І і і є н ь. Proceedings of the International GeometrД Center Vol. 10, no. 3-4 (2017) pp
|
|
- Ἐπαφρᾶς Λειβαδάς
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Proceedings of te International GeometrД Center Vol. 10, no pp І і і є н ь н і Є..,. Є. Abstractо Te article is deбoted to te problem of olomorpicallд projectiбe transformations of locallд conformal Käler manifolds. It s Вort to be noted, tat J. Mikes and Z. RadАloБic aбe proбed tat a locallд conformal Käler manifold does not admit nite nontriбial olomorpicallд projectiбe mappings for a LeБi-CiБita connection. Earlier Вe ad also soвn tat a locallд conformal Käler manifold does not admit as Вell nontriбial in nitesimal olomorpicallд projectiбe transformations for te LeБi-CiБita connection. BАt since te WeДl connection de ned bд Lee form on a locallд conformal Käler manifold is F -connection, ence for te connection nontriбial in nitesimal olomorpicallд projectiбe transformations are possible. In te present paper Вe reвrite te sдstem of partial di erential eqаations for te LeБi-CiБita connection and introdаce so called in nitesimal conformal olomorpicallд projectiбe transformations. Tis alloвs Аs to obtain necessarд and sа cient conditions for a locallд conformal Käler manifold to aбe a groаp of in nitesimal conformal olomorpicallд projectiбe transformations. We also calcаlate te nаmber of parameters for sаc groаp, and describe tensor and non-tensor inбariants preserбed bд groаp tansformations. FinallД, Вe soв tat a Бector eld generating in nitesimal conformal olomorpicallд projectiбe transformations of a compact locallд conformal Käler manifold is contraбariant almost analдtic. і : і і, і, і, - - і. 9
2 30 Є..,. Є. іяо , - - -, -, - -.,, є- -, є F -, - - є. - -, -., є. є,,,, -, є - - є. 1. є є - dimm n = n = m >. -., - - [4], [10], [1], - - [1], [3] [6]. [13], є є є є.. І І І.1. н о. я тото J J i j, : δj i. J i αj α j = δ i j..1
3 - 31 я тоуо, - J,. я тофо є, : J α i J β j g αβ = g ij.. є M n,j,g. n є -, m, n = m. я тохо M n,j,g є, є [6]., J M n C ω, є є : N k ij = J α i, j J k α α J k j J α j i J k α α J k i = 0.3 J k i,j = J α i J β j Jk α,β..4 є, g ij. M n,j,g є є. J k i,j = 0,.5 я тоцо M n, є - -, -, є U = { U α } M Σ = {σα : U α R}, { J Uα,ĝ α = e σα g Uα } - α. g Uα e σα g Uα є. σ є [11]., - Lee form, [9] ω = 1 m1 δω J ω i = n Jα β,α Jβ i,.6 є : dω = 0.
4 3 Є..,. Є. - : І є [1,. ]. J k i,j = 1 δ k j J α i ω α ω k J ij J k j ω i +J k αω α g ij..7 Т точо -Ч ˆ α - ĝ α є ˆ X Y = X Y 1 ωxy 1 ωyx + 1 gx,yb.8 X,Y XM., є, ˆ g = ω g..9,.8 є СЯуж cйиияcогйи - M n,j,g. є - F -,, ˆ X J = 0 J k i j = І і і ь і і і о я то9о M n x = x +ϵξ x 1,x,...,x n,.10 ϵ x i є - M n. ξx 1,x,...,x n є. Lie deriбatiбe T i 1...i p j 1...j q p,q - ξ є [8,. 196]: L ξ T i 1...i p j 1...j q = T i 1...i p j 1...j q,s ξs +T i 1...i p kj...j q ξ k,j T i 1...i p j 1...k ξk,j q T li...i p j 1...j q ξ i 1,l...T i 1i...l j 1...j q ξ ip,l..11, g є : L ξ g ij = ξ i,j +ξ j,i..1
5 - 33 M n, g - M n [14,. 75] g ij = g ij + ij ϵ,.13 ij = L ξ g ij = ξ i,j +ξ j,i., є Γ jk [5,. 8] L ξ Γ jk = ξ,jk +ξm R jmk , g i - : ξ i,jk = ξ α R α kji +g il ξ Γ jk..15 g i L ξ Γ jk -., ξx 1,x,...,x n є, є [6]: L ξ J i j = J i j,k ξk J α j ξ i,α +J i αξ α,j = є -,., є є dl ξ ω = L ξ dω, І І І І І Я 3.1. і і м щ ь н і і і і ь і о - -, - [13]. Т уото - M n, є - - -Ч,, L ξ Γ ij = ρ j δ i +ρ i δ j ρ t J t ij j ρ t J t jj i.
6 34 Є..,. Є. [13],, - [], - -., - - M n,j,g - - є : ξ i,j = ξ ij, ρ,i = ρ i, ξ i,jk = ξ α R α kji + 1 ωα ξ α,k g ij + ω α ξ α,j g ik ω α ξ α,i g jk ω i L ξ g jk +ω α L ξ g iα g jk + +ρ j g ik +ρ k g ij ρ t J t jj ki ρ t J t k J ji, 3.1 ρ i,j = 1 ωt ρ t g ij 1 ρ iω j 1 ρ jω i n+ L ξ R ij n ωi,j + ω iω j L ξ J i j = ξ k J i j,k Jα j ξ i,α +J i αξ α,j = 0, ω g ij ωg ij, ω = ω i ω j g ij ω = ω i,j g ij., - - є F -, -. - F ξ є M n,g,j. є - - L ξ Γ ij = 1 δ j Lξ ω i +δ i Lξ ω j g r L ξ ω r gij ω L ξ g ij +g β ω α L ξ g βα g ij ρ j δ i +ρ i δ j ρ t J t ij j ρ t J t jj i. ρ 3.1 є і - ξ., ξ η, є -. Ї - є ρ µ., ζ є
7 - і 35 ξ η: ζ i = [ξ,η] i = ξ t t η i η t t ξ і, - є Λ є [6, p. 0] L [ξ,η] Λ = L ξ L η ΛL η L ξ Λ є L [ξ,η] Γ ij = L ξ L η Γ ij L η L ξ Γ ij = = 1 δ j Lξ L η ω i +δ i Lξ L η ω j, g r L ξ L η ω r gij ω L ξ L η g ij +g β ω α L ξ L η g βα g ij + +L ξ µ j δi +L ξ µ i δj L ξ µ t JiJ t j L ξ µ t JjJ t i 1 δ j Lη L ξ ω i +δ i Lη L ξ ω j L [ξ,η] Γ ij = L ζ Γ ij = 1 g r L η L ξ ω r gij ω L η L ξ g ij +g β ω α L η L ξ g βα g ij L η ρ j δ i L η ρ i δ j +L η ρ t J t ij j +L η ρ t J t jj i, δ j Lζ ω i +δ i Lζ ω j g r L ζ ω r gij ω L ζ g ij +g β ω α L ζ g βα g ij θ j δ i +θ i δ j θ t J t ij j θ t J t jj i. θ i = L ξ µ i L η ρ i і ζ i = [ξ,η] i. 3.4, ζ i = [ξ,η] i є і і і і - і. і є. Т уоуо - і M n,g,j і - і і, і і і - і - і, є і., - і - є, і і, і 3. L ξ ω i = 0. L ξ Γ ij = 1 ω L ξ g ij +g β ω α L ξ g βα g ij + +ρ j δ i +ρ i δ j ρ t J t ij j ρ t J t jj i.
8 36 Є..,. Є. η є, є -, - L η ω i = 0,, L [ξ,η] ω i = 0 L [ξ,η] Γ ij = 1 ω L [ξ,η] g ij +g β ω α L [ξ,η] g βα g ij + +θ j δ i +θ i δ j θ t J t ij j θ t J t jj i, µ i θ i = L ξ µ i L η ρ i є η i ζ i = [ξ,η] i. є. Т уофо - і M n,g,j і - і і, і і і - і - і, і і L ξ ω i = 0 є і., є -, і є м щ є і і н н і і і ь н я о 3. j. L ξ Γ s is = n Lξ ω i +n+ρi. ρ i ρ i = 1 n+ L ξγ s n is Lξ ω i, n+ 3. L ξ Γ ij = 1 δjl ξ ω i +δi L ξ ω j + 1 g r L ξ ω r g ij ω L ξ g ij +g β ω α L ξ g βα g ij + n+ Lξ Γ s js n L ξω j δ i + L ξ Γ s is n L ξω i δ j L ξ Γ s ts n L ξω t J t ij j L ξ Γ s ts n L ξω t J t jj i.
9 - і 37 і і, є L ξ Γ ij + 1 g r L ξ ω r g ij +ω L ξ g ij g β ω α L ξ g βα g ij Lξ n+ 1 Γ s js +L ξ ω j δi + L ξ Γ s is +L ξ ω i δj+ + L ξ Γ s ts n L ξω t JiJ t j + L ξ Γ s ts n L ξω t JjJ t i = , є Π ij = Γ ij + 1 ω g ij 1 n+ Γ s js +ω j δi +Γ s is +ω i δj+ +Γ s ts n ω tj t ij j +Γ s ts n ω tj t jj i є і і і і і і - -. Т уоцо - іm n,g,j і - і ξ є і і і і - - і, є Π ij = Γ ij + 1 ω g ij 1 n+ Γ s js +ω j δ i +Γ s is +ω i δ j+ є і і і : +Γ s ts n ω tj t ij j +Γ s ts n ω tj t jj i L ξ Π ij = 0. і, і і. І є і [5,. 16], g є Lξ g ij,k L ξg ij,k = g is L ξ Γ s kj +g sjl ξ Γ s ki. 3.6 і 3.6, і і- і і g ij,k = 0, : Lξ g ij,k = ω α ξ α,k g ij ω i L ξ g jk +ω α L ξ g iα g jk ω j L ξ g ik +ω α L ξ g jα g ik ρ k g ij +ρ j g ki +ρ i g jk ρ t J t jj ki ρ t J t ij kj. і, і [5,. 17], і і- і і L ξ Rijk = L ξ Γ ik,j L ξ Γ ij,k. 3.8
10 38 Є..,. Є. і , є, L ξ R ijk = 1 δ k ω αξ α,ij g r ω α ξ α,rj g ik δ jω α ξ α,ik +g r ω α ξ α,rk g ij ω L ξ g ik g β ω α L ξ g βα g ik,j + + ω L ξ g ij g β ω α L ξ g βα g ij +,k +ρ i,j δk ρ i,kδj ρ t,j JiJ t k ρ tji,jj t k ρ tjij t k,j ρ t,j Jk t J i ρ t Jk,j t J i ρ t Jk t J i,j+ +ρ t,k JiJ t j +ρ t Ji,k t J j +ρ t JiJ t j,k + +ρ t,k JjJ t i +ρ t Jj,k t J i +ρ t JjJ t i,k. 3.9 і і.7 3.7, - L ξ R ijk = 1 δ k L ξ ωi,j + 1 ω iω j 1 ω g ij 1 δ jl ξ ωi,k + 1 ω iω k 1 ω g ik + ω + 1 L ξ,k + 1 ω ω ω k gij 1 L ξ,j + 1 ω ω j gik n+ δk L ξ R ij n δ jl ξ R ik n +J k Jt il ξ R tj n J j J t il ξ R tk n +Ji JjL t ξ R tk n J i J t k L ξ R tj n ω i,j + ω iω j ω g ij ω i,k + ω iω k ω g ik ω t,j + ωtω j ω g tj ω t,k + ωtω k ω g tk ω t,k + ωtω k ω g tk ω t,j + ωtω j ω g tj ωg ij ωg ik ωg tj ωg tk ωg tk + + ωg tj. є і і. і,
11 - і 39 L ξ R ijk δ k L ξ ωi,j +ω i ω j ω g ij + +δjl ξ ωi,k +ω i ω k ω g ik ω 1 L ξ,k + 1 ω ω k gij + 1 L ξ 1 n+ δk L ξ Rij ωg ij +J k Jt i J i J t k L ξ n ω,j + 1 ω ω j gik δ j L ξ Rik ωg ik + R tj ωg tj ωt,j + ωtω j ω g tj J j J t i J i J t jl ξ R tk ωg tk , P ijk = R ijk δ k ωi,j +ω i ω j ω g ij + +δ j ωi,k +ω i ω k ω g ik n ωt,k + ωtω k ω g tk = 0. 1 ω,k + 1 ω ω k gij + 1 ω,j + 1 ω ω j gik 1 n+ δk Rij ωg ij δ j Rik ωg ik + +J k Jt i J i J t k R tj n J j J t i J i J t j R tk n ωt,j + ωtω j ω g tj ωt,k + ωtω k ω g tk ωg tj ωg tk 3.11 і є і і і - -.,. Т уочо - іm n,g,j і - і ξ є і і і і - - і, 3.11 є і і і L ξ Pijk = , , є і і і і і і і і x k, є :
12 40 Є..,. Є. ρ i,jk ρ i,jk = = 1 n+ L ξ Rij n L ξ Rik n ρ t P t ijk = 1 n+ L ξ ωi,j + ω iω j ω g ij ωi,k + ω iω k ω g ik ωg ij,j ωg ik + 1 ω t,kρ t g ij + 1 ωt ρ t,k g ij 1 ω jρ i,k 1 ω i,kρ j,k + 1 ω t,jρ t g ik 1 ωt ρ t,j g ik + 1 ω kρ i,j + 1 ω i,jρ k = ρ t R t ijk , є Rij n R ik n ωi,j + ω iω j ω g ij ωi,k + ω iω k ω g ik + 1 δt iω k +δ t iω k ω t g ik R tj n 1 δt iω j +δiω t j ω t g ij R tk n ωt,j + ωtω j ω g tj ωt,k + ωtω k ω g tk ωg ij ωg ik,k,j + ωg tj ωg tk, 3.13 Pijk t є 3.11, [5, c.16], є 3.10: L ξ P ijk,l = L ξγ tl Pt ijk L ξγ t il P tjk L ξγ t jl P itk L ξγ t kl P ijt, 3.14 L ξ Γ jk P ijk , 3.13 L ξ Pijk,l L ξ P ijk,l = L ξγ t il P tjk L ξ Γ t jl P itk L ξ Γ t kl P ijt P ijk = R ij n R ik n ωi,j + ω iω j ω g ij ωi,k + ω iω k ω g ik + 1 δt iω k +δiω t k ω t g ik R tj n 1 δt iω j +δ t iω j ω t g ij ωg ij ωg ik ωt,j + ωtω j ω g tj,k,j + ωg tj
13 - 41 R tk n ωt,k + ωtω k ω g tk ωg tk., - є. 3.1 є n + 1 = m ξ i, ξ i,j, ρ, ρ i. ξ i є m.. Т уо8о, - M n,j,g - -, -, 3.10, , 3.15,.,. - M n,j,g є r-, r = m+1 1k, m k є,., , 3.1 r = m н і і і і ь і н я н о M n,j,g є -, ξ є g jk. є ξ t i,t ξ α Ri α = n ω α ξ α,i ω i gjk L ξ g jk + ωα L ξg iα g jk g jk = n ω α ξ α,i + 1 ω ig jk L ξ g jk + n 3.16 ωα L ξ g iα,, 3.16 i, ξ i t,t ξ α Rα i = ngit ω α ξ α,t + 1 ωi g jk L ξ g jk n ω αl ξ g iα. 3.17, [7],, ξ -,, ξ i t,t ξ α R i α = J i αl ξ J β γ,β gαγ + 1 J α k,j +J α j,k J i α L ξ g jk ,.7.6, є :
14 4 Є..,. Є. J i αl ξ J β γ,β gαγ + 1 J α k,j +J α j,k J i α L ξ g jk = = ngit ω α ξ α,t + 1 ωi g jk L ξ g jk n ω αl ξ g iα і , 3.19, є Т уосро - і M n,j,g ξ, є і і і і і і - - і, є і і -., і [6, c. 6], - і є і і ξ i t,t ξ α Rα i ξi L ξ g jk L ξ g jk ξ t,t dσ = M n 3.0, 3.17 є. Т уоссо - і M n,j,g ξ, є і і і і і і - - і, є n ω αξ α,t + 1 ω ig jk L ξ g jk + n ωα L ξ g iα ξ t M n L ξ g jk L ξ g jk ξ t,t dσ = З, n ω αξ α,t + 1 ω ig jk L ξ g jk + n ωα L ξ g iα ξ t = 0 ξ t,t = 0, і і і і і ξ. І [1] Sorin Dragomir, LiБiА Ornea. Lйcaжжу cйиаймзaж ЕäвжЯм бяйзяому, БolАme 155 of КмйбмЯнн ги MaовЯзaогcн. BirkäАser Boston, Inc., Boston, MA, [] Josef Mikeš, Hana CАdá, Irena Hinterleitner. Conformal olomorpicallд projectiбe mappings of almost Hermitian manifolds Вit a certain initial condition. Гио. Д. БЯйз. MЯовйdн Mйd. Квун., 115: , 8, 014. [3] Josef Mikeš, Elena StepanoБa, Alena VanžАroБá, et al. Dг ЯмЯиогaж бяйзяому йа нкяcгaж зaккгибн. Palacký UniБersitД OlomoАc, FacАltД of Science, OlomoАc, 015. [4] IЕА Vaisman. On locallд conformal almost Käler manifolds. ГнмaЯж Д. Maов., 43-4: , 1976.
15 - 43 [5] Kentaro Yano. ОвЯ овяйму йа LгЯ dямгрaогрян aиd гон aккжгcaогйин. Nort-Holland PАblising Co., Amsterdam; P. Noordo Ltd., Groningen; Interscience PАblisers Inc., NeВ York, [6] Kentaro Yano. Dг ЯмЯиогaж бяйзяому йи cйзкжят aиd aжзйно cйзкжят нкacян. International Series of Monograps in PАre and Applied Matematics, Vol. 49. A Pergamon Press Book. Te Macmillan Co., NeВ York, [7] Kentaro Yano, MitsАe Ako. Almost analдtic Бectors in almost compleг spaces. Оôвйеп Maов. Д., 13:4 45, [8]..,..,... : , [9] , 183: , [10] , 515:57 66, 199. [11]..,..,... і. - і і і, БolАme 97. : І., 013. [1] , И , 30:58 89, 00. [13] Є Кмйc. ГиоЯм. БЯйз. CЯиоЯм, 41:51 64, 016. [14].....:, Є,,. Eзaгж: cerevko@usa.com Є,,. Eзaгж: cepurna67@gmail.com
Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.
II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai
Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago
Laplace Expansion Peter McCullagh Department of Statistics University of Chicago WHOA-PSI, St Louis August, 2017 Outline Laplace approximation in 1D Laplace expansion in 1D Laplace expansion in R p Formal
On geodesic mappings of Riemannian spaces with cyclic Ricci tensor
Annales Mathematicae et Informaticae 43 (2014) pp. 13 17 http://ami.ektf.hu On geodesic mappings of Riemannian spaces with cyclic Ricci tensor Sándor Bácsó a, Robert Tornai a, Zoltán Horváth b a University
m i N 1 F i = j i F ij + F x
N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,
PHYS606: Electrodynamics Feb. 01, Homework 1. A νµ = L ν α L µ β A αβ = L ν α L µ β A βα. = L µ β L ν α A βα = A µν (3)
PHYS606: Electrodynamics Feb. 01, 2011 Instructor: Dr. Paulo Bedaque Homework 1 Submitted by: Vivek Saxena Problem 1 Under a Lorentz transformation L µ ν, a rank-2 covariant tensor transforms as A µν A
3+1 Splitting of the Generalized Harmonic Equations
3+1 Splitting of the Generalized Harmonic Equations David Brown North Carolina State University EGM June 2011 Numerical Relativity Interpret general relativity as an initial value problem: Split spacetime
rs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Ελευθερίου Β. Χρυσούλα. Επιβλέπων: Νικόλαος Καραμπετάκης Καθηγητής Α.Π.Θ.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ ΚΑΙ ΕΛΕΓΧΟΥ Αναγνώριση συστημάτων με δεδομένη συνεχή και κρουστική συμπεριφορά
692.66:
1 69.66:6-83 05.05.05 -,, 015 .. 7... 8 1.... 19 1.1.,.. 19 1.. 8 1.3.. 1.4... 1.4.1.... 33 36 40 1.4.. 44 1.4.3. -... 48.. 53.,.. 56.1., -....... 56..... 6.3.... 71.. 76 3.,.... 77 3 3.1.... 77 3.1.1....
On a five dimensional Finsler space with vanishing v-connection vectors
South Asian Journal of Mathematics 2017, Vol. 7 ( 2): 73 80 www.sajm-online.com ISSN 2251-1512 RESEARCH ARTICLE On a five dimensional Finsler space with vanishing v-connection vectors Anamika Rai 1, S.
10 20 X i a i (i, j) a ij (i, j, k) X x ijk j :j i i: R I J R K L IK JL a 11 a 12... a 1J a 21 a 22... a 2J = a I1 a I2... a IJ = [ 1 1 1 2 1 3... J L 1 J L ] R I K R J K IJ K = [ 1 1 2 2... K
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
M p f(p, q) = (p + q) O(1)
l k M = E, I S = {S,..., S t } E S i = p i {,..., t} S S q S Y E q X S X Y = X Y I X S X Y = X Y I S q S q q p+q p q S q p i O q S pq p i O S 2 p q q p+q p q p+q p fp, q AM S O fp, q p + q p p+q p AM
The q-commutators of braided groups
206 ( ) Journal of East China Normal University (Natural Science) No. Jan. 206 : 000-564(206)0-0009-0 q- (, 20024) : R-, [] ABCD U q(g).,, q-. : R- ; ; q- ; ; FRT- : O52.2 : A DOI: 0.3969/j.issn.000-564.206.0.002
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Minion Pro Condensed A B C D E F G H I J K L M N O P Q R S T U
Minion Pro Condensed Latin capitals A B C D E F G H I J K L M N O P Q R S T U V W X Y Z & Æ Ł Ø Œ Þ Ð Á Â Ä À Å Ã Ç É Ê Ë È Í Î Ï Ì İ Ñ Ó Ô Ö Ò Õ Š Ú Û Ü Ù Ý Ÿ Ž Ă Ā Ą Ć Č Ď Đ Ě Ė Ē Ę Ğ Ģ Ī Į Ķ Ĺ Ľ Ļ Ń
gr mol g lit mg lit mlit lit mol NaCl 96 NaCl HCl HCl
1 ( - ) ( ) : 5 ( CH 3 COOH ).1 0 /1M NaOH35ml CH COOH 3 = /3 gr mol 211/05 mg 3 /5mgr 210 /1gr 3 /5gr ppm.2 mg mlit mg lit g lit µg lit.3 1mol (58 /8 NaCl ) 0 /11F 14 /9ml NaCl.4 14 /9 96 0 /0149 0 /096
Lecture 13 - Root Space Decomposition II
Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).
k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
u(x, y) =f(x, y) Ω=(0, 1) (0, 1)
u(x, y) =f(x, y) Ω=(0, 1) (0, 1) u(x, y) =g(x, y) Γ=δΩ ={0, 1} {0, 1} Ω Ω Ω h Ω h h ˆ Ω ˆ u v = fv Ω u = f in Ω v V H 1 (Ω) V V h V h ψ 1,ψ 2,...,ψ N, ˆ ˆ u v = Ω Ω fv v V ˆ ˆ u v = Ω ˆ ˆ u ψ i = Ω Ω Ω
Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation
3 2 3 2 3 undle Adjustment or 3-D Reconstruction: Implementation and Evaluation Yuuki Iwamoto, Yasuyuki Sugaya 2 and Kenichi Kanatani We describe in detail the algorithm o bundle adjustment or 3-D reconstruction
Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3
Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point
A summation formula ramified with hypergeometric function and involving recurrence relation
South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
On a four-dimensional hyperbolic manifold with finite volume
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Rahim Alhamzawi, Haithem Taha Mohammad Ali Department of Statistics, College of Administration and Economics,
f H f H ψ n( x) α = 0.01 n( x) α = 1 n( x) α = 3 n( x) α = 10 n( x) α = 30 ū i ( x) α = 1 ū i ( x) α = 3 ū i ( x) α = 10 ū i ( x) α = 30 δū ij ( x) α = 1 δū ij ( x) α = 3 δū ij ( x) α = 10 δū ij ( x)
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
E.E. Παρ. Ill (I) 429 Κ.Δ.Π. 150/83 Αρ. 1871,
E.E. Πρ. ll () 429 Κ.Δ.Π. 50/ Αρ. 7, 24.6. Αρθμός 50 ΠΕΡ ΤΑΧΥΔΡΜΕΩΝ ΝΜΣ (ΚΕΦ. 0 ΚΑ ΝΜ 42 ΤΥ 96 ΚΑ 7 ΤΥ 977) Δάτγμ δνάμ τ άρθρ 7() Τ Υπργκό Σμβύλ, σκώντς τς ξσίς π πρέχντ Κ»>. 0. σ' τό δνάμ τ δφί τ άρθρ
DOCUMENTS DE TRAVAIL / WORKING PAPERS
DOCUMENTS DE TRAVAIL / WORKING PAPERS 2017-66 How shifting investment towards low-carbon sectors impacts employment: three determinants under scrutiny Quentin Perrier 1, *, Philippe Quirion 1,2 September
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
THE BIGRADED RUMIN COMPLEX. 1. Introduction
THE BIGRADED RUMIN COMPLEX JEFFREY S. CASE Abstract. We give a detailed description of the bigraded Rumin complex in dimensions three and five, including formulae for all of its constituent operators.
Four Dimensional Absolute Valued Algebras Containing a Nonzero Central Idempotent or with Left Unit
International Journal of Algebra, Vol. 10, 2016, no. 11, 513-524 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ija.2016.6638 Four Dimensional Absolute Valued Algebras Containing a Nonzero Central
Trace evaluation of matrix determinants and inversion of 4 4 matrices in terms of Dirac covariants
Trace evaluation of matrix determinants and inversion of 4 4 matrices in terms of Dirac covariants F. Kleefeld and M. Dillig Institute for Theoretical Physics III, University of Erlangen Nürnberg, Staudtstr.
wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:
3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Buried Markov Model Pairwise
Buried Markov Model 1 2 2 HMM Buried Markov Model J. Bilmes Buried Markov Model Pairwise 0.6 0.6 1.3 Structuring Model for Speech Recognition using Buried Markov Model Takayuki Yamamoto, 1 Tetsuya Takiguchi
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).
Vol. 37 ( 2017 ) No. 3 J. of Math. (PRC) R N - R N - 1, 2 (1., 100029) (2., 430072) : R N., R N, R N -. : ; ; R N ; MR(2010) : 58K40 : O192 : A : 0255-7797(2017)03-0467-07 1. [6], Mather f : (R n, 0) R
2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
!"#!$% &' ( )*+*,% $ &$ -.&01#(2$#3 4-$ #35667
!"#!$% & &' ( )*+*,% $ -*(-$ -.*/% $- &$ -.&01#(2$#3 4-$ #35667 5051 & 00000000000000000000000000000000000000000000000000000000000000000000000000000 9 508&:;&& 0000000000000000000000000000000000000000000000000
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
N. P. Mozhey Belarusian State University of Informatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS
Òðóäû ÁÃÒÓ 07 ñåðèÿ ñ. 9 54.765.... -. -. -. -. -. : -. N. P. Mozhey Belarusian State University of Inforatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS In this article we present
University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing
University of Illinois at Urbana-Champaign ECE : Digital Signal Processing Chandra Radhakrishnan PROBLEM SET : SOLUTIONS Peter Kairouz Problem Solution:. ( 5 ) + (5 6 ) + ( ) cos(5 ) + 5cos( 6 ) + cos(
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Assessment of otoacoustic emission probe fit at the workfloor
Assessment of otoacoustic emission probe fit at the workfloor t s st tt r st s s r r t rs t2 t P t rs str t t r 1 t s ér r tr st tr r2 t r r t s t t t r t s r ss r rr t 2 s r r 1 s r r t s s s r t s t
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.
Mesh Parameterization: Theory and Practice
Mesh Parameterization: Theory and Practice Kai Hormann, Bruno Lévy, Alla Sheffer To cite this version: Kai Hormann, Bruno Lévy, Alla Sheffer. Mesh Parameterization: Theory and Practice. This document is
( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain
Continm Mechanics. Official Fom Chapte. Desciption of Motion χ (,) t χ (,) t (,) t χ (,) t t Chapte. Defomation an Stain s S X E X e i ij j i ij j F X X U F J T T T U U i j Uk U k E ( F F ) ( J J J J)
[Note] Geodesic equation for scalar, vector and tensor perturbations
[Note] Geodesic equation for scalar, vector and tensor perturbations Toshiya Namikawa 212 1 Curl mode induced by vector and tensor perturbation 1.1 Metric Perturbation and Affine Connection The line element
Lecture 10 - Representation Theory III: Theory of Weights
Lecture 10 - Representation Theory III: Theory of Weights February 18, 2012 1 Terminology One assumes a base = {α i } i has been chosen. Then a weight Λ with non-negative integral Dynkin coefficients Λ
1. Divergence of a product: Given that φ is a scalar field and v a vector field, show
1. Divergence of a product: Given that φ is a scalar field and v a vector field, show that div(φv) = (gradφ) v + φ div v grad(φv) = (φv i ), j g i g j = φ, j v i g i g j + φv i, j g i g j = v (grad φ)
Lecture 15 - Root System Axiomatics
Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the
Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques
Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques Raphael Chenouard, Patrick Sébastian, Laurent Granvilliers To cite this version: Raphael
Formulario Básico ( ) ( ) ( ) ( ) ( 1) ( 1) ( 2) ( 2) λ = 1 + t t. θ = t ε t. Mecánica de Medios Continuos. Grado en Ingeniería Civil.
Mecánica e Meios Continos. Gao en Ingenieía Ciil. Fomlaio Básico Tema. Descipción el moimiento χ (,) t χ (,) t (,) t χ (,) t t t Tema. Defomación s S X E X e i ij j i ij j F X X U F J T T T U U i j Uk
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
"BHFC8I7H=CB HC &CH=CB 5B8 &CA9BHIA
ω θ ω = Δθ Δt, θ ω v v = rω ω = v r, r ω α α = Δω Δt, Δω Δt (rad/s)/s rad/s 2 ω α ω α rad/s 2 87.3 rad/s 2 α = Δω Δt Δω Δt α = Δω Δt = 250 rpm 5.00 s. Δω rad/s 2 Δω α Δω = 250 min rev 2π rad rev 60 1 min
1529 Ν. 29(ΙΙ)/95. E.E. Παρ. 1(H) Αρ. 2990,
E.E. Παρ. 1(H) Αρ. 2990, 21.7.95 1529 Ν. 29(ΙΙ)/95 περί Συμπληρωματικύ Πρϋπλγισμύ Νόμς (Αρ. 4) τυ 1995 εκδίδεται με δημσίευση στην Επίσημη Εφημερίδα της Κυπριακής Δημκρατίας σύμφωνα με τ Άρθρ 52 τυ Συντάγματς.
F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2
F (x) = kx x k F = F (x) U(0) U(x) = x F = kx 0 F (x )dx U(x) = U(0) + 1 2 kx2 x U(0) = 0 U(x) = 1 2 kx2 U(x) x 0 = 0 x 1 U(x) U(0) + U (0) x + 1 2 U (0) x 2 U (0) = 0 U(x) U(0) + 1 2 U (0) x 2 U(0) =
ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s
P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t
On the Galois Group of Linear Difference-Differential Equations
On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts
Multi-GPU numerical simulation of electromagnetic waves
Multi-GPU numerical simulation of electromagnetic waves Philippe Helluy, Thomas Strub To cite this version: Philippe Helluy, Thomas Strub. Multi-GPU numerical simulation of electromagnetic waves. ESAIM:
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log
P Š. ˆ Éμ Î,... ƒˆ ˆ ˆ ˆ. Ê²Ó ± μ Ê É Ò Ê É É
P4-2009-39. Š. ˆ Éμ Î,... ƒˆ ˆ ˆ ˆ Ê²Ó ± μ Ê É Ò Ê É É ˆ Éμ Î. Š.,... P4-2009-39 Ê μ² Ò Ì μ μ μ É Ò³ μ μ³ ³μÉ Ò Ê Ê μ² Ò μé μ ÒÌ μé μ ÒÌ Ì, Ì μé μé ÍÒ ² μ ± μ μ Ì μ É ÒÌ μ². ɳ Î Ò μ μ μ É Ê Ê Ì μ², ±μéμ
X x C(t) description lagrangienne ( X , t t t X x description eulérienne X x 1 1 v x t
X 3 x 3 C Q y C(t) Q t QP t t C configuration initiale description lagrangienne x Φ ( X, t) X Y x X P x P t X x C(t) configuration actuelle description eulérienne (, ) d x v x t dt X 3 x 3 C(t) F( X, t)
,, 2015
621.039.516.4-1000 05.14.14,, 2015 2.... 6..... 7 1. -1000...... 14 1.1. -1000 -... 14 1.2. - 15 1.2.1. 16 1.2.2. 17 1.2.3. -... 18 1.2.4. -. 20 1.3. -1000 -......... 23 1.4. - -1000... 26 1.5. - -1000.....
arxiv: v1 [math.dg] 31 Jan 2009
arxiv:0902.0086v1 [math.dg] 31 Jan 2009 Maurer Cartan Forms of the Symmetry Pseudo-Group and the Covering of Plebañski s Second Heavenly Equation Oleg I. Morozov Department of Mathematics, Moscow State
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
The circle theorem and related theorems for Gauss-type quadrature rules
OP.circle p. / The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu Purdue University OP.circle p. 2/ Web Site http : //www.cs.purdue.edu/ archives/22/wxg/codes
k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)
ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS
Pa J Statist 2009 Vol 25(2), 135-140 ON NEGTIVE MOMENTS OF CERTIN DISCRETE DISTRIBUTIONS Masood nwar 1 and Munir hmad 2 1 Department of Maematics, COMSTS Institute of Information Technology, Islamabad,
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =
C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
Simplex Crossover for Real-coded Genetic Algolithms
Technical Papers GA Simplex Crossover for Real-coded Genetic Algolithms 47 Takahide Higuchi Shigeyoshi Tsutsui Masayuki Yamamura Interdisciplinary Graduate school of Science and Engineering, Tokyo Institute
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik
Affine Weyl Groups Gabriele Nebe Lehrstuhl D für Mathematik Summerschool GRK 1632, September 2015 Crystallographic root systems. Definition A crystallographic root system Φ is a finite set of non zero
Consommation marchande et contraintes non monétaires au Canada ( )
Consommation marchande et contraintes non monétaires au Canada (1969-2008) Julien Boelaert, François Gardes To cite this version: Julien Boelaert, François Gardes. Consommation marchande et contraintes
( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)
hapter 5 xercise Problems X5. α β α 0.980 For α 0.980, β 49 0.980 0.995 For α 0.995, β 99 0.995 So 49 β 99 X5. O 00 O or n 3 O 40.5 β 0 X5.3 6.5 μ A 00 β ( 0)( 6.5 μa) 8 ma 5 ( 8)( 4 ) or.88 P on + 0.0065
J J l 2 J T l 1 J T J T l 2 l 1 J J l 1 c 0 J J J J J l 2 l 2 J J J T J T l 1 J J T J T J T J {e n } n N {e n } n N x X {λ n } n N R x = λ n e n {e n } n N {e n : n N} e n 0 n N k 1, k 2,..., k n N λ
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
Σήματα και Συστήματα. Διάλεξη 7: Μετασχηματισμός Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 7: Μετασχηματισμός Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετασχηματισμός Fourier 1. Ορισμός του Μετασχηματισμού Fourier 2. Φυσική Σημασία του Μετασχηματισμού
X g 1990 g PSRB
e-mail: shibata@provence.c.u-tokyo.ac.jp 2005 1. 40 % 1 4 1) 1 PSRB1913 16 30 2) 3) X g 1990 g 4) g g 2 g 2. 1990 2000 3) 10 1 Page 1 5) % 1 g g 3. 1 3 1 6) 3 S S S n m (1/a, b k /a) a b k 1 1 3 S n m,
Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat
Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat Pierre Coucheney, Patrick Maillé, runo Tuffin To cite this version: Pierre Coucheney, Patrick
ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations
ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +
!q j. = T ji Kάθε πίνακας µπορεί να γραφεί σαν άθροισµα ενός συµµετρικού και ενός αντι-συµµετρικού πίνακα
Συστήματα με Ν βαθμούς ελευθερίας ΦΥΣ 211 - Διαλ.25 1 Ø Συστήµατα µε Ν βαθµούς ελευθερίας που βρίσκονται κοντά σε µια θέση ισσορροπίας τους συµπεριφέρονται σαν Ν ανεξάρτητοι αρµονικοί ταλαντωτές Γιατί
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
Αφιερώνεται στα παιδιά μας Σπυριδούλα, Αχιλλέα και Αναστασία
0 3 10 71 < < 3 1 7 ; (y k ) 0 LU n n M (2; 4; 1; 2) 2 n 2 = 2 2 n 2 n 2 = 2y 2 n n ' y = x [a; b] [a; b] x n = '(x n 1 ) (x n ) x 0 = 0 S p R 2 ; S p := fx 2 R 2 : kxk p = 1g; p = 1; 2; 1 K i
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs
Polymer PTC Resettable Fuse: KMC Series
Features 1. RoHS & Halogen-Free (HF) compliant 2. IA size: 0603, 0805, 1206, 1812 3. Hold current ratings from 0.05 to 3A 4. Voltage ratings from 6V computer and electronic applications to 60V 5. Small
Forced Pendulum Numerical approach
Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique