑ Α.Μ.:2024201100032
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ, ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Αναφορά 9 ης εργαστηριακής άσκησης: Μετρητής Ριπής ΑΦΡΟΔΙΤΗ
Διαβάστε περισσότεραΨηφιακά Συστήματα. 6. Σχεδίαση Συνδυαστικών Κυκλωμάτων
Ψηφιακά Συστήματα 6. Σχεδίαση Συνδυαστικών Κυκλωμάτων Βιβλιογραφία 1. Φανουράκης Κ., Πάτσης Γ., Τσακιρίδης Ο., Θεωρία και Ασκήσεις Ψηφιακών Ηλεκτρονικών, ΜΑΡΙΑ ΠΑΡΙΚΟΥ & ΣΙΑ ΕΠΕ, 2016. [59382199] 2. Floyd
Διαβάστε περισσότεραΨΗΦΙΑΚΗΛΟΓΙΚΗΣΧΕΔΙΑΣΗ
Τμήμα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρματης Τηλεπικοινωνίας ΨΗΦΙΑΚΗΛΟΓΙΚΗΣΧΕΔΙΑΣΗ Μάθημα 5: Στοιχεία µνήµης ενός ψηφίου Διδάσκων: Καθηγητής Ν. Φακωτάκης Στοιχεία μνήμης Ένα ψηφιακό λογικό κύκλωμα
Διαβάστε περισσότερα6.1 Θεωρητική εισαγωγή
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 6 ΑΠΟΚΩ ΙΚΟΠΟΙΗΤΕΣ ΚΑΙ ΠΟΛΥΠΛΕΚΤΕΣ Σκοπός: Η κατανόηση της λειτουργίας των κυκλωµάτων ψηφιακής πολυπλεξίας και αποκωδικοποίησης και η εξοικείωση µε τους ολοκληρωµένους
Διαβάστε περισσότεραΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 Μάθημα : Ψηφιακά Ηλεκτρονικά Τεχνολογία ΙΙ, Θεωρητικής Κατεύθυνσης Ημερομηνία
Διαβάστε περισσότερα