ביוכימיה א
|
|
- Ἰωσίας Ζάππας
- 7 χρόνια πριν
- Προβολές:
Transcript
1 רשף משולם לימודי ביולוגיה ורפואה בחינת הידע קבלה לתוכנית ה- 4 שנתית ללימודי רפואה ביוכימיה א
2 מבוא לביוכימייה מולקולות החיים פחמימות וסוכרים ליפידים חומצות אמינו וחלבונים חומצות גרעין
3 סוכרים
4 פחמימות C n H 2n O n סוכרים מונו-סכרידים, מכילים מספר רב של קבוצות הידרוקסיל. סיווגם נגזר הן ממספר הפחמנים (טריוזות, טטרוזות וכו...) או ממיקום הקבוצה הקרבונילית (קטוזות מול אלדוזות). דו-סוכרים שני מולקולות סוכר המחוברות בקשר גליקוזידי, הנוצר על ידי ריאקציית דחיסה תוך יציאת מולקולת מים. לדוגמא לקטוז וסוכרוז. אוליגו-סאכרידים מספר ספיר של סוכרים המחוברים בקשר גליקוזידי רב-סוכרים מספר בלתי ספיר של סוכרים המחוברים בקשר גליקוזידי
5 פחמימות aldehyde ketone D & L תמונת ראי אחד של השני, בעלי אותו השם. D-glucose L-glucose. סטריואיזומרים אחרים מקבלים שמות שונים
6 ליפידים
7 ליפידים Fatty acids phospholipids ליפידים הן מולקולות הידרופוביות ולהן שימושים רבים חומצות שומן הן הדרך העיקרית של התא לאגור אנרגיה, בצורה של טרי-גליצרידים כולסטרול משמש הן לייצוב ממברנות והן כחומר מוצא לוייטמינים רבים ולהורמונים פוספוליפידים הן מולקולות מורכבות מגליצרות, 2 חומצות שומן ופספאט ותפקידן לבנות את ממברנות התא ולעיתים לשמש כמערכת להולכת אותות
8 פוספוליפידים
9 סוגים של פוספוליפידים
10 חומצות אמינו וחלבונים
11 חומצות אמינו אבן הבניין של חלבונים ופפטידים, אך משמשות גם להולכת אותות ויצירת אנרגיה. קיימות מעל 300 חומצות אמינו שונות בטבע, מתוכן רק 20 מקודדות בקוד הגנטי כל חומצות האמינו מלבד גליצין מכילות פחמן אלפא שהוא א-סימטרי ולכן מסובבות אור מקוטב. הפחמן הא- סימטרי קשור קוולנטית למימן, קרבוקסיל ואמין, כמו גם לשייר משתנה במרבית היצורים החיים קיימים חומצות אמינו רק מסוג L בסביבה מימית לרוב ניתן למצוא אותן מיוננות ובסביבה נייטראלית רובן יהיו במצבב צביטריוני לכל חומצות האמינו יש עקומת טיטרציה בשל היותן חומצות חלשות
12 חומצות אמינו
13 חומצות אמינו לא טעונות
14 חומצות אמינו ארומטיות
15 חומצות אמינו טעונות
16 חומצות אמינו
17 טיטרציה ונקודה איזו-אלקטרית עקומת הטיטרציה משתנה בהתאאם לשייר ה- R. אלקטרית pi בעזרתה ניתן להגיע לחישוב הנקודה האיזו pi = ( pk 1 + pk 2) = ( ) = pi = ( pk 1 + pkr) = ( ) =
18 הקשר הפפטידי הקשר הפפטידי נוצר בזכות התקפה נוקלאופילית של הקצה האמיני של החומצה האמינית 1+n על הקבוצה הקרבוקסילית של החומצה האמינית N הקשר יציב במיוחד, בבזכות רזוננס המונע את הרוטציה האופיינית לקשר יחיד מסוג סיגמא. שימו לב למולקולת המים שיוצאת החוצה בדומה לכל ריאקציית דחיסה. המצב היציב ביותר הוא כאשר שיירי ה R מונחים במרחב במצב טראנס אחד לשני.
19 מבנה החלבונים מבנה ראשוני רצף חומצות האמיניות הקשורות אחת לשנייה בקשר פפטידי מבנה שניוני קשרי מימן בין קבוצות קרבונילית ואמידיות בשלד הפפטיד, ללא מעורבות שיירי ה- R מבנה שלישוני מבנה תלת מימדי המערב את כל סוגי האינטרקציות הבין מולקולריות והן קשרי.SS מערב את שיירי ה- R. מבנה רביעוני אינטרקציות קוולנטיות או בלתי קוולנטיות בין מספר שרשרות פולי-פפטידיות
20 α הליקס המרחק בין שני פחמני אלפא הוא בערך 1.5 אנגסטרם כל סיבבוב מורכב מ 3.6 חומצות אמינו בממוצע זווית הסיבוב בין חומצה אמינית אחת לבאה היא 100 מעלות מבנה זה מצוי לרוב באזורים חוצי ממברנה ובמוטיבים היוצרים אינטרקציה עם הדנ"א חומצה אמינית פרולין, או ריבוי שיריים הטעונים באותו מטען גורמים להליקס להיות פחות יציב שיירי ה- R פונים אל חוץ ההליקס
21 סדין B
22 סיבוב חד - בטא
23 מבנים מיוחדים זה קרטינים הם משפחה של סיבי ביניים המצויים במבנים קשיחים בסידור של coiled coil מבנה רביעוני שמורכב מיחידות בעלות מבנה שניוני α קרטינים נמצא בשיעור, קרניים, ציפורניים בעיקר אלפא הליקס β קרטינים קרניים וצפרוניים, בעיקר סדין בטא Coiled coil
24 המוגלובין המוגלובין בנוי במבנה רביעוני ותפקידו להוביל חמצן מהריאות אל הרקמות המבנה הרביעוני מיוצב בעיקר על ידי אינטרקציות הידרופוביות מנגנון הפעולה הוא קuאופרטיבי ולכן העקומה של פעילותו/סטורציה תהיה סיגמואידלית הקבוצה קושרת החמצן היא קבוצת Heme בעזרת הברזל היודע לעבור בין 2+ ל 3 קבוצת ה heme מורכבת מיחידות הקרויות פרוטופירין
25 המוגלובין
26 אפיניות... אפיניות בכל מקום...
27 קו-אנזימים וקופקטורים
28 אנמיה חרמשית תת יחידה בטא מוטנטית, מציגה ואלין במקום גלוטמאט. המוגלובין נורמאלי A נשאר מסיס לא משנה אם קשור לחמצן או לא המוגלובין של אנמיה חרמשית - S כאשר אינו קושר חמצן הופך לאגרגטים סיביים השוקעים על הממברנה מחלה מעוררת כאב רב, סבל ומוות מוקדם
29 אנזימולוגיה
30 סוגי אנזימים סוגי האנזימים הקיימים בטבע: Isomerases Ligases Oxydoreductases Transferases Hydrolases Lyase
31
32 אנזימולוגיה Lock & key Induced fit
33 מנגנון של האנזים כימוטריפסין
34 קינטיקה אנזימתית E + S ES EP E + P ΔEa ΔEa
35 מודל מיכאליס מנטן על מנת לבצע השוואה נאותה בין אנזימים, נמדוד את פעילות האנזימים בזמן 0, שכן לאורך הזמן ריכוז הסובסטראט יורד והופך לתוצר, לכן יש לבחור נקודת זמן סטנדרטית V0, ב עוד לא קיים תוצר. אם עוד לא קיים תוצר בזמן 0, הרי שניתן להזניח את 2-k. נניח כי בכל רגע נתון, ריכוז הסובסטראט גדול משמעותית מריכוז האנזים,כך שהגורם שישפיע על קישור האנזים לסובסטראט הוא האפיניות בלבד. ננניח ריאקציה מסדר ראשון בלבד נניח כי k2 הוא השלב קובע המהירות, ולכן מהירות הריאקציה בזמן 0 נקבעת על ידי הנוסחא: =K2[ES} V 0 נניח מצב יציב של ריכוז הקומפלקס אנזים סובסטראט ES
36 מודל מיכאליס מנטן משוואת מיכאלס מנטן 0 V 0 V Km = max + [ S] [ S]
37 מודל מיכאליס מנטן נגזר מהפיתוח של הנוסחא ומהווה מדד להתפרקות הקומפלקס אנזים סובסטראט לעומת היווצרותו. במקרי קצה בהם האנזים איטי מאד, ניתן להזניח את k2 ולומר כי Km הוא בקורלציה לאפיניות Kcat הוא המספר המקסימאלי של ריאקציות אנזימטיות הניתנות ביחידת זמן המדד האמין ביותר לטיבו של האנזים k + k = - 1 m k 1 k 2 V max [ E t ] = k 2 = k cat
38 מודל מיכאליס מנטן [S]<<Km V 0 V = max Km + [ S] [ S] [S]>>Km km=[s] => V0=Vmax/2
39 משוואת ליינוואבר ברק 1 V 0 = Km V max [ S] Vmax
40 מעכבים מעכב בלי הפיך מעכב הפיך תחרותי בלתי תחורתי Un משולב אל-תחרותי non
41 מעכב בלתי הפיך נקשר קוולנטית לאנזים ומעכב אותו יכול לסייע במעבדה בזיהוי ריכוז האנזים במידה ואיננו ידוע מכיוון שהוא מפחית את כמות האנזימים הפעילים, הוא יפחית את ה,Vmax משפיע על km לא
42 מעכבים הפיכים כעת נעבור על המעכבי ההפיכים: תחרותי, מעכב משולב. לא תחרותי ומשולב ומקרה פרטי של בכל מעכב נבדוק את הפרמטרים הבאים: האם המעכב דומה לסובסטראט? האם המעכב נקשר לאתר הפעיל או לאתר אקראי? האם המעכב נקשר לאנזים החופשי או לקומפלקס אנזים סובסטראט? מה דינו של?Vmax מה דינו של?Km כיצד נראים הגרפים "מיכאליס מנטן" ו"ליינוואבר ברק"?
43 מעכב תחרותי המעכב דומה לסובסטראט! המעכב נקשר לאתר הפעיל! המעכב נקשר לאנזים החופשי?Vmax לא משתנה α עולה פי הפקטור?Km Km app = αkm V 0 V αk = max m + [ S] [ S] a =1+ [ I ] K I
44 מעכב תחרותי Vmaxלא משתנה Kmעולה
45 מעכב תחרותי
46 Uncompetitive מעכב לא תחרותי - המעכב אינו דומה לסובסטראט! המעכב נקשר לאתר אקראי! המעכב נקשר לקומפלקס אנזים סובסטראט 'α יורד פי?Vmax 'α יורד פי?Km Km app = Km/ α' V 0 = Vmax K +a m [ S] '[ S] a' = 1+ [ I ] K' I K' I = [ ES][ I] [ ESI]
47 Uncompetitive מעכב לא תחרותי - Vmaxיורד V max בהעדר מעכב Kmיורד V maxapp בנוכחות מעכב [S] K m Km app
48 Uncompetitive מעכב לא תחרותי - = Vmax/α Vmax app = Km/α Km app
49 מעכב משולב - mixed המעכב אינו דומה לסובסטראט! המעכב נקשר לאתר אקראי! המעכב נקשר לקומפלקס אנזים סובסטראט החופשי 'α יורד פי?Vmax α ועולה פי 'α יורד פי?Km ולאנזים
50 מעכב משולב - mixed Vmax app = Vmax/α V max Km app = Km α/α בהעדר מעכב V 0 = Vmax a K +a m [ S] '[ S] app V max בנוכחות מעכב a =1+ [ I ] K I a' = 1+ [ I ] K' I K I = [ E][ I] [ EI ] K' I = [ ES][ I] [ ESI] K m km app [S]
51 מעכב משולב - mixed Vmax app = Vmax/α Km app = Kmα/α 1 V o = a K m 1 + a' V max [S] Vmax
52 non competitive מעכב אל - תחרותי - a = a' = 1+ [ I ] K I V 0 Vmax = a K +a m [ S] '[ S]
53 non competitive מעכב אל - תחרותי - Vmax app = Vmax/ α - יורד Km app = αkm/ α איננו משתנה V max בהעדר מעכב app V max בנוכחות מעכב V 0 Vmax = a K +a m [ S] '[ S] Km
54 non competitive מעכב אל - תחרותי - Vmax app = Vmax/ α - יורד Km app = kt na,bv.
55 Vmax a K m Vmax a' Vmax a' Km a' [ I] a = 1+ [ II] K K a '= 1+ m K 'I Noncompetitive (Ki=K i) Vmax a' Km
56 השפעת האנזימים
57 אנזימים אלוסטרים אלו הם אנזימים אשר משנים את המבנה שלהם לאחר שקשרו אקטיבטור או מעכב ובנויים ממספר יחידות הנותנות תפקוד קיאופורטיבי כל יחידה משפיעה על האפיניות והפעילות של היחידות האחרות, הרגולציה נחשבת לאלוסטרית ואיננה חלק ממודל מיכאליס מנטן בדומה (אך להבדיל) מהמוגלובין +Activator No Activator or Inhibitor +Inhibitor
58 אנזימים אלוסטרים Homoallosteric regulation Heteroallosteric regulation
ביוכימיה של התא תרגיל מס' 3: קינטיקה אנזימתית
ביוכימיה של התא 72120 תרגיל מס' 3: קינטיקה אנזימתית 1 ריאקציות אנזימתיות פרמטרים להסתכלות על ריאקציות: תרמודינמיים קינטיים אנרגיה חופשית של גיבס- תלויה באופי החומר וסביבתו, סוג הקשרים הכימיים ומספרם. -G
םואיטורפה הסמ תייפוקסורטקפס
שיעור 3: אמרנו שאפשר לדעת את 20 החומצות האמיניות הראשונות בחלבון (דגרדציית אדמן-,(Edman אבל אם רוצים למפות חלבון ארוך יותר צריך לפרק את החלבון באמצעים פרוטיאוליטיים למקטעים קטנים יותר. עושים זאת בעיקר
Charge The ph in which the above form is dominant
1 פתרון תרגיל 1 # )1 בכל חומצות האמינו, למעט גליצין, פחמן אלפא הינו אסימטרי )קיראלי(. אלנין 6.01 = pi ליזין 9.74 = pi חומצה גלוטמית 3.22 = pi )2 ph 1.0 2.0 4.0 10.0 Charge +1 +1 0-1 )3 )4 1.82 6.00 9.17
פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( )
פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד a d U c M ( יהי b (R) a b e ל (R M ( (אין צורך להוכיח). מצאו קבוצה פורשת ל. U בדקו ש - U מהווה תת מרחב ש a d U M (R) Sp,,, c a e
gcd 24,15 = 3 3 =
מחלק משותף מקסימאלי משפט אם gcd a, b = g Z אז קיימים x, y שלמים כך ש.g = xa + yb במלים אחרות, אם ה כך ש.gcd a, b = xa + yb gcd,a b של שני משתנים הוא מספר שלם, אז קיימים שני מקדמים שלמים כאלה gcd 4,15 =
פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur
פתרון תרגיל --- 5 מרחבים וקטורים דוגמאות למרחבים וקטורים שונים מושגים בסיסיים: תת מרחב צירוף לינארי x+ y+ z = : R ) בכל סעיף בדקו האם הוא תת מרחב של א } = z = {( x y z) R x+ y+ הוא אוסף הפתרונות של המערכת
I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx
דפי נוסחאות I גבולות נאמר כי כך שלכל δ קיים > ε לכל > lim ( ) L המקיים ( ) מתקיים L < ε הגדרת הגבול : < < δ lim ( ) lim ורק ( ) משפט הכריך (סנדוויץ') : תהיינה ( ( ( )g ( )h פונקציות המוגדרות בסביבה נקובה
חומצו ת אמי ניו ת ו חלבו נ ים
חומצו ת אמי ניו ת ו חלבו נ ים Proteins ביוונית - מהמעלה הראשונה Proteios 1 החלבונים פועלים בתחומים רבים ומגוונים: קטליזה אנזימתית (זירוז לפחות פי מליון). העברת חומרים ואחסונם (למשל חמצן). תאי דם אדומים
1. תרמודינמיקה 2. קינטיקה ג- החוק השני והשלישי: מושגים ומנגנונים ב- פיצוצים ב- פולימריזצית שרשרת ב- אנזימים
קינטיקה של ריאקציות מורכבות כימיה פיסיקלית 6967-4 ד"ר דני פורת Tel: -6586948 e-mail: orah@chem.ch.huji.ac.il Rm: Los Angeles Course boo: Physical Chemisry P. Ains & J. de Paula (7 h ed) Course sie: h://chem.ch.huji.ac.il/surface-asscher/gabriel/hys_chem.hml
סיכום- בעיות מינימוםמקסימום - שאלון 806
סיכום- בעיות מינימוםמקסימום - שאלון 806 בבעיותמינימום מקסימוםישלחפשאתנקודותהמינימוםהמוחלטוהמקסימוםהמוחלט. בשאלות מינימוםמקסימוםחובהלהראותבעזרתטבלה אובעזרתנגזרתשנייהשאכן מדובר עלמינימוםאומקסימום. לצורךקיצורהתהליך,
שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם
תזכורת: פולינום ממעלה או מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה p f ( m i ) = p m1 m5 תרגיל: נתון עבור x] f ( x) Z[ ראשוני שקיימים 5 מספרים שלמים שונים שעבורם p x f ( x ) f ( ) = נניח בשלילה ש הוא
מספר שעות ידע המים לקיום החים. סה"כ I חלבונים
שם הקורס: ביוכימיה: סוכרים, חלבונים ומטבוליזים דרכי הוראה: הרצאה נושאי לימוד: היקף הקורס: נשא הלימוד רמה נדרשת מספר עקרונות הביוכימיה. תפקיד המים לקיום החים. חומצות האמיניות,, י פפטידים,, י חלבונים,, י
תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן
תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, 635865 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1. סדרה חשבונית שיש בה n איברים...2 3. האיבר
[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m
Observabiliy, Conrollabiliy תרגול 6 אובזרווביליות אם בכל רגע ניתן לשחזר את ( (ומכאן גם את המצב לאורך זמן, מתוך ידיעת הכניסה והיציאה עד לרגע, וזה עבור כל צמד כניסה יציאה, אז המערכת אובזרוובילית. קונטרולביליות
ל הזכויות שמורות לדפנה וסטרייך
מרובע שכל זוג צלעות נגדיות בו שוות זו לזו נקרא h באיור שלעיל, הצלעות ו- הן צלעות נגדיות ומתקיים, וכן הצלעות ו- הן צלעות נגדיות ומתקיים. תכונות ה כל שתי זוויות נגדיות שוות זו לזו. 1. כל שתי צלעות נגדיות
פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד
פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. לכל אחת מן הפונקציות הבאות, קבעו אם היא חח"ע ואם היא על (הקבוצה המתאימה) (א) 3} {1, 2, 3} {1, 2, : f כאשר 1 } 1, 3, 3, 3, { 2, = f לא חח"ע: לדוגמה
חורף תש''ע פתרון בחינה סופית מועד א'
מד''ח 4 - חורף תש''ע פתרון בחינה סופית מועד א' ( u) u u u < < שאלה : נתונה המד''ח הבאה: א) ב) ג) לכל אחד מן התנאים המצורפים בדקו האם קיים פתרון יחיד אינסוף פתרונות או אף פתרון אם קיים פתרון אחד או יותר
תרגול פעולות מומצאות 3
תרגול פעולות מומצאות. ^ = ^ הפעולה החשבונית סמן את הביטוי הגדול ביותר:. ^ ^ ^ π ^ הפעולה החשבונית c) #(,, מחשבת את ממוצע המספרים בסוגריים.. מהי תוצאת הפעולה (.7,.0,.)#....0 הפעולה החשבונית משמשת חנות גדולה
גבול ורציפות של פונקציה סקלרית שאלות נוספות
08 005 שאלה גבול ורציפות של פונקציה סקלרית שאלות נוספות f ( ) f ( ) g( ) f ( ) ו- lim f ( ) ו- ( ) (00) lim ( ) (00) f ( בסביבת הנקודה (00) ) נתון: מצאו ) lim g( ( ) (00) ננסה להיעזר בכלל הסנדביץ לשם כך
= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin(
א. s in(0 c os(0 s in(60 c os(0 s in(0 c os(0 s in(0 c os(0 s in(0 0 s in(70 מתאים לזהות של cos(θsin(φ : s in(θ φ s in(θcos(φ sin ( π cot ( π cos ( 4πtan ( 4π sin ( π cos ( π sin ( π cos ( 4π sin ( 4π
brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק
יום א 14 : 00 15 : 00 בניין 605 חדר 103 http://u.cs.biu.ac.il/ brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק 29/11/2017 1 הגדרת קבוצת הנוסחאות הבנויות היטב באינדוקציה הגדרה : קבוצת הנוסחאות הבנויות
שאלה 1 V AB פתרון AB 30 R3 20 R
תרגילים בתורת החשמל כתה יג שאלה א. חשב את המתח AB לפי משפט מילמן. חשב את הזרם בכל נגד לפי המתח שקיבלת בסעיף א. A 60 0 8 0 0.A B 8 60 0 0. AB 5. v 60 AB 0 0 ( 5.) 0.55A 60 א. פתרון 0 AB 0 ( 5.) 0 0.776A
לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור
הרצאה מס' 1. תורת הקבוצות. מושגי יסוד בתורת הקבוצות.. 1.1 הקבוצה ואיברי הקבוצות. המושג קבוצה הוא מושג בסיסי במתמטיקה. אין מושגים בסיסים יותר, אשר באמצעותם הגדרתו מתאפשרת. הניסיון והאינטואיציה עוזרים להבין
נחזור אל ההידרירים החביבים בהמשך הסמסטר. בינתיים אפשר לשכוח מהם 2. חומצה היא תרכובת המסוגלת לחשרר בתמיסה מימית יוני מימן ( + H(
חומצות ובסיסים הגדרות הידרידים תרכובות המכילות שני יסודות בלבד, כאשר אחד היסודות הוא מימן. דוגמאות: LiH, CaH2, AlH3 הידרידים של מתכות H2S, PH3 הידרידים של אל-מתכות נחזור אל ההידרירים החביבים בהמשך הסמסטר.
מתמטיקה בדידה תרגול מס' 2
מתמטיקה בדידה תרגול מס' 2 נושאי התרגול: כמתים והצרנות. משתנים קשורים וחופשיים. 1 כמתים והצרנות בתרגול הקודם עסקנו בתחשיב הפסוקים, שבו הנוסחאות שלנו היו מורכבות מפסוקים יסודיים (אשר קיבלו ערך T או F) וקשרים.
ניהול תמיכה מערכות שלבים: DFfactor=a-1 DFt=an-1 DFeror=a(n-1) (סכום _ הנתונים ( (מספר _ חזרות ( (מספר _ רמות ( (סכום _ ריבועי _ כל _ הנתונים (
תכנון ניסויים כאשר קיימת אישביעות רצון מהמצב הקיים (למשל כשלים חוזרים בבקרת תהליכים סטטיסטית) נחפש דרכים לשיפור/ייעול המערכת. ניתן לבצע ניסויים על גורם בודד, שני גורמים או יותר. ניסויים עם גורם בודד: נבצע
דיאגמת פאזת ברזל פחמן
דיאגמת פאזת ברזל פחמן הריכוז האוטקטי הריכוז האוטקטוידי גבול המסיסות של פריט היווצרות פרליט מיקרו-מבנה של החומר בפלדה היפר-אוטקטואידית והיפו-אוטקטוידית. ככל שמתקרבים יותר לריכוז האוטקטואידי, מקבלים מבנה
Logic and Set Theory for Comp. Sci.
234293 - Logic and Set Theory for Comp. Sci. Spring 2008 Moed A Final [partial] solution Slava Koyfman, 2009. 1 שאלה 1 לא נכון. דוגמא נגדית מפורשת: יהיו } 2,(p 1 p 2 ) (p 2 p 1 ).Σ 2 = {p 2 p 1 },Σ 1 =
סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות
סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות 25 בדצמבר 2016 תזכורת: תהי ) n f ( 1, 2,..., פונקציה המוגדרת בסביבה של f. 0 גזירה חלקית לפי משתנה ) ( = 0, אם קיים הגבול : 1 0, 2 0,..., בנקודה n 0 i f(,..,n,).lim
אלגברה ליניארית (1) - תרגיל 6
אלגברה ליניארית (1) - תרגיל 6 התרגיל להגשה עד יום חמישי (12.12.14) בשעה 16:00 בתא המתאים בבניין מתמטיקה. נא לא לשכוח פתקית סימון. 1. עבור כל אחד מתת המרחבים הבאים, מצאו בסיס ואת המימד: (א) 3)} (0, 6, 3,,
x a x n D f (iii) x n a ,Cauchy
גבולות ורציפות גבול של פונקציה בנקודה הגדרה: קבוצה אשר מכילה קטע פתוח שמכיל את a תקרא סביבה של a. קבוצה אשר מכילה קטע פתוח שמכיל את a אך לא מכילה את a עצמו תקרא סביבה מנוקבת של a. יהו a R ו f פונקציה מוגדרת
לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)
לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)............................................................................................................. חלק ראשון: שאלות שאינן להגשה 1. עבור
לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים:
לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( 2016 2015 )............................................................................................................. חלק ראשון: שאלות שאינן להגשה.1
תרגיל 13 משפטי רול ולגראנז הערות
Mthemtics, Summer 20 / Exercise 3 Notes תרגיל 3 משפטי רול ולגראנז הערות. האם קיים פתרון למשוואה + x e x = בקרן )?(0, (רמז: ביחרו x,f (x) = e x הניחו שיש פתרון בקרן, השתמשו במשפט רול והגיעו לסתירה!) פתרון
Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון.
Charles Augustin COULOMB (1736-1806) קולון חוק חוקקולון, אשרנקראעלשםהפיזיקאיהצרפתישארל-אוגוסטיןדהקולוןשהיהאחדהראשוניםשחקרבאופןכמותיאתהכוחותהפועלים ביןשניגופיםטעונים. מדידותיוהתבססועלמיתקןהנקראמאזניפיתול.
www.reshefmd.com רשף משולם לימודי ביולוגיה ורפואה reshefm87@gmail.com 054-3318431 בחינת הידע קבלה לתוכנית ה- 4 שנתית ללימודי רפואה כימייה כללית קשרים כימיים הקשר הכימי התוך מולקולרי העיקרי הוא הקשר הקוולנטי
קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים.
א{ www.sikumuna.co.il מהי קבוצה? קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים. קבוצה היא מושג יסודי במתמטיקה.התיאור האינטואיטיבי של קבוצה הוא אוסף של עצמים כלשהם. העצמים הנמצאים בקבוצה הם איברי הקבוצה.
צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים
מבוא: קבוצות מיוחדות של מספרים ממשיים קבוצות של מספרים ממשיים צעד ראשון להצטיינות קבוצה היא אוסף של עצמים הנקראים האיברים של הקבוצה אנו נתמקד בקבוצות של מספרים ממשיים בדרך כלל מסמנים את הקבוצה באות גדולה
c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V )
הצגות של חבורות סופיות c ארזים 6 בינואר 017 1 משפט ברנסייד משפט 1.1 ברנסייד) יהיו p, q ראשוניים. תהי G חבורה מסדר.a, b 0,p a q b אזי G פתירה. הוכחה: באינדוקציה על G. אפשר להניח כי > 1 G. נבחר תת חבורה
חוברת מבחנים שנה ב' 2017/2018
חוברת מבחנים שנה ב' חורף סמסטר 2017/2018 תוכן העניינים: ביוכימיה כללית 3 המבחנים הקיימים: 2017 מועד א' + ב' 2016 מועד א' + ב' 2015 מועד א' + ב' ביולוגיה מולקולרית 103 המבחנים הקיימים: 2017 מועד א' + ב'
קורס: מבוא למיקרו כלכלה שיעור מס. 17 נושא: גמישויות מיוחדות ושיווי משקל בשוק למוצר יחיד
גמישות המחיר ביחס לכמות= X/ Px * Px /X גמישות קשתית= X(1)+X(2) X/ Px * Px(1)+Px(2)/ מקרים מיוחדים של גמישות אם X שווה ל- 0 הגמישות גם כן שווה ל- 0. זהו מצב של ביקוש בלתי גמיש לחלוטין או ביקוש קשיח לחלוטין.
תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.
בB בB תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: 035804 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1 מכונית נסעה מעיר A לעיר B על כביש ראשי
הרצאה 7 טרנזיסטור ביפולרי BJT
הרצאה 7 טרנזיסטור ביפולרי JT תוכן עניינים: 1. טרנזיסטור ביפולרי :JT מבנה, זרם, תחומי הפעולה..2 מודל: S MOLL (אברסמול). 3. תחומי הפעולה של הטרנזיסטור..1 טרנזיסטור ביפולרי.JT מבנה: PNP NPN P N N P P N PNP
יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012)
יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 6 נושא: תחשיב הפסוקים: הפונקציה,val גרירה לוגית, שקילות לוגית 1. כיתבו טבלאות אמת לפסוקים הבאים: (ג) r)).((p q) r) ((p r) (q p q r (p
מתמטיקה בדידה תרגול מס' 13
מתמטיקה בדידה תרגול מס' 13 נושאי התרגול: תורת הגרפים. 1 מושגים בסיסיים נדון בגרפים מכוונים. הגדרה 1.1 גרף מכוון הוא זוג סדור E G =,V כך ש V ו E. V הגרף נקרא פשוט אם E יחס אי רפלקסיבי. כלומר, גם ללא לולאות.
TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים
TECHNION Iael Intitute of Technology, Faculty of Mechanical Engineeing מבוא לבקרה (034040) גליון תרגילי בית מס 5 d e C() y P() - ציור : דיאגרמת הבלוקים? d(t) ו 0 (t) (t),c() 3 +,P() + ( )(+3) שאלה מס נתונה
3-9 - a < x < a, a < x < a
1 עמוד 59, שאלהמס', 4 סעיףג' תיקוני הקלדה שאלון 806 צריך להיות : ג. מצאאתמקומושלאיברבסדרהזו, שקטןב- 5 מסכוםכלהאיבריםשלפניו. עמוד 147, שאלהמס' 45 ישלמחוקאתהשאלה (מופיעהפעמיים) עמוד 184, שאלהמס', 9 סעיףב',תשובה.
קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל "לוח" יש את אותה כמות מטען, אך הסימנים הם הפוכים.
קבל קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל "לוח" יש את אותה כמות מטען, אך הסימנים הם הפוכים. על לוח אחד מטען Q ועל לוח שני מטען Q. הפוטנציאל על כל לוח הוא
מתמטיקה בדידה תרגול מס' 5
מתמטיקה בדידה תרגול מס' 5 נושאי התרגול: פונקציות 1 פונקציות הגדרה 1.1 פונקציה f מ A (התחום) ל B (הטווח) היא קבוצה חלקית של A B המקיימת שלכל a A קיים b B יחיד כך ש. a, b f a A.f (a) = ιb B. a, b f או, בסימון
גמישויות. x p Δ p x נקודתית. 1,1
גמישויות הגמישות מודדת את רגישות הכמות המבוקשת ממצרך כלשהוא לשינויים במחירו, במחירי מצרכים אחרים ובהכנסה על-מנת לנטרל את השפעת יחידות המדידה, נשתמש באחוזים על-מנת למדוד את מידת השינויים בדרך כלל הגמישות
התפלגות χ: Analyze. Non parametric test
מבחני חי בריבוע לבדיקת טיב התאמה דוגמא: זורקים קוביה 300 פעמים. להלן התוצאות שהתקבלו: 6 5 4 3 2 1 תוצאה 41 66 45 56 49 43 שכיחות 2 התפלגות χ: 0.15 התפלגות חי בריבוע עבור דרגות חופש שונות 0.12 0.09 0.06
תרגילים פרופ' עזרא בר-זיו המחלקה להנדסת מכונות (תשס"ד) שאלה 1 שאלה 2 נתון : Time (sec) Pressure, mm Hg (torr)
א( קורס יסודות תורת השריפה (6-1-441) פרופ' עזרא בר-זיו המחלקה להנדסת מכונות (תשס"ד) תרגילים גיליון מספר 1: תרגילים בקינטיקה כימית נתון : שאלה 1 PH מתפרק ב- 600 o (g) (g) C ל- PH ו- H. בזמן התפרקות נמדדו
חושבים שהמיטוכונדריה ואברונים נוספים בתא היוקריוטי נבלעו על יד התא בעזרת סימביוזה והם השתלבו כך שהמיטוכונדריה נותנת לתא אנרגיה בעוד שהתא מספק לה דברים
מבוא לביולוגיה של התא חלק א' פרק 1. התא הוא יחידת החיים הבסיסית. כל השאר הינו צבר של תאים. דבר חי זה צבר המסוגל לשכפל את עצמו תוך שימוש בחומרים פשוטים מהסביבה. על פי המדע החיים מקיימים את עצמם בלי איזשהו
תויטמורא רובע םינוירטירק
ארומטיות, ריאקציות של פרק 15 בנזן תרכובות כגון בנזן, עם מספר נמוך יחסית של מימנים בהשוואה למספר הפחמנים, מצויות בד"כ בשמנים המופקים מעצים או מצמחים אחרים. הן נקראות "ארומטיות" בשל ריחותיהן הנעימים. הן
טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של. נקבל מחד חד הערכיות כי בהכרח.
1 תשע'א תירגול 8 אלגברה לינארית 1 טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של וקטור אם הוכחה: חד חד ערכית ויהי כך ש מכיוון שגם נקבל מחד חד הערכיות כי בהכרח
( )( ) ( ) f : B C היא פונקציה חח"ע ועל מכיוון שהיא מוגדרת ע"י. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חח"ע אז ועל פי הגדרת
הרצאה 7 יהיו :, : C פונקציות, אז : C חח"ע ו חח"ע,אז א אם על ו על,אז ב אם ( על פי הגדרת ההרכבה )( x ) = ( )( x x, כךש ) x א יהיו = ( x ) x חח"ע נקבל ש מכיוון ש חח"ע נקבל ש מכיוון ש ( b) = c כך ש b ( ) (
שיעור ; priming ההכפלה.
שיעור ;4 20.2.08 אם מסתכלים על מפה סכמטית של הגנום של.E coli נרא שיש לו גנום קטן: 40 מליון bp כ. - 4000 גנים. אנחנו מצא שחלק גדול מהגנים מוקדשים לתהליך ההכפלה. חלק מהגנים עוסקים באופן ישיר (ליגאזות, הליקאזות
תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשע"ב זהויות טריגונומטריות
תרגול חזרה זהויות טריגונומטריות si π α) si α π α) α si π π ), Z si α π α) t α cot π α) t α si α cot α α α si α si α + α siα ± β) si α β ± α si β α ± β) α β si α si β si α si α α α α si α si α α α + α si
דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות
יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות 1. מצאו צורה דיסיונקטיבית נורמלית קנונית לפסוקים הבאים: (ג)
סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור
סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 5 שנכתב על-ידי מאיר בכור. חקירת משוואה מהמעלה הראשונה עם נעלם אחד = הצורה הנורמלית של המשוואה, אליה יש להגיע, היא: b
מבני נתונים מבחן מועד ב' סמסטר חורף תשס"ו
TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE הטכניון - מכון טכנולוגי לישראל הפקולטה למדעי המחשב מרצים: רן אל-יניב, נאדר בשותי מבני נתונים 234218-1 מבחן מועד ב' סמסטר חורף תשס"ו
הגדרה: מצבים k -בני-הפרדה
פרק 12: שקילות מצבים וצמצום מכונות לעי תים קרובות, תכנון המכונה מתוך סיפור המעשה מביא להגדרת מצבים יתי רים states) :(redundant הפונקציה שהם ממלאים ניתנת להשגה באמצעו ת מצבים א חרים. כיוון שמספר רכיבי הזיכרון
פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה.
פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה. 16 במאי 2010 נסמן את מחלקת הצמידות של איבר בחבורה G על ידי } g.[] { y : g G, y g כעת נניח כי [y] [] עבור שני איברים, y G ונוכיח כי [y].[] מאחר והחיתוך
הסתברות שבתחנה יש 0 מוניות ו- 0 נוסעים. הסתברות שבתחנה יש k-t נוסעים ו- 0 מוניות. λ λ λ λ λ λ λ λ P...
שאלה תורת התורים קצב הגעת נוסעים לתחנת מוניות מפולג פואסונית עם פרמטר λ. קצב הגעת המוניות מפולג פואסונית עם פרמטר µ. אם נוסע מגיע לתחנה כשיש בה מוניות, הוא מייד נוסע במונית. אם מונית מגיעה לתחנה כשיש בתחנה
Rheumatoid Arthritis כיוון..Uricemia
סיכומים בביוכימיה ב' חלק א' לאחר מעבר על חומר הקורס והשקפים ניתן לראות כי מרבית החומר נימצא בשקפים ולכן בסיכומים אלו רשום רק מה שאינו מופיע בשקפים במטבוליזם יש שני סוגי מסלול אנבולי (סינתזה) ומסלול קטבלי
לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ב (2012) דפי עזר
לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ב (2012) דפי עזר תורת הקבוצות: סימונים.N + = N \ {0} קבוצת המספרים הטבעיים; N Z קבוצת המספרים השלמים. Q קבוצת המספרים הרציונליים. R קבוצת המספרים הממשיים. הרכבת
תורת הגרפים - סימונים
תורת הגרפים - סימונים.n = V,m = E בהינתן גרף,G = V,E נסמן: בתוך סימוני ה O,o,Ω,ω,Θ נרשה לעצמנו אף להיפטר מהערך המוחלט.. E V,O V + E כלומר, O V + E נכתוב במקום אם כי בכל מקרה אחר נכתוב או קשת של גרף לא
המנגנון היחיד שעונה על כל התנאים הללו הוא,(III) ולכן זוהי התשובה הנכונה: (III) X slow
א פיסיקלית א' כימיה סמסטר אביב, תשע"א 0) פיתרון מס' 8: תרגיל 696 696). בחירת מנגנון הגיוני B A היא מסדר חלקי שני לגבי A וסדר חלקי אפס לגבי B. משמע, בשאלה נתון כי הריאקציה P כבר ניתן לראות כי הריאקציה לא
הרצאה 7: CTMC הסתברויות גבוליות, הפיכות בזמן, תהליכי לידה ומוות
הרצאה 7: CTMC הסתברויות גבוליות, הפיכות בזמן, תהליכי לידה ומוות משואות קולמוגורוב pi, j ( t + ) = pi, j ( t)( rj ) + pi, k ( t) rk, j k j pi, j ( + t) = ( ri ) pi, j ( t) + ri, k pk, j ( t) k j P ( t)
פרק 8: עצים. .(Tree) במשפטים הגדרה: גרף ללא מעגלים נקרא יער. דוגמה 8.1: תרגילים: הקודקודים 2 ו- 6 בדוגמה הוא ).
מבוא לפרק: : עצים.(ree) עצים הם גרפים חסרי מעגלים. כך, כיוון פרק זה הוא מעין הפוך לשני הפרקים הקודמים. עץ יסומן לרב על ידי במשפטים 8.1-8.3 נפתח חלק מתכונותיו, ובהמשך נדון בהיבטים שונים של "עץ פורש" של
תרגול מס' 6 פתרון מערכת משוואות ליניארית
אנליזה נומרית 0211 סתיו - תרגול מס' 6 פתרון מערכת משוואות ליניארית נרצה לפתור את מערכת המשוואות יהי פתרון מקורב של נגדיר את השארית: ואת השגיאה: שאלה 1: נתונה מערכת המשוואות הבאה: הערך את השגיאה היחסית
סיכום תגובות כימיה אורגנית 2014 חלק 1
סיכום תגובות כימיה אורגנית 2014 חלק 1 בהצלחה C n H 2n+2 + O 2 Alkane nco 2 + (n+1)h 2 O תג' שריפה : הלוגנציה רדיקלית : Alkene הפקה ( ע"פ חוק זייצב- המימן יעזוב מהפחמן העני במימנים(: מאלקילהלידים, בנוכחות
פתרונות , כך שאי השוויון המבוקש הוא ברור מאליו ולכן גם קודמו תקף ובכך מוכחת המונוטוניות העולה של הסדרה הנתונה.
בחינת סיווג במתמטיקה.9.017 פתרונות.1 סדרת מספרים ממשיים } n {a נקראת מונוטונית עולה אם לכל n 1 מתקיים n+1.a n a האם הסדרה {n a} n = n היא מונוטונית עולה? הוכיחו תשובתכם. הסדרה } n a} היא אכן מונוטונית
קיום ויחידות פתרונות למשוואות דיפרנציאליות
קיום ויחידות פתרונות למשוואות דיפרנציאליות 1 מוטיבציה למשפט הקיום והיחידות אנו יודעים לפתור משוואות דיפרנציאליות ממחלקות מסוימות, כמו משוואות פרידות או משוואות לינאריות. עם זאת, קל לכתוב משוואה דיפרנציאלית
1. תרמודינמיקה 2. קינטיקה ג- החוק השני והשלישי: מושגים ומנגנונים ג- ריאקציות חד-מולקולריות
קצב ריאקציות כימיות כימיה פיסיקלית 6967-4 ד"ר דני פורת Tel: -6586948 e-mil: porth@chem.ch.huji.c.il Rm: Los Angeles 3 Course oo: Physicl Chemistry P. Atins & J. de Pul (7 th ed) Course site: http://chem.ch.huji.c.il/surfce-sscher/griel/phys_chem.html
תרגיל 7 פונקציות טריגונומטריות הערות
תרגיל 7 פונקציות טריגונומטריות הערות. פתרו את המשוואות הבאות. לא מספיק למצוא פתרון אחד יש למצוא את כולם! sin ( π (א) = x sin (ב) = x cos (ג) = x tan (ד) = x) (ה) = tan x (ו) = 0 x sin (x) + sin (ז) 3 =
אלקטרומגנטיות אנליטית תירגול #2 סטטיקה
Analytical Electromagnetism Fall Semester 202-3 אלקטרומגנטיות אנליטית תירגול #2 סטטיקה צפיפויות מטען וזרם צפיפות מטען נפחית ρ מוגדרת כך שאינטגרל נפחי עליה נותן את המטען הכולל Q dv ρ היחידות של ρ הן מטען
בחינה בסיבוכיות עמר ברקמן, ישי חביב מדבקית ברקוד
בחינה בסיבוכיות עמר ברקמן, ישי חביב מדבקית ברקוד סמסטר: א' מועד: א' תאריך: יום ה' 0100004 שעה: 04:00 משך הבחינה: שלוש שעות חומר עזר: אין בבחינה שני פרקים בפרק הראשון 8 שאלות אמריקאיות ולכל אחת מהן מוצעות
הקדמה כללית: בקצרה על קצבי ריאקציות וכו' (בשל שינוי סדר התרגולים). שיטות ניסיוניות למדידת קצב של ריאקציות (דגש על ניטור לחץ, מדידת בליעה וטיטרציה).
כימיה פיסיקלית א' תרגול מס' 4 6916) נושאי התרגול הקדמה כללית: בקצרה על קצבי ריאקציות וכו' בשל שינוי סדר התרגולים). שיטות ניסיוניות למדידת קצב של ריאקציות דגש על ניטור לחץ, מדידת בליעה וטיטרציה)..1.2 1.
דינמיקה כוחות. N = kg m s 2 מתאפסת.
דינמיקה כאשר אנו מנתחים תנועה של גוף במושגים של מיקום, מהירות ותאוצה כפי שעשינו עד כה, אנו מדלגים על ניתוח הכוחות הפועלים על הגוף. כוחות אלו ומסתו של הגוף הם אשר קובעים את תאוצתו. על מנת לקבל קשר בין הכוחות
אלגברה לינארית מטריצות מטריצות הפיכות
מטריצות + [( αij+ β ij ] m λ [ λα ij ] m λ [ αijλ ] m + + ( + +C + ( + C i C m q m q ( + C C + C C( + C + C λ( ( λ λ( ( λ (C (C ( ( λ ( + + ( λi ( ( ( k k i חיבור מכפלה בסקלר מכפלה בסקלר קומוטטיב אסוציאטיב
אלגוריתמים בתורת הגרפים חלק ראשון
גירסה 1. 11.11.22 אלגוריתמים בתורת הגרפים חלק ראשון מסמך זה הינו הראשון בסדרת מסמכים אודות תורת הגרפים, והוא חופף בחלקו לקורס "אלגוריתמים בתורת הגרפים" בטכניון (שאינו מועבר יותר). ברצוני להודות תודה מיוחדת
תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME
הנדסת המישור - תרגילים הכנה לבגרות תרגילים הנדסת המישור - תרגילים הכנה לבגרות באמצעות Q תרגיל 1 מעגל העובר דרך הקודקודים ו- של המקבילית ו- חותך את האלכסונים שלה בנקודות (ראה ציור) מונחות על,,, הוכח כי
1 תוחלת מותנה. c ארזים 3 במאי G מדיד לפי Y.1 E (X1 A ) = E (Y 1 A )
הסתברות למתמטיקאים c ארזים 3 במאי 2017 1 תוחלת מותנה הגדרה 1.1 לכל משתנה מקרי X אינטגרבילית ותת סיגמא אלגברה G F קיים משתנה מקרי G) Y := E (X המקיים: E (X1 A ) = E (Y 1 A ).G מדיד לפי Y.1.E Y
התהליכים. H 2(g) + Cl 2(g) 2HCl (g) 1) Cl 2(g) 2Cl. 2) Cl. + H 2(g) HCl (g) + H. 3) H. + Cl 2(g) HCl (g) + Cl. 4) H. + HCl (g) H 2(g) + Cl.
סיכום הפרק קינטיקה כימית מהספר של מנזורולה עקרונות הכימיה חלק ב' הסיכום כולל שאלות פתורות סיכמה קשי עדנה תיכון היובל הרצליה קינטיקה כימית עוסקת בחקר מהירויות של תגובות כימיות ועוזרת בחקר המנגנונים של התהליכים.
i שאלות 8,9 בתרגיל 2 ( A, F) אלגברת יצירה Α היא זוג כאשר i F = { f קבוצה של פונקציות {I קבוצה לא ריקה ו A A n i n i מקומית מ ל. A נרשה גם פונקציות 0 f i היא פונקציה n i טבעי כך ש כך שלכל i קיים B נוצר
69163) C [M] nm 50, 268 M cm
א ב ג סמסטר אביב, תשע"א 11) פיתרון מס' 4: תרגיל 69163 69163) פיסיקלית א' כימיה בליעה והעברה של אור חוק בר-למבר) כללי.1 נתון כי הסטודנט מדד את ההעברה דרך דוגמת החלבון בתוך תא של 1 ס"מ. גרף של העברה T) כתלות
סדרות - תרגילים הכנה לבגרות 5 יח"ל
סדרות - הכנה לבגרות 5 יח"ל 5 יח"ל סדרות - הכנה לבגרות איברים ראשונים בסדרה) ) S מסמן סכום תרגיל S0 S 5, S6 בסדרה הנדסית נתון: 89 מצא את האיבר הראשון של הסדרה תרגיל גוף ראשון, בשנייה הראשונה לתנועתו עבר
אוסף שאלות מס. 3 פתרונות
אוסף שאלות מס. 3 פתרונות שאלה מצאו את תחום ההגדרה D R של כל אחת מהפונקציות הבאות, ושרטטו אותו במישור. f (x, y) = x + y x y, f 3 (x, y) = f (x, y) = xy x x + y, f 4(x, y) = xy x y f 5 (x, y) = 4x + 9y 36,
תורת הקבוצות תרגיל בית 2 פתרונות
תורת הקבוצות תרגיל בית 2 פתרונות חיים שרגא רוזנר כ"ה בניסן, תשע"ה תזכורות תקציר איזומורפיזם סדר, רישא, טרנזיטיביות, סודרים, השוואת סודרים, סודר עוקב, סודר גבולי. 1. טרנזיטיבות וסודרים קבוצה A היא טרנזיטיבית
פתרון 4. a = Δv Δt = = 2.5 m s 10 0 = 25. y = y v = 15.33m s = 40 2 = 20 m s. v = = 30m x = t. x = x 0.
בוחן לדוגמא בפיזיקה - פתרון חומר עזר: מחשבון ודף נוסחאות מצורף זמן הבחינה: שלוש שעות יש להקפיד על כתיבת יחידות חלק א יש לבחור 5 מתוך 6 השאלות 1. רכב נוסע במהירות. 5 m s לפתע הנהג לוחץ על דוושת הבלם והרכב
רשימת בעיות בסיבוכיות
ב) ב) רשימת בעיות בסיבוכיות כל בעיה מופיעה במחלקה הגדולה ביותר שידוע בוודאות שהיא נמצאת בה, אלא אם כן מצוין אחרת. כמובן שבעיות ב- L נמצאות גם ב- וב- SACE למשל, אבל אם תכתבו את זה כתשובה במבחן לא תקבלו
s ק"מ קמ"ש מ - A A מ - מ - 5 p vp v=
את זמני הליכת הולכי הרגל עד הפגישות שלהם עם רוכב האופניים (שעות). בגרות ע מאי 0 מועד קיץ מבוטל שאלון 5006 מהירות - v קמ"ש t, א. () נסמן ב- p נכניס את הנתונים לטבלה מתאימה: רוכב אופניים עד הפגישה זמן -
ההוצאה תהיה: RTS = ( L B, K B ( L A, K A TC C A L K K 15.03
15.01 o פונקצית הוצאות של הטווח ה ארוך על מנת למקס ם רו וחי ם על פירמה לייצר תפו קה נתונה במינימום הוצא ות. נניח שמחירי גורמי הייצור קבועים. נגדיר עק ומת שוות הוצאה: כל הק ומבינציות של ו- שעבורן רמת ההוצאת
{ : Halts on every input}
אוטומטים - תרגול 13: רדוקציות, משפט רייס וחזרה למבחן E תכונה תכונה הינה אוסף השפות מעל.(property המקיימות תנאים מסוימים (תכונה במובן של Σ תכונה לא טריביאלית: תכונה היא תכונה לא טריוויאלית אם היא מקיימת:.
-107- גיאומטריה זוויות מבוא מטרתנו בפרק זה היא לחזור על המושגים שנלמדו ולהעמיק את הלימוד בנושא זה.
-07- בשנים קודמות למדתם את נושא הזוויות. גיאומטריה זוויות מבוא מטרתנו בפרק זה היא לחזור על המושגים שנלמדו ולהעמיק את הלימוד בנושא זה. זווית נוצרת על-ידי שתי קרניים היוצאות מנקודה אחת. הנקודה נקראת קדקוד
שאלה 1 נתון: (AB = AC) ABC שאלה 2 ( ) נתון. באמצעות r ו-. α שאלה 3 הוכח:. AE + BE = CE שאלה 4 האלכסון (AB CD) ABCD תשובה: 14 ס"מ = CD.
טריגונומטריה במישור 5 יח"ל טריגונומטריה במישור 5 יח"ל 010 שאלונים 006 ו- 806 10 השאלות 1- מתאימות למיקוד קיץ = β ( = ) שאלה 1 במשולש שווה-שוקיים הוכח את הזהות נתון: sin β = sinβ cosβ r r שאלה נתון מעגל
לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ד (2014) דפי עזר
לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ד (2014) דפי עזר תורת הקבוצות: סימונים.N + = N \ {0} קבוצת המספרים הטבעיים; N Z קבוצת המספרים השלמים. Q קבוצת המספרים הרציונליים. R קבוצת המספרים הממשיים. הרכבת
מודלים חישוביים תרגולמס 7
מודלים חישוביים תרגולמס 7 13 באפריל 2016 נושאי התרגול: מכונת טיורינג. 1 מכונת טיורינג נעבור לדבר על מודל חישוב חזק יותר (ובמובן מסוים, הוא מודל החישוב הסטנדרטי) מכונות טיורינג. בניגוד למודלים שראינו עד
נגזר ות צולבות F KK = 0 K MP יריבים אדישים מסייעים MP = = L MP X=F(L,K) שני: L K X =
4. < > בניתוח של הטווח הארוך נניח שהפירמה מייצרת מוצר באמצעות שני גורמי יצור משתנים: עבודה ומכונות. נגדיר את פונ קצית הייצור: התפוקה המקסימאלית שניתן לייצור באמצעות צירוף, של תשומות: פונקצית הייצור בטווח