Различито именовање месијанског детета код Ис 9, 6 у Масоретском тексту

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Различито именовање месијанског детета код Ис 9, 6 у Масоретском тексту"

Transcript

1 Саборнос 4 (2010) Α Ω УДК (049.3) Родољуб Кубат 1 Универзитет у Београду, Православни богословски факултет, Београд Septuaginta adversus Textum Masoreticum Критика старосавезног текста на примеру Ис 9, 6 (Кратка научна расправа) Различито именовање месијанског детета код Ис 9, 6 у Масоретском тексту (МТ) и Септуагинти (LXX у Ралфсовом издању 9, 5) представља занимљив пример текстуално-литерарне критике. Проблематика овог типа не односи се само на текстуално-литерарне аспекте наведног библијског локуса, него захтева додатну теолошко-херменеутичку оптику. То се, пре свега, односи на разумевање настанка и развоја библијских текстова, као и на њихово литерарно преношење. Ситуацију делом одређује и дугогодишња научна традиција, често оптерећена неадекватним херменеутичким претпоставкама. Заправо, наведени пример се дуго у текстуалној критици није третирао на адекватан начин, тако да многи коментари и студије на ову тему у научном смислу заслужују да се нађу под критичком лупом. Ова кратка научна критика управо има за циљ да покаже лоше стране научних истраживања из прошлог времена, а она се пре свега односи на западне библисте. Да боље илуструјемо тематику, навешћемо једно месијанско место, које је различито пренесено у две најзначајније верзије старосавезног текста. Ранија текстологија је идејно и методолошки трагала за што изворнијим текстом; боља текстуална верзија је она која је изворнија. Уз то, постоји неколико методолошких правила која помажу приликом откривања изворније верзије текста. Таква методолошка концепција пратила је основне трендове историјско-критичке методе, поготово текстуалне и литерарне критике, критике предања и историје облика. Касније прераде и додаци сматрани су секундарним. Истовремено, када је у питању старосавезна текстологија проблем се усложњава због одступања која се појављују између МТ и LXX. Дуго је МТ био текстолошки привилегован, тј. сматран легитимним наследником старог консонантског текста LXX је пак доживљавано као превод чија подлога је био текст који се знатно боље (или у потпуности) очувао у масоретској традицији. Међутим, новија сазнања из домена текстологије показала су да су МТ и LXX у најмању руку равноправне верзије старосавезног rkubat@pbf.rs

2 350 Кубат, Р., Septuaginta adversus Textum Masoreticum Писма. Друго, у међувремену је дошло до корекције раније идејно-научне парадигме. Класична изворност текста коригована је историјом редакција, унутарбиблијском егзегезом и канонским приступом. Средиште теолошког и научног истраживања све више је коначни, канонски текст; с тим што се уважава историја његовог настанка и преношења. У савременој научној ситуацији поставља се ново питање: како се определити за неку од верзија текста када у њој постоје извесне разлике, поготово када су у питању МТ и LXX. Опсег таквих разлика креће се од незнатних језичких одступања до потпуно различитог текста. Та чињеница у великој мери одређује методолошки поступак и сам одабир текстуалне верзије. Међутим, постоје извесна места, која су да се тако изразимо негде између наведених опција. Такав је случај са Ис 9, 6. Одступања се састоје у различитом именовању месијанског детета, и сасвим је извесно да је МТ ближи изворном консонантском тексту. Пре него се осврнемо на конкретну, а самим тим и општу текстолошку проблематику, важно би било дати неколико општих информација о спорном месту. Читава перикопа Ис 9, 1 7 лоцирана је одмах иза одељка о Емануилу. Ово пророштво својом финалном формом појављује се да огласи испуњење стиха 7, 14: Емануил је рођен (9, 6). Тако постављено треба такође разумети као нов закључак одељка о Емануилу (Beuken, Jesaja 250). Ипак, отвара се много питања која се односе на ово пророштво. Из разумљивих разлога ми ћемо се осврнути само на стих који говори о рађању Месије. Пре разматрања спорног стиха важно је текстуално упоредити МТ и LXX: 5 6 Wnl'-dL;yU dl,y<-yki ὅτι παιδίον ἐγεννήϑη ἢμῖν Дете је рођено нама Дете је рођено нама Wnl'-!T;nI!Be υἱὸς καὶ ἐδόϑη ἢμῖν син дат нама Amk.vi-l[; hr'f.mih; yhit.w: власт је на његовом рамену Ar'q.YIw: Amv. По имену ће бити назван rabgi lae #[eay al,p, дивни саветник, силни Бог ~Alv'-rf; d[;ybia] отац вечни, кнез мира. ~l_ и син дат нам је οὗ ἢ ἀρχὴ ἐγενήϑη ἐπὶ τοῦ ὤμου αὐτοῦ његова власт је на његовом рамену καὶ Καλεῖται τὸ ὄνομα αὐτοῦ и он је назван μεγάλης βουλῆς ἄγγελος Анђелом Великог Савета, ἐγὼ γὰρ ἄξω εἰρήνην ἐπὶ τοὺς ἄρχοντας јер ја ћу донети мир кнезу, εἰρήνην καὶ ὑγίειαν αὐτῷ мир и здравље за њега. Као што се може видети, у Масоретском тексту месијанско дете именовано је са четири титуле: дивни саветник, силни Бог, отац вечни и кнез мира. Готово је извесно да имена потичу из богослужбеног ритуала који се односио на рођење и интронизацију цара. Обичај вероватно поред неких разлика потиче из ритуала фараонске идеологије (Zimmerli,

3 Саборност 4 (2010) [ ] 351 Vier oder fünf Thronname ; Schuns, Der fünfte Thronname ). Међутим, сáмо значење ове четири титуле у контексту Ис 9, 5 није до краја јасно, тј. не зна се на кога се тачно титуле односе и шта оне значе. Проблем додатно комликује Септуагинтина верзија и таргум. У оквиру ове расправе нећемо се задржавати на питању значења месијанских титула у масоретском тексту, него пажњу усмеравамо на међусобни однос МТ и LXX, и његове херменеутичке импликације. Четири имена дата детету у МТ ( ~Alv'-rf; d[;ybia] rabgi lae #[eay al,p,) у LXX су, изгледа сведена на једно: анђео великог савета (μεγάλης βουλῆς ἄγγελος). Дете више није дивни саветник, Бог силни, отац вечни и кнез мира, већ анђео (весник) великог савета. Другим именима је дата потпуно нова интерпретација. Са литерарног аспекта, поставља се питање: да ли је могуће rabgi lae #[eay al,p, превести са μεγάλης βουλῆς ἄγγελος? И шта заправо може да значи μεγάλης βουλῆς ἄγγελος? Било је више покушаја да се нађе задовољавајуће литерарно решење. Навешћемо укратко неке примере, у којим се покушава литерарно превазићи овај проблем. J. Lust сматра да је термин ἄγγελος сам по себи вероватно представа новог имена rwbg-la. Први део трећег имена yba (отац) читано је као глагол ayba: ἄξω ја ћу донети. Други део d[ интерпретиран је као предлог d[ и следствено томе представљен са ἐπί. Две компоненте четвртог имена су такође третиране појединачно. Именица rv кнез читана је у множини: ἄρχοντας и виђена је као индиректни објекат глагола где је именица ~wlv = εἰρήνην мир интерпретирана као његов директни објекат. Непосредни мотив који се крије иза ових црта у Септуагинти може бити божански карактер имена. Преводилац можда није волео да име моћни Бог буде примењено на било коју људску особу, био то цар или не. Зато, он умеће реч гласник или ἄγγελος пре имена. Кроз ово уметање прво име се односи на Jахвеа, а не на дете (Messianism, ). W. Michaelis, побијајући неке поставке M. Werner-a, покушао је да јеврејски текст преведе на јелински. Иако за реч ἄγγελος у тексту нема одговарајућег јеврејског еквивалента, ипак се μεγάλης може довести у семантичку везу са al,p,, а βουλῆς са #[eay. Међутим, μεγάλης βουλῆς не значи велики савет у смислу великог сабрања, него велики, значајан, моћни план или одлука (Engelchristologie, ). Реч ἄγγελος овде не значи небеско биће анђео, него весник, а потпуни израз говори да је дете, то јест Месија, чије је рођење обећано анђео великог савета (одлуке) (Engelchristologie, 140). Ово решење свакако открива један важан теолошки аспекат. Месија је анђео велике одлуке. Има још научника који заступају ово мишљење. Seeligmann је веома импресиониран мирним карактером детета Месије у Септуагинтином тексту. Ослањајући се на Јер 32 (39), 19 он интерпретира његове титуле μεγάλης βουλῆς ἄγγελος као изасланик који носи божанску одлуку вечног плана (Septuagint, ). Занимљиво је да је B. Duhm μεγάλης βουλῆς ἄγγελος на јеврејски превео са hl'adg. Hc'[e %a;l.m; гласник велике одлуке (Jesaia, 90).

4 352 Кубат, Р., Septuaginta adversus Textum Masoreticum У једној групи или фамилији текстова четири месијанска имена замењена су једним или се то први пут десило у LXX. Могло је да дође до извесног преобликовања, које је имало за сврху да јасније искаже месијански смисао текста. Редакторски захвати оваквог типа познати су и представљају важну карику у обликовању библијских списа. Претежна је била теолошка идеја Месије као трансцендентног бића, која се боље може изразити речима μεγάλης βουλῆς ἄγγελος, него набрајањем четири класичне титуле. То значи да је Септуагинтин текст у теолошко-месијанском смислу могао да оде корак даље од царског месијанизма, односно Септуагинтин текст се у извесном смислу уклапа у развијајућу теолошку линију трансцендентног месијанизма. Месија је сада анђео (ἄγγελος - %a'l.m;), небеско биће. С друге стране, велики број егзегета и не покушава да изравна или ваљано објасни однос МТ и LXX. Углавном се Септуагинтина верзија занемарује. То је једна од класичних грешака које чине стручњаци за старозаветни текст. Међутим, смисао наведеног примера састоји се у томе како је научно немогуће решити овај текстолошки проблем. То значи да се у задату проблематику морају укључити још неки елементи пре свих, литерарна и теолошкохерменеутичка анализа библијских текстова. Занимљиво је да она показује да се у неким старосавезним књигама појављују озбиљне разлике када се упореди њихов текст у масоретској верзији и Септуагинти. Нарочит пример су Књиге Јездре и Немије, Књига Исуса Навина и нарочито Књига пророка Јеремије. Разлике у овим књигама и још многа одступања на релацији МТ LXX показују да се овде ради о две струје у оквиру истог предања. Из наведеног примера, заправо, дâ се закључити да су разлике које постоје у текстуалним верзијама производ теолошког развоја који је паралелно текао у различитим круговима позног јудаизма. Те заједнице су из различитих разлога прибегавале одређеним теолошким концепцијама, које су се нужно одражавале на преношене текстове заједнице су их тумачиле и развијале у светлу сопствених теолошких уверења. Други важан моменат је то да су се теолошке идеје развијале, а то је нужно подразумевало развој библијског текста пре његове стандардизације и коначне канонизације. Међутим, ни сама канонозација није се десила како су многи научници раније веровали. Септуагинта и Масоретски текст се у оваквим и многим сличним случајевима морају третирати као две различите текстуалне верзије од којих је свака на свој начин аутентична и вредна посебне теолошко-научне пажње. Опредељивање научника за једну од верзија библијског текста представља легитиман научни поступак. Будући да је немогуће одредити која је текстуална верзија боља, поставља се питање: шта научнике опредељује за једну од верзија? У већини случајева пресудну улогу има теолошко и идеолошко предразумевање самих научника. Херменеутички гледано, идејна позадина истраживача или теолога одређује његов однос према једној од верзија текста. То истовремено значи да су јеврејски Танах (његова текстуална подлога је МТ) и хришћански Стари савез (текстуална подлога LXX), иако деле велики део староизраиљског теолошког и литерарног наслеђе у суштини две

5 Саборност 4 (2010) [ ] 353 књиге. Уколико пратимо ту логику а она је, изгледа, неизбежна будућа текстуална истраживања морају озбиљно да рачунају на теолошке, историјске и друге разлике које представљају духовну матрицу текстуалних традиција староизраиљске литературе. То пак значи да је априорна фаворизација једне текстуалне верзије у овом и многим другим случајевима грешка, које треба да се ослободи савремена текстуална критика. Литература: Beuken, Jesaja = W. A. M. Beuken, Jesaja 1 12, Freiburg im Breisgau, Duhm, Jesaja = Duhm B., Das Buch Jesaja, Göttingen, Lust, Messianism = J. Lust, Messianism and Septuagint. Ez 21, 30 32, у: J. Emerton (ур.), Congress Volume: Salamanca 1983 (SVT 36; Leiden: Brill, 1985). Michaelis, Engelchristologie = W. Michaelis, Zur Engelchristologie im Urchristentum, Basel, Seeligmann, Septuagint = I. Seeligmann, The Septuagint Version of Isaiah and Cognate Studies, Tübingen, Schuns, Der fünfte Thronname = R. D. Schuns, Der fünfte Thronname des Messias, VT 23 (1973). Zimmerli, Vier oder fünf Thronnamen = W. Zimmerli, Vier oder fünf Thronnamen, VT 22 (1972). Датум пријема чланка: Датум прихватања чланка за објављивање: последња страница

Теорија електричних кола

Теорија електричних кола др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола i i i Милка Потребић др Милка Потребић, ванредни професор,

Διαβάστε περισσότερα

налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm

налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm 1 Два тачкаста наелектрисања 1 400 p и 100p налазе се у диелектрику релативне диелектричне константе ε на међусобном растојању ( 1cm ) као на слици 1 Одредити силу на наелектрисање 3 100p када се оно нађе:

Διαβάστε περισσότερα

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7.1. ДИОФАНТОВА ЈЕДНАЧИНА ху = n (n N) Диофантова једначина ху = n (n N) има увек решења у скупу природних (а и целих) бројева и њено решавање није проблем,

Διαβάστε περισσότερα

1.2. Сличност троуглова

1.2. Сличност троуглова математик за VIII разред основне школе.2. Сличност троуглова Учили смо и дефиницију подударности два троугла, као и четири правила (теореме) о подударности троуглова. На сличан начин наводимо (без доказа)

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки

Διαβάστε περισσότερα

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10 Tестирање хипотеза 5.час 30. март 2016. Боjана Тодић Статистички софтвер 2 30. март 2016. 1 / 10 Монте Карло тест Монте Карло методе су методе код коjих се употребљаваjу низови случаjних броjева за извршење

Διαβάστε περισσότερα

Анализа Петријевих мрежа

Анализа Петријевих мрежа Анализа Петријевих мрежа Анализа Петријевих мрежа Мере се: Својства Петријевих мрежа: Досежљивост (Reachability) Проблем досежљивости се састоји у испитивању да ли се може достићи неко, жељено или нежељено,

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 011/01. година ТЕСТ МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

6.2. Симетрала дужи. Примена

6.2. Симетрала дужи. Примена 6.2. Симетрала дужи. Примена Дата је дуж АВ (слика 22). Тачка О је средиште дужи АВ, а права је нормална на праву АВ(p) и садржи тачку О. p Слика 22. Права назива се симетрала дужи. Симетрала дужи је права

Διαβάστε περισσότερα

ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда

ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда ОБЛАСТИ: ) Тачка ) Права Jov@soft - Март 0. ) Тачка Тачка је дефинисана (одређена) у Декартовом координатном систему са своје две коодринате. Примери: М(5, ) или М(-, 7) или М(,; -5) Jov@soft - Март 0.

Διαβάστε περισσότερα

2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА

2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА . колоквијум. Наставни колоквијум Задаци за вежбање У свим задацима се приликом рачунања добија само по једна вредност. Одступање појединачне вредности од тачне вредности је апсолутна грешка. Вредност

Διαβάστε περισσότερα

2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ

2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ 2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ 2.1. МАТЕМАТИЧКИ РЕБУСИ Најједноставније Диофантове једначине су математички ребуси. Метод разликовања случајева код ових проблема се показује плодоносним, јер је раздвајање

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 013/014. година ТЕСТ

Διαβάστε περισσότερα

г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве

г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве в) дијагонала dd и страница aa квадрата dd = aa aa dd = aa aa = није рац. бр. нису самерљиве г) страница aa и пречник RR описаног круга правилног шестоугла RR = aa aa RR = aa aa = 1 јесте рац. бр. јесу

Διαβάστε περισσότερα

Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја.

Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја. СЛУЧАЈНА ПРОМЕНЉИВА Једнодимензионална случајна променљива X је пресликавање у коме се сваки елементарни догађај из простора елементарних догађаја S пресликава у вредност са бројне праве Први корак у дефинисању

Διαβάστε περισσότερα

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ. VI Савијање кружних плоча Положај сваке тачке кружне плоче је одређен са поларним координатама и ϕ слика 61 Диференцијална једначина савијања кружне плоче је: ( ϕ) 1 1 w 1 w 1 w Z, + + + + ϕ ϕ K Пресечне

Διαβάστε περισσότερα

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице.

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. КРУГ У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. Архимед (287-212 г.п.н.е.) 6.1. Централни и периферијски угао круга Круг

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Тест Математика Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 00/0. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ 8.. Линеарна једначина с две непознате Упознали смо појам линеарног израза са једном непознатом. Изрази x + 4; (x 4) + 5; x; су линеарни изрази. Слично, линеарни

Διαβάστε περισσότερα

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни ТАЧКА. ПРАВА. РАВАН Талес из Милета (624 548. пре н. е.) Еуклид (330 275. пре н. е.) Хилберт Давид (1862 1943) 3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни Настанак геометрије повезује

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 01/01. година ТЕСТ

Διαβάστε περισσότερα

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2 8. ПИТАГОРИНА ЈЕДНАЧИНА х + у = z Један од најзанимљивијих проблема теорије бројева свакако је проблем Питагориних бројева, тј. питање решења Питагорине Диофантове једначине. Питагориним бројевима или

Διαβάστε περισσότερα

1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1

1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1 1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1 Метод разликовања случајева је један од најексплоатисанијих метода за решавање математичких проблема. У теорији Диофантових једначина он није свемогућ, али је сигурно

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола Др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола Милка Потребић Др Милка Потребић, ванредни професор,

Διαβάστε περισσότερα

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ ТРАПЕЗ Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце Ментор :Криста Ђокић, наставник математике Власотинце, 2011. године Трапез

Διαβάστε περισσότερα

предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА

предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Висока техничка школа струковних студија у Нишу предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Садржај предавања: Систем

Διαβάστε περισσότερα

Количина топлоте и топлотна равнотежа

Количина топлоте и топлотна равнотежа Количина топлоте и топлотна равнотежа Топлота и количина топлоте Топлота је један од видова енергије тела. Енергија коју тело прими или отпушта у топлотним процесима назива се количина топлоте. Количина

Διαβάστε περισσότερα

Аксиоме припадања. Никола Томовић 152/2011

Аксиоме припадања. Никола Томовић 152/2011 Аксиоме припадања Никола Томовић 152/2011 Павле Васић 104/2011 1 Шта је тачка? Шта је права? Шта је раван? Да бисмо се бавили геометријом (и не само геометријом), морамо увести основне појмове и полазна

Διαβάστε περισσότερα

РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x,

РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, Већи број: 1 : 4x + 1, (4 бода) Њихов збир: 1 : 5x + 1, Збир умањен за остатак: : 5x = 55, 55 : 5 = 11; 11 4 = ; + 1 = 45; : x = 11. Дакле, први број је 45

Διαβάστε περισσότερα

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре 0 6.. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре У обичном говору се често каже да су неки предмети симетрични. Примери таквих објеката, предмета, геометријских

Διαβάστε περισσότερα

Писмени испит из Теорије површинских носача. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.

Писмени испит из Теорије површинских носача. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. Београд, 24. јануар 2012. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. dpl = 0.2 m P= 30 kn/m Линијско оптерећење се мења по синусном закону: 2. За плочу

Διαβάστε περισσότερα

2.3. Решавање линеарних једначина с једном непознатом

2.3. Решавање линеарних једначина с једном непознатом . Решимо једначину 5. ( * ) + 5 + Провера: + 5 + 0 5 + 5 +. + 0. Број је решење дате једначине... Реши једначину: ) +,5 ) + ) - ) - -.. Да ли су следеће једначине еквивалентне? Провери решавањем. ) - 0

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

6.5 Површина круга и његових делова

6.5 Површина круга и његових делова 7. Тетива је једнака полупречнику круга. Израчунај дужину мањег одговарајућег лука ако је полупречник 2,5 сm. 8. Географска ширина Београда је α = 44 47'57", а полупречник Земље 6 370 km. Израчунај удаљеност

Διαβάστε περισσότερα

Хомогена диференцијална једначина је она која може да се напише у облику: = t( x)

Хомогена диференцијална једначина је она која може да се напише у облику: = t( x) ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? Врсте диференцијалних једначина. ДИФЕРЕНЦИЈАЛНА ЈЕДНАЧИНА КОЈА РАЗДВАЈА ПРОМЕНЉИВЕ Код ове методе поступак је следећи: раздвојити

Διαβάστε περισσότερα

4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова

4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова 4 Троугао (II део) Хилберт Давид, немачки математичар и логичар Велики углед у свету Хилберту је донело дело Основи геометрије (1899), у коме излаже еуклидску геометрију на аксиоматски начин Хилберт Давид

Διαβάστε περισσότερα

5.2. Имплицитни облик линеарне функције

5.2. Имплицитни облик линеарне функције математикa за VIII разред основне школе 0 Слика 6 8. Нацртај график функције: ) =- ; ) =,5; 3) = 0. 9. Нацртај график функције и испитај њен знак: ) = - ; ) = 0,5 + ; 3) =-- ; ) = + 0,75; 5) = 0,5 +. 0.

Διαβάστε περισσότερα

ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА

ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА 1. Допуни шта недостаје: а) 5m = dm = cm = mm; б) 6dm = m = cm = mm; в) 7cm = m = dm = mm. ПОЈАМ ПОВРШИНЕ. Допуни шта недостаје: а) 10m = dm = cm = mm ; б) 500dm = a

Διαβάστε περισσότερα

Дух полемике у филозофији Јован Бабић

Дух полемике у филозофији Јован Бабић Дух полемике у филозофији Јован Бабић У свом истинском смислу филозофија претпостаља једну посебну слободу мишљења, исконску слободу која подразумева да се ништа не подразумева нешто што истовремено изгледа

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ школска 016/017. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ

Διαβάστε περισσότερα

6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c

6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c 6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c Ако су а, b и с цели бројеви и аb 0, онда се линеарна једначина ах + bу = с, при чему су х и у цели бројеви, назива линеарна Диофантова једначина. Очигледно

Διαβάστε περισσότερα

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима 50. Нацртај било које унакрсне углове. Преношењем утврди однос унакрсних углова. Какво тврђење из тога следи? 51. Нацртај угао чија је мера 60, а затим нацртај њему унакрсни угао. Колика је мера тог угла?

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2010/2011. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

Скупови (наставак) Релације. Професор : Рака Јовановић Асиситент : Јелена Јовановић

Скупови (наставак) Релације. Професор : Рака Јовановић Асиситент : Јелена Јовановић Скупови (наставак) Релације Професор : Рака Јовановић Асиситент : Јелена Јовановић Дефиниција дуалне скуповне формуле За скуповне формулу f, која се састоји из једног или више скуповних симбола и њихових

Διαβάστε περισσότερα

АПОФАТИЧКИ КАРАКТЕР НАЧИНА ПОСТОЈАЊА ЛИЦА СВЕТЕ ТРОЈИЦЕ (по светом Василију Великом)

АПОФАТИЧКИ КАРАКТЕР НАЧИНА ПОСТОЈАЊА ЛИЦА СВЕТЕ ТРОЈИЦЕ (по светом Василију Великом) АПОФАТИЧКИ КАРАКТЕР НАЧИНА ПОСТОЈАЊА ЛИЦА СВЕТЕ ТРОЈИЦЕ (по светом Василију Великом) УВОД Одређени грчки теолози тежећи да створе мостове комуникације са савременом философском мишљу, а особито са егзистенцијалистичком

Διαβάστε περισσότερα

Ротационо симетрична деформација средње површи ротационе љуске

Ротационо симетрична деформација средње површи ротационе љуске Ротационо симетрична деформација средње површи ротационе љуске слика. У свакој тачки посматране средње површи, у општем случају, постоје два компонентална померања: v - померање у правцу тангенте на меридијалну

Διαβάστε περισσότερα

b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је:

b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је: Пример 1. III Савијање правоугаоних плоча За правоугаону плочу, приказану на слици, одредити: a) израз за угиб, b) вредност угиба и пресечних сила у тачки 1 ако се користи само први члан реда усвојеног

Διαβάστε περισσότερα

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе:

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: Њутнови закони 1 Динамика Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: када су објекти довољно велики (>димензија атома) када се крећу брзином много мањом

Διαβάστε περισσότερα

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде математик за VIII разред основне школе 4. Прво наћи дужину апотеме. Како је = 17 cm то је тражена површина P = 18+ 4^cm = ^4+ cm. 14. Основа четворостране пирамиде је ромб чије су дијагонале d 1 = 16 cm,

Διαβάστε περισσότερα

ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ

ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА ПРИЈЕМНИ ИСПИТ ЗА УЧЕНИКЕ СА ПОСЕБНИМ СПОСОБНОСТИМА ЗА ИНФОРМАТИКУ

Διαβάστε περισσότερα

Семинарски рад из линеарне алгебре

Семинарски рад из линеарне алгебре Универзитет у Београду Машински факултет Докторске студије Милош Живановић дипл. инж. Семинарски рад из линеарне алгебре Београд, 6 Линеарна алгебра семинарски рад Дата је матрица: Задатак: a) Одредити

Διαβάστε περισσότερα

Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила.

Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила. Вектори 1 Вектори vs. скалари Векторске величине се описују интензитетом и правцем Примери: Померај, брзина, убрзање, сила. Скаларне величине су комплетно описане само интензитетом Примери: Температура,

Διαβάστε περισσότερα

Предмет: Задатак 4: Слика 1.0

Предмет: Задатак 4: Слика 1.0 Лист/листова: 1/1 Задатак 4: Задатак 4.1.1. Слика 1.0 x 1 = x 0 + x x = v x t v x = v cos θ y 1 = y 0 + y y = v y t v y = v sin θ θ 1 = θ 0 + θ θ = ω t θ 1 = θ 0 + ω t x 1 = x 0 + v cos θ t y 1 = y 0 +

Διαβάστε περισσότερα

6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23

6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23 6.3. Паралелограми 27. 1) Нацртај паралелограм чији је један угао 120. 2) Израчунај остале углове тог четвороугла. 28. Дат је паралелограм (сл. 23), при чему је 0 < < 90 ; c и. c 4 2 β Сл. 23 1 3 Упознајмо

Διαβάστε περισσότερα

ВОЈИСЛАВ АНДРИЋ МАЛА ЗБИРКА ДИОФАНТОВИХ ЈЕДНАЧИНА

ВОЈИСЛАВ АНДРИЋ МАЛА ЗБИРКА ДИОФАНТОВИХ ЈЕДНАЧИНА ВОЈИСЛАВ АНДРИЋ МАЛА ЗБИРКА ДИОФАНТОВИХ ЈЕДНАЧИНА ВАЉЕВО, 006 1 1. УВОД 1.1. ПОЈАМ ДИОФАНТОВЕ ЈЕДНАЧИНЕ У једној земљи Далеког истока живео је некад један краљ, који је сваке ноћи узимао нову жену и следећег

Διαβάστε περισσότερα

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА Београд, 21.06.2014. За штап приказан на слици одредити најмању вредност критичног оптерећења P cr користећи приближан поступак линеаризоване теорије другог реда и: а) и један елемент, слика 1, б) два

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 014/01. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

Факултет организационих наука Центар за пословно одлучивање. PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation)

Факултет организационих наука Центар за пословно одлучивање. PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation) Факултет организационих наука Центар за пословно одлучивање PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation) Студија случаја D-Sight Консултантске услуге за Изградња брзе пруге

Διαβάστε περισσότερα

Решења задатака са првог колоквиjума из Математике 1Б II група задатака

Решења задатака са првог колоквиjума из Математике 1Б II група задатака Решења задатака са првог колоквиjума из Математике Б II група задатака Пре самих решења, само да напоменем да су решења детаљно исписана у нади да ће помоћи студентима у даљоj припреми испита, као и да

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки

Διαβάστε περισσότερα

I Линеарне једначине. II Линеарне неједначине. III Квадратна једначина и неједначина АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ

I Линеарне једначине. II Линеарне неједначине. III Квадратна једначина и неједначина АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ I Линеарне једначине Линеарне једначине се решавају по следећем шаблону: Ослободимо се разломка Ослободимо се заграде Познате

Διαβάστε περισσότερα

Проблем зла: од Августина до савремене генетике. протопрезвитер Никола Лудовикос

Проблем зла: од Августина до савремене генетике. протопрезвитер Никола Лудовикос Проблем зла: од Августина до савремене генетике протопрезвитер Никола Лудовикос Прије но што се Други свјетски рат у потпуност завршио, знаменити енглески писац, C.S. Lewis, желећи да поново исприча причу

Διαβάστε περισσότερα

Са орнос 9 (2015) УДК Јован, пергамски митрополит(049.2) Ларше Ж.-К.(049.2) DOI: /sabornost Оригинални научни рад

Са орнос 9 (2015) УДК Јован, пергамски митрополит(049.2) Ларше Ж.-К.(049.2) DOI: /sabornost Оригинални научни рад Са орнос 9 (2015) Α Ω 57 81 УДК 271.2-1 Јован, пергамски митрополит(049.2) 271.2-1 Ларше Ж.-К.(049.2) DOI: 10.5937/sabornost9-9771 Оригинални научни рад Александар Ђаковац * Универзитет у Београду, Православни

Διαβάστε περισσότερα

ЈЕДАН НЕМОГУЋИ ОСВРТ НА УРБОФИЛИЈУ, ДВАДЕСЕТ ПРОПАЛИХ ГОДИНА КАСНИЈЕ

ЈЕДАН НЕМОГУЋИ ОСВРТ НА УРБОФИЛИЈУ, ДВАДЕСЕТ ПРОПАЛИХ ГОДИНА КАСНИЈЕ АЛЕКСАНДАР ЈЕРКОВ ЈЕДАН НЕМОГУЋИ ОСВРТ НА УРБОФИЛИЈУ, ДВАДЕСЕТ ПРОПАЛИХ ГОДИНА КАСНИЈЕ Mожда је дошло време да се запише понека успомена, иако би се рекло да је прерано за сећања. Има нечег гротескног

Διαβάστε περισσότερα

ПРАВОСЛАВЉЕ И МОДЕРНОСТ СУКОБ ИЛИ САРАДЊА?

ПРАВОСЛАВЉЕ И МОДЕРНОСТ СУКОБ ИЛИ САРАДЊА? Зоран Крстић Abstract. Аутор анализира амбивалентан однос православља и модерности. Основна теза рада је да евентуалне тешкоће постоје у прихватању каснијих фаза модерности а да сукоб на релацији модерности

Διαβάστε περισσότερα

ДРЖАВНИ СУВЕРЕНИТЕТ У СВЕТЛУ САВРЕМЕНОГ МЕЂУНАРОДНОГ ПРАВА

ДРЖАВНИ СУВЕРЕНИТЕТ У СВЕТЛУ САВРЕМЕНОГ МЕЂУНАРОДНОГ ПРАВА УНИВЕРЗИТЕТ У БЕОГРАДУ ПРАВНИ ФАКУЛТЕТ Мр Сенад Ф. Ганић ДРЖАВНИ СУВЕРЕНИТЕТ У СВЕТЛУ САВРЕМЕНОГ МЕЂУНАРОДНОГ ПРАВА докторска дисертација Београд, 2012 UNIVERSITY OF BELGRADE FACULTY OF LAW Mr Senad F.

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 0/06. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

Слика 1. Слика 1.2 Слика 1.1

Слика 1. Слика 1.2 Слика 1.1 За случај трожичног вода приказаног на слици одредити: а Вектор магнетне индукције у тачкама А ( и ( б Вектор подужне силе на проводник са струјом Систем се налази у вакууму Познато је: Слика Слика Слика

Διαβάστε περισσότερα

Теорија друштвеног избора

Теорија друштвеног избора Теорија друштвеног избора Процедура гласања је средство избора између више опција, базирано на подацима које дају индивидуе (агенти). Теорија друштвеног избора је студија процеса и процедура доношења колективних

Διαβάστε περισσότερα

ЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису.

ЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису. ЛИНЕАРНА ФУНКЦИЈА 5.. Функција = a + b Функционалне зависности су веома значајне и са њиховим применама често се сусрећемо. Тако, већ су нам познате директна и обрнута пропорционалност ( = k; = k, k ),

Διαβάστε περισσότερα

ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције. Diffie-Hellman размена кључева

ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције. Diffie-Hellman размена кључева ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције Diffie-Hellman размена кључева Преглед Биће објашњено: Diffie-Hellman размена кључева 2/13 Diffie-Hellman размена кључева први алгоритам са јавним

Διαβάστε περισσότερα

ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ

ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА ПРИЈЕМНИ ИСПИТ ЗА УЧЕНИКЕ СА ПОСЕБНИМ СПОСОБНОСТИМА ЗА ИНФОРМАТИКУ

Διαβάστε περισσότερα

Примена првог извода функције

Примена првог извода функције Примена првог извода функције 1. Одреди дужине страница два квадрата тако да њихов збир буде 14 а збир површина тих квадрата минималан. Ре: x + y = 14, P(x, y) = x + y, P(x) = x + 14 x, P (x) = 4x 8 Први

Διαβάστε περισσότερα

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 2 (13Е013ЕП2) октобар 2016.

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 2 (13Е013ЕП2) октобар 2016. ЕНЕРГЕТСКИ ПРЕТВАРАЧИ (3Е03ЕП) октобар 06.. Батерија напона B = 00 пуни се преко трофазног полууправљивог мосног исправљача, који је повезан на мрежу 3x380, 50 Hz преко трансформатора у спрези y, са преносним

Διαβάστε περισσότερα

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: ОСНОВИ МЕХАНИКЕ студијски програм: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 2. Садржај предавања: Систем сучељних сила у равни

Διαβάστε περισσότερα

TAЧКАСТА НАЕЛЕКТРИСАЊА

TAЧКАСТА НАЕЛЕКТРИСАЊА TЧКАСТА НАЕЛЕКТРИСАЊА Два тачкаста наелектрисања оптерећена количинама електрицитета и налазе се у вакууму као што је приказано на слици Одредити: а) Вектор јачине електростатичког поља у тачки А; б) Електрични

Διαβάστε περισσότερα

ЗАВРШНИ РАД КЛИНИЧКА МЕДИЦИНА 5. школска 2016/2017. ШЕСТА ГОДИНА СТУДИЈА

ЗАВРШНИ РАД КЛИНИЧКА МЕДИЦИНА 5. школска 2016/2017. ШЕСТА ГОДИНА СТУДИЈА ЗАВРШНИ РАД КЛИНИЧКА МЕДИЦИНА 5 ШЕСТА ГОДИНА СТУДИЈА школска 2016/2017. Предмет: ЗАВРШНИ РАД Предмет се вреднује са 6 ЕСПБ. НАСТАВНИЦИ И САРАДНИЦИ: РБ Име и презиме Email адреса звање 1. Јасмина Кнежевић

Διαβάστε περισσότερα

Осврт на нека уводна питања проблематике богословског симпосиона Онтологија и етика из године

Осврт на нека уводна питања проблематике богословског симпосиона Онтологија и етика из године Са орнос 9 (2015) Α Ω 83 108 УДК 271.2-1:005.745(497.11)"2003" 111:27-42 DOI: 10.5937/sabornost9-9777 Оригинални научни рад Томислав Пауновић *1 Хришћански културни центар, Београд Осврт на нека уводна

Διαβάστε περισσότερα

Универзитет у Крагујевцу Факултет за машинство и грађевинарство у Краљеву Катедра за основне машинске конструкције и технологије материјала

Универзитет у Крагујевцу Факултет за машинство и грађевинарство у Краљеву Катедра за основне машинске конструкције и технологије материјала Теоријски део: Вежба број ТЕРМИЈСКА AНАЛИЗА. Термијска анализа је поступак који је 903.год. увео G. Tamman за добијање криве хлађења(загревања). Овај поступак заснива се на принципу промене топлотног садржаја

Διαβάστε περισσότερα

L кплп (Калем у кплу прпстпперипдичне струје)

L кплп (Калем у кплу прпстпперипдичне струје) L кплп (Калем у кплу прпстпперипдичне струје) i L u=? За коло са слике кроз калем ппзнате позната простопериодична струја: индуктивности L претпоставићемо да протиче i=i m sin(ωt + ψ). Услед променљиве

Διαβάστε περισσότερα

Језик и стил Јована Мосха и Apophthegmata patrum

Језик и стил Јована Мосха и Apophthegmata patrum УНИВЕРЗИТЕТ У БЕОГРАДУ ФИЛОЗОФСКИ ФАКУЛТЕТ Ил Акад Језик и стил Јована Мосха и Apophthegmata patrum докторска дисертација Београд, 2016. UNIVERSITY OF BELGRADE FACULTY OF PHILOSOPHY Il Akkad The Language

Διαβάστε περισσότερα

БИБЛИОГРАФИЈА: А. Књиге, студије, огледи, чланци, прикази

БИБЛИОГРАФИЈА: А. Књиге, студије, огледи, чланци, прикази БИБЛИОГРАФИЈА: А. Књиге, студије, огледи, чланци, прикази 1997. [1] Сусрет јудејства са јелинизмом у предмакавејском и макавејском периоду и његове последице, Богословље, год. XLI (LV), бр. 1-2 (1997)

Διαβάστε περισσότερα

F( x) НЕОДРЕЂЕНИ ИНТЕГРАЛ

F( x) НЕОДРЕЂЕНИ ИНТЕГРАЛ НЕОДРЕЂЕНИ ИНТЕГРАЛ Штa треба знати пре почетка решавања задатака? Дефиниција: Интеграл једне функције је функција чији је извод функција којој тражимо интеграл (подинтегрална функција). Значи: f d F F

Διαβάστε περισσότερα

РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 2004

РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 2004 РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 004 ТРАНСФОРМАТОРИ Tрофазни енергетски трансформатор 100 VA има напон и реактансу кратког споја u 4% и x % респективно При номиналном оптерећењу

Διαβάστε περισσότερα

ТАЧКЕ КОЈЕ ЕКСПЛОДИРАЈУ ПОГЛАВЉЕ 5 ДЕЉЕЊЕ ПОЧИЊЕМО

ТАЧКЕ КОЈЕ ЕКСПЛОДИРАЈУ ПОГЛАВЉЕ 5 ДЕЉЕЊЕ ПОЧИЊЕМО ТАЧКЕ КОЈЕ ЕКСПЛОДИРАЈУ ПОГЛАВЉЕ 5 ДЕЉЕЊЕ Сабирање, одузимање, множење. Сад је ред на дељење. Ево једног задатка с дељењем: израчунајте колико је. Наравно да постоји застрашујући начин да то урадите: Нацртајте

Διαβάστε περισσότερα

2.1. Права, дуж, полуправа, раван, полураван

2.1. Права, дуж, полуправа, раван, полураван 2.1. Права, дуж, полуправа, раван, полураван Човек је за своје потребе градио куће, школе, путеве и др. Слика 1. Слика 2. Основа тих зграда је често правоугаоник или сложенија фигура (слика 3). Слика 3.

Διαβάστε περισσότερα

I Наставни план - ЗЛАТАР

I Наставни план - ЗЛАТАР I Наставни план - ЗЛААР I РАЗРЕД II РАЗРЕД III РАЗРЕД УКУО недељно годишње недељно годишње недељно годишње годишње Σ А1: ОАЕЗНИ ОПШЕОРАЗОНИ ПРЕДМЕИ 2 5 25 5 2 1. Српски језик и књижевност 2 2 4 2 2 1.1

Διαβάστε περισσότερα

Штампарске грешке у петом издању уџбеника Основи електротехнике, 1. део, Електростатика

Штампарске грешке у петом издању уџбеника Основи електротехнике, 1. део, Електростатика Штампарске грешке у петом издању уџбеника Основи електротехнике део Страна пасус први ред треба да гласи У четвртом делу колима променљивих струја Штампарске грешке у четвртом издању уџбеника Основи електротехнике

Διαβάστε περισσότερα

Аспекти проблема времена код Св. Максима Исповедника

Аспекти проблема времена код Св. Максима Исповедника Универзитет у Београду Православни богословски факултет Вукашин Д. Милићевић Аспекти проблема времена код Св. Максима Исповедника докторска дисертација Београд, 2018. University of Belgrade Faculty of

Διαβάστε περισσότερα

Апостол Павле о жени. Предраг Самарџић. H. Pagels

Апостол Павле о жени. Предраг Самарџић. H. Pagels Апостол Павле о жени Предраг Самарџић Павле је борац за слободу, али је и љубитељ поретка H. Pagels Павле допушта женама да се моле и пророкују у Цркви, јер их на то покреће Дух. Он овим надилази и одолева

Διαβάστε περισσότερα

Eутаназија: у одбрану једне добре, античке речи

Eутаназија: у одбрану једне добре, античке речи Драган Павловић 44 Одељење за анестезију и интензивну медицинску негу, Универзитет Ернст Мориц Арнт, Немачка Александар Спасов Одељење за ортодонтију, Медицински факултет, Универзитет у Грајфсвалду, Немачка

Διαβάστε περισσότερα

О ВЕРИ КОД ПОЛА ТИЛИХА 1)

О ВЕРИ КОД ПОЛА ТИЛИХА 1) О ВЕРИ КОД ПОЛА ТИЛИХА 1) Епископ Григорије (Дур и ћ) Вера је врхунска брига поглављу под насловом Шта вера јесте, П. Тилих, пре свега, говори о вери као врхунској бризи, те да би појаснио динамику вере

Διαβάστε περισσότερα

Упутство за избор домаћих задатака

Упутство за избор домаћих задатака Упутство за избор домаћих задатака Студент од изабраних задатака области Математике 2: Комбинаторика, Вероватноћа и статистика бира по 20 задатака. Студент може бирати задатке помоћу програмског пакета

Διαβάστε περισσότερα

ОДРЕЂЕЊЕ ЛЕПОГ У ПЛАТОНОВОЈ ФИЛОЗОФИЈИ

ОДРЕЂЕЊЕ ЛЕПОГ У ПЛАТОНОВОЈ ФИЛОЗОФИЈИ Годишњак Педагошког факултета у Врању, књига VIII, 1/2017. Александар ПЕШИЋ Филозофски факултет Универзитет у Новом Саду УДК 111.852 141.131 177.61(38) - прегледни научни рад - ОДРЕЂЕЊЕ ЛЕПОГ У ПЛАТОНОВОЈ

Διαβάστε περισσότερα

I Тачка 1. Растојање две тачке: 2. Средина дужи y ( ) ( ) 2. II Права 1. Једначина прамена правих 2. Једначина праве кроз две тачке ( )

I Тачка 1. Растојање две тачке: 2. Средина дужи y ( ) ( ) 2. II Права 1. Једначина прамена правих 2. Једначина праве кроз две тачке ( ) Шт треба знати пре почетка решавања задатака? АНАЛИТИЧКА ГЕОМЕТРИЈА У РАВНИ I Тачка. Растојање две тачке:. Средина дужи + ( ) ( ) + S + S и. Деоба дужи у односу λ: 4. Површина троугла + λ + λ C + λ и P

Διαβάστε περισσότερα

Од површине троугла до одређеног интеграла

Од површине троугла до одређеног интеграла Природно-математички факултет, Универзитет у Нишу, Србија http://www.pmf.i.ac.rs/mii Математика и информатика (4) (5), 49-7 Од површине троугла до одређеног интеграла Жарко Ђурић Париске комуне 4-/8, Врање

Διαβάστε περισσότερα

СОЦИЈАЛНО УЧЕЊЕ У ПРАВОСЛАВНОЈ ТЕОЛОГИЈИ

СОЦИЈАЛНО УЧЕЊЕ У ПРАВОСЛАВНОЈ ТЕОЛОГИЈИ СОЦИЈАЛНО УЧЕЊЕ У ПРАВОСЛАВНОЈ ТЕОЛОГИЈИ Захваљујем се организатору на љубазном позиву да узмем учешћа у данашњем скупу а поводом врло значајног догађаја и врло значајне теме. Када се у јесен прошле године,

Διαβάστε περισσότερα

Универзитет у Београду, Саобраћајни факултет Предмет: Паркирање. 1. вежба

Универзитет у Београду, Саобраћајни факултет Предмет: Паркирање. 1. вежба Универзитет у Београду, Саобраћајни факултет Предмет: Паркирање ОРГАНИЗАЦИЈА ПАРКИРАЛИШТА 1. вежба Место за паркирање (паркинг место) Део простора намењен, технички опремљен и уређен за паркирање једног

Διαβάστε περισσότερα

РЕЧ,ЈА ИЗМЕЂУ ХИПОСТАЗЕ И РЕДУКЦИЈЕ ПРОБЛЕМИ ФИЛОЗОФСКОГ ГОВОРА О СОПСТВУ

РЕЧ,ЈА ИЗМЕЂУ ХИПОСТАЗЕ И РЕДУКЦИЈЕ ПРОБЛЕМИ ФИЛОЗОФСКОГ ГОВОРА О СОПСТВУ Годишњак Филозофског факултета у Новом Саду, Књига XXXVII (2012) Annual Review of the Faculty of Philosophy, Novi Sad, Volume XXXVII (2012) 373 Дамир Ј. Смиљанић УДК 141.13 Филозофски факултет Универзитета

Διαβάστε περισσότερα

Јелена Фемић Касапис. Универзитет у Београду, Православни богословски факултет, Београд

Јелена Фемић Касапис. Универзитет у Београду, Православни богословски факултет, Београд Саборност 3 (2009) Α Ω 259 268 Јелена Фемић Касапис Универзитет у Београду, Православни богословски факултет, Београд УДК 111(38) 111(38):27-1 Термин ὑπόστασις [hypóstasis] у јелинскоj писаној баштини

Διαβάστε περισσότερα