Autìmath Exagwg Peril yewn kai h Axiolìghs touc
|
|
- Λάχεσις Αλεβιζόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Autìmath Exagwg Peril yewn kai h Axiolìghs touc Ge rgioc Giannakìpouloc 1 ggianna@iit.demokritos.gr 1 Tm ma Mhqanik n Plhroforiak n kai Epikoinwniak n Susthmˆtwn Panepist mio AigaÐou se sunergasða me to InstitoÔto Thlepikoinwni n kai Plhroforik c Ergast rio TeqnologÐac Gn sewn kai LogismikoÔ E.K.E.F.E. Dhmìkritoc Epìpthc: Kaj. BoÔroc G. 23 Maòou 2008
2 Dom thc ParousÐashc Eisagwg AntikeÐmeno - EpiteÔgmata MellontikoÐ Stìqoi Parˆrthma
3 Stìqoi kai Paradotèa Stìqoi Ekpìnhshc Didaktorik c Diatrib c 'Ereuna kai UlopoÐhsh Mejìdou Axiolìghshc Peril yewn - AutoSummENG (ACM TSLP - DUC 2008) Prìtash TupopoÐhshc kai Mètrhshc twn Poiot twn PerÐlhyhc - Symbol Sequence Statistical Normality (CoLing 2008) Perigraf kai UlopoÐhsh Sust matoc Exagwg c Peril yewn - Engrab (DUC 2008)
4 Axiolìghsh Peril yewn AutoSummENG - Eggen c Axiolìghsh Autìmath Axiolìghsh Susthmˆtwn Exagwg c Peril yewn me Qr sh Grˆfou N-Grammˆtwn Epidìseic exðsou kalèc me ( kai kalôterec apì) ta kalôtera sust mata tou tomèa (ROUGE, ROUGE-BE, Pyramid). KalÔtero apì ta ROUGE-2, ROUGE-SU4 kai me statistik upost rixh. Elègqjhke sta dedomèna tri n (3) et n tou DUC (2005, 2006, 2007).
5 Axiolìghsh Peril yewn AutoSummENG - Epidìseic AxiologoÔmenoi Rouge-2 Rouge-SU4 BE-HM AutoSummENG Autìmata Sust mata 0.84 (0.00) 0.85 (0.00) 0.78 (0.00) 0.91 (0.00) 'Anjrwpoi 0.64 (0.05) 0.69 (0.03) 0.57 (0.09) 0.68 (0.03) 'Oloi 0.90 (0.00) 0.88 (0.00) 0.88 (0.00) 0.97 (0.00) Πίνακας: Pearson Συσχέτιση των Μετρικών Αξιολόγησης προς την Αποκρισιμότητα Περιεχομένου του DUC Στις παρενθέσεις η τιμή p του αντίστοιχου στατιστικού ελέγχου.
6 Anaparˆstash Grˆfoc n-grammˆtwn Parˆjura Grˆfoc n-grammˆtwn lèxewn qarakt rwn. Exagwg bˆsei parajôrou. Σχήμα: Τύποι παραθύρων ν-γραμμάτων (από πάνω προς τα κάτω): μη-συμμετρικό, συμμετρικό και gauss-κανονικοποιημένο συμμετρικό.
7 Anaparˆstash Grˆfoc n-grammˆtwn Mèjodoi Σχήμα: Γράφοι εξηγμένοι από τη συμβολοσειρά (από αριστερά προς τα δεξιά): μη-συμμετρικό, συμμετρικό και gauss-κανονικοποιημένο. Ν-γράμματα τάξης 3.
8 Anaparˆstash Grˆfoc n-grammˆtwn Omoiìthta KeÐmena: T 1 kai T 2. Kˆje keðmeno anaparðstatai wc sônolo grˆfwn, G i, me diˆforec tˆxeic n-grammˆtwn. 'Eqoume G i, G j dôo diaforetikoôc grˆfouc Ðdiac tˆxhc n, kai orðzoume: Omoiìthta SunÔparxhc Omoiìthta Tim c (Omoiìthta Bar n Akm n)
9 Anaparˆstash Grˆfoc n-grammˆtwn Efarmogèc Omoiìthta Keimènwn KathgoriopoÐhsh Keimènwn (p.q. Ufologik, Jematik ) OmadopoÐhsh Keimènwn Exagwg Perieqomènou - Grammatik c Axiolìghsh Peril yewn
10 Mètrhsh Poiot twn Keimènou Anagn rish anjrwpìmorfou keimènou me qr sh thc Statistik c Kanonikìthtac AkoloujÐac Sumbìlwn Σχήμα: 8-γράμματα χαρακηρων και η κατανομή SSN για τα κείμενα του DUC Τα 50 κείμενα με χαμηλή γραμματικότητα είναι τυχαία παρηγμένα κείμενα
11 Exagwg Peril yewn Engrab - To sôsthma Evolutionary N-gram Graph Based Summarization System SÔsthma Exeliktik c Exagwg c PerÐlhyhc Basismèno se Grˆfouc N-grammˆtwn OmadopoÐhsh kai deiktodìthsh eggrˆfwn bˆsei: Περιεχομένου Ημερομηνίας Anaz thsh sqetik n eggrˆfwn bˆsei erwt matoc /kai hmeromhni n Anˆdeixh shmantik n protˆsewn - periìdwn Di jhsh bˆsei epanˆlhyhc kai qronik c epikˆluyhc SÔnjesh telik c perðlhyhc
12 Exagwg Peril yewn OmadopoÐhsh kai Deiktodìthsh Eggrˆfwn bˆsei Perieqomènou Exagwg kai afaðresh grˆfou grammatik c Efarmog diairetik n mejìdwn omadopoðhshc Metrik apìstashc orismènh me bˆsh thn apìstash grˆfwn Mèso èggrafo anˆ omˆda H anaz thsh efarmìzetai me qr sh thc omadopoðhshc wc eurethrðou.
13 Exagwg Peril yewn Anˆdeixh Shmantik n Tmhmˆtwn Keimènou Diaqwrismìc tmhmˆtwn (chunks) Omoiìthta tmhmˆtwn me to er thma, bˆsei sôgkrishc grˆfwn
14 Exagwg Peril yewn Di jhsh - SÔnjesh Telik c PerÐlhyhc Di jhsh bˆsei eurethrðwn. Anˆjesh poin c gia allhlokalôyeic. DhmiourgÐa eggrˆfou pareljoôshc plhroforðac. Anˆjesh poin c se ne tera keðmena gia allhlokˆluyh me autì to èggrafo. SÔnjesh telik c perðlhyhc me taxinìmhsh bˆsei shmasðac.
15 En exelðxei Olokl rwsh Sust matoc Exagwg c Peril yewn Exagwg nohmˆtwn (Ennoiologikì Euret rio) SunergasÐa me phgèc shmasiologik c plhroforðac (ontologðec, WordNet)
16 Idèec Epektˆseic Sust matoc Exagwg c Peril yewn SunergasÐa me Mhqan Paragwg c Gl ssac ExaploÔmenh EnergopoÐhsh gia SunafeÐc 'Ennoiec
17 Idèec Euqarist Erwt seic?
18 'Allec plhroforðec AutoSummENG - Epidìseic Analutikˆ 'Etoc - AxiologoÔmenoi Spearman Pearson Kendall Autìmata Sust mata (0.0) (0.0) (0.0) 'Anjrwpoi (0.0) (0.00) (0.00) 'Oloi (0.00) (0.00) (0.0) Autìmata Sust mata (0.0) (0.0) (0.0) 'Anjrwpoi (0.01) (0.02) (0.03) 'Oloi (0.00) (0.00) (0.0) Autìmata Sust mata (0.0) (0.0) (0.0) 'Anjrwpoi (0.04) (0.03) (0.08) 'Oloi (0.00) (0.00) (0.0) Πίνακας: Συσχέτιση του AutoSummENG με τη μετρική Αποκρισιμότητας του DUC 2005 και τη μετρική Αποκρισιμότητας Περιεχομένου των DUC 2006, Στις παρενθέσεις η τιμή p του αντίστοιχου στατιστικού ελέγχου.
19 'Allec plhroforðec Statistical Symbol Sequence Representation S= A big big test anaparðstatai wc stigmiìtupo tou SSS-R(2,2,word): big,big test (1 1.0) a,big test(2 1.0) a,big big(1 1.0)
20 1,49 1,49 0,65 0,01 0,65 0,01 1,02 0,32 0,32 0,32 Thi 0,32 s_i 0,32 0,32 0,01 his 0,32 _is 1,49 0,04 0,32 0,01 0,04 1,49 1,02 0,04 1,02 0,01 0,01 s_a 1,02 0,04 is_ 0,65 _a_ 0,65 0,65 0,32 0,04 0,04 0,04 0,04 0,01 a_t 0,01 est 0,32 0,32 0,32 0,01 0,01 0,32 tes 0,34 _te 0,32 0,34 0,04 0,04 'Allec plhroforðec Parˆdeigma grˆfou Grˆfoc n-grammˆtwn qarakt rwn me summetrikì Gauss-kanonikopoihmèno parˆjuro S= This is a test anaparðstatai wc: Σχήμα: Παράθυρο:2, Τάξη Ν-γραμμάτων:3
thlèfwno: , H YHFIAKH TAXH A' GumnasÐou Miqˆlhc TzoÔmac Sq. Sumb. kl.
A' GumnasÐou Sq. Sumb. kl. PE03 GiatÐ epibˆlletai h eisagwg thc sôgqronhc teqnologðac sthn ekpaðdeush. Η Πληροφοριοποίηση της κοινωνίας. Η αυξανόμενη πολυπλοκότητα του εκπαιδευτικού συστήματος. Η σημερινή
AntistoÐqish Ontologi n
AntistoÐqish Ontologi n BasÐlhc Sphliìpouloc 1,2 vspiliop@iit.demokritos.gr 1 Tm ma Mhqanik n Plhroforiak n kai Epikoinwniak n Susthmˆtwn, Ergast rio Teqnht c NohmosÔnhc, Panepist mio AigaÐou 2 InstitoÔto
Σύγχρονα ακολουθιακά κυκλώματα. URL:
DeÔtero Ex mhno FoÐthshc Σύγχρονα ακολουθιακά κυκλώματα Ge rgioc. Alexandrìpouloc Lèktorac P.D. 47/8 e-mail: alexandg@uop.gr URL: http://users.iit.demokritos.gr/~alexandg Tm ma Epist mhc kai TeqnologÐac
Diˆsthma empistosônhc thc mèshc tim c µ. Statistik gia Hlektrolìgouc MhqanikoÔc EKTIMHSH EKTIMHSH PARAMETRWN - 2. Dhm trhc Kougioumtz c.
Statistik gia Hlektrolìgouc MhqanikoÔc EKTIMHSH PARAMETRWN - 2 6 Maòou 2010 EktÐmhsh Diast matoc empistosônhc Melet same thn ektim tria ˆθ paramètrou θ: An gnwrðzoume thn katanom thc X kai eðnai F X (x;
Pragmatik Anˆlush ( ) TopologÐa metrik n q rwn Ask seic
Pragmatik Anˆlush (2010 11) TopologÐa metrik n q rwn Ask seic Omˆda A' 1. 'Estw (X, ρ) metrikìc q roc kai F, G uposônola tou X. An to F eðnai kleistì kai to G eðnai anoiktì, deðxte ìti to F \ G eðnai kleistì
Statistik gia QhmikoÔc MhqanikoÔc EKTIMHSH PARA
Statistik gia QhmikoÔc MhqanikoÔc EKTIMHSH PARAMETRWN - 2 20 Maòou 200 t.m. X me mèsh tim µ t.m. X 2 me mèsh tim µ 2 Diaforˆ µ µ 2? [X kai X 2 anexˆrthtec] DeÐgma {x, x 2,..., x n } x DeÐgma {x 2, x 22,...,
Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι
Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Θέματα Εξετάσεων Όνομα Καθηγητή : Ανδρέας Αρβανιτογεώργος Τμήμα: Μαθηματικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
11 OktwbrÐou 2012. S. Malefˆkh Genikì Tm ma Majhmatikˆ gia QhmikoÔc
Mˆjhma 7 0 11 OktwbrÐou 2012 Orismìc sunart sewn mèsw orismènwn oloklhrwmˆtwn To orismèno olokl rwma prosfèrei ènan nèo trìpo orismoô sunˆrthshc afoô to orismèno olokl rwma mia suneqoôc sunˆrthshc f (t),
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΩΝ ΥΛΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Εξετάσεις Ιουνίου 2002
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΩΝ ΥΛΙΚΩΝ Εξετάσεις Ιουνίου (α) Αναπτύξτε την µέθοδο του τραπεζίου για τον αριθµητικό υπολογισµό του ολοκληρώµατος: b I( f ) = f ( x) a όπου f (x) συνεχής και ολοκληρώσιµη
SUNARTHSEIS POLLWN METABLHTWN. 5h Seirˆ Ask sewn. Allag metablht n sto diplì olokl rwma
PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II SUNARTHSEIS POLLWN METABLHTWN 5h Seirˆ Ask sewn Allag metablht n sto diplì olokl rwma Jèma. Qrhsimopoi ntac
9. α 2 + β 2 ±2αβ. 10. α 2 ± αβ + β (1 + α) ν > 1+να, 1 <α 0, ν 2. log α. 14. log α x = ln x. 19. x 1 <x 2 ln x 1 < ln x 2
UpenjumÐseic gia thn Jetik kai Teqnologik KateÔjunsh Kajhght c: N.S. Maurogi nnhc 1 Tautìthtec - Anisìthtec 1. (α ± ) = α ± α +. (α ± ) 3 = α 3 ± 3α +3α ± 3 3. α 3 ± 3 =(α ± ) ( α α + ) 4. (α + + γ) =
Jerinì SqoleÐo Fusik c sthn EkpaÐdeush 28 IounÐou - 1 IoulÐou 2010 EstÐa Episthm n Pˆtrac
Kbantik Perigraf tou Kìsmou mac KwnstantÐnoc Sfètsoc Kajhght c Fusik c Genikì Tm ma, Panepist mio Patr n Jerinì SqoleÐo Fusik c sthn EkpaÐdeush 28 IounÐou - 1 IoulÐou 2010 EstÐa Episthm n Pˆtrac Ti ennooôme
Statistik gia PolitikoÔc MhqanikoÔc EKTIMHSH PAR
Statistik gia PolitikoÔc MhqanikoÔc EKTIMHSH PARAMETRWN - 2 8 DekembrÐou 202 t.m. X me mèsh tim µ t.m. X 2 me mèsh tim µ 2 Diaforˆ µ µ 2? [X kai X 2 anexˆrthtec] DeÐgma {x, x 2,..., x n } x DeÐgma {x 2,
Εφαρμοσμένα Μαθηματικά για Μηχανικούς
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εφαρμοσμένα Μαθηματικά για Μηχανικούς Σημειώσεις: Δειγματοληψία Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Kefˆlaio 5 DeigmatolhyÐa 'Estw èna sônolo periodikˆ
ISTORIKH KATASKEUH PRAGMATIKWN ARIJMWN BIBLIOGRAFIA
ΛΟΓΙΣΜΟΣ CALCULUS Διαφορικός Λογισμός, Απειροστικός Λογισμός 1670 1740 Ουράνια Μηχανική Isaac Newton 1648-1727 Gottfried Wilhelm Leibniz 1646-1716 απειροστάπολύ μικρά μεγέθη, άπειροπάρα πολύ μεγάλο, όριο
Didaktorikèc spoudèc stic HPA, sta Majhmatikˆ. 20 MartÐou 2015
Didaktorikèc spoudèc stic HPA, sta Majhmatikˆ 20 MartÐou 2015 Sunjhkec spoud n Misjìc: 1700-2500 dolˆria to m na. EnoÐkio: 700-1200 dolˆria. Mènw me sugkˆtoiko(-ouc). Upoqre seic se 2 wc 0 exˆmhna to qrìno:
Diakritˆ Majhmatikˆ I. Leutèrhc KuroÔshc (EÔh Papaðwˆnnou)
Diakritˆ Majhmatikˆ I Leutèrhc KuroÔshc (EÔh Papaðwˆnnou) PlhroforÐec... Tetˆrth, 09.00-11.00, Paraskeu, 18.00-20.00 SÔggramma 1: Λ. Κυρούσης, Χ. Μπούρας, Π. Σπυράκης. Διακριτά Μαθηματικά: Τα Μαθηματικά
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Άσκηση 2η Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών HU578: 2 η Seirˆ Ask sewn AporÐec: yannis@csd.uoc.gr 1. (aþ) Sac dðdetai o anadromikìc
Anaplhrwt c Kajhght c : Dr. Pappˆc G. Alèxandroc PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA I
PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA I. Aìristo Olokl rwma 2. Orismèno Olokl rwma 3. Diaforetik èkfrash tou aìristou oloklhr matoc H Sunˆrthsh F ()
Συνδυαστική λογική και βασικά λογικά κυκλώματα. URL:
DeÔtero Ex mhno FoÐthshc Συνδυαστική λογική και βασικά λογικά κυκλώματα Ge rgioc Q. Alexandrìpouloc Lèktorac P.D. 47/8 e-mail: alexandg@uop.gr URL: http://users.iit.demokritos.gr/~alexandg Tm ma Epist
JEMATA EXETASEWN Pragmatik Anˆlush I
JEMATA EXETASEWN Pragmatik Anˆlush I JEMA 1o. A)(M. 1.5) Na qarakthrðsete (me aitiolìghsh) tic protˆseic pou akoloujoôn me thn èndeixh Swstì Lˆjoc: (i) 'Estw x 0 tètoio ste x < ε, gia kˆje ε > 0. Tìte
στο Αριστοτέλειο υλικού.
Σήματα Συστήματα Εισαγωγικά Κωνσταντίνος Κοτρόπουλος Τμήμα Πληροφορικής Θεσσαλονίκη, Ιούνιος 2013 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Εφαρμοσμένα Μαθηματικά για Μηχανικούς
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εφαρμοσμένα Μαθηματικά για Μηχανικούς Σημειώσεις: Μετασχηματισμός Z Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Kefˆlaio 7 Metasqhmatismìc Z 7. Orismìc tou metasqhmatismoô
Θεωρία Πιθανοτήτων και Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεωρία Πιθανοτήτων και Στατιστική Ενότητα 3: Συσχέτιση & Γραμμική Παλινδρόμηση Κουγιουμτζής Δημήτρης Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Ο δυϊκός χώρος Όνομα Καθηγητή: Ανδρέας Αρβανιτογεώργος Τμήμα: Μαθηματικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
25 OktwbrÐou 2012 (5 h ebdomˆda) S. Malefˆkh Genikì Tm ma Majhmatikˆ gia QhmikoÔc
Mˆjhma 9 0 25 OktwbrÐou 2012 (5 h ebdomˆda) Diaforikèc Exis seic TÔpoi Diaforik n exis sewn H pio apl diaforik exðswsh y = f (x) Diaforikèc Exis seic TÔpoi Diaforik n exis sewn H pio apl diaforik exðswsh
Στατιστική για Χημικούς Μηχανικούς
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Στατιστική για Χημικούς Μηχανικούς Ενότητα 3: Έλεγχος Υποθέσεων Κουγιουμτζής Δημήτρης Τμήμα Χημικών Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό
Εφαρμοσμένα Μαθηματικά για Μηχανικούς
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εφαρμοσμένα Μαθηματικά για Μηχανικούς Σημειώσεις: Μετασχηματισμός Laplace Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Kefˆlaio 8 Metasqhmatismìc Laplace 8. Orismìc
APEIROSTIKOS LOGISMOS I
1 OktwbrÐou 2012 Kwdikìc Maj matoc: 101 (U) 'Etoc didaskalðac: 2012-2013, Qeimerinì Exˆmhno Hmèrec didaskalðac: Deut. - Tet. - Par., 11:00-13:00 Didˆskontec Tm ma 1 o (AM pou l gei se 0,1,2) Amf 21, BasÐleioc
GENIKEUMENA OLOKLHRWMATA
PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA I GENIKEUMENA OLOKLHRWMATA Anplhrwt c Kjhght c: Dr. Pppˆc G. Alèndroc GENIKEUMENA OLOKLHRWMATA H ènnoi tou orismènou
PERIEQŸOMENA I YHFIAKH THLEORASH 11 1 EISAGWGH STHN YHFIAKH THLEORASH Eisagwg Analogikì bðnteo
PERIEQŸOMENA I YHFIAKH THLEORASH 11 1 EISAGWGH STHN YHFIAKH THLEORASH 13 1.1 Eisagwg......................... 13 1.2 Analogikì bðnteo..................... 14 1.2.1 Analogikì s ma bðnteo.............. 14
JewrÐa UpologismoÔ. Grammatikèc QwrÐc Sumfrazìmena kai Autìmata StoÐbac
M. G. Lagoudˆkhc Τμημα ΗΜΜΥ, Πολυτεχνειο Κρητης SelÐda 1 apì 33 JewrÐa UpologismoÔ Grammatikèc QwrÐc Sumfrazìmena kai Autìmata StoÐbac M. G. Lagoudˆkhc Τμημα ΗΜΜΥ, Πολυτεχνειο Κρητης SelÐda 2 apì 33 Epanˆlhyh
Στατιστική για Χημικούς Μηχανικούς
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Στατιστική για Χημικούς Μηχανικούς Ενότητα 4: Συσχέτιση & Γραμμική Παλινδρόμηση Κουγιουμτζής Δημήτρης Τμήμα Χημικών Μηχανικών Άδειες Χρήσης
Ανάλυση ις. συστήματα
Σήματα Συστήματα Ανάλυση ourier για σήματα και συνεχούς χρόνου Λυμένες ασκήσει ις Κνσταντίνος Κοτρόπουλος Τμήμα Πληροφορικής συστήματα Θεσσαλονίκη, Ιούνιος 3 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Statistik gia PolitikoÔc MhqanikoÔc ELEGQOS UPOJ
Statistik gia PolitikoÔc MhqanikoÔc ELEGQOS UPOJESEWN 18 DekembrÐou 2012 'Elegqoc Upojèsewn 1 Statistik upìjesh 2 Statistik elègqou kai perioq apìrriyhc 3 Apìfash elègqou Statistik upìjesh mhdenik upìjesh
PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS.
PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS h Seirˆ Ask sewn Diaforikèc eis seic > diaforikèc
MÐa SÔntomh Eisagwgă stic SÔgqronec JewrÐec Isìthtac
MÐa SÔntomh Eisagwgă stic SÔgqronec JewrÐec Isìthtac Nikìlac BroÔsalhc nicholas.vrousalis@lmh.ox.ac.uk 29 OktwbrÐou 2007 1 KĹpoiec basikèc diakrðseic 1.1 Ish Mèrimna Φέροµαι εξίσου στην Α και στον Β vs.
PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS DEUTERHS KAI ANWTERHS TAXHS
PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS DEUTERHS KAI ANWTERHS TAXHS 1. Grammikèc diaforikèc exis seic deôterhc kai an terhc tˆxhc
L mma thc 'Antlhshc. A. K. Kapìrhc
L mma thc 'Antlhshc A. K. Kapìrhc 12 MartÐou 2009 2 Perieqìmena 1 Το Λήμμα της Άντλησης για μη κανονικές γλώσσες 5 1.1 Μη κανονικές γλώσσες..................................... 5 1.2 Λήμμα άντλησης για
P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ
P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s
Eisagwg sthn KosmologÐa
Eisagwg sthn KosmologÐa BasileÐou S. Gerogiˆnnh Kajhght Tm matoc Fusik c PanepisthmÐou Patr n Patra 2009 Kefˆlaio 1 Eisagwgikˆ 1.1 Gwniakì mègejoc, parsèk, ètoc fwtìc O parathrht c tou Sq matoc 1.1 parathreð
Mègisth ro - elˆqisth tom
15 DekembrÐou 2009 DÐnetai grˆfoc (N, A) me ìria ro c x ij [b ij, c ij ] gia kˆje akm (i, j) kai dôo epilegmènouc kìmbouc s kai t. Jèloume na upologðsoume th ro sto grˆfo, ste na megistopoieðtai h apìklish
PANEPISTHMIO PATRWN SQOLH JETIKWN EPISTHMWN TMHMA MAJHMATIKWN ODHGOS PROPTUQIAKWN SPOUDWN. akadhmaðkoô ètouc
PANEPISTHMIO PATRWN SQOLH JETIKWN EPISTHMWN TMHMA MAJHMATIKWN ODHGOS PROPTUQIAKWN SPOUDWN akadhmaðkoô ètouc 2006 2007 PATRA 2006 ii Perieqìmena I GENIKES PLHROFORIES 1 DOMH KAI DIOIKHSH TOU PANEPISTHMIOU
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Διγραμμικές και Τετραγωνικές μορφές Όνομα Καθηγητή: Ανδρέας Αρβανιτογεώργος Τμήμα: Μαθηματικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II SUNARTHSEIS POLLWN METABLHTWN EPIKAMPULIA OLOKLHRWMATA
PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II SUNARTHSEIS POLLWN METLHTWN EPIKAMPULIA OLOKLHRWMATA 1. EpikampÔlio Olokl rwma 1ou eðdouc Efarmogèc 2. Dianusmatikˆ
Pr th 'Ekdosh: Mpaldimts Fwtein Anajewrhmènh 'Ekdosh: Basileiˆdou Zw
LATEX Pr th 'Ekdosh: Mpaldimts Fwtein Anajewrhmènh 'Ekdosh: Basileiˆdou Zw Tm ma Efarmosmènhc Plhroforik c Panepist mio MakedonÐac Oikonomik n kai Koinwnik n Episthm n 1 1 OdhgÐec gia thn egkatˆstash tou
Ανάλυση ασκήσεις. συστήματα
Σήματα Συστήματα Ανάλυση Fourier για σήματα και διακριτού χρόνου Λυμένες ασκήσεις Κωνσταντίνος Κοτρόουλος Τμήμα Πληροφορικής συστήματα Θεσσαλονίκη, Ιούνιος 3 Άδειες Χρήσης Το αρόν εκαιδευτικό υλικό υόκειται
1 η Σειρά Ασκήσεων Θεόδωρος Αλεξόπουλος. Αναγνώριση Προτύπων και Νευρωνικά Δίκτυα
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Αναγνώριση Προτύπων και Νευρωνικά Δίκτυα η Σειρά Ασκήσεων Θεόδωρος Αλεξόπουλος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό
Ergasthriak 'Askhsh 2
Kefˆlaio 2 Ergasthriak 'Askhsh 2 Οπου θα δούμε πώς μπορούμε να ορίζουμε δικές μας διαδικασίες και θα παρουσιάσουμε τις primitive διαδικασίες χειρισμού λιστών, τις μεταβλητές και τα side effects. 2.1 P
2 PERIEQ OMENA H epðdrash tou upokeimènou diktôou sthn poiìthta uphresðac H diepaf thc uphresðac proc to qr
Perieqìmena 1 Eisagwg 5 1.1 Prìlogoc............................. 5 1.2 GiatÐ qrhsimopoioôme tupik perigraf.............. 6 1.3 Oi tupikèc mèjodoi stic thlepikoinwnðec............. 9 1.4 Ti eðnai oi gl
BeltistopoÐhsh. Dr. Dhm trhc Swthrìpouloc. Tm ma Thlepikoinwniak Susthmˆtwn kai DiktÔwn. Tetˆrth, 7 OktwbrÐou 2009
BeltistopoÐhsh Μάθημα 1ο Dr. Dhm trhc Swthrìpouloc Tm ma Thlepikoinwniak Susthmˆtwn kai DiktÔwn Tetˆrth, 7 OktwbrÐou 2009 Majhmatikìc Programmatismìc Μαθηματικός προγραμματισμός (Mathematical Programming):
SofÐa ZafeirÐdou: GewmetrÐec
Tm ma Majhmatik n Panepist mio Patr n Bohjhtikèc Shmei seic gia to mˆjhma GewmetrÐec SofÐa ZafeirÐdou Anaplhr tria Kajhg tria Pˆtra 2018 Oi shmei seic autèc grˆfthkan gia tic anˆgkec tou maj matoc GewmetrÐa.
Anagn rish ProtÔpwn & Neurwnikˆ DÐktua Probl mata 2
Jeìdwroc Alexìpouloc, Anaplhrwt c Kajhght c Theodoros Alexopoulos, Associate Professor EJNIKO METSOBIO POLUTEQNEIO NATIONAL TECHNICAL UNIVERSITY SQOLH EFARMOSMENWN MAJHMATIKWN KAI DEPARTMENT OF PHYSICS
University of Crete Computer Science Department. Subscription Indexes for Web Syndication Systems. Harry Kourdounakis Master's Thesis
University of Crete Computer Science Department Subscription Indexes for Web Syndication Systems Harry Kourdounakis Master's Thesis Heraklion, January 2011 Suggrafèac: PANEPISTHMIO KRHTHS SQOLH JETIKWN
PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II SUNARTHSEIS POLLWN METABLHTWN.
PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II SUNARTHSEIS POLLWN METABLHTWN h Seirˆ Ask sewn Akrìtata pragmatik n sunart sewn 1. Na brejoôn ta topikˆ akrìtata
Upologistik Fusik Exetastik PerÐodoc IanouarÐou 2013
Upologistik Fusik Exetastik PerÐodoc IanouarÐou 03 Patra, 6 Ianouariou 03 Jèma A. Na exhg sete grafikˆ thn mèjodo thc diqotìmhshc. B. Na exhg sete grafikˆ thn mèjodo Runge Kutta. Jèma. DiatÔpwsh Oi migadikèc
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΡΙΟΥ ΚΥΠΕΡΟΥΝΤΑ Ηλεκτρολόγου Μηχανικού, Διπλωματούχου Μεταπτυχιακών Σπουδών ΤΕΧΝΙΚΕΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΕΙΚΟΝΑΣ ΜΕ
Shmei seic Sunarthsiak c Anˆlushc
Shmei seic Sunarthsiak c Anˆlushc Apìstoloc Giannìpouloc 1 Panepisthmio Krhthc Tmhma Majhmatikwn Anoixh 2003 1 Tm. Majhmatik n, Panep. Ajhn n 2 Perieqìmena 1 Μετρικοί χώροι 5 1.1 Ορισμός................................................
PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS.
PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS 6h Seirˆ Ask sewn OmogeneÐc grammikèc diaforikèc exis seic me stajeroôc suntelestèc Jèma
6h Seirˆ Ask sewn. EpikampÔlia oloklhr mata
PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II SUNARTHSEIS POLLWN METLHTWN 6h Seirˆ Ask sewn EpikampÔlia oloklhr mata 1 Jèma 1. Na upologisjeð to epikampôlio
Dunamoseirèc A. N. Giannakìpouloc, Tm ma Statistik c OPA
Dunamoseirèc A. N. Giannakìpouloc, Tm ma Statistik c OPA Eisagwg Οι δυναμοσειρές είναι μια πολύ ενδιαφέρουσα κατηγορία σειρών. Βρίσκουν πολύ σημαντικές εφαρμογές στον ορισμό συναρτήσεων καθώς και σε διάφορες
ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s
P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Μηχανική Μάθηση. Ενότητα 10: Θεωρία Βελτιστοποίησης. Ιωάννης Τσαμαρδίνος Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Ενότητα 10: Θεωρία Βελτιστοποίησης Ιωάννης Τσαμαρδίνος Τμήμα Επιστήμης Υπολογιστών To genikì prìblhma, na broôme to mègisto elˆqisto miac sunˆrthshc
ANAGNWRISH MOUSIKOU EIDOUS: MIA BIO-EMPNEUSMENH POLUGRAMMIKH PROSEGGISH Metaptuqiak Diatrib IWANNH K. PANAGAKH PtuqioÔqou tou Tm matoc Plhroforik c kai Thlepikoinwni n, E.K.P.A. Epiblèpwn: KwnstantÐnoc
Statistik gia QhmikoÔc MhqanikoÔc EKTIMHSH PARA
Statistik gia QhmikoÔc MhqanikoÔc EKTIMHSH PARAMETRWN - 1 12 AprilÐou 2013 Eisagwgikˆ sthn ektðmhsh paramètrwn t.m. X me katanom F X (x; θ) Parˆmetroc θ: ˆgnwsth θ µ, σ 2, p DeÐgma {x 1,..., x n }: gnwstì
Θεωρία Πιθανοτήτων και Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεωρία Πιθανοτήτων και Στατιστική Ενότητα 2: Εκτίμηση Παραμέτρων Κουγιουμτζής Δημήτρης Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών
EISAGWGH STON PROGRAMMATISMO ( ) 'Askhsh 2
EISAGWGH STON PROGRAMMATISMO (2008-09) 'Askhsh 2 Pollèc forèc, èqoume dedomèna ta opoða eðnai bolikì na emfanðzontai stoiqismèna se st lec. Gia parˆdeigma, fantasteðte ìti ja jèlame na eðqame, sth morf
στο Αριστοτέλειο υλικού.
Σήματα Συστήματα Μετασχηματισμός aplace Λυμένες ασκήσεις Κωνσταντίνος Κοτρόπουλος Τμήμα Πληροφορικής Θεσσαλονίκη, Ιούνιος 03 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1
Sarò signor io sol Canzon, ottava stanza Domenico Micheli Soprano Soprano 2 Alto Alto 2 Α Α Sa rò si gnor io sol del mio pen sie io sol Sa rò si gnor io sol del mio pen sie io µ Tenor Α Tenor 2 Α Sa rò
S mata Sunart. Tm ma Majhmatik n Panepist mio Kr thc. epiblèpwn kajhght c Jeìdouloc Garefalˆkhc. To Je rhma Twn Pr twn Arijm n Se. Gi rgoc N.
Sunart Μεταπτυχιακή Εργασία Γιώργος Ν. Καπετανάκης Tm ma Majhmatik n Panepist mio Kr thc 10 Απριλίου 2009 Sunart epiblèpwn kajhght c Jeìdouloc Garefalˆkhc Perigraf 1 Σώματα συναρτήσεων Πρώτοι Διαιρέτες
rs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
Hmiomˆdec telest n sônjeshc kai pðnakec Hausdorff se q rouc analutik n sunart sewn
ARISTOTELEIO PANEPISTHMIO JESSALONIKHS SQOLH JETIKWN EPISTHMWN TMHMA MAJHMATIKWN TOMEAS MAJHMATIKHS ANALUSHS PETROS GALANOPOULOS Hmiomˆdec telest n sônjeshc kai pðnakec Hausdorff se q rouc analutik n sunart
Seirèc Fourier A. N. Giannakìpouloc, Tm ma Statistik c OPA
Seirèc Fourier A. N. Giannakìpouloc, Tm ma Statistik c OPA 1 Eisagwg Οι σειρές Fourier είναι ένα ιδιαίτερα χρήσιμο εργαλείο του Λογισμού ου βρίσκει ολλές εφαρμογές σε διάφορα εδία της ειστήμης, χ στις
ARISTOTELEIO PANEPISTHMIO JESSALONIKHS SQOLH JETIKWN EPISTHMWN TMHMA PLHROFORIKHS TEQNIKES PARAMORFWSIMWN MONTELWN SE PROBLHMATA TEQNHTHS ORASHS, EPEXERGASIAS EIKONAS KAI BINTEO Didaktorik Diatrib MIQAHL
Εφαρμοσμένα Μαθηματικά για Μηχανικούς
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εφαρμοσμένα Μαθηματικά για Μηχανικούς Σημειώσεις: Βασικές Έννοιες Σημάτων και Συστημάτων Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Kefˆlaio 2 Basikèc ènnoiec
el1 1 Eisagwg PerÐlhyh Lèxeic kleidiˆ Original Article Medical Informatics Association, ΑΜΙΑ). Correspondence to:
Original Article el1 H enswmˆtwsh thc Plhroforik c kai thc Plhroforik c UgeÐac sta progrˆmmata spoud n twn tmhmˆtwn kai sqol n Episthm n UgeÐac thc tritobˆjmiac ekpaðdeushc sthn Ellˆda MarÐa-Aggelik StamoÔlh
10/2013. Mod: 02D-EK/BT. Production code: CTT920BE
10/2013 Mod: 02D-EK/BT Production code: CTT920BE GR ΕΓΧΕΙΡΙ ΙΟ ΧΡΗΣΗΣ ΚΑΙ ΣΥΝΤΗΡΗΣΗΣ σελ. 1 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΚΕΦ 1 ΕΙΣΑΓΩΓΗ... 3 ΚΕΦ 2 ΕΓΚΑΤΑΣΤΑΣΗ... 3 2.1 ΜΕΤΑΚΙΝΗΣΗ ΚΑΙ ΑΠΟΣΥΣΚΕΥΑΣΙΑ...3 2.2 ΗΛΕΚΤΡΙΚΗ
Eisagwgă sto PICTEX: Mèroc prÿto
EÖtupon TeÔqoc No. 1 Septèmbrioc 1998 9 Eisagwgă sto PICTEX: Mèroc prÿto Apìstoloc Surìpouloc 28ης Οκτωβρίου 366 67100Ξάνθη 1. Eisagwgă Το PICTEX είναι μια συλλογή από μακροεντολές του TEX με τις οποίες
Στατιστική για Χημικούς Μηχανικούς
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Στατιστική για Χημικούς Μηχανικούς Ενότητα 1: Περιγραφική Στατιστική Κουγιουμτζής Δημήτρης Τμήμα Χημικών Μηχανικών Άδειες Χρήσης Το παρόν
Å Ó Ó ÐÅÉÑÁÌÁÔÉÊÏ ËÕÊÅÉÏ. ÁóêÞóåéò. ôçò ÅÕÁÃÃÅËÉÊÇÓ Ó ÏËÇÓ ÓÌÕÑÍÇÓ Å ÅÔÏÓ É ÉÄÑÕÓÇÓ
ÐÅÉÑÁÌÁÔÉÊÏ ËÕÊÅÉÏ ôçò ÅÕÁÃÃÅËÉÊÇÓ Ó ÏËÇÓ ÓÌÕÑÍÇÓ Å Ó Ó Å ÅÔÏÓ É ÉÄÑÕÓÇÓ 1733 ÔÁÎÇ Ã MáèçìáôéêÜ ÃåíéêÞò Ðáéäåßáò ÁóêÞóåéò EEEbbBBeee ÊáèçãçôÞò: Í.Ó. ÌáõñïãéÜííçò Ó ïëéêü ôïò 2008-2009 Πειραματικο Λυκειο
YWMIADH BASILEIOU fifianalush PROSARMOGHS ELASTOPLASTIKWN METALLIKWN KATASKEUWN UPO TO TRISDIASTATO KRITHRIO DIARROHS TRESCA ME TEQNIKES TOU HMIJETIKO
ARISTOTELEIO PANEPISTHMIO JESSALONIKHS TMHMA POLITIKWN MHQANIKWN TOMEAS EPISTHMHS KAI TEQNOLOGIAS TWN KATASKEUWN YWMIADH BASILEIOU PtuqioÔqou PolitikoÔ MhqanikoÔ fifianalush PROSARMOGHS ELASTOPLASTIKWN
G. A. Cohen ** stìqo thn kubernhtik nomojesða kai politik, den upˆrqei tðpota to qarakthristikì sth morf thc.)
Εκεί που βρίσκεται η πράξη: Περί του πεδίου της διανεμητικής δικαιοσύνης G. A. Cohen ** Mετάφραση: Νικόλας Βρούσαλης Ι Σε αυτή την εργασία υπερασπίζομαι έναν ισχυρισμό που μπορεί να εκφραστεί με ένα οικείο
Ta Jewr mata Alexander kai Markov thc JewrÐac Kìmbwn
Ta Jewr mata Alexander kai Markov thc JewrÐac Kìmbwn Πατεράκης Αντώνης Αθήνα, Ιούλιος 2008 Eisagwgikèc 'Ennoiec Kìmboi Ενας κόμβος (knot) K είναι η εικόνα ενός ομοιομορφισμού h του κύκλου S 1 στο χώρο
2 PerÐlhyh Se aut n thn ergasða, parousi zoume tic basikìterec klassikèc proseggðseic epðlushc Polu-antikeimenik n Problhm twn BeltistopoÐhshs(PPB) ka
MejodologÐec sthn Polu-Antikeimenik BeltistopoÐhsh apì Antwnèlou E. GewrgÐa Diplwmatik ErgasÐa Sqol Jetik n Episthm n Tm ma Majhmatik n Panepist mio Patr n Epiblèpousa: EpÐk.Kajhg tria J. N. Gr ya P tra,
A[0] = 0; /* To μηδέν δεν έχει διαιρέτες */ for (i=1; i<n; i++) { S=0; for (d=1; d<=i; d++) if (i % d == 0) S += d; A[i] = S; }
TEI Λάρισας / ΣΤΕΦ Τμ. Τεχνολογίας Πληροφορικής & Τηλεπικοινωνιών B Εξεταστική Περίοδος, 19 Φεβρουαρίου 2009 ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ι Ηλίας. Κ. Σάββας Α 1) Να γράψετε ένα πρόγραμμα το οποίο να γεμίζει ένα ακέραιο
1, 3, 5, 7, 9,... 2, 4, 6, 8, 10,... 1, 4, 7, 10, 13,... 2, 5, 8, 11, 14,... 3, 6, 9, 12, 15,...
To Je rhma tou Dirichlet Dèspoina NÐka IoÔlioc 999 Majhmatikì Tm ma Panepist mio Kr thc 2 Prìlogoc Oi pr toi arijmoð, 2, 3, 5, 7,,..., eðnai ekeðnoi oi fusikoð arijmoð oi opoðoi èqoun akrib c dôo diairètec,
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ
ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΑΔΑΜΗΣ Δ.Κ. / Τ.Κ. E.T. ΕΓΓ/ΝΟΙ ΨΗΦΙΣΑΝ ΕΓΚΥΡΑ ΓΙΟΒΑΣ ΙΩΑΝΝΗΣ ΛΕΥΚΑ ΠΑΝΑΓΙΩΤΗΣ ΜΑΝΤΑΣ ΠΑΝΑΓΙΩΤΗΣ ΔΑΛΙΑΝΗΣ ΓΕΩΡΓΙΟΣ ΑΣΤΡΟΣ 5 2.728 1.860 36 1.825 69 3,8% 152 8,3% 739 40,5%
f(x) =x x 2 = x x 2 x =0 x(x 1) = 0,
NÐkoc E. AggourÐdhc To Je rhma tou Sarkovskii Panepist mio Kr thc Tm ma Majhmatik n 2 Thn kritik epitrop apotèlesan oi Ajanasìpouloc KwnstantÐnoc Katsoprin khc Emmanou l Kwst khc Ge rgioc (epiblèpwn) touc
PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN. Ask seic kai Jèmata sthn Pragmatik Anˆlush I TMHMA POLITIKWN MHQANIKWN
PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN Ask seic kai Jèmata sthn Pragmatik Anˆlush I TMHMA POLITIKWN MHQANIKWN Anaplhrwt c Kajhght c: Dr. Pappˆc G. Alèandroc Perieqìmena. Sumbolismìc kai OrologÐa..
Ge rgioc Euaggelìpouloc
Ge rgioc Euaggelìpouloc Metadidaktorikìc Ereunht c Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνειούπολη Ζωγράφου, Αθήνα 15773. Εργαστήριο Ρομποτικής (2.1.21)
Θεωρία Πιθανοτήτων και Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεωρία Πιθανοτήτων και Στατιστική Ενότητα 1: Περιγραφική Στατιστική Κουγιουμτζής Δημήτρης Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών
È Ö Ñ Ø Ó ÄÙ Ó Ù Ð ËÕÓÐ ËÑÙÖÒ Ì Ü Å Ñ Ø Â Ø Ì ÕÒÓÐÓ Ã Ø Ù ÙÒ Ë Ñ Û Â ÛÖ Ã Ø ÆºËº Å ÙÖÓ ÒÒ Ç Ñ ô ÙØ Ò ÕÓÐ ÕÖ º ÅÔÓÖÓ Ò Ò Ò Ô Ö Õ Ó Ò Ò Ò Ñ Ó Ò Ð Ö Ö¹ Ò Ñ Ò ÐÐ Ü ÑÓÖ ØÓÙº ØÓÒ Ô Ö ÓÖ Ñ ØÛÒ Ò Ô Ù ØÛÒ Ð ôò
Eisagwg sta Stoqastikˆ Qrhmatooikonomikˆ. A. N. Giannakìpouloc, Tm ma Statistik c OPA
Eisagwg sta Stoqastikˆ Qrhmatooikonomikˆ A. N. Giannakìpouloc, Tm ma Statistik c OPA 1 NoembrÐou 211 2 Perieqìmena 1 Εισαγωγή στα στοχαστικά χρηματοοικονομικά 7 1.1 Εισαγωγή.................................................
Panepisthmio Patrwn Poluteqnikh Sqolh Tmhma Mhqanikwn H/U kai Plhroforikhc Prìgramma Metaptuqiak n Spoud n : fiepist mh kai TeqnologÐa twn Upologist nfl Diplwmatik ErgasÐa Suntomìterec Diadromèc DÔo KrithrÐwn:
Ask seic me ton Metasqhmatismì Laplace
Ask seic me ton Metasqhmatismì Laplace Epimèleia: Gi rgoc Kafentz c Upoy. Didˆktwr Tm m. H/U Panepist mio Kr thc 8 IounÐou 4. 'Estw to s ma { A, t T x(t), alloô () (aþ) Na upologðsete to metasq. Fourier
SofÐa ZafeirÐdou. Analutik GewmetrÐa. Tm ma Majhmatik n Panepist mio Patr n. Bohjhtikèc Shmei seic gia to mˆjhma. SofÐa ZafeirÐdou
Tm ma Majhmatik n Panepist mio Patr n Bohjhtikèc Shmei seic gia to mˆjhma Analutik GewmetrÐa Anaplhr tria Kajhg tria Pˆtra 2014 Οι σημειώσεις αυτές γραφτηκαν για τις ανάγκες του μαθήματος Αναλυτική Γεωμετρία
Ανάλυση. σήματα και συστήματα
Σήματα Συστήματα Ανάλυση ourier διακριτού χρόνου Κωνσταντίνος Κοτρόπουλος Τμήμα Πληροφορικής για σήματα και συστήματα Θεσσαλονίκη, Ιούνιος 23 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
OmadopoÐhsh Dedomènwn Uyhl c Diˆstashc. S.K. Tasoul c Diatmhmatikì P.M.S. Majhmatikˆ twn Upologist n kai twn Apofˆsewn Panepist mio Patr n
OmadopoÐhsh Dedomènwn Uyhl c Diˆstashc S.K. Tasoul c Diatmhmatikì P.M.S. Majhmatikˆ twn Upologist n kai twn Apofˆsewn Panepist mio Patr n Διπλωματική Εργασία Επιβλέπων: Μ.Ν. Βραχάτης Τριμελής Επιτροπή:
THỂ TÍCH KHỐI CHÓP (Phần 04) Giáo viên: LÊ BÁ TRẦN PHƯƠNG
Khó học LTðH KT-: ôn Tán (Thầy Lê á Trần Phương) THỂ TÍH KHỐ HÓP (Phần 4) ðáp Á À TẬP TỰ LUYỆ Giá viên: LÊ Á TRẦ PHƯƠG ác ài tập trng tài liệu này ñược iên sạn kèm the ài giảng Thể tich khối chóp (Phần