Seirèc Fourier A. N. Giannakìpouloc, Tm ma Statistik c OPA

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Seirèc Fourier A. N. Giannakìpouloc, Tm ma Statistik c OPA"

Transcript

1 Seirèc Fourier A. N. Giannakìpouloc, Tm ma Statistik c OPA 1 Eisagwg Οι σειρές Fourier είναι ένα ιδιαίτερα χρήσιμο εργαλείο του Λογισμού ου βρίσκει ολλές εφαρμογές σε διάφορα εδία της ειστήμης, χ στις χρονολογικές σειρές στην στατιστική, στην ανάλυση σήματος και εικόνας, στην οικονομετρία, την μηχανική κλ. Οι σειρές Fourier εινοήθηκαν αο τον Γάλλο μαθηματικό και φυσικό Jean Baptiste Joseph Fourier στην ροσάθεια του να μελετήσει την μετάδοση της θερμότητας στα στερεά και διατυώθηκαν για ρώτη φορά στην μελέτη του στο θέμα αυτό η οοία και αρουσιάστηκε το 187 στο Ινστιτούτο του Παρισιού. Αο τότε μέχρι σήμερα οι σειρές Fourier και οι γενικεύσεις τους έχουν αοτελέσει αντικείμενο εντατικής μελέτης θεωρητικής αλλά και ολύ εφαρμοσμένης. Για να ειστείτε ε αυτού καντε μια σύντομη αναζήτηση με τον ορο Fourier series στο Google Scholar. Την στιγμή ου γράφω αυτές τις σημειώσεις μου έδωσε.8. αοτελέσματα. Periodikèc sunart seic Ορισμός.1 Μια συνάρτηση f : I R, ονομάζεται εριοδική με ερίοδο T αν fx+t = fx για κάθε x I. Πολλά φυσικά, βιολογικά, κοινωνικά και οικονομικά φαινόμενα.χ. οι εοχές και η θερμόκρασία ή οι οικονομικές υφέσεις έχουν εαναλαμβανόμενη εριοδική φύση. Τα αρχέτυα των εριοδικών συναρτήσεων είναι οι συναρτήσεις sin και cos. Παράδειγμα.1 Η συνάρτηση fx = sinnx, n N είναι εριοδική με ερίοδο T =. Πράγματι, fx+t = sinnx + n = sinnx = fx. Ομως το T = δεν είναι ο μικρότερος ραγματικός αριθμός για τον οοίο ισχύει fx + T = fx για κάθε x I. Πραγματι έστω οτι ροσαθούμε να ροσδιορίσουμε το T έτσι ώστε να ισχύει fx + T = fx για κάθε x I. Αυτό μας δίνει την εξίσωση sinnx + nt = sinnx δηλαδή nt = και T = n. Μορούμε λοιον να θεωρήσουμε ως ερίοδο της f τον αριθμό T = n. Πρόταση.1 Αν T είναι ερίοδος της συνάρτησης f τότε και nt είναι ερίοδος για κάθε n N. Σαν ερίοδο μιας συνάρτησης λοιόν θα θεωρούμε τον μικρότερο αριθμό T με την ιδιότητα fx + T = fx για κάθε x Αόδειξη: Εστω T ερίοδος της f. Τότε για κάθε x ισχύει fx + T = fx. Ας άρουμε οοιοδηοτε x και ας θεωρήσουμε το x + T. Τότε fx + T = fx + T + T = fx + T = fx Άρα T ερίοδος της f. Με εαγωγή δείχνουμε ότι αυτό ισχύει για nt όου n N. Πρόταση. Το άθροισμα εερασμένων το λήθος εριοδικών συναρτήσεων με ερίοδο T είναι εριοδική συνάρτηση με την ίδια ερίοδο. Το ίδιο ισχύει και για τον γραμμικό συνδυασμό εερασμένων το λήθος εριοδικών συναρτήσεων. 1

2 Αόδειξη: Θα δείξουμε οτι ο ισχυρισμός ισχύει για άθροισμα συναρτήσεων και αφήνουμε τα υόλοια για άσκηση. Εστω f 1, f δύο εριοδικές συναρτήσεις με ερίοδο T. Συνεώς ισχύει f 1 x + T = f 1 x, x I f x + T = f x, x I Τότε f 1 + f x + T = f 1 x + T + f x + T = f 1 x + f x = f 1 + f x, x I. άρα η συνάρτηση f 1 + f είναι εριοδική με ερίοδο T. Πολύ χρήσιμη είναι και η ακόλουθη αρατήρηση. Πρόταση.3 Αν f εριοδική συνάρτηση με ερίοδο T, τότε η συνάρτηση g ου ορίζεται ως gx = fax είναι εριοδική με ερίοδο T 1 = Αόδειξη: Εστω ότι T 1 έχει την ιδιότητα gx + T 1 = gx για κάθε x. Τότε gx + T 1 = fax + T 1 = fax + at 1 Αν ειλέξουμε at 1 = T δηλαδή T 1 = T a τότε gx + T 1 = fax + at 1 = fax + T = fax = gx, και ο ισχυρισμός αοδείχθηκε. 3 Oi oikogèneiec sunart sewn sinnx kai cosnx Θα θεωρήσουμε την ειδική ερίτωση I = [, ] και θα μελετήσουμε τις οικογένειες συναρτήσεων {sinnx, cosnx}, n N. Αρχικά βλέουμε ότι όλα τα μέλη της οικογένειας αυτης είναι εριοδικές συναρτήσεις με ερίοδο T =. Ομως, οι συναρτήσεις αυτές έχουν και άλλες ιο ενδιαφέρουσες ιδιότητες. Πρόταση 3.1 Οι συναρτήσεις {sinnx, cosnx}, n N ικανοοιούν τις ιδιότητες: i sinnx sinmx = δ nm, ii cosnx cosmx = δ nm, iii sinnx cosmx =, όου δ nm είναι το ειλεγόμενο δελτα του Kronecker ου ορίζεται ως {, n m δ nm = 1, n = m. Αόδειξη: Θα δείξουμε την i αφήνοντας τις άλλες σαν ασκηση. Θυμηθείτε την τριγωνομετρική ταυτότητα sina sinb = 1 cosa b 1 cosa + b η οοία ισχύει για κάθε a, b. Ας άρουμε ρώτα την ερίτωση n m και ας θέσουμε a = nx και b = mx. Αυτο μας δίνει sinnx sinmx = 1 cosn mx 1 cosn + mx Κατά συνέεια sinnx sinmxdx = 1 = 1 cosn mxdx 1 1 sinn mx n m cosn + mxdx = sinn + mx n + m

3 Η ερίτωση n = m ααιτεί λίγο αραάνω ροσοχή. Αν a = b = nx η τριγωνομετρική ταυτότητα μας δίνει άρα sinnx = 1 1 cosn sinnx dx = 1 1dx 1 = 1 sinnx n cosnxdx Για τα υόλοια αλά χρησιμοοιείστε τις τριγωνομετρικές ταυτότητες για το γινόμενο συνημιτόνων ή γινόμενο συνημιτόνων και ημιτόνων. 4 Seirèc Fourier Ας υοθέσουμε οτι μια συνάρτηση f μορεί να γραφεί σαν γραμμικός συνδυασμός ημιτόνων και συνημιτόνων ου είναι μέλη της αραάνω οικογένειας, υό την έννοια ότι για κάθε x [, ] ισχύει fx = 1 a + n =. a n cosnx + n b n sinnx 1 Αν υοθέσουμε και αυτή είναι μια ολύ σημαντική υόθεση, γιατί δεν μορούμε να το κάνουμε άντοτε για όλες τις σειρές οτι μας ειτρέεται να ολοκληρώσουμε την αραάνω σχέση όρο ρος όρο τότε μορούμε να καθορίσουμε με μοναδικό τρόο τους συντελεστές a a n, b n, n N, αο τα ολοκληρώματα της συνάρτησης f. Πρόταση 4.1 Ας υοθέσουμε ότι ισχύει η 1. Τότε θα ρέει a = 1 fxdx, a n = 1 fx cosnxdx, b n = 1 fx sinnxdx, n N, n Αόδειξη: Ας ολοκληρώσουμε αυτή την συνάρτηση εάνω στο διάστημα [, ]. Παρατηρώντας ότι cosnxdx =, sinnxdx =, n N, n έχουμε ότι fxdx = a dx + a n cosnxdx + b n sinnxdx n n = a + + = a. Ας ολλαλασιάσουμε αυτή την συνάρτηση με την συνάρτηση cosmx, m, και ας ολοκληρώσουμε εάνω στο διάστημα [, ]. Εχουμε ότι fx cosmx = a cosmx + n a n cosnx cosmx + n b n sinnx cosmx οότε fx cosmxdx = a cosmxdx + a n cosnx cosmxdx + b n sinnx cosmxdx n n = n a n δ nm + = a m Ομοια για τα b m. 3

4 Ας γυρίσουμε τώρα ανάοδα την ροσέγγιση μας. Ας υοθέσουμε ότι έχουμε μια δεδομένη συνάρτηση f : [, ] R η οοία είναι ολοκληρώσιμη και ας ορίσουμε τους συντελεστές a = 1 fxdx, a n = 1 fx cosnxdx, b n = 1 Κατόιν κατασκευάζουμε την συνάρτηση ˆf έτσι ώστε ˆfx = 1 a + n fx sinnxdx, n N, n a n cosnx + n b n sinnx Ορισμός 4.1 Η συνάρτηση ˆf : [, ] R η οοία ορίζεται αο την ονομάζεται σειρά Fourier της συνάρτησης f. Το ακόλουθο θεώρημα το οοίο αρατίθεται χωρίς αόδειξη μας εξασφαλίζει την σύγκλιση των σειρών Fourier. Θεώρημα 4.1 Εστω η συνάρτηση f : [, ] R και ˆf η σειρά Fourier ου αράγεται αο αυτή. Ας υοθέσουμε είσης ότι η συνάρτηση f ορίζεται σε κάθε σημείο του [, ] εκτός ίσως αο εερασμένα το λήθος σημεία, είναι εριοδική αν εεκταθεί έκτος του [, ] και οι συναρτήσεις f και f είναι κατά τμήματα συνεχείς στο [, ]. Τότε, i Αν x είναι σημείο συνέχειας της f τότε η σειρά Fourier της f στο σημείο αυτό συγκλίνει στο fx, δηλαδή ˆfx = fx. ii Αν x είναι σημείο ασυνέχειας της f τότε η σειρά Fourier της f στο σημείο αυτό συγκλίνει στο fx +fx +, δηλαδή ˆfx = fx +fx +. Παράδειγμα 4.1 Υολογίστε την 5 Seirèc Fourier se genikˆ diast mata Ας υοθέσουμε οτι η συνάρτηση f είναι ορισμένη στο διάστημα [, ] αντί για το [, ]. Ο μετασχηματισμός x y, y = ax + b για a =, b = μετασχηματίζει το διάστημα [, ] στο διάστημα [, ]. Ως ρος την καινούργια μεταβλητή y μορούμε να άρουμε την σειρά Fourier με βάση τα ροηγούμενα fx = 1 a + a n cos n + b n sin n, 3 a = 1 fxdx, a n = 1 fx cos 6 'Artiec kai perittèc sunart seic Ορισμός 6.1 Άρτιες και εριττές συναρτήσεις dx, b n = 1 fx sin dx, n N, n i Μια συνάρτηση f : [, ] R ονομάζεται άρτια αν f x = fx, για κάθε x [, ]. ii Μια συνάρτηση f : [, ] R ονομάζεται εριττή αν f x = fx, για κάθε x [, ]. Παράδειγμα 6.1 Οι συναρτήσεις cos είναι άρτιες ενώ οι συναρτήσεις sin n x είναι εριττές. Πρόταση 6.1 Σειρές Fourier για άρτιες και εριττές συναρτήσεις 4

5 i Μια άρτια συνάρτηση f : [, ] R έχει σειρά Fourier της μορφής fx = a + a n cos n όου a = fxdx, a n = fx cos dx ii Μια εριττή συνάρτηση f : [, ] R έχει σειρά Fourier της μορφής fx = b n sin, n όου b n = fx sin dx, n N, n Αόδειξη: Ας θεωρήσουμε ότι η f είναι άρτια. Τότε b n = 1 = 1 fx sin fx sin dx = 1 dx + 1 fx sin fx sin dx + 1 dx = fx sin όου στο ρώτο ολοκλήρωμα κάναμε την αλλαγή μεταβλητών y = x. Ομοια αίρνουμε την σχέση ου δίνουμε για τους συντελεστές a n. Ομοια για τις εριττές συναρτήσεις. 7 'Artiec kai perittèc epektˆseic Πολλές φορές μια συνάρτηση f ορίζεται μόνο στο διάστημα [, ]. Μορούμε να την ορίσουμε σε όλο το [, ] εεκτείνοντας την συνάρτηση f κατάλληλα. Η εέκταση μορεί να γίνει με δύο τουλάχιστον τρόους, ου οδηγούν σε εύκολα ανατύγματα για την σειρά Fourier. Ορισμός 7.1 Αρτια εέκταση Εστω f : [, ] R μία δεδομένη συνάρτηση. Η άρτια εέκταση f e της συναρτησης f είναι η συνάρτηση f e : [, ] R η οοία ορίζεται ως { fx, x [, ]. f e x = f x, x [, ]. Η f e είναι μια άρτια συνάρτηση. Ορισμός 7. Περιττή εέκταση Εστω f : [, ] R μία δεδομένη συνάρτηση. Η εριττή εέκταση f o της συναρτησης f είναι η συνάρτηση f o : [, ] R η οοία ορίζεται ως { fx, x [, ], f o x = f x, x [, ]. Η f o είναι μια εριττή συνάρτηση. Τόσο η f e όσο και η f o ταυτίζονται με την f στο διάστημα [, ], αλλά είναι διαφορετικές μεταξύ τους σ- το διάστημα [, ]. Οταν θελήσουμε να βρούμε την σειρά Fourier για την f, μορούμε να βρούμε είτε την σειρά Fourier της άρτιας εέκτασης f e, είτε την σειρά Fourier της εριττής εέκτασης f o, οι οοίες θα ρέει να ταυτίζονται με την σειρά Fourier της f στο διάστημα [, ]. Οι δυο αυτές σειρές όμως θα είναι διαφορετικές. Πρόταση 7.1 Σειρές Fourier για την άρτια και εριττή εέκταση Εστω f : [, ] R. dx 5

6 i Η σειρά συνημιτόνων της f δηλαδή η σειρά της άρτιας εέκτασης είναι η fx = a + a n cos n όου a = fxdx, a n = fx cos ii Η σειρά ημιτόνων της f δηλαδή η σειρά της εριττής εέκτασης είναι η fx = b n sin, n όου b n = fx sin dx, n N, n Αόδειξη: Προκύτει αο άμεση εφαρμογή της Πρότασης 6.1, βάσει του οοίου η σειρά για την άρτια εέκταση θα είναι μια σειρά συνημιτόνων ενώ η σειρά για την εριττή εέκταση θα ειναι μια σειρά ημιτόνων. Σχόλιο 7.1 Είσης, σύμφωνα με το θεώρημα σύγκλισης, η σειρά για την άρτια εέκταση θα συγκλίνει στο x = στο f, ενώ η σειρά για την εριττή εέκταση θα συγκλίνει στο x = στο. Ομοια, στο x = οι σειρές της άρτιας και εριττής εέκτασης θα συγκλίνουν στα f και αντίστοιχα. Παράδειγμα 7.1 Υολογίστε την σειρά συνημιτόνων της συνάρτησης f : [, ] R, fx = sinx. Πρόκειται για την σειρά Fourier της άρτιας εέκτασης της συνάρτησης f, δηλαδή της συνάρτησης { sinx x [, f e x = sinx x [, Για την συνάρτηση αυτή έχουμε ότι όου a = fx = a + a n cos n fxdx, a n = όου =. Μορούμε να υολογίσουμε τους συντελεστές, Είσης, a = a n = sinx cosnxdx = 1 = 1 { 1 + cosn n + 1 Η ερίτωση n = 1 ρέει να αντιμετωιστεί χωριστά, a 1 = fx cos sinxdx = cosx = 4 { cosn + 1x n cosn } = n 1 sinx cosxdx =. Η σειρά συνημιτόνων για το fx = sinx είναι λοιόν η 1 + cosn 1 n 1 n= Η σειρά αυτή συγκλίνει στο sinx για κάθε x [, ]. cosnx + dx, dx } cosn 1x n cosn n, n

Μερικές Διαφορικές Εξισώσεις

Μερικές Διαφορικές Εξισώσεις Πανειστήμιο Πατρών, Τμήμα Μαθηματικών Μερικές Διαφορικές Εξισώσεις Χειμερινό εξάμηνο ακαδημαϊκού έτους 17-18, Διδάσκων: Α.Τόγκας 3ο φύλλο ροβλημάτων Ονοματεώνυμο - ΑΜ: ΜΔΕ 3ο φύλλο ροβλημάτων Α. Τόγκας

Διαβάστε περισσότερα

f(x)=f(x+λ), Τότε η συνάρτηση καλείται περιοδική, ο δε ελάχιστος αριθμός λ για τον οποίο ισχύει η παραπάνω σχέση καλείται αρχική περίοδος της f.

f(x)=f(x+λ), Τότε η συνάρτηση καλείται περιοδική, ο δε ελάχιστος αριθμός λ για τον οποίο ισχύει η παραπάνω σχέση καλείται αρχική περίοδος της f. ΣΕΙΡΕΣ FOURIER Θεωρία (σειρές Fourier) Εάν μιά συνάρτηση f ορίζεται σε όλο το και υάρχει αριθμός λ> τέτοιος ώστε να ισχύει: f(x)f(x+λ), x Τότε η συνάρτηση καλείται εριοδική, ο δε ελάχιστος αριθμός λ για

Διαβάστε περισσότερα

ΜΔΕ Άσκηση 6 Α. Τόγκας

ΜΔΕ Άσκηση 6 Α. Τόγκας Πρόβλημα 15. Για κάθε μια αό τις ακόλουθες αρχικές τιμές θερμοκρασίας i) να βρεθεί η λύση στην μορφή μια σειράς Fourier της εξίσωσης της θερμότητας με εριοδικές συνοριακές συνθήκες u t = u x x < x

Διαβάστε περισσότερα

Κεφάλαιο 7. Εισαγωγή στην Ανάλυση Fourier.

Κεφάλαιο 7. Εισαγωγή στην Ανάλυση Fourier. 7 Σειρές Fourier Κεφάλαιο 7 Εισαγωγή στην Ανάλυση Fourier Mια συνάρτηση : R καλείται εριοδική µε ερίοδο >, αν ισχύει ( x) = ( x+ ) για κάθε x R και ο είναι ο µικρότερος αριθµός για τον οοίο ισχύει αυτή

Διαβάστε περισσότερα

Σειρές συναρτήσεων. Τα μαθηματικά συγκρίνουν τα πιο διαφορετικά φαινόμενα και ανακαλύπτουν τις μυστικές αναλογίες, που τα ενώνουν.

Σειρές συναρτήσεων. Τα μαθηματικά συγκρίνουν τα πιο διαφορετικά φαινόμενα και ανακαλύπτουν τις μυστικές αναλογίες, που τα ενώνουν. ΚΕΦΑΛΑΙΟ 9 Σειρές συναρτήσεων Καθώς το εερασμένο ερικλείει μία άειρη σειρά Και στο αεριόριστο εμφανίζονται όρια Έτσι και η ψυχή της αεραντοσύνης φωλιάζει στις μικρές λετομέρειες Και μέσα στα ιο στενά όρια,

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Σειρές Fourier - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Σειρές Fourier - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Σειρές Fourier - Ασκήσεις Αόστολος Γιαννόουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το αρόν εκαιδευτικό υλικό υόκειται σε άδειες χρήσης Creative Commons. Για εκαιδευτικό υλικό, όως εικόνες, ου υόκειται

Διαβάστε περισσότερα

είναι γραµµικώς ανεξάρτητοι, αποτελούν βάση του υποχώρου των πινάκων Β άρα η διάστασή του είναι 2. και 2

είναι γραµµικώς ανεξάρτητοι, αποτελούν βάση του υποχώρου των πινάκων Β άρα η διάστασή του είναι 2. και 2 ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 5 Ιουλίου 6 Αό τα κάτωθι Θέµατα καλείσθε να λύσετε το ο ου εριλαµβάνει ερωτήµατα αό όλη την ύλη του µαθήµατος, ενώ αό τα Θέµατα,, 4 και 5 µορείτε να ειλέξετε

Διαβάστε περισσότερα

ΣΕΙΡΕΣ FOURIER. ο µετασχηµατισµός αυτός δίνεται από την σχέση x = ). Έτσι, χωρίς βλάβη της γενικότητας,

ΣΕΙΡΕΣ FOURIER. ο µετασχηµατισµός αυτός δίνεται από την σχέση x = ). Έτσι, χωρίς βλάβη της γενικότητας, ΣΕΙΡΕΣ FOURIER. Η ροσέγγιση συναρτήσεων µέσω ολυωνύµων, την οοία µελετήσαµε στην ροηγούµενη Ενότητα, αρά την αοτελεσµατικότητα και την, σχετική, αλότητά της, αοδεικνύεται ανεαρκής για την εριγραφή/ροσέγγιση

Διαβάστε περισσότερα

Τετραγωνική κυματομορφή συχνότητας 1 Hz

Τετραγωνική κυματομορφή συχνότητας 1 Hz Τετραγωνική κυματομορφή συχνότητας 1 Hz Η κυματομορφή, στην γενική της μορφή θα είναι : V 0 2 3 ωt -V Η κυματομορφή είναι εριττή Η κυματομορφή, όως φαίνεται εύκολα αό το σχήμα, έχει μέση τιμή μηδενική,

Διαβάστε περισσότερα

Μία σύντομη εισαγωγή στην Τριγωνομετρία με Ενδεικτικές Ασκήσεις

Μία σύντομη εισαγωγή στην Τριγωνομετρία με Ενδεικτικές Ασκήσεις Μία σύντομη εισαγωγή στην Τριγωνομετρία με Ενδεικτικές Ασκήσεις. Ονομασίες Ορισμοί Ο τριγωνομετρικός κύκλος έχει ακτίνα R. Αρχή μέτρησης των τόξων (γωνιών) είναι το Α, είτε κατά τη θετική φορά (αριστερόστροφα)

Διαβάστε περισσότερα

Λύσεις μερικών ασκήσεων του τέταρτου φυλλαδίου.

Λύσεις μερικών ασκήσεων του τέταρτου φυλλαδίου. Λύσεις μερικών ασκήσεων του τέταρτου φυλλαδίου.. Βρείτε τον μετασχηματισμό Fourier της συνάρτησης x, αν x xχ [,] (x) =, αν x < ή < x Λύση. Εειδή η συνάρτηση είναι τμηματικά συνεχής και μηδενίζεται έξω

Διαβάστε περισσότερα

Δίνονται οι συναρτήσεις: f ( x)

Δίνονται οι συναρτήσεις: f ( x) http://eler.mths.gr/, mths@mths.gr, Τηλ: 697905 Ενδεικτικές ααντήσεις 6 ης Γρατής Εργασίας ΠΛΗ 00-0: Άσκηση (5 μον.) (Για το ερώτημα (α) συμβουλευθείτε τα εδάφια. και. και για το (β) το εδάφιο. του συγγράμματος

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ ΜΕΡΟΣ A ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 36, Γραφ. 1, Στρόβολος 3, Λευκωσία Τηλ. 357-37811 Φαξ: 357-3791 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 13 ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία: Πέμτη, 3/5/13

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΟΡΙΑ. ,δηλαδή ορίζεται τουλάχιστον σ ένα από τα σύνολα (α, x. lim. lim g(x) , λ σταθερά lim g(x) (ισχύει και για περισσότερες από 2

ΒΑΣΙΚΑ ΟΡΙΑ. ,δηλαδή ορίζεται τουλάχιστον σ ένα από τα σύνολα (α, x. lim. lim g(x) , λ σταθερά lim g(x) (ισχύει και για περισσότερες από 2 ΒΑΣΙΚΑ ΟΡΙΑ Έστω μια συνάρτηση f η οοία ορίζεται όσο κοντά θέλουμε στο,δηλαδή ορίζεται τουλάχιστον σ ένα αό τα σύνολα (α, ) (,β) ή (α, ) ή (,β). Όταν οι τιμές της f()ροσεγγίζουν όσο θέλουμε τον ραγματικό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 5- ΛΥΣΕΙΣ Οι ασκήσεις της Εργασίας αυτής βασίζονται στην ύλη των Ενοτήτων 9 του συγγράµατος «Λογισµός Μιας Μεταβλητής»

Διαβάστε περισσότερα

ιαφορικές Εξισώσεις µε Μερικές Παραγώγους, Απαντήσεις-Παρατηρήσεις στην Τελική Εξέταση Περιόδου Ιουνίου.

ιαφορικές Εξισώσεις µε Μερικές Παραγώγους, Απαντήσεις-Παρατηρήσεις στην Τελική Εξέταση Περιόδου Ιουνίου. ιαφορικές Εξισώσεις µε Μερικές Παραγώγους, Ααντήσεις-Παρατηρήσεις στην Τελική Εξέταση Περιόδου Ιουνίου. Ανδρέας Ζούας 8 Σετεµβρίου Οι λύσεις αλώς ροτείνονται και σαφώς οοιαδήοτε σωστή λύση είναι αοδεκτή!

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ

ΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ ΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ 1. Τι ονομάζουμε εριοδική συνάρτηση Μια συνάρτηση ƒ με εδίο ορισμού το Α λέγεται εριοδική όταν υάρχει ραγματικός αριθμός Τ, Τ > 0 τέτοιος ώστε για κάθε χ Α να ισχύει α) χ+τ Α, χ -

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 6 Αό τα κάτωθι Θέµατα καλείσθε να λύσετε το ο ου εριλαµβάνει ερωτήµατα αό όλη την ύλη του

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αοστολής στους Φοιτητές: 7 Αριλίου 9 Ημερομηνία αράδοσης της Εργασίας: 9 Μαΐου 9 Πριν αό την λύση

Διαβάστε περισσότερα

Εισαγωγή στη Θεωρία Σημάτων και Συστημάτων

Εισαγωγή στη Θεωρία Σημάτων και Συστημάτων Εισαγωγή στη Θεωρία Σημάτων και Συστημάτων Ιωάννης Χαρ. Κατσαβουνίδης Τμήμα Μηχ. Η/Υ, Τηλε. Δικτύων Πανειστήμιο Θεσσαλίας ΦΘινοωρινό Εξάμηνο 00/ Άσκηση Να βρείτε αν τα αρακάτω συστήματα είναι γραμμικά,

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.6: Τριγωνομετρικά Ολοκληρώματα Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Γ.6:

Διαβάστε περισσότερα

[1] ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ 2012 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ. z : Παρατηρούμε ότι sin

[1] ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ 2012 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ. z : Παρατηρούμε ότι sin [] ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ. Τμήμα Α (α) Για τη συνάρτηση f () : Παρατηρούμε ότι si u= y x και v x u = ycos x, u = si x, v =, v =. x y x y = οότε Οι ανωτέρω ρώτες μερικές

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ - ΠΑΡΑΤΗΡΗΣΕΙΣ ΚΑΙ ΜΕΘΟΔΕΥΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ - ΠΑΡΑΤΗΡΗΣΕΙΣ ΚΑΙ ΜΕΘΟΔΕΥΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ - ΠΑΡΑΤΗΡΗΣΕΙΣ ΚΑΙ ΜΕΘΟΔΕΥΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ Πρόσημο τριγωνομετρικών αριθμών Το ρόσημο των τριγωνομετρικών αριθμών μιας γωνίας (ή τόξου) καθ αό το τεταρτημόριο στο οοίο βρίσκεται

Διαβάστε περισσότερα

Ελευθέριος Πρωτοπαπάς. Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Β Γενικού Λυκείου

Ελευθέριος Πρωτοπαπάς. Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Β Γενικού Λυκείου Ελευθέριος Πρωτοαάς Εκφωνήσεις και λύσεις των ασκήσεων της Τράεζας Θεμάτων στην Άλγεβρα Β Γενικού Λυκείου Δεκέμβριος 04 Περιεχόµενα o Θέμα Θέµα Σελίδα Θέµα Σελίδα Θέµα Σελίδα Θέµα Σελίδα 6950 8 6954 9

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Εργασία II Χειμερινό Εξάμηνο 7 Τεχνολογικό Εκαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Πρόβλημα Μετρήσεις Τεχνικών Μεγεθών Χειμερινό Εξάμηνο 7 Παραδοτέα 7 Πρόοδος Ι & 7 ΕΡΓΑΣΙΑ

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: L 2 -σύγκλιση σειρών Fourier - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: L 2 -σύγκλιση σειρών Fourier - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: L -σύγκλιση σειρών Fourier - Ασκήσεις Αόστολος Γιαννόουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το αρόν εκαιδευτικό υλικό υόκειται σε άδειες χρήσης Creative Commons. Για εκαιδευτικό υλικό, όως εικόνες,

Διαβάστε περισσότερα

Κεφάλαιο Σειρές Fourier

Κεφάλαιο Σειρές Fourier Κεφάλαιο 7 7. Σειρές Fourier Λίγο ριν το 8, ο Γάλλος μαθηματικός/φυσικός/μηχανικός Jean Baptiste Joseph Fourier έκανε μια εκληκτική ανακάλυψη. Μέσω των ενδελεχών αναλυτικών ερευνών του στις Μερικές Διαφορικές

Διαβάστε περισσότερα

X(s + j 2π T k)esit ds, C 1 = a + j(0,2π/t) ( ln(z) + j2πk. z i 1 dz, C = e at+j(0,2π). j2π C T

X(s + j 2π T k)esit ds, C 1 = a + j(0,2π/t) ( ln(z) + j2πk. z i 1 dz, C = e at+j(0,2π). j2π C T Πανειστήμιο Θεσσαλίας ΗΥ24: Θεωρία Σημάτων και Συστημάτων Φθινόωρο 25 Λύσεις Εαναλητικών Εξετάσεων Θέμα 1 (α) Αό το μετασχηματισμό Laplace δ(t t ) e st, ροκύτει y[i ]δ(t i T) y[i ]e si T = Y (e st ), με

Διαβάστε περισσότερα

1. Τριγωνομετρικοί αριθμοί οξείας γωνίας

1. Τριγωνομετρικοί αριθμοί οξείας γωνίας v.5 «Αυτό το ρόβλημα, τούτ η μεγάλη συμφορά για να λυθεί χρειάζεται, δίχως αμφιβολία, όως κοιτάζω α τη δική σου την λευρά, να δεις κι εσύ α τη δική μου τη γωνία».. Τριγωνομετρικοί αριθμοί οξείας γωνίας

Διαβάστε περισσότερα

[f(x)] [f(x)] [f (x)] (x 2 + 2) x 2-2 x 2.

[f(x)] [f(x)] [f (x)] (x 2 + 2) x 2-2 x 2. 99 ΘΕΜΑΤΑ. α) ίνεται η συνάρτηση f ορισµένη και δύο φορές αραγωγίσιµη στο διάστηµα µε τιµές στο (, + ). Να δειχθεί ότι η συνάρτηση g µε g() = lnf(),, έχει την ιδιότητα «g (), για κάθε» αν και µόνο αν ισχύει

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ

ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΘΕΜΑ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ α) Η f ( ) έχει ραγματικό μέρος φανταστικό μέρος u( x, y) xcos y και v( x, y) xsi y Αό την θεωρία γνωρίζουμε

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ Χαρακτηριστικά μεγέθη της αλής αρμονικής ταλάντωσης είναι: Α) Αομάκρυνση (x ή y): ονομάζεται η αόσταση του σώματος κάθε χρονική στιγμή αό την θέση ισορροίας (x= ή y=) Β) Το λάτος της

Διαβάστε περισσότερα

1.1 Τριγωνομετρικές Συναρτήσεις

1.1 Τριγωνομετρικές Συναρτήσεις 11 Τριγωνομετρικές Συναρτήσεις Ποια συνάρτηση ονομάζουμε εριοδική; ΑΠΑΝΤΗΣΗ Μια συνάρτηση f με εδίο ορισμού το σύνολο Α λέγεται εριοδική, όταν υάρχει ραγματικός αριθμός Τ > 0 τέτοιος, ώστε για κάθε x A

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ Άσκηση (8 µον) Χρησιµοοιώντας την αντικατάσταση acosθ, ή ataθ, για µια κατάλληλη

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα στα Μαθηματικά Προσανατολισμών Γ

Επαναληπτικό Διαγώνισμα στα Μαθηματικά Προσανατολισμών Γ ΘΕΜΑ Α Α1. Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα. Ποια συνάρτηση ονομάζεται αρχική ή αράγουσα της f στο ; Μονάδες 4 Α. Να διατυώσετε το θεώρημα Rolle. Μονάδες (1+1+1+1)4 Α3. Να διατυώσετε και να

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυο Yοβολής Αξιολόγησης ΓΕ O φοιτητής συμληρώνει την ενότητα «Υοβολή Εργασίας» και αοστέλλει το έντυο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος συμληρώνει

Διαβάστε περισσότερα

(Μονάδες 15) (Μονάδες 12)

(Μονάδες 15) (Μονάδες 12) ΑΛΓΕΒΡΑ Β Λυκε ί ου τ ράε ζ αθε μάτ ων( 1ηέ κδοση) θέ μαδε ύτ ε ροκαιτ έ τ αρτ ο Κόμβ οςατ σι οούλου01415 δης Ει μέ λε ι α:εμμανουήλκ.σκαλί Αντ ώνηςκ.αοστ όλου Άσκηση 1 α) Να κατασκευάσετε ένα γραμμικό

Διαβάστε περισσότερα

Κεφάλαιο Σειρές και μετασχηματισμός Fourier

Κεφάλαιο Σειρές και μετασχηματισμός Fourier Σειρές και μετασχηματισμός Fourier Κεφάλαιο Σειρές και μετασχηματισμός Fourier Ορισμοί Μία συνάρτηση f(x) είναι εριοδική με ερίοδο όταν ισχύει f(x+)f(x). Η ελάχιστη δυνατή ερίοδος λέγεται και θεμελιώδης

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Άλγεβρας Β τάξης Γενικού Λυκείου 2o Θέμα. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 2 η (2/12/2014)

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Άλγεβρας Β τάξης Γενικού Λυκείου 2o Θέμα. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 2 η (2/12/2014) ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Άλγεβρας Β τάξης Γενικού Λυκείου o Θέμα Εκφωνήσεις Λύσεις των θεμάτων Έκδοση η (/1/014) Οι ααντήσεις και οι λύσεις είναι αοτέλεσμα συλλογικής δουλειάς των Ειμελητών των φακέλων του Λυκείου

Διαβάστε περισσότερα

ΘΕΜΑ Α. Α1. Θεωρία Θεώρημα σελ. 145 σχολικού βιβλίου. Α2. Θεωρία Ορισμός σελ. 15 σχολικού βιβλίου

ΘΕΜΑ Α. Α1. Θεωρία Θεώρημα σελ. 145 σχολικού βιβλίου. Α2. Θεωρία Ορισμός σελ. 15 σχολικού βιβλίου Σελίδα αό ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 8 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Φροντιστήρια Ρούλα Μακρή

Διαβάστε περισσότερα

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοοίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 207-208 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Εικ. Καθηγητής v.kouras@fme.aegea.gr

Διαβάστε περισσότερα

xsin ydxdy (α) Εάν το χωρίο R είναι φραγμένο αριστερά και δεξιά από τις ευθείες x=α και x=β και από πάνω και κάτω από τις καμπύλες dr = dxdy

xsin ydxdy (α) Εάν το χωρίο R είναι φραγμένο αριστερά και δεξιά από τις ευθείες x=α και x=β και από πάνω και κάτω από τις καμπύλες dr = dxdy ΔΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Εφαρμογή Να υολογιστεί το ολοκλήρωμα : cos sin dd Ολοκληρώνουμε ρώτα ως ρος θεωρώντας το σαν σταθερά (αρατηρούμε ότι το «εσωτερικό» ολοκλήρωμα είναι ως ρος, δηλαδή ρώτα εμφανίζεται το

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2014 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2014 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Δείτε στις «Σημειώσεις Μιγαδικού Λογισμού» β) Το ραγματικό και το φανταστικό μέρος της f ( ) γράφονται uy (, ) = y και v(, y) = y Οι ρώτες μερικές

Διαβάστε περισσότερα

Dunamoseirèc A. N. Giannakìpouloc, Tm ma Statistik c OPA

Dunamoseirèc A. N. Giannakìpouloc, Tm ma Statistik c OPA Dunamoseirèc A. N. Giannakìpouloc, Tm ma Statistik c OPA Eisagwg Οι δυναμοσειρές είναι μια πολύ ενδιαφέρουσα κατηγορία σειρών. Βρίσκουν πολύ σημαντικές εφαρμογές στον ορισμό συναρτήσεων καθώς και σε διάφορες

Διαβάστε περισσότερα

Τριγωνομετρικές συναρτήσεις Τριγωνομετρικές εξισώσεις

Τριγωνομετρικές συναρτήσεις Τριγωνομετρικές εξισώσεις 6 Τριγωνομετρικές συναρτήσεις Τριγωνομετρικές εξισώσεις 1. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Περιοδική συνάρτηση Μια συνάρτηση f με εδίο ορισμού Α λέγεται εριοδική, όταν υάρχει T τέτοιος ώστε για κάθε x A να

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017 Στασίνου 6, Γραφ., Στρόβολος, Λευκωσία Τηλ. 57-78 Φαξ: 57-79 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 7 Μάθημα: ΜΑΘΗΜΑΤΙΚΑ Παρασκευή, 9/5/7 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΑΠΟ ΤΗΝ ΜΕΡΟΣ Α ln( x). Να υολογίσετε

Διαβάστε περισσότερα

ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΚΥΚΛΟΣ

ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΚΥΚΛΟΣ Περιοδικό ΕΥΚΛΕΙΔΗΣ Β E.M.E. (τεύχος 4) ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΚΥΚΛΟΣ Κώστα Βακαλόουλου ΕΙΣΑΓΩΓΗ Αν κάοιος θέλει να άψει να φοβάται το κεφάλαιο της Τριγωνομετρίας, ρέει ν αοφασίσει να διαβάσει ροσεκτικά τους

Διαβάστε περισσότερα

(s n (f)) g = s n (f g) = f (s n (g)). s n (f) g = (f D n ) g = f (D n g) = f (g D n ) = f s n (g). K n (x)g δ (x) dx. K n (x) dx.

(s n (f)) g = s n (f g) = f (s n (g)). s n (f) g = (f D n ) g = f (D n g) = f (g D n ) = f s n (g). K n (x)g δ (x) dx. K n (x) dx. Ανάλυση Fourier και Ολοκλήρωμα Lebesgue (11 1) 3ο Φυλλάδιο Ασκήσεων Υποδείξεις 1. Εστω f, g : T C ολοκληρώσιμες συναρτήσεις. Δείξτε ότι, για κάθε n N, (s n (f)) g = s n (f g) = f (s n (g)). Υπόδειξη. Θυμηθείτε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ http://eepgr/pli/pli/studetshtm ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ), - ΕΡΓΑΣΙΑ ΣΤ Τα κάτωθι ροβλήµατα ροέρχονται αό την ύλη και των συγγραµµάτων της

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝ Γ ΛΥΚΕΙΟΥ ΟΡΙΑ - ΣΥΝΕΧΕΙΑ 1 Να υολογίσετε τα όρια: 9 i) ii) ( ) 9 iii) 1 1 1 iv) 7 10 5 15 t t t 1 v) vi) t (t )(t ) 1 1 9 i) (ημ συν) ) 1 7 συν vii) 1 ημ viii) 1 5 i) ii) ημ 6 1 009, άν

Διαβάστε περισσότερα

ΘΕΜΑ 1. θ (0, ). 4 α) Να δείξετε ότι οι ρίζες της εξίσωσης αυτής είναι μη πραγματικοί αριθμοί. β) Έστω z,z. Δ = 4εφ θ 4= 4(εφ θ 1) < 0 γιατί π

ΘΕΜΑ 1. θ (0, ). 4 α) Να δείξετε ότι οι ρίζες της εξίσωσης αυτής είναι μη πραγματικοί αριθμοί. β) Έστω z,z. Δ = 4εφ θ 4= 4(εφ θ 1) < 0 γιατί π ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΘΕΜΑ Δίνεται η εξίσωση: z (εφθ)z + =, θ (, ). 4 α) Να δείξετε ότι οι ρίζες της εξίσωσης αυτής είναι μη ραγματικοί αριθμοί. β) Έστω z,z οι ρίζες της αραάνω εξίσωσης. Αν ισχύει

Διαβάστε περισσότερα

f p = lim (1 a n ) < n=0

f p = lim (1 a n ) < n=0 Πανειστήμιο Κρήτης Τμήμα Μαθηματικών Συντελεστές Taylor συναρτήσεων σε χώρους Hardy Καλλιόη Παολίνα Κουτσάκη Ειβλέων Καθηγητής: Μιχαήλ Πααδημητράκης Ειτροή: Μιχαήλ Κολουντζάκης, Θεμιστοκλής Μήτσης και

Διαβάστε περισσότερα

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής. Σημειώσεις ΙI: Η Εξίσωση Schrödinger για σωμάτιο σε κεντρικό δυναμικό.

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής. Σημειώσεις ΙI: Η Εξίσωση Schrödinger για σωμάτιο σε κεντρικό δυναμικό. Πανειστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙI Α. Καρανίκας και Π. Σφήκας Σημειώσεις ΙI: Η Εξίσωση Schöinge για σωμάτιο σε κεντρικό δυναμικό.. Ακτινική εξίσωση Η εξίσωση Schöinge για ένα σωμάτιο το

Διαβάστε περισσότερα

ΕΑΠ ΣΠΟΥ ΕΣ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Θ.Ε. ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΠΛΗ-12)

ΕΑΠ ΣΠΟΥ ΕΣ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Θ.Ε. ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΠΛΗ-12) ΕΑΠ ΣΠΟΥ ΕΣ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Θ.Ε. ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΠΛΗ-) ΛΥΣΕΙΣ 5 ΗΣ ΕΡΓΑΣΙΑΣ, - Eνότητες: 8,9,,,, αό το βιβλίο «ΛΟΓΙΣΜΟΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ» Γ. άσιου. Παράδοση της εργασίας µεχρι τις 9 /4/

Διαβάστε περισσότερα

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Προτεινόμενα θέματα Πανελλαδικών εξετάσεων Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης o ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Ααντήσεις ΘΕΜΑ ο Α. Σχολικό βιβλίο, σελίδα 6. B. Σχολικό βιβλίο, σελίδες 97 και

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Άλγεβρας Β τάξης Γενικού Λυκείου 2o Θέμα. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (26/11/2014)

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Άλγεβρας Β τάξης Γενικού Λυκείου 2o Θέμα. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (26/11/2014) ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Άλγεβρας Β τάξης Γενικού Λυκείου o Θέμα Εκφωνήσεις Λύσεις των θεμάτων Έκδοση 1 η (6/11/014) Οι ααντήσεις και οι λύσεις είναι αοτέλεσμα συλλογικής δουλειάς των Ειμελητών των φακέλων του

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΚΑΤΟΙΚΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ

ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΚΑΤΟΙΚΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΘΕΜΑ Α ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΚΑΤΟΙΚΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ A. Έστω f μια συνάρτηση αραγωγίσιμη σε ένα διάστημα (α, β), με εξαίρεση ίσως ένα σημείο του o, στο οοίο όμως η f είναι συνεχής.

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος Κεφάλαιο 1 Βασικές έννοιες Κεφάλαιο 2 Ταξινόμηση των διαφορικών εξισώσεων πρώτης τάξης... 20

Περιεχόμενα. Πρόλογος Κεφάλαιο 1 Βασικές έννοιες Κεφάλαιο 2 Ταξινόμηση των διαφορικών εξισώσεων πρώτης τάξης... 20 Περιεχόμενα Πρόλογος... 7 Κεφάλαιο Βασικές έννοιες... Διαφορικές εξισώσεις... Συμβολισμοί... Λύσεις... Προβλήματα αρχικών και συνοριακών τιμών... Κεφάλαιο Ταξινόμηση τν διαφορικών εξισώσεν ρώτης τάξης...

Διαβάστε περισσότερα

c n x n (t)) f(t) c n x n (t)dt + θ f 2 (t)dt = 0 f(t)c i x i (t)dt =

c n x n (t)) f(t) c n x n (t)dt + θ f 2 (t)dt = 0 f(t)c i x i (t)dt = ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Ειστήµης Υολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 5 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής εύτερη Σειρά Ασκήσεων - Λύσεις Ασκηση. Προφανώς και θee

Διαβάστε περισσότερα

Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE

Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE ΚΕΦΑΛΑΙΟ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE ΚΑΙ ΟΙ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΣΤΗΝ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΔΙΑΦΟΡΙΚΩΝ KAI ΟΛΟΚΛΗΡΩΤΙΚΟ-ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΜΕ ΣΤΑΘΕΡΟΥΣ ΣΥΝΤΕΛΕΣΤΕΣ O μετασχηματισμός lc-ο αντίστροφος μετασχηματισμός

Διαβάστε περισσότερα

1 η δεκάδα θεµάτων επανάληψης

1 η δεκάδα θεµάτων επανάληψης 1 1 η δεκάδα θεµάτων εανάληψης 1. ίνεται το ολυώνυµο Ρ(x) = x 3 x 2 4x + 4 Να αοδείξετε ότι ο αριθµός ρ = 1 είναι ρίζα του ολυωνύµου i Να βρείτε το ηλίκο της διαίρεσης του ολυωνύµου Ρ(x) µε το ολυώνυµο

Διαβάστε περισσότερα

Ορισμένο ολοκλήρωμα συνάρτησης Η συνάρτηση F( x ) = ( )

Ορισμένο ολοκλήρωμα συνάρτησης Η συνάρτηση F( x ) = ( ) 9 Ορισμένο ολοκλήρωμ συνάρτησης Η συνάρτηση F( = f t dt Θεωρούμε τη συνεχή συνάρτηση f:a R με A = [,] Χωρίζουμε το [,] σε ν ισομήκη υοδιστήμτ ου το κθέν έχει μήκος Δ = Σε κάθε υοδιάστημ ου σχημτίζετι ν

Διαβάστε περισσότερα

Ελευθέριος Πρωτοπαπάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ

Ελευθέριος Πρωτοπαπάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ Ελευθέριος Πρωτοαάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ ΑΣΚΗΣΗ ίνεται η συνάρτηση f µε f() = 5 4 +α, όου α R και το είναι ρίζα της εξίσωσης f() =. α) Να βρείτε το α R. β) Να λύσετε

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2014 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ. β) Το πραγματικό και το φανταστικό μέρος της f1( z ) γράφονται. Οι πρώτες μερικές παράγωγοι

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2014 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ. β) Το πραγματικό και το φανταστικό μέρος της f1( z ) γράφονται. Οι πρώτες μερικές παράγωγοι ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 4 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Δείτε στο e-course στις «Περιλητικές Σημειώσεις» σελ7 και σελ5 β) Το ραγματικό και το φανταστικό μέρος της f( ) γράφονται uxy (, ) = si( x) και

Διαβάστε περισσότερα

Αναγωγή στο 1ο τεταρτημόριο

Αναγωγή στο 1ο τεταρτημόριο ΑΛΓΕΒΡΑ ΒΛ ΤΡΙΓΩΝΟΜΕΤΡΙΑ - ΑΣΚΗΣΕΙΣ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 1-1. -175663 Βασικές Τριγωνομετρικές ταυτότητες Αν 0

Διαβάστε περισσότερα

ΕΥΤΕΡΑ, 12 ΙΟΥΝΙΟΥ 2000 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗ

ΕΥΤΕΡΑ, 12 ΙΟΥΝΙΟΥ 2000 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ ΕΥΤΕΡΑ, ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ ΠΡΩΤΟ Α. Αν η συνάρτηση f είναι αραγωγίσιµη σ ένα σηµείο x του εδίου ορισµού της να γραφεί η εξίσωση της

Διαβάστε περισσότερα

( ) Λ αφού αν διαιρέσουμε με το 2 τους όρους του 2 ης εξίσωσης το σύστημα γίνεται Ρ =

( ) Λ αφού αν διαιρέσουμε με το 2 τους όρους του 2 ης εξίσωσης το σύστημα γίνεται Ρ = 17 ο Γενικό Λύκειο Αθηνών Σχολικό έτος 01-015 ΤΑΞΗ:B' Λυκείου ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΙΟΥΝΙΟΥ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΣΤΗΝ ΑΛΓΕΒΡΑ :Αθήνα 8-6-015 ΘΕΜΑ 1ο Α. Nα αοδείξετε ότι αν ένα ολυώνυμο

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ...7 ΕΝΟΤΗΤΑ 1: ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ... 9 Θεωρία... 9 Ερωτήσεις... 9 Μεθοδολογία Παραδείγματα Ασκήσεις...

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ...7 ΕΝΟΤΗΤΑ 1: ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ... 9 Θεωρία... 9 Ερωτήσεις... 9 Μεθοδολογία Παραδείγματα Ασκήσεις... ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ...7 ΕΝΟΤΗΤΑ 1: ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ... 9 Θεωρία... 9 Ερωτήσεις... 9 Μεθοδολογία... 16 Παραδείγματα... 6 Ασκήσεις... 33 ΕΝΟΤΗΤΑ : ΔΥΝΑΜΙΚΗ ΠΡΟΣΕΓΓΙΣΗ... 39 Θεωρία... 39 Ερωτήσεις...

Διαβάστε περισσότερα

3.4 Οι τριγωνομετρικές συναρτήσεις

3.4 Οι τριγωνομετρικές συναρτήσεις 3.4 Οι τριγωνομετρικές συναρτήσεις Περιοδικές συναρτήσεις Ορισμός Μια συνάρτηση f με εδίο ορισμού το Α λέγεται εριοδική, όταν υάρχει ραγματικός αριθμός Τ>0 τέτοιος ώστε για κάθε Α να ισχύει: ( T)A και

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. ΛΟΓΙΣΜΟΣ Ι - ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι ΑΣΚΩΝ : Χρήστος Βοζίκης

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. ΛΟΓΙΣΜΟΣ Ι - ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι ΑΣΚΩΝ : Χρήστος Βοζίκης ΤΜΗΜΑ Β ΕΞΕΤΑΣΤΙΚΗ ΧΕΙΜΕΡΙΝΟΥ ΕΞΑΜΗΝΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΑΚΑ. ΕΤΟΣ 5-6 ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τ. Ε. Ι. Σ Ε Ρ Ρ Ω Ν Σέρρες, ΦΕΒΡΟΥΑΡΙΟΥ 6 ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΛΟΓΙΣΜΟΣ Ι - ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι

Διαβάστε περισσότερα

Απόδειξη Αποδεικνύουμε το θεώρημα στην περίπτωση που είναι f (x) 0.

Απόδειξη Αποδεικνύουμε το θεώρημα στην περίπτωση που είναι f (x) 0. Αόδειξη Αοδεικνύουμε το θεώρημα στην ερίτωση ου είναι f () 0. Έστω, με. Θα δείξουμε ότι f( ) f( ). 1 1 1 Πράγματι, στο διάστημα [, ] η f ικανοοιεί τις ροϋοθέσεις του Θ.Μ.Τ. δηλαδή 1 είναι συνεχής στο 1,.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 12. = e dt. Να αποδείξετε ότι: ΛΥΣΗ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 12. = e dt. Να αποδείξετε ότι: ΛΥΣΗ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΘΕΜΑ Α) Να αοδείξετε ότι: α) Η συνάρτηση f() = ln, [,] αντιστρέφεται και να ορίσετε την f. β) ln d + d =. Β) Δίνεται η συνάρτηση α) h() h(), για κάθε [, + ). = d. Να αοδείξετε

Διαβάστε περισσότερα

F = y n cos xˆx + sin xŷ. W OABO = F d r. ds + sin(x)dy ds. dy ds = 1 π. ) n 1 cos(s) + sin(s)ds. dy ds = 0. ds = 1 &

F = y n cos xˆx + sin xŷ. W OABO = F d r. ds + sin(x)dy ds. dy ds = 1 π. ) n 1 cos(s) + sin(s)ds. dy ds = 0. ds = 1 & Μηχανική Ι Εργασία #4 Μουζλάνοβ Γεώργιος Αριθμός Μητρώου:478 3 Οκτωβρίου 6 Άσκηση Αό τα δεδομένα της άσκησης έχουμε τα εξής: F = y n cos ˆ + sin ŷ Το έργο στην κλειστή διαδρομή O A B O είναι το κλειστό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΛΗ : ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι ΛΥΣΕΙΣ 5 ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ Άσκηση. ( µον.) Λύση: f ( ) ( ) ( ) ( )! f α) Ο τύος της σειράς µε κέντρο

Διαβάστε περισσότερα

f(x) = lim f n (t) = d(t, x n ) d(t, x) = f(t)

f(x) = lim f n (t) = d(t, x n ) d(t, x) = f(t) Κεφάλαιο 7 Ακολουθίες και σειρές συναρτήσεων 7.1 Ακολουθίες συναρτήσεων: κατά σημείο σύγκλιση Ορισμός 7.1.1. Εστω X σύνολο, (Y, ρ) μετρικός χώρος και f n, f : X Y (n = 1, 2,...). Λέμε ότι η ακολουθία συναρτήσεων

Διαβάστε περισσότερα

fysikoblog.blogspot.com

fysikoblog.blogspot.com fysikobog.bogspot.com Πανειστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙI Α. Καρανίκας και Π. Σφήκας Σημειώσεις ΙV: Η Εξίσωση Schoedinge για σωμάτιο σε κεντρικό δυναμικό.. Ακτινική εξίσωση Η εξίσωση Schoedinge

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΤΟ ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ

ΜΑΘΗΜΑ ΤΟ ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΘΕΩΡΙΑ ΜΑΘΗΜΑ 7.5 ΤΟ ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ. Θεώρηµα Rlle Αν µια συνάρτηση f είναι : Θεωρία Σχόλια Μέθοδοι Ασκήσεις (Αναζητώ ρίζα) συνεχής σε κλειστό διάστηµα [α, β] αραγωγίσιµη στο ανοικτό (α, β) f (α) f

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Σειρά Fourier Ορθοκανονικές Συναρτήσεις Στοεδάφιοαυτόθαδιερευνήσουμεεάνκαικάτωαπό

Διαβάστε περισσότερα

Γ 2 κριτ.οµοιοτ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΙΑΒΑΘΜΙΣΜΕΝΗΣ ΥΣΚΟΛΙΑΣ ΓΕΝΙΚΟ ΛΥΚΕΙΟ / ΤΑΞΗ : Β ΛΥΚΕΙΟΥ. ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ «Θέµατα Β»

Γ 2 κριτ.οµοιοτ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΙΑΒΑΘΜΙΣΜΕΝΗΣ ΥΣΚΟΛΙΑΣ ΓΕΝΙΚΟ ΛΥΚΕΙΟ / ΤΑΞΗ : Β ΛΥΚΕΙΟΥ. ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ «Θέµατα Β» ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΙΑΒΑΘΜΙΣΜΕΝΗΣ ΥΣΚΟΛΙΑΣ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ «Θέµατα Β» Άσκηση GI_V_GEO 899 [Παράγραφος 8.] Στο αρακάτω σχήµα τα τµήµατα ΑΕ και Β τέµνονται στο Γ. Να αοδείξετε ότι τα τρίγωνα

Διαβάστε περισσότερα

Στραγγίσεις (Θεωρία)

Στραγγίσεις (Θεωρία) Ελληνική Δημοκρατία Τεχνολογικό Εκαιδευτικό Ίδρυμα Ηείρου Στραγγίσεις (Θεωρία) Ενότητα 1 : Η ασταθής στράγγιση των εδαφών ΙΙ Δρ. Μενέλαος Θεοχάρης 6... Πρώτος τρόος γραμμικοοίησης Η μη γραμμικότητα της

Διαβάστε περισσότερα

1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η απόσταση του σώµατος

1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η απόσταση του σώµατος 1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η αόσταση του σώµατος αό το έδαφος (σε cm), δίνεται αό την συνάρτηση f(t)=1ηµ t +13, όου t ο χρόνος σε ώρες. α) Να βρείτε την ερίοδο της ταλάντωσης.

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι ΛΥΣΕΙΣ 4 ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. 1 (γ) lim. 1/ x

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι ΛΥΣΕΙΣ 4 ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. 1 (γ) lim. 1/ x ΠΛΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΠΛΗΡΟΦΟΡΙΚΗ Ι 00-00 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΛΗ : ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι ΛΥΣΕΙΣ 4 ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. (0 µον.) Να υολογισθούν τα όρια:

Διαβάστε περισσότερα

7.1. Το ορισµένο ολοκλήρωµα

7.1. Το ορισµένο ολοκλήρωµα Κ Χριστοδουλίδης: Μαθηµατικό Συµλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 7 Το ορισµένο ολοκλήρωµα 7 Το ορισµένο ολοκλήρωµα Για το αόριστο ολοκλήρωµα βρήκαµε ότι: Αν η συνάρτηση F ( είναι µια αρχική συνάρτηση

Διαβάστε περισσότερα

Εκφωνήσεις των θεμάτων των εξετάσεων Επεξεργασμένες ενδεικτικές απαντήσεις Ενδεικτική κατανομή μονάδων ανά ερώτημα

Εκφωνήσεις των θεμάτων των εξετάσεων Επεξεργασμένες ενδεικτικές απαντήσεις Ενδεικτική κατανομή μονάδων ανά ερώτημα . Εκφωνήσεις των θεμάτων των εξετάσεων Εεξεργασμένες ενδεικτικές ααντήσεις Ενδεικτική κατανομή μονάδων ανά ερώτημα Εεξεργασία: Δημήτριος Σαθάρας Σχολικός Σύμβουλος Μαθηματικών Συντονιστής βαθμολογητών

Διαβάστε περισσότερα

(Μονάδες 8) β) Αν τα διανύσµατα 2α+β. (Μονάδες 7) ΛΥΣΗ α β = α β συν α ɵ, β, 3 2 2α+β κα+β 2α+β κα+β = 0 2κα + 2α β+ κα β+β = 0

(Μονάδες 8) β) Αν τα διανύσµατα 2α+β. (Μονάδες 7) ΛΥΣΗ α β = α β συν α ɵ, β, 3 2 2α+β κα+β 2α+β κα+β = 0 2κα + 2α β+ κα β+β = 0 ΚΕΦΑΛΑΙΟ: ο - ΠΑΡΑΓΡΑΦΟΣ:.5 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 04 05 Γιάννης Ζαµέλης Μαθηµατικός 855 B (Αναρτήθηκε 08 4 ) ίνονται τα διανύσµατα ακαι µε ( α, ) = και α =, = α) Να ρείτε το εσωτερικό γινόµενο α (Μονάδες 8)

Διαβάστε περισσότερα

Πανελλαδικές Εξετάσεις 2017

Πανελλαδικές Εξετάσεις 2017 Πανελλαδικές Εξετάσεις 7 Μαθηματικά Προσανατολισμού 9/6/7 ΘΕΜΑ Α Προτεινόμενες λύσεις Α. Έστω, Δ, με

Διαβάστε περισσότερα

Αόριστο Ολοκλήρωµα ρ. Κωνσταντίνα Παναγιωτίδου

Αόριστο Ολοκλήρωµα ρ. Κωνσταντίνα Παναγιωτίδου Αόριστο Ολοκλήρωµα ρ. Κωνσταντίνα Παναγιωτίδου Ακ. Ετος 2018-2019 Θεωρούµε µια συνάρτηση f : I R, όπου το I είναι διάστηµα του R. Ορισµός Μια συνάρτηση F : I R λέγεται αντιπαράγωγος ή αρχική συνάρτηση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 Η ηµιτονοειδής συνάρτηση

ΚΕΦΑΛΑΙΟ 9 Η ηµιτονοειδής συνάρτηση 8 ΚΕΦΑΛΑΙΟ 9 Η ηµιτονοειδής συνάρτηση 9. Γενικά για την ηµιτονοειδή συνάρτηση Η συνάρτηση αυτή χρησιµοοιείται ολύ στην Ηλεκτρολογία αλλά και σε άλλες Τεχνικές Ειστήµες. Οι λόγοι είναι οι ακόλουθοι: α Με

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12)

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ηµεροµηνία Αοστολής στον Φοιτητή: 9 Mαίου 7 Ηµεροµηνία Παράδοσης της Εργασίας αό τον Φοιτητή: Ιουνίου 7 Άσκηση. ( µον.) ίνεται το σύστηµα

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΠΥΚΝΩΤΗΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Πυκνωτή ονομάζουμε ένα σύστημα δυο αγωγών οι οοίοι βρίσκονται σε μικρή αόσταση μεταξύ τους και φέρουν ίσα και αντίθετα ηλεκτρικά φορτία. Χαρακτηριστικό μέγεθος των υκνωτών

Διαβάστε περισσότερα

ΘΕΜΑ Ο Μιγαδικοί 5 Έστω w i w wi, όου w i,, R α. Να ρεθούν τα Rw και Im w. Να ρεθεί ο γεωμετρικός τόος των σημείων Μw στο μιγαδικό είεδο γ. Να ρεθεί τ

ΘΕΜΑ Ο Μιγαδικοί 5 Έστω w i w wi, όου w i,, R α. Να ρεθούν τα Rw και Im w. Να ρεθεί ο γεωμετρικός τόος των σημείων Μw στο μιγαδικό είεδο γ. Να ρεθεί τ ΘΕΜΑ Ο Μιγαδικοί i Δίνεται ο μιγαδικός και έστω w α. Να ρεθεί ο μιγαδικός w όταν w. Να δείετε ότι w i γ. Αν η εικόνα του κινείται στον κύκλο κέντρου, και ακτίνας και Μ είναι η εικόνα του w στο μιγαδικό

Διαβάστε περισσότερα

ΟΙ ΠΕΡΙΟΡΙΣΜΟΙ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ

ΟΙ ΠΕΡΙΟΡΙΣΜΟΙ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΟΙ ΠΕΡΙΟΡΙΣΜΟΙ ΣΗΝ ΡΙΓΩΝΟΜΕΡΙΑ Νικ. Ιωσηφίδης, Μαθηµατικός Φροντιστής, ΒΕΡΟΙΑ e-mail: iossifid@yahoo.gr Η εργασία αυτή γράφτηκε για τους µαθητές της Β Λυκείου όταν (δεκαετία 98-990) η ριγωνοµετρία δεν

Διαβάστε περισσότερα

ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ 1(ΑΝΑΛΥΣΗ)

ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ 1(ΑΝΑΛΥΣΗ) ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ (ΑΝΑΛΥΣΗ) Ι. Οι τριγωνομετρικές συναρτήσεις και οι αντίστροφές τους. Η συνάρτηση = sin. Η συνάρτηση sin : -, [,], = sin είναι, αφού (sin ) = cos >, για κάθε -,. Άρα

Διαβάστε περισσότερα

AΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ 2018

AΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ 2018 AΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ 8 ΘΕΜΑ Α: Α. Αόδειξη σελ.44 (σχολικό) Α. Ορισμός σελ. 5 (σχολικό) Α3. Η αράγωγος της f μορεί να είναι η Τ και η αράγωγος της g η H. Α4.

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. 1 ΔΩΔΕΚΑΤΟ ΜΑΘΗΜΑ Έστω συνάρτηση f ορισμένη σε διάστημα I. Λέμε ότι η F είναι αντιπαράγωγος της f στο I αν ισχύει F = f στο I. ΠΡΟΤΑΣΗ. Αν η F είναι αντιπαράγωγος της f στο

Διαβάστε περισσότερα

Κεφάλαιο 6. Εισαγωγή στις Σειρές Fourier

Κεφάλαιο 6. Εισαγωγή στις Σειρές Fourier 61 Εισαγωγή Κεφάλαιο 6 Εισαγωγή στις Σειρές Fourier Είναι γνωστό αό τα Μαθηµατικά Ι ότι το ανάτυγµα Τaylor µιας αναλυτικής συνάρτησης σ ένα διάστηµα της ραγµατικής ευθείας I = ( x R, x + R) κέντρου x και

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ηµεροµηνία Αοστολής στον Φοιτητή: Mαΐου 6 Ηµεροµηνία Παράδοσης της Εργασίας αό τον

Διαβάστε περισσότερα

Διαφοριϰές Εξισώσεις (ΜΕΜ 271) Λύσεις Θεμάτων Εξέτασης Ιούνη 2019

Διαφοριϰές Εξισώσεις (ΜΕΜ 271) Λύσεις Θεμάτων Εξέτασης Ιούνη 2019 Διαφοριϰές Εξισώσεις ΜΕΜ 71 Λύσεις Θεμάτων Εξέτασης Ιούνη 19 Εστω η μη γραμμιϰή διαφοριϰή εξίσωση ρώτης τάξης Α 1. Δείξτε ότι η διαφοριϰή εξίσωση δεν είναι αϰριβής. Λύση. Η αντίστοιχη διαφοριϰή μορφή είναι

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 18 ΜΑΪΟΥ 16 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Διαβάστε περισσότερα

Το θεώρηµα Αλλαγής µεταβλητής και οι µετασχηµατισµοί συντεταγµένων

Το θεώρηµα Αλλαγής µεταβλητής και οι µετασχηµατισµοί συντεταγµένων 8 Το θεώρηµα λλαγής µεταβλητής και οι µετασχηµατισµοί συντεταγµένων Όως έχουµε ήδη αναφέρει η δεύτερη βασική µέθοδος υολογισµού ολλαλών ολοκληρωµάτων είναι αυτή της αλλαγής µεταβλητής, την οοία έχουµε

Διαβάστε περισσότερα