І і і є н ь. Proceedings of the International GeometrД Center Vol. 10, no. 3-4 (2017) pp

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "І і і є н ь. Proceedings of the International GeometrД Center Vol. 10, no. 3-4 (2017) pp"

Transcript

1 Proceedings of te International GeometrД Center Vol. 10, no pp І і і є н ь н і Є..,. Є. Abstractо Te article is deбoted to te problem of olomorpicallд projectiбe transformations of locallд conformal Käler manifolds. It s Вort to be noted, tat J. Mikes and Z. RadАloБic aбe proбed tat a locallд conformal Käler manifold does not admit nite nontriбial olomorpicallд projectiбe mappings for a LeБi-CiБita connection. Earlier Вe ad also soвn tat a locallд conformal Käler manifold does not admit as Вell nontriбial in nitesimal olomorpicallд projectiбe transformations for te LeБi-CiБita connection. BАt since te WeДl connection de ned bд Lee form on a locallд conformal Käler manifold is F -connection, ence for te connection nontriбial in nitesimal olomorpicallд projectiбe transformations are possible. In te present paper Вe reвrite te sдstem of partial di erential eqаations for te LeБi-CiБita connection and introdаce so called in nitesimal conformal olomorpicallд projectiбe transformations. Tis alloвs Аs to obtain necessarд and sа cient conditions for a locallд conformal Käler manifold to aбe a groаp of in nitesimal conformal olomorpicallд projectiбe transformations. We also calcаlate te nаmber of parameters for sаc groаp, and describe tensor and non-tensor inбariants preserбed bд groаp tansformations. FinallД, Вe soв tat a Бector eld generating in nitesimal conformal olomorpicallд projectiбe transformations of a compact locallд conformal Käler manifold is contraбariant almost analдtic. і : і і, і, і, - - і. 9

2 30 Є..,. Є. іяо , - - -, -, - -.,, є- -, є F -, - - є. - -, -., є. є,,,, -, є - - є. 1. є є - dimm n = n = m >. -., - - [4], [10], [1], - - [1], [3] [6]. [13], є є є є.. І І І.1. н о. я тото J J i j, : δj i. J i αj α j = δ i j..1

3 - 31 я тоуо, - J,. я тофо є, : J α i J β j g αβ = g ij.. є M n,j,g. n є -, m, n = m. я тохо M n,j,g є, є [6]., J M n C ω, є є : N k ij = J α i, j J k α α J k j J α j i J k α α J k i = 0.3 J k i,j = J α i J β j Jk α,β..4 є, g ij. M n,j,g є є. J k i,j = 0,.5 я тоцо M n, є - -, -, є U = { U α } M Σ = {σα : U α R}, { J Uα,ĝ α = e σα g Uα } - α. g Uα e σα g Uα є. σ є [11]., - Lee form, [9] ω = 1 m1 δω J ω i = n Jα β,α Jβ i,.6 є : dω = 0.

4 3 Є..,. Є. - : І є [1,. ]. J k i,j = 1 δ k j J α i ω α ω k J ij J k j ω i +J k αω α g ij..7 Т точо -Ч ˆ α - ĝ α є ˆ X Y = X Y 1 ωxy 1 ωyx + 1 gx,yb.8 X,Y XM., є, ˆ g = ω g..9,.8 є СЯуж cйиияcогйи - M n,j,g. є - F -,, ˆ X J = 0 J k i j = І і і ь і і і о я то9о M n x = x +ϵξ x 1,x,...,x n,.10 ϵ x i є - M n. ξx 1,x,...,x n є. Lie deriбatiбe T i 1...i p j 1...j q p,q - ξ є [8,. 196]: L ξ T i 1...i p j 1...j q = T i 1...i p j 1...j q,s ξs +T i 1...i p kj...j q ξ k,j T i 1...i p j 1...k ξk,j q T li...i p j 1...j q ξ i 1,l...T i 1i...l j 1...j q ξ ip,l..11, g є : L ξ g ij = ξ i,j +ξ j,i..1

5 - 33 M n, g - M n [14,. 75] g ij = g ij + ij ϵ,.13 ij = L ξ g ij = ξ i,j +ξ j,i., є Γ jk [5,. 8] L ξ Γ jk = ξ,jk +ξm R jmk , g i - : ξ i,jk = ξ α R α kji +g il ξ Γ jk..15 g i L ξ Γ jk -., ξx 1,x,...,x n є, є [6]: L ξ J i j = J i j,k ξk J α j ξ i,α +J i αξ α,j = є -,., є є dl ξ ω = L ξ dω, І І І І І Я 3.1. і і м щ ь н і і і і ь і о - -, - [13]. Т уото - M n, є - - -Ч,, L ξ Γ ij = ρ j δ i +ρ i δ j ρ t J t ij j ρ t J t jj i.

6 34 Є..,. Є. [13],, - [], - -., - - M n,j,g - - є : ξ i,j = ξ ij, ρ,i = ρ i, ξ i,jk = ξ α R α kji + 1 ωα ξ α,k g ij + ω α ξ α,j g ik ω α ξ α,i g jk ω i L ξ g jk +ω α L ξ g iα g jk + +ρ j g ik +ρ k g ij ρ t J t jj ki ρ t J t k J ji, 3.1 ρ i,j = 1 ωt ρ t g ij 1 ρ iω j 1 ρ jω i n+ L ξ R ij n ωi,j + ω iω j L ξ J i j = ξ k J i j,k Jα j ξ i,α +J i αξ α,j = 0, ω g ij ωg ij, ω = ω i ω j g ij ω = ω i,j g ij., - - є F -, -. - F ξ є M n,g,j. є - - L ξ Γ ij = 1 δ j Lξ ω i +δ i Lξ ω j g r L ξ ω r gij ω L ξ g ij +g β ω α L ξ g βα g ij ρ j δ i +ρ i δ j ρ t J t ij j ρ t J t jj i. ρ 3.1 є і - ξ., ξ η, є -. Ї - є ρ µ., ζ є

7 - і 35 ξ η: ζ i = [ξ,η] i = ξ t t η i η t t ξ і, - є Λ є [6, p. 0] L [ξ,η] Λ = L ξ L η ΛL η L ξ Λ є L [ξ,η] Γ ij = L ξ L η Γ ij L η L ξ Γ ij = = 1 δ j Lξ L η ω i +δ i Lξ L η ω j, g r L ξ L η ω r gij ω L ξ L η g ij +g β ω α L ξ L η g βα g ij + +L ξ µ j δi +L ξ µ i δj L ξ µ t JiJ t j L ξ µ t JjJ t i 1 δ j Lη L ξ ω i +δ i Lη L ξ ω j L [ξ,η] Γ ij = L ζ Γ ij = 1 g r L η L ξ ω r gij ω L η L ξ g ij +g β ω α L η L ξ g βα g ij L η ρ j δ i L η ρ i δ j +L η ρ t J t ij j +L η ρ t J t jj i, δ j Lζ ω i +δ i Lζ ω j g r L ζ ω r gij ω L ζ g ij +g β ω α L ζ g βα g ij θ j δ i +θ i δ j θ t J t ij j θ t J t jj i. θ i = L ξ µ i L η ρ i і ζ i = [ξ,η] i. 3.4, ζ i = [ξ,η] i є і і і і - і. і є. Т уоуо - і M n,g,j і - і і, і і і - і - і, є і., - і - є, і і, і 3. L ξ ω i = 0. L ξ Γ ij = 1 ω L ξ g ij +g β ω α L ξ g βα g ij + +ρ j δ i +ρ i δ j ρ t J t ij j ρ t J t jj i.

8 36 Є..,. Є. η є, є -, - L η ω i = 0,, L [ξ,η] ω i = 0 L [ξ,η] Γ ij = 1 ω L [ξ,η] g ij +g β ω α L [ξ,η] g βα g ij + +θ j δ i +θ i δ j θ t J t ij j θ t J t jj i, µ i θ i = L ξ µ i L η ρ i є η i ζ i = [ξ,η] i. є. Т уофо - і M n,g,j і - і і, і і і - і - і, і і L ξ ω i = 0 є і., є -, і є м щ є і і н н і і і ь н я о 3. j. L ξ Γ s is = n Lξ ω i +n+ρi. ρ i ρ i = 1 n+ L ξγ s n is Lξ ω i, n+ 3. L ξ Γ ij = 1 δjl ξ ω i +δi L ξ ω j + 1 g r L ξ ω r g ij ω L ξ g ij +g β ω α L ξ g βα g ij + n+ Lξ Γ s js n L ξω j δ i + L ξ Γ s is n L ξω i δ j L ξ Γ s ts n L ξω t J t ij j L ξ Γ s ts n L ξω t J t jj i.

9 - і 37 і і, є L ξ Γ ij + 1 g r L ξ ω r g ij +ω L ξ g ij g β ω α L ξ g βα g ij Lξ n+ 1 Γ s js +L ξ ω j δi + L ξ Γ s is +L ξ ω i δj+ + L ξ Γ s ts n L ξω t JiJ t j + L ξ Γ s ts n L ξω t JjJ t i = , є Π ij = Γ ij + 1 ω g ij 1 n+ Γ s js +ω j δi +Γ s is +ω i δj+ +Γ s ts n ω tj t ij j +Γ s ts n ω tj t jj i є і і і і і і - -. Т уоцо - іm n,g,j і - і ξ є і і і і - - і, є Π ij = Γ ij + 1 ω g ij 1 n+ Γ s js +ω j δ i +Γ s is +ω i δ j+ є і і і : +Γ s ts n ω tj t ij j +Γ s ts n ω tj t jj i L ξ Π ij = 0. і, і і. І є і [5,. 16], g є Lξ g ij,k L ξg ij,k = g is L ξ Γ s kj +g sjl ξ Γ s ki. 3.6 і 3.6, і і- і і g ij,k = 0, : Lξ g ij,k = ω α ξ α,k g ij ω i L ξ g jk +ω α L ξ g iα g jk ω j L ξ g ik +ω α L ξ g jα g ik ρ k g ij +ρ j g ki +ρ i g jk ρ t J t jj ki ρ t J t ij kj. і, і [5,. 17], і і- і і L ξ Rijk = L ξ Γ ik,j L ξ Γ ij,k. 3.8

10 38 Є..,. Є. і , є, L ξ R ijk = 1 δ k ω αξ α,ij g r ω α ξ α,rj g ik δ jω α ξ α,ik +g r ω α ξ α,rk g ij ω L ξ g ik g β ω α L ξ g βα g ik,j + + ω L ξ g ij g β ω α L ξ g βα g ij +,k +ρ i,j δk ρ i,kδj ρ t,j JiJ t k ρ tji,jj t k ρ tjij t k,j ρ t,j Jk t J i ρ t Jk,j t J i ρ t Jk t J i,j+ +ρ t,k JiJ t j +ρ t Ji,k t J j +ρ t JiJ t j,k + +ρ t,k JjJ t i +ρ t Jj,k t J i +ρ t JjJ t i,k. 3.9 і і.7 3.7, - L ξ R ijk = 1 δ k L ξ ωi,j + 1 ω iω j 1 ω g ij 1 δ jl ξ ωi,k + 1 ω iω k 1 ω g ik + ω + 1 L ξ,k + 1 ω ω ω k gij 1 L ξ,j + 1 ω ω j gik n+ δk L ξ R ij n δ jl ξ R ik n +J k Jt il ξ R tj n J j J t il ξ R tk n +Ji JjL t ξ R tk n J i J t k L ξ R tj n ω i,j + ω iω j ω g ij ω i,k + ω iω k ω g ik ω t,j + ωtω j ω g tj ω t,k + ωtω k ω g tk ω t,k + ωtω k ω g tk ω t,j + ωtω j ω g tj ωg ij ωg ik ωg tj ωg tk ωg tk + + ωg tj. є і і. і,

11 - і 39 L ξ R ijk δ k L ξ ωi,j +ω i ω j ω g ij + +δjl ξ ωi,k +ω i ω k ω g ik ω 1 L ξ,k + 1 ω ω k gij + 1 L ξ 1 n+ δk L ξ Rij ωg ij +J k Jt i J i J t k L ξ n ω,j + 1 ω ω j gik δ j L ξ Rik ωg ik + R tj ωg tj ωt,j + ωtω j ω g tj J j J t i J i J t jl ξ R tk ωg tk , P ijk = R ijk δ k ωi,j +ω i ω j ω g ij + +δ j ωi,k +ω i ω k ω g ik n ωt,k + ωtω k ω g tk = 0. 1 ω,k + 1 ω ω k gij + 1 ω,j + 1 ω ω j gik 1 n+ δk Rij ωg ij δ j Rik ωg ik + +J k Jt i J i J t k R tj n J j J t i J i J t j R tk n ωt,j + ωtω j ω g tj ωt,k + ωtω k ω g tk ωg tj ωg tk 3.11 і є і і і - -.,. Т уочо - іm n,g,j і - і ξ є і і і і - - і, 3.11 є і і і L ξ Pijk = , , є і і і і і і і і x k, є :

12 40 Є..,. Є. ρ i,jk ρ i,jk = = 1 n+ L ξ Rij n L ξ Rik n ρ t P t ijk = 1 n+ L ξ ωi,j + ω iω j ω g ij ωi,k + ω iω k ω g ik ωg ij,j ωg ik + 1 ω t,kρ t g ij + 1 ωt ρ t,k g ij 1 ω jρ i,k 1 ω i,kρ j,k + 1 ω t,jρ t g ik 1 ωt ρ t,j g ik + 1 ω kρ i,j + 1 ω i,jρ k = ρ t R t ijk , є Rij n R ik n ωi,j + ω iω j ω g ij ωi,k + ω iω k ω g ik + 1 δt iω k +δ t iω k ω t g ik R tj n 1 δt iω j +δiω t j ω t g ij R tk n ωt,j + ωtω j ω g tj ωt,k + ωtω k ω g tk ωg ij ωg ik,k,j + ωg tj ωg tk, 3.13 Pijk t є 3.11, [5, c.16], є 3.10: L ξ P ijk,l = L ξγ tl Pt ijk L ξγ t il P tjk L ξγ t jl P itk L ξγ t kl P ijt, 3.14 L ξ Γ jk P ijk , 3.13 L ξ Pijk,l L ξ P ijk,l = L ξγ t il P tjk L ξ Γ t jl P itk L ξ Γ t kl P ijt P ijk = R ij n R ik n ωi,j + ω iω j ω g ij ωi,k + ω iω k ω g ik + 1 δt iω k +δiω t k ω t g ik R tj n 1 δt iω j +δ t iω j ω t g ij ωg ij ωg ik ωt,j + ωtω j ω g tj,k,j + ωg tj

13 - 41 R tk n ωt,k + ωtω k ω g tk ωg tk., - є. 3.1 є n + 1 = m ξ i, ξ i,j, ρ, ρ i. ξ i є m.. Т уо8о, - M n,j,g - -, -, 3.10, , 3.15,.,. - M n,j,g є r-, r = m+1 1k, m k є,., , 3.1 r = m н і і і і ь і н я н о M n,j,g є -, ξ є g jk. є ξ t i,t ξ α Ri α = n ω α ξ α,i ω i gjk L ξ g jk + ωα L ξg iα g jk g jk = n ω α ξ α,i + 1 ω ig jk L ξ g jk + n 3.16 ωα L ξ g iα,, 3.16 i, ξ i t,t ξ α Rα i = ngit ω α ξ α,t + 1 ωi g jk L ξ g jk n ω αl ξ g iα. 3.17, [7],, ξ -,, ξ i t,t ξ α R i α = J i αl ξ J β γ,β gαγ + 1 J α k,j +J α j,k J i α L ξ g jk ,.7.6, є :

14 4 Є..,. Є. J i αl ξ J β γ,β gαγ + 1 J α k,j +J α j,k J i α L ξ g jk = = ngit ω α ξ α,t + 1 ωi g jk L ξ g jk n ω αl ξ g iα і , 3.19, є Т уосро - і M n,j,g ξ, є і і і і і і - - і, є і і -., і [6, c. 6], - і є і і ξ i t,t ξ α Rα i ξi L ξ g jk L ξ g jk ξ t,t dσ = M n 3.0, 3.17 є. Т уоссо - і M n,j,g ξ, є і і і і і і - - і, є n ω αξ α,t + 1 ω ig jk L ξ g jk + n ωα L ξ g iα ξ t M n L ξ g jk L ξ g jk ξ t,t dσ = З, n ω αξ α,t + 1 ω ig jk L ξ g jk + n ωα L ξ g iα ξ t = 0 ξ t,t = 0, і і і і і ξ. І [1] Sorin Dragomir, LiБiА Ornea. Lйcaжжу cйиаймзaж ЕäвжЯм бяйзяому, БolАme 155 of КмйбмЯнн ги MaовЯзaогcн. BirkäАser Boston, Inc., Boston, MA, [] Josef Mikeš, Hana CАdá, Irena Hinterleitner. Conformal olomorpicallд projectiбe mappings of almost Hermitian manifolds Вit a certain initial condition. Гио. Д. БЯйз. MЯовйdн Mйd. Квун., 115: , 8, 014. [3] Josef Mikeš, Elena StepanoБa, Alena VanžАroБá, et al. Dг ЯмЯиогaж бяйзяому йа нкяcгaж зaккгибн. Palacký UniБersitД OlomoАc, FacАltД of Science, OlomoАc, 015. [4] IЕА Vaisman. On locallд conformal almost Käler manifolds. ГнмaЯж Д. Maов., 43-4: , 1976.

15 - 43 [5] Kentaro Yano. ОвЯ овяйму йа LгЯ dямгрaогрян aиd гон aккжгcaогйин. Nort-Holland PАblising Co., Amsterdam; P. Noordo Ltd., Groningen; Interscience PАblisers Inc., NeВ York, [6] Kentaro Yano. Dг ЯмЯиогaж бяйзяому йи cйзкжят aиd aжзйно cйзкжят нкacян. International Series of Monograps in PАre and Applied Matematics, Vol. 49. A Pergamon Press Book. Te Macmillan Co., NeВ York, [7] Kentaro Yano, MitsАe Ako. Almost analдtic Бectors in almost compleг spaces. Оôвйеп Maов. Д., 13:4 45, [8]..,..,... : , [9] , 183: , [10] , 515:57 66, 199. [11]..,..,... і. - і і і, БolАme 97. : І., 013. [1] , И , 30:58 89, 00. [13] Є Кмйc. ГиоЯм. БЯйз. CЯиоЯм, 41:51 64, 016. [14].....:, Є,,. Eзaгж: cerevko@usa.com Є,,. Eзaгж: cepurna67@gmail.com

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο ο φ. II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai

Διαβάστε περισσότερα

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago Laplace Expansion Peter McCullagh Department of Statistics University of Chicago WHOA-PSI, St Louis August, 2017 Outline Laplace approximation in 1D Laplace expansion in 1D Laplace expansion in R p Formal

Διαβάστε περισσότερα

On geodesic mappings of Riemannian spaces with cyclic Ricci tensor

On geodesic mappings of Riemannian spaces with cyclic Ricci tensor Annales Mathematicae et Informaticae 43 (2014) pp. 13 17 http://ami.ektf.hu On geodesic mappings of Riemannian spaces with cyclic Ricci tensor Sándor Bácsó a, Robert Tornai a, Zoltán Horváth b a University

Διαβάστε περισσότερα

m i N 1 F i = j i F ij + F x

m i N 1 F i = j i F ij + F x N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,

Διαβάστε περισσότερα

PHYS606: Electrodynamics Feb. 01, Homework 1. A νµ = L ν α L µ β A αβ = L ν α L µ β A βα. = L µ β L ν α A βα = A µν (3)

PHYS606: Electrodynamics Feb. 01, Homework 1. A νµ = L ν α L µ β A αβ = L ν α L µ β A βα. = L µ β L ν α A βα = A µν (3) PHYS606: Electrodynamics Feb. 01, 2011 Instructor: Dr. Paulo Bedaque Homework 1 Submitted by: Vivek Saxena Problem 1 Under a Lorentz transformation L µ ν, a rank-2 covariant tensor transforms as A µν A

Διαβάστε περισσότερα

3+1 Splitting of the Generalized Harmonic Equations

3+1 Splitting of the Generalized Harmonic Equations 3+1 Splitting of the Generalized Harmonic Equations David Brown North Carolina State University EGM June 2011 Numerical Relativity Interpret general relativity as an initial value problem: Split spacetime

Διαβάστε περισσότερα

rs r r â t át r st tíst Ó P ã t r r r â

rs r r â t át r st tíst Ó P ã t r r r â rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã

Διαβάστε περισσότερα

ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Ελευθερίου Β. Χρυσούλα. Επιβλέπων: Νικόλαος Καραμπετάκης Καθηγητής Α.Π.Θ.

ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Ελευθερίου Β. Χρυσούλα. Επιβλέπων: Νικόλαος Καραμπετάκης Καθηγητής Α.Π.Θ. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ ΚΑΙ ΕΛΕΓΧΟΥ Αναγνώριση συστημάτων με δεδομένη συνεχή και κρουστική συμπεριφορά

Διαβάστε περισσότερα

692.66:

692.66: 1 69.66:6-83 05.05.05 -,, 015 .. 7... 8 1.... 19 1.1.,.. 19 1.. 8 1.3.. 1.4... 1.4.1.... 33 36 40 1.4.. 44 1.4.3. -... 48.. 53.,.. 56.1., -....... 56..... 6.3.... 71.. 76 3.,.... 77 3 3.1.... 77 3.1.1....

Διαβάστε περισσότερα

On a five dimensional Finsler space with vanishing v-connection vectors

On a five dimensional Finsler space with vanishing v-connection vectors South Asian Journal of Mathematics 2017, Vol. 7 ( 2): 73 80 www.sajm-online.com ISSN 2251-1512 RESEARCH ARTICLE On a five dimensional Finsler space with vanishing v-connection vectors Anamika Rai 1, S.

Διαβάστε περισσότερα

10 20 X i a i (i, j) a ij (i, j, k) X x ijk j :j i i: R I J R K L IK JL a 11 a 12... a 1J a 21 a 22... a 2J = a I1 a I2... a IJ = [ 1 1 1 2 1 3... J L 1 J L ] R I K R J K IJ K = [ 1 1 2 2... K

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

M p f(p, q) = (p + q) O(1)

M p f(p, q) = (p + q) O(1) l k M = E, I S = {S,..., S t } E S i = p i {,..., t} S S q S Y E q X S X Y = X Y I X S X Y = X Y I S q S q q p+q p q S q p i O q S pq p i O S 2 p q q p+q p q p+q p fp, q AM S O fp, q p + q p p+q p AM

Διαβάστε περισσότερα

The q-commutators of braided groups

The q-commutators of braided groups 206 ( ) Journal of East China Normal University (Natural Science) No. Jan. 206 : 000-564(206)0-0009-0 q- (, 20024) : R-, [] ABCD U q(g).,, q-. : R- ; ; q- ; ; FRT- : O52.2 : A DOI: 0.3969/j.issn.000-564.206.0.002

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Minion Pro Condensed A B C D E F G H I J K L M N O P Q R S T U

Minion Pro Condensed A B C D E F G H I J K L M N O P Q R S T U Minion Pro Condensed Latin capitals A B C D E F G H I J K L M N O P Q R S T U V W X Y Z & Æ Ł Ø Œ Þ Ð Á Â Ä À Å Ã Ç É Ê Ë È Í Î Ï Ì İ Ñ Ó Ô Ö Ò Õ Š Ú Û Ü Ù Ý Ÿ Ž Ă Ā Ą Ć Č Ď Đ Ě Ė Ē Ę Ğ Ģ Ī Į Ķ Ĺ Ľ Ļ Ń

Διαβάστε περισσότερα

gr mol g lit mg lit mlit lit mol NaCl 96 NaCl HCl HCl

gr mol g lit mg lit mlit lit mol NaCl 96 NaCl HCl HCl 1 ( - ) ( ) : 5 ( CH 3 COOH ).1 0 /1M NaOH35ml CH COOH 3 = /3 gr mol 211/05 mg 3 /5mgr 210 /1gr 3 /5gr ppm.2 mg mlit mg lit g lit µg lit.3 1mol (58 /8 NaCl ) 0 /11F 14 /9ml NaCl.4 14 /9 96 0 /0149 0 /096

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

u(x, y) =f(x, y) Ω=(0, 1) (0, 1)

u(x, y) =f(x, y) Ω=(0, 1) (0, 1) u(x, y) =f(x, y) Ω=(0, 1) (0, 1) u(x, y) =g(x, y) Γ=δΩ ={0, 1} {0, 1} Ω Ω Ω h Ω h h ˆ Ω ˆ u v = fv Ω u = f in Ω v V H 1 (Ω) V V h V h ψ 1,ψ 2,...,ψ N, ˆ ˆ u v = Ω Ω fv v V ˆ ˆ u v = Ω ˆ ˆ u ψ i = Ω Ω Ω

Διαβάστε περισσότερα

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation 3 2 3 2 3 undle Adjustment or 3-D Reconstruction: Implementation and Evaluation Yuuki Iwamoto, Yasuyuki Sugaya 2 and Kenichi Kanatani We describe in detail the algorithm o bundle adjustment or 3-D reconstruction

Διαβάστε περισσότερα

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3 Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point

Διαβάστε περισσότερα

A summation formula ramified with hypergeometric function and involving recurrence relation

A summation formula ramified with hypergeometric function and involving recurrence relation South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Rahim Alhamzawi, Haithem Taha Mohammad Ali Department of Statistics, College of Administration and Economics,

Διαβάστε περισσότερα

f H f H ψ n( x) α = 0.01 n( x) α = 1 n( x) α = 3 n( x) α = 10 n( x) α = 30 ū i ( x) α = 1 ū i ( x) α = 3 ū i ( x) α = 10 ū i ( x) α = 30 δū ij ( x) α = 1 δū ij ( x) α = 3 δū ij ( x) α = 10 δū ij ( x)

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

E.E. Παρ. Ill (I) 429 Κ.Δ.Π. 150/83 Αρ. 1871,

E.E. Παρ. Ill (I) 429 Κ.Δ.Π. 150/83 Αρ. 1871, E.E. Πρ. ll () 429 Κ.Δ.Π. 50/ Αρ. 7, 24.6. Αρθμός 50 ΠΕΡ ΤΑΧΥΔΡΜΕΩΝ ΝΜΣ (ΚΕΦ. 0 ΚΑ ΝΜ 42 ΤΥ 96 ΚΑ 7 ΤΥ 977) Δάτγμ δνάμ τ άρθρ 7() Τ Υπργκό Σμβύλ, σκώντς τς ξσίς π πρέχντ Κ»>. 0. σ' τό δνάμ τ δφί τ άρθρ

Διαβάστε περισσότερα

DOCUMENTS DE TRAVAIL / WORKING PAPERS

DOCUMENTS DE TRAVAIL / WORKING PAPERS DOCUMENTS DE TRAVAIL / WORKING PAPERS 2017-66 How shifting investment towards low-carbon sectors impacts employment: three determinants under scrutiny Quentin Perrier 1, *, Philippe Quirion 1,2 September

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

THE BIGRADED RUMIN COMPLEX. 1. Introduction

THE BIGRADED RUMIN COMPLEX. 1. Introduction THE BIGRADED RUMIN COMPLEX JEFFREY S. CASE Abstract. We give a detailed description of the bigraded Rumin complex in dimensions three and five, including formulae for all of its constituent operators.

Διαβάστε περισσότερα

Four Dimensional Absolute Valued Algebras Containing a Nonzero Central Idempotent or with Left Unit

Four Dimensional Absolute Valued Algebras Containing a Nonzero Central Idempotent or with Left Unit International Journal of Algebra, Vol. 10, 2016, no. 11, 513-524 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ija.2016.6638 Four Dimensional Absolute Valued Algebras Containing a Nonzero Central

Διαβάστε περισσότερα

Trace evaluation of matrix determinants and inversion of 4 4 matrices in terms of Dirac covariants

Trace evaluation of matrix determinants and inversion of 4 4 matrices in terms of Dirac covariants Trace evaluation of matrix determinants and inversion of 4 4 matrices in terms of Dirac covariants F. Kleefeld and M. Dillig Institute for Theoretical Physics III, University of Erlangen Nürnberg, Staudtstr.

Διαβάστε περισσότερα

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves: 3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Buried Markov Model Pairwise

Buried Markov Model Pairwise Buried Markov Model 1 2 2 HMM Buried Markov Model J. Bilmes Buried Markov Model Pairwise 0.6 0.6 1.3 Structuring Model for Speech Recognition using Buried Markov Model Takayuki Yamamoto, 1 Tetsuya Takiguchi

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ). Vol. 37 ( 2017 ) No. 3 J. of Math. (PRC) R N - R N - 1, 2 (1., 100029) (2., 430072) : R N., R N, R N -. : ; ; R N ; MR(2010) : 58K40 : O192 : A : 0255-7797(2017)03-0467-07 1. [6], Mather f : (R n, 0) R

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

!"#!$% &' ( )*+*,% $ &$ -.&01#(2$#3 4-$ #35667

!#!$% &' ( )*+*,% $ &$ -.&01#(2$#3 4-$ #35667 !"#!$% & &' ( )*+*,% $ -*(-$ -.*/% $- &$ -.&01#(2$#3 4-$ #35667 5051 & 00000000000000000000000000000000000000000000000000000000000000000000000000000 9 508&:;&& 0000000000000000000000000000000000000000000000000

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

N. P. Mozhey Belarusian State University of Informatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS

N. P. Mozhey Belarusian State University of Informatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS Òðóäû ÁÃÒÓ 07 ñåðèÿ ñ. 9 54.765.... -. -. -. -. -. : -. N. P. Mozhey Belarusian State University of Inforatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS In this article we present

Διαβάστε περισσότερα

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing University of Illinois at Urbana-Champaign ECE : Digital Signal Processing Chandra Radhakrishnan PROBLEM SET : SOLUTIONS Peter Kairouz Problem Solution:. ( 5 ) + (5 6 ) + ( ) cos(5 ) + 5cos( 6 ) + cos(

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Assessment of otoacoustic emission probe fit at the workfloor

Assessment of otoacoustic emission probe fit at the workfloor Assessment of otoacoustic emission probe fit at the workfloor t s st tt r st s s r r t rs t2 t P t rs str t t r 1 t s ér r tr st tr r2 t r r t s t t t r t s r ss r rr t 2 s r r 1 s r r t s s s r t s t

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Mesh Parameterization: Theory and Practice

Mesh Parameterization: Theory and Practice Mesh Parameterization: Theory and Practice Kai Hormann, Bruno Lévy, Alla Sheffer To cite this version: Kai Hormann, Bruno Lévy, Alla Sheffer. Mesh Parameterization: Theory and Practice. This document is

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain Continm Mechanics. Official Fom Chapte. Desciption of Motion χ (,) t χ (,) t (,) t χ (,) t t Chapte. Defomation an Stain s S X E X e i ij j i ij j F X X U F J T T T U U i j Uk U k E ( F F ) ( J J J J)

Διαβάστε περισσότερα

[Note] Geodesic equation for scalar, vector and tensor perturbations

[Note] Geodesic equation for scalar, vector and tensor perturbations [Note] Geodesic equation for scalar, vector and tensor perturbations Toshiya Namikawa 212 1 Curl mode induced by vector and tensor perturbation 1.1 Metric Perturbation and Affine Connection The line element

Διαβάστε περισσότερα

Lecture 10 - Representation Theory III: Theory of Weights

Lecture 10 - Representation Theory III: Theory of Weights Lecture 10 - Representation Theory III: Theory of Weights February 18, 2012 1 Terminology One assumes a base = {α i } i has been chosen. Then a weight Λ with non-negative integral Dynkin coefficients Λ

Διαβάστε περισσότερα

1. Divergence of a product: Given that φ is a scalar field and v a vector field, show

1. Divergence of a product: Given that φ is a scalar field and v a vector field, show 1. Divergence of a product: Given that φ is a scalar field and v a vector field, show that div(φv) = (gradφ) v + φ div v grad(φv) = (φv i ), j g i g j = φ, j v i g i g j + φv i, j g i g j = v (grad φ)

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques

Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques Raphael Chenouard, Patrick Sébastian, Laurent Granvilliers To cite this version: Raphael

Διαβάστε περισσότερα

Formulario Básico ( ) ( ) ( ) ( ) ( 1) ( 1) ( 2) ( 2) λ = 1 + t t. θ = t ε t. Mecánica de Medios Continuos. Grado en Ingeniería Civil.

Formulario Básico ( ) ( ) ( ) ( ) ( 1) ( 1) ( 2) ( 2) λ = 1 + t t. θ = t ε t. Mecánica de Medios Continuos. Grado en Ingeniería Civil. Mecánica e Meios Continos. Gao en Ingenieía Ciil. Fomlaio Básico Tema. Descipción el moimiento χ (,) t χ (,) t (,) t χ (,) t t t Tema. Defomación s S X E X e i ij j i ij j F X X U F J T T T U U i j Uk

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

"BHFC8I7H=CB HC &CH=CB 5B8 &CA9BHIA

BHFC8I7H=CB HC &CH=CB 5B8 &CA9BHIA ω θ ω = Δθ Δt, θ ω v v = rω ω = v r, r ω α α = Δω Δt, Δω Δt (rad/s)/s rad/s 2 ω α ω α rad/s 2 87.3 rad/s 2 α = Δω Δt Δω Δt α = Δω Δt = 250 rpm 5.00 s. Δω rad/s 2 Δω α Δω = 250 min rev 2π rad rev 60 1 min

Διαβάστε περισσότερα

1529 Ν. 29(ΙΙ)/95. E.E. Παρ. 1(H) Αρ. 2990,

1529 Ν. 29(ΙΙ)/95. E.E. Παρ. 1(H) Αρ. 2990, E.E. Παρ. 1(H) Αρ. 2990, 21.7.95 1529 Ν. 29(ΙΙ)/95 περί Συμπληρωματικύ Πρϋπλγισμύ Νόμς (Αρ. 4) τυ 1995 εκδίδεται με δημσίευση στην Επίσημη Εφημερίδα της Κυπριακής Δημκρατίας σύμφωνα με τ Άρθρ 52 τυ Συντάγματς.

Διαβάστε περισσότερα

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2 F (x) = kx x k F = F (x) U(0) U(x) = x F = kx 0 F (x )dx U(x) = U(0) + 1 2 kx2 x U(0) = 0 U(x) = 1 2 kx2 U(x) x 0 = 0 x 1 U(x) U(0) + U (0) x + 1 2 U (0) x 2 U (0) = 0 U(x) U(0) + 1 2 U (0) x 2 U(0) =

Διαβάστε περισσότερα

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

Multi-GPU numerical simulation of electromagnetic waves

Multi-GPU numerical simulation of electromagnetic waves Multi-GPU numerical simulation of electromagnetic waves Philippe Helluy, Thomas Strub To cite this version: Philippe Helluy, Thomas Strub. Multi-GPU numerical simulation of electromagnetic waves. ESAIM:

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

P Š. ˆ Éμ Î,... ƒˆ ˆ ˆ ˆ. Ê²Ó ± μ Ê É Ò Ê É É

P Š. ˆ Éμ Î,... ƒˆ ˆ ˆ ˆ. Ê²Ó ± μ Ê É Ò Ê É É P4-2009-39. Š. ˆ Éμ Î,... ƒˆ ˆ ˆ ˆ Ê²Ó ± μ Ê É Ò Ê É É ˆ Éμ Î. Š.,... P4-2009-39 Ê μ² Ò Ì μ μ μ É Ò³ μ μ³ ³μÉ Ò Ê Ê μ² Ò μé μ ÒÌ μé μ ÒÌ Ì, Ì μé μé ÍÒ ² μ ± μ μ Ì μ É ÒÌ μ². ɳ Î Ò μ μ μ É Ê Ê Ì μ², ±μéμ

Διαβάστε περισσότερα

X x C(t) description lagrangienne ( X , t t t X x description eulérienne X x 1 1 v x t

X x C(t) description lagrangienne ( X , t t t X x description eulérienne X x 1 1 v x t X 3 x 3 C Q y C(t) Q t QP t t C configuration initiale description lagrangienne x Φ ( X, t) X Y x X P x P t X x C(t) configuration actuelle description eulérienne (, ) d x v x t dt X 3 x 3 C(t) F( X, t)

Διαβάστε περισσότερα

,, 2015

,, 2015 621.039.516.4-1000 05.14.14,, 2015 2.... 6..... 7 1. -1000...... 14 1.1. -1000 -... 14 1.2. - 15 1.2.1. 16 1.2.2. 17 1.2.3. -... 18 1.2.4. -. 20 1.3. -1000 -......... 23 1.4. - -1000... 26 1.5. - -1000.....

Διαβάστε περισσότερα

arxiv: v1 [math.dg] 31 Jan 2009

arxiv: v1 [math.dg] 31 Jan 2009 arxiv:0902.0086v1 [math.dg] 31 Jan 2009 Maurer Cartan Forms of the Symmetry Pseudo-Group and the Covering of Plebañski s Second Heavenly Equation Oleg I. Morozov Department of Mathematics, Moscow State

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

The circle theorem and related theorems for Gauss-type quadrature rules

The circle theorem and related theorems for Gauss-type quadrature rules OP.circle p. / The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu Purdue University OP.circle p. 2/ Web Site http : //www.cs.purdue.edu/ archives/22/wxg/codes

Διαβάστε περισσότερα

k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)

Διαβάστε περισσότερα

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS Pa J Statist 2009 Vol 25(2), 135-140 ON NEGTIVE MOMENTS OF CERTIN DISCRETE DISTRIBUTIONS Masood nwar 1 and Munir hmad 2 1 Department of Maematics, COMSTS Institute of Information Technology, Islamabad,

Διαβάστε περισσότερα

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM 2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.

Διαβάστε περισσότερα

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l = C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Simplex Crossover for Real-coded Genetic Algolithms

Simplex Crossover for Real-coded Genetic Algolithms Technical Papers GA Simplex Crossover for Real-coded Genetic Algolithms 47 Takahide Higuchi Shigeyoshi Tsutsui Masayuki Yamamura Interdisciplinary Graduate school of Science and Engineering, Tokyo Institute

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

n n 1 2 n+1 2 i N j j A j D j U [0,θ j (1 e j )] θ j (0, 1] e j [0, 1] LD j L

Διαβάστε περισσότερα

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik Affine Weyl Groups Gabriele Nebe Lehrstuhl D für Mathematik Summerschool GRK 1632, September 2015 Crystallographic root systems. Definition A crystallographic root system Φ is a finite set of non zero

Διαβάστε περισσότερα

Consommation marchande et contraintes non monétaires au Canada ( )

Consommation marchande et contraintes non monétaires au Canada ( ) Consommation marchande et contraintes non monétaires au Canada (1969-2008) Julien Boelaert, François Gardes To cite this version: Julien Boelaert, François Gardes. Consommation marchande et contraintes

Διαβάστε περισσότερα

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a) hapter 5 xercise Problems X5. α β α 0.980 For α 0.980, β 49 0.980 0.995 For α 0.995, β 99 0.995 So 49 β 99 X5. O 00 O or n 3 O 40.5 β 0 X5.3 6.5 μ A 00 β ( 0)( 6.5 μa) 8 ma 5 ( 8)( 4 ) or.88 P on + 0.0065

Διαβάστε περισσότερα

J J l 2 J T l 1 J T J T l 2 l 1 J J l 1 c 0 J J J J J l 2 l 2 J J J T J T l 1 J J T J T J T J {e n } n N {e n } n N x X {λ n } n N R x = λ n e n {e n } n N {e n : n N} e n 0 n N k 1, k 2,..., k n N λ

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 7: Μετασχηματισμός Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 7: Μετασχηματισμός Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 7: Μετασχηματισμός Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετασχηματισμός Fourier 1. Ορισμός του Μετασχηματισμού Fourier 2. Φυσική Σημασία του Μετασχηματισμού

Διαβάστε περισσότερα

X g 1990 g PSRB

X g 1990 g PSRB e-mail: shibata@provence.c.u-tokyo.ac.jp 2005 1. 40 % 1 4 1) 1 PSRB1913 16 30 2) 3) X g 1990 g 4) g g 2 g 2. 1990 2000 3) 10 1 Page 1 5) % 1 g g 3. 1 3 1 6) 3 S S S n m (1/a, b k /a) a b k 1 1 3 S n m,

Διαβάστε περισσότερα

Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat

Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat Pierre Coucheney, Patrick Maillé, runo Tuffin To cite this version: Pierre Coucheney, Patrick

Διαβάστε περισσότερα

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +

Διαβάστε περισσότερα

!q j. = T ji Kάθε πίνακας µπορεί να γραφεί σαν άθροισµα ενός συµµετρικού και ενός αντι-συµµετρικού πίνακα

!q j. = T ji Kάθε πίνακας µπορεί να γραφεί σαν άθροισµα ενός συµµετρικού και ενός αντι-συµµετρικού πίνακα Συστήματα με Ν βαθμούς ελευθερίας ΦΥΣ 211 - Διαλ.25 1 Ø Συστήµατα µε Ν βαθµούς ελευθερίας που βρίσκονται κοντά σε µια θέση ισσορροπίας τους συµπεριφέρονται σαν Ν ανεξάρτητοι αρµονικοί ταλαντωτές Γιατί

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

Αφιερώνεται στα παιδιά μας Σπυριδούλα, Αχιλλέα και Αναστασία

Αφιερώνεται στα παιδιά μας Σπυριδούλα, Αχιλλέα και Αναστασία 0 3 10 71 < < 3 1 7 ; (y k ) 0 LU n n M (2; 4; 1; 2) 2 n 2 = 2 2 n 2 n 2 = 2y 2 n n ' y = x [a; b] [a; b] x n = '(x n 1 ) (x n ) x 0 = 0 S p R 2 ; S p := fx 2 R 2 : kxk p = 1g; p = 1; 2; 1 K i

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs

Διαβάστε περισσότερα

Polymer PTC Resettable Fuse: KMC Series

Polymer PTC Resettable Fuse: KMC Series Features 1. RoHS & Halogen-Free (HF) compliant 2. IA size: 0603, 0805, 1206, 1812 3. Hold current ratings from 0.05 to 3A 4. Voltage ratings from 6V computer and electronic applications to 60V 5. Small

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα