Proba parametrikoak. Josemari Sarasola. Gizapedia. Josemari Sarasola Proba parametrikoak 1 / 20
|
|
- Λήδα Ελευθεριάδης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Josemari Sarasola Gizapedia Josemari Sarasola Proba parametrikoak 1 / 20
2 Zer den proba parametrikoa Proba parametrikoak hipotesi parametrikoak (hau da parametro batek hartzen duen balioari buruzkoak) frogatzen dituzten proba estatistikoak dira. Adibidez: H 0 : µ = 4 (hau da populazio batezbesteko bati buruzkoa) eta H 0 : p = 0.4 (populazio proportzio bati buruzkoa). Guztiz okerra da horrelako zerbait jartzea: H 0 : ˆµ = 4. Izan ere, zenbatesleen balioak ezagunak dira edo kalkula egin daitezke datuetatik, eta beraz ez da beharrezkoa (ez du zentzurik) haiei buruz hipotesi bat planteatu eta frogatzea. Ikus, gainera, hobeto ulertzeko, LTZ ikasgaiko azken ariketa. Josemari Sarasola Proba parametrikoak 2 / 20
3 Zenbatesleak, ebidentziaren oinarri gisa Zenbatesleak proba parametrikoak ebazteko erabiltzen dira. Adibidez, H 0 : µ = 4 izanik, ˆµ = x = 80 ateratzen denean, badirudi hipotesi nulua baztertzeko arrazoi handiak daudela, ziur asko oso arraroa izango baita populazio batezbestekoa 4 izanda, lagin batezbestekoa 80 (edo gehiago) suertatzea. Josemari Sarasola Proba parametrikoak 3 / 20
4 Erabaki-erregela: eremu kritikoa nondik Orokorrean, H 0 : θ < θ 0 baztertuko da bere zenbateslea handia denean (adibidez, H 0 : µ < µ 0 baztertuko dugu, x zenbateslea x 0 balio bat baino handiagoa denean. H 0 : θ > θ 0 baztertuko da bere zenbateslea txikia denean (adibidez, H 0 : µ > µ 0 baztertuko dugu, x zenbateslea x 0 balio bat baino txikiagoa denean. H 0 : θ = θ 0 baztertuko da bere zenbateslea handia nahiz txikia denean (adibidez, H 0 : µ = µ 0 baztertuko dugu, x zenbateslea x h balio bat baino handiagoa denean eta x t balio bat baino txikiagoa denean. Josemari Sarasola Proba parametrikoak 4 / 20
5 Zenbatesleen lagin banaketak Zenbatesle edo estimatzaile baten balioa zenbateraino den arraroa ebaluatzeko, horren probabilitate-banaketa behar da, zenbateslearen lagin banaketa deitzen dena. Izan ere, zenbatesleak zorizko aldagaiak dira, horien balioak zoriz jasotako datuetatik kalkulatzen direlako. Horrela, zenbatesle bakoitzak bere probabilitate banaketa du (edo ditu, ereduaren eta n lagin tamainaren arabera, zenbatesle batek bat baino gehiago izan ditzakeelako), zenbateslearen lagin banaketa (ingelesez, sampling distribution; gazteleraz, distribucion muestral). Horiekin hasi aurretik, gogoan eduki: µ populazio edo ereduko batezbestekoa da, eta σ populazio edo ereduko desbideratzea. Josemari Sarasola Proba parametrikoak 5 / 20
6 Zenbatesleen lagin banaketak Lagin batezbestekoa, eredu normala, σ ezaguna x N(µ, σ n ) Josemari Sarasola Proba parametrikoak 6 / 20
7 Zenbatesleen lagin banaketak Lagin batezbestekoa, eredu normala, σ ezezaguna t = x µ ŝ/ n t n 1 Gogoratu: ŝ = i (x i x) 2 n 1. Josemari Sarasola Proba parametrikoak 7 / 20
8 Froga parametrikoak Eranskina: Student-en t banaketa Honela idazten da labur: t t n. Askatasun-gradu kopurua deritzon n du parametro bakarra eta zenbaki naturala (1,2,...) izan behar da. n zenbat eta txikiagoa den, banaketa normal estandarrak baino mutur orduan eta astunagoak ditu. n > 30 denean, banaketa normal estandarraren ia berdina da. Hura bezalaxe, simetrikoa da x = 0 ardatzari buruz. t n n = 30 n = 2 n = 1 0 Josemari Sarasola Proba parametrikoak 8 / 20
9 Froga parametrikoak Eranskina: Student-en t banaketa Student-en t banaketaren balioak taularatuta daude n 30 balioetarako. Taulak azpitik probabilitate zehatzak uzten dituzten balioak ematen ditu. 0.5eko beherako probabilitateetarako simetriaren propietatea erabiltzen da. Adibidez: t t 4 ; P [t < t 0 ] = 0.99 t 0 = 3.75 t t 7 ; P [t < t 0 ] = 0.1 t 0 = 1.42 Askatasun-graduak 30 baino gehiago direnean, Student t banakuntza N(0,1) banaketa normal estandar bilakatzen da. William Sealy Gosset kimikariak aurkitu zuen lagin txikien azterketan, garagardoen propietateen ikerketan. Ikerketa horiek Student ezizenarekin argitaratu zituen 1908 urtean eta hortik datorkio izena. Josemari Sarasola Proba parametrikoak 9 / 20
10 Zenbatesleen lagin banaketak Lagin batezbestekoa, eredu ez normala, σ ezaguna Lagin-tamaina handia (n > 30) izan behar da: x N(µ, σ n ) Josemari Sarasola Proba parametrikoak 10 / 20
11 Zenbatesleen lagin banaketak Lagin batezbestekoa, eredu ez normala, σ ezezaguna Lagin-tamaina handiaren kasuan (n > 30): x N(µ, ŝ n ) Josemari Sarasola Proba parametrikoak 11 / 20
12 Zenbatesleen lagin banaketak Lagin batezbestekoa: laburpena Pop. normala Pop. ez-normala, n > 30 σ ezaguna ( ) σ x N µ, n ( ) σ x N µ, n σ ezezaguna t = x µ t ŝ n 1 n ( ) ŝ x N µ, n Josemari Sarasola Proba parametrikoak 12 / 20
13 Zenbatesleen lagin banaketak ˆp lagin proportzioa Adibidez, 20 pieza jasota lagin batean, 4 akastun badira, akastunen lagin proportzioa 4/20=0.2 da. p populazioko proportzioa zenbatesteko erabiltzen da. Horren lagin banaketa hau da, n > 30 lagin-tamainetarako: ˆp N ( p, pq n ) Josemari Sarasola Proba parametrikoak 13 / 20
14 Zenbatesleen lagin banaketak s 2 lagin bariantza, eredu normala Gogoratu: s = ŝ = ŝ 2 = ns 2 σ 2 i (x i x) 2 n = i (x i x) 2 n 1 n n 1 s2 s 2 = n 1 n ŝ2 χ2 n 1 i x2 i n x 2 Josemari Sarasola Proba parametrikoak 14 / 20
15 Parametroen balioak nola zehaztu Aurrekoetan ikusi dugunez, lagin banaketetan parametroaren balioa agertzen da. Parametroa ez da ezaguna, definizioz. Nola jarriko dugu orduan horren balioa lagin banaketan? Erantzuna: hipotesi nulupean hartzen den parametroaren balioa jartzen da lagin banaketan. Josemari Sarasola Proba parametrikoak 15 / 20
16 Probak ebazteko metodoak Funtsean bi dira: p-balioaren metodoan, gertatu denaren (edo are eta arraroagoa denaren) probabilitatea (p-balioa) kalkulatzen da, eta hura alfarekin alderatu; eremu kritikoaren metodoan, alfa probabilitateari dagokion zenbateslearen balio-tartea zehazten da, eremu kritikoa alegia, eta zenbatesleak emandako balioa horren barruan dago, hipotesi nulua baztertu egiten da. Eremu kritikoa mugatzen duten balioak balio kritikoak dira. Josemari Sarasola Proba parametrikoak 16 / 20
17 Alde bakarreko eta alde biko probak Alde bakarreko probetan arraroa edo eskualde kritikoa alde bakar batean dago. Alde biko probetan arraroa bi muturretan banatzen da. Beraz, aldebiko frogetan erreferentzia mutur bakoitzean α/2 da. Hartara,p-balioa α/2 balioarekin alderatu behar da. Froga alde bakarrekoa edo alde bikoa den hipotesi nuluari erreparatuz jakin dezakegu. Orokorrean: H 0 : θ = θ 0 alde biko froga H 0 : θ > θ 0 H 0 : θ < θ 0 } alde bakarreko froga Josemari Sarasola Proba parametrikoak 17 / 20
18 Hipotesi anitzak H 0 : µ > 4 eta H 0 : σ 2 < 1 gisako hipotesi nuluak anitzak dira, balio bat baino gehiago barnehartzen dituztelako (H 0 : µ > 4 kasuan, 4 baino handiagoak diren balio guztiak). Kasu horietan, zein parametro balio ezarri behar da froga garatzean? Erantzuna: muga balioa, zehatzak izateko; adibidez, H 0 : µ > 4 kasuan, µ = 4 baliatu behar da. Gero, hedaduraz, beste balioak onartu edo baztertu ahal izango dira. Josemari Sarasola Proba parametrikoak 18 / 20
19 Hipotesi nulurako irizpideak H 0 finkatzerakoan, lehentasun-ordena edo mailakatze hau jarraituko dugu froga parametrikoetan: 1: hipotesi nulu jakin bat probatzeko eskatzen bada enuntziatuan, horixe bera hartuko dugu hipotesi nulutzat; 2: aurrekoaren ezean, galdetu, probatu edo erabaki nahi denaren aurkakoa hartuko da, zuhurtasunez. Adibidez: Normalean batez besteko ekoizpena 100 da. Jaitsi al da? Kasu honetan, H 0 : µ > 100 hartuko da, gertatuaren aurkako irizpideak bestelakoa hartu behar dela adierazi arren. 3: aurrekoen ezean eta haiekin kontraesanik ez badago, gertatuaren aurkako hipotesia hartuko da. Adibidez: Normalean batez besteko ekoizpena 100 da. x = 110. Kasu honetan, H 0 : µ < 100 hartuko da, gertatuak adierazten duenaren aurkakoa. Josemari Sarasola Proba parametrikoak 19 / 20
20 Hipotesi nulurako irizpideak Ikastaroan zehar, bereziki gertatuari erreparatu diogu hipotesi nulua finkatzeko. Izan ere, gehienetan galdetu, frogatu edo erabaki nahi dena gertatuak erakusten duenak adierazten digu. Hau da, gertatuari buruzko informazioa eskura, gehienetan ez dago kontraesanik 2. eta 3. mailako irizpideen artean. Josemari Sarasola Proba parametrikoak 20 / 20
Banaketa normala eta limitearen teorema zentrala
eta limitearen teorema zentrala Josemari Sarasola Estatistika enpresara aplikatua Josemari Sarasola Banaketa normala eta limitearen teorema zentrala 1 / 13 Estatistikan gehien erabiltzen den banakuntza
ESTATISTIKA ENPRESARA APLIKATUA (Bigarren zatia: praktika). Irakaslea: Josemari Sarasola Data: 2016ko maiatzaren 12a - Iraupena: Ordu t erdi
ESTATISTIKA ENPRESARA APLIKATUA (Bigarren zatia: praktika). Irakaslea: Josemari Sarasola Data: 2016ko maiatzaren 12a - Iraupena: Ordu t erdi I. ebazkizuna (2.25 puntu) Poisson, esponentziala, LTZ Zentral
I. ebazkizuna (1.75 puntu)
ESTATISTIKA ENPRESARA APLIKATUA Irakaslea: Josemari Sarasola Data: 2017ko uztailaren 7a, 15:00 Iraupena: Ordu t erdi. 1.75: 1.5: 1.25: 1.5: 2: I. ebazkizuna (1.75 puntu) Bi finantza-inbertsio hauek dituzu
7.GAIA. ESTATISTIKA DESKRIBATZAILEA. x i n i N i f i
7.GAIA. ESTATISTIKA DESKRIBATZAILEA 1. Osatu ondorengo maiztasun-taula: x i N i f i 1 4 0.08 2 4 3 16 0.16 4 7 0.14 5 5 28 6 38 7 7 45 0.14 8 2. Ondorengo banaketaren batezbesteko aritmetikoa 11.5 dela
4. Hipotesiak eta kontraste probak.
1 4. Hipotesiak eta kontraste probak. GAITASUNAK Gai hau bukatzerako ikaslea gai izango da ikerketa baten: - Helburua adierazteko. - Hipotesia adierazteko - Hipotesi nulua adierazteko - Hipotesi nulu estatistikoa
ESTATISTIKA ENPRESARA APLIKATUA (Praktika: Bigarren zatia) Irakaslea: JOSEMARI SARASOLA Data: 2013ko maiatzaren 31a. Iraupena: 90 minutu
ESTATISTIKA ENPRESARA APLIKATUA (Praktika: Bigarren zatia) Irakaslea: JOSEMARI SARASOLA Data: 2013ko maiatzaren 31a. Iraupena: 90 minutu I. ebazkizuna Ekoizpen-prozesu batean pieza bakoitza akastuna edo
6. Aldagai kualitatibo baten eta kuantitatibo baten arteko harremana
6. Aldagai kualitatibo baten eta kuantitatibo baten arteko harremana GAITASUNAK Gai hau bukatzerako ikaslea gai izango da: - Batezbestekoaren estimazioa biztanlerian kalkulatzeko. - Proba parametrikoak
Poisson prozesuak eta loturiko banaketak
Gizapedia Poisson banaketa Poisson banaketak epe batean (minutu batean, ordu batean, egun batean) gertaera puntualen kopuru bat (matxura kopurua, istripu kopurua, igarotzen den ibilgailu kopurua, webgune
DERIBAZIO-ERREGELAK 1.- ALDAGAI ERREALEKO FUNTZIO ERREALAREN DERIBATUA. ( ) ( )
DERIBAZIO-ERREGELAK.- ALDAGAI ERREALEKO FUNTZIO ERREALAREN DERIBATUA. Izan bitez D multzo irekian definituriko f funtzio erreala eta puntuan deribagarria dela esaten da baldin f ( f ( D puntua. f zatidurak
I. ikasgaia: Probabilitateen kalkulua
I. ikasgaia: Probabilitateen kalkulua 1 Eranskina: Konbinatoria 2 Probabilitate kontzeptua 2.1 Laplaceren erregela 2.2 Maiztasun-ikuspuntua 2.3 Ikuspuntu subjektiboa 3 Gertakizunen aljebra 3.1 Aurkako
6.1. Estatistika deskribatzailea.
6. gaia Ariketak. 6.1. Estatistika deskribatzailea. 1. Zerrenda honek edari-makina baten aurrean dauden 15 bezerok txanpona sartzen duenetik edaria atera arteko denbora (segundotan neurtuta) adierazten
= 32 eta β : z = 0 planoek osatzen duten angelua.
1 ARIKETA Kalkulatu α : 4x+ 3y+ 10z = 32 eta β : z = 0 planoek osatzen duten angelua. Aurki ezazu α planoak eta PH-k osatzen duten angelua. A'' A' 27 A''1 Ariketa hau plano-aldaketa baten bidez ebatzi
(1)σ (2)σ (3)σ (a)σ n
5 Gaia 5 Determinanteak 1 51 Talde Simetrikoa Gogoratu, X = {1,, n} bada, X-tik X-rako aplikazio bijektiboen multzoa taldea dela konposizioarekiko Talde hau, n mailako talde simetrikoa deitzen da eta S
6. GAIA: Oinarrizko estatistika
6. GAIA: Oinarrizko estatistika Matematika Aplikatua, Estatistika eta Ikerkuntza Operatiboa Saila Zientzia eta Teknologia Fakultatea Euskal Herriko Unibertsitatea Aurkibidea 6. Oinarrizko estatistika.......................................
ANGELUAK. 1. Bi zuzenen arteko angeluak. Paralelotasuna eta perpendikulartasuna
Metika espazioan ANGELUAK 1. Bi zuzenen ateko angeluak. Paalelotasuna eta pependikulatasuna eta s bi zuzenek eatzen duten angelua, beaiek mugatzen duten planoan osatzen duten angeluik txikiena da. A(x
1. Gaia: Mekanika Kuantikoaren Aurrekoak
1) Kimika Teorikoko Laborategia 2012.eko irailaren 12 Laburpena 1 Uhin-Partikula Dualtasuna 2 Trantsizio Atomikoak eta Espektroskopia Hidrogeno Atomoaren Espektroa Bohr-en Eredua 3 Argia: Partikula (Newton)
1 Aljebra trukakorraren oinarriak
1 Aljebra trukakorraren oinarriak 1.1. Eraztunak eta gorputzak Geometria aljebraikoa ikasten hasi aurretik, hainbat egitura aljebraiko ezagutu behar ditu irakurleak: espazio bektorialak, taldeak, gorputzak,
MATEMATIKARAKO SARRERA OCW 2015
MATEMATIKARAKO SARRERA OCW 2015 Mathieu Jarry iturria: Flickr CC-BY-NC-ND-2.0 https://www.flickr.com/photos/impactmatt/4581758027 Leire Legarreta Solaguren EHU-ko Zientzia eta Teknologia Fakultatea Matematika
Aldagai Anitzeko Funtzioak
Aldagai Anitzeko Funtzioak Bi aldagaiko funtzioak Funtzio hauen balioak bi aldagai independenteen menpekoak dira: 1. Adibidea: x eta y aldeetako laukizuzenaren azalera, S, honela kalkulatzen da: S = x
ESTATISTIKA ETA DATUEN ANALISIA. Azterketa ebatziak ikasturtea Donostiako Ekonomia eta Enpresa Fakultatea. EHU
ESTATISTIKA ETA DATUEN ANALISIA Azterketa ebatziak. 2018-2019 ikasturtea Donostiako Ekonomia eta Enpresa Fakultatea. EHU Egilea eta irakasgaiaren irakaslea: Josemari Sarasola Gizapedia gizapedia.hirusta.io
Hirukiak,1. Inskribatutako zirkunferentzia. Zirkunskribatutako zirkunferentzia. Aldekidea. Isoszelea. Marraztu 53mm-ko aldedun hiruki aldekidea
Hirukiak, Poligonoa: elkar ebakitzen diren zuzenen bidez mugatutako planoaren zatia da. Hirukia: hiru aldeko poligonoa da. Hiruki baten zuzen bakoitza beste biren batuketa baino txiakiago da eta beste
Trigonometria ANGELU BATEN ARRAZOI TRIGONOMETRIKOAK ANGELU BATEN ARRAZOI TRIGONOMETRIKOEN ARTEKO ERLAZIOAK
Trigonometria ANGELU BATEN ARRAZOI TRIGONOMETRIKOAK SINUA KOSINUA TANGENTEA ANGELU BATEN ARRAZOI TRIGONOMETRIKOEN ARTEKO ERLAZIOAK sin α + cos α = sin α cos α = tg α 0º, º ETA 60º-KO ANGELUEN ARRAZOI TRIGONOMETRIKOAK
Solido zurruna 2: dinamika eta estatika
Solido zurruna 2: dinamika eta estatika Gaien Aurkibidea 1 Solido zurrunaren dinamikaren ekuazioak 1 1.1 Masa-zentroarekiko ekuazioak.................... 3 2 Solido zurrunaren biraketaren dinamika 4 2.1
SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA
SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA 1. (2015/2016) 20 cm-ko tarteak bereizten ditu bi karga puntual q 1 eta q 2. Bi kargek sortzen duten eremu elektrikoa q 1 kargatik 5 cm-ra dagoen A puntuan deuseztatu
GIZA GIZARTE ZIENTZIEI APLIKATUTAKO MATEMATIKA I BINOMIALA ETA NORMALA 1
BINOMIALA ETA NORMALA 1 PROBABILITATEA Maiztasu erlatiboa: fr i = f i haditze bada, maiztasuak egokortzera joko dira, p zebaki batera hurbilduz. Probabilitatea p zebakia da. Probabilitateak maiztasue idealizazioak
1. jarduera. Zer eragin du erresistentzia batek zirkuitu batean?
1. jarduera Zer eragin du erresistentzia batek zirkuitu batean? 1. Hastapeneko intentsitatearen neurketa Egin dezagun muntaia bat, generadore bat, anperemetro bat eta lanpa bat seriean lotuz. 2. Erresistentzia
MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA:
MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA: Koaderno hau erabiltzeko oharrak: Koaderno hau egin bazaizu ere, liburuan ezer ere idatz ez dezazun izan da, Gogora ezazu, orain zure liburua den hori,
Inekuazioak. Helburuak. 1. Ezezagun bateko lehen orria 74 mailako inekuazioak Definizioak Inekuazio baliokideak Ebazpena Inekuazio-sistemak
5 Inekuazioak Helburuak Hamabostaldi honetan hauxe ikasiko duzu: Ezezagun bateko lehen eta bigarren mailako inekuazioak ebazten. Ezezagun bateko ekuaziosistemak ebazten. Modu grafikoan bi ezezaguneko lehen
ARRAZOI TRIGONOMETRIKOAK
ARRAZOI TRIGONOMETRIKOAK 1.- LEHEN DEFINIZIOAK Jatorri edo erpin berdina duten bi zuzenerdien artean gelditzen den plano zatiari, angelua planoan deitzen zaio. Zirkunferentziaren zentroan erpina duten
3. Ikasgaia. MOLEKULA ORGANIKOEN GEOMETRIA: ORBITALEN HIBRIDAZIOA ISOMERIA ESPAZIALA:
3. Ikasgaia. MLEKULA RGAIKE GEMETRIA: RBITALE IBRIDAZIA KARB DERIBATUE ISMERIA ESPAZIALA Vant off eta LeBel-en proposamena RBITAL ATMIKE IBRIDAZIA ibridaio tetragonala ibridaio digonala Beste hibridaioak
Hidrogeno atomoaren energi mailen banatzea eremu kubiko batean
Hidrogeno atomoaren energi mailen banatzea eremu kubiko batean Pablo Mínguez Elektrika eta Elektronika Saila Euskal Herriko Unibertsitatea/Zientzi Fakultatea 644 P.K., 48080 BILBAO Laburpena: Atomo baten
KANTEN ETIKA. Etika unibertsal baten bila. Gizaki guztientzat balioko zuen etika bat.
EN ETIKA Etika unibertsal baten bila. Gizaki guztientzat balioko zuen etika bat. Kantek esan zuen bera baino lehenagoko etikak etika materialak zirela 1 etika materialak Etika haiei material esaten zaie,
2. PROGRAMEN ESPEZIFIKAZIOA
2. PROGRAMEN ESPEZIFIKAZIOA 2.1. Asertzioak: egoera-multzoak adierazteko formulak. 2.2. Aurre-ondoetako espezifikazio formala. - 1 - 2.1. Asertzioak: egoera-multzoak adierazteko formulak. Programa baten
SELEKTIBITATEKO ARIKETAK: OPTIKA
SELEKTIBITATEKO ARIKETAK: OPTIKA TEORIA 1. (2012/2013) Argiaren errefrakzioa. Guztizko islapena. Zuntz optikoak. Azaldu errefrakzioaren fenomenoa, eta bere legeak eman. Guztizko islapen a azaldu eta definitu
UNITATE DIDAKTIKOA ELEKTRIZITATEA D.B.H JARDUERA. KORRONTE ELEKTRIKOA. Helio atomoa ASKATASUNA BHI 1.- ATOMOAK ETA KORRONTE ELEKTRIKOA
1. JARDUERA. KORRONTE ELEKTRIKOA. 1 1.- ATOMOAK ETA KORRONTE ELEKTRIKOA Material guztiak atomo deitzen diegun partikula oso ttipiez osatzen dira. Atomoen erdigunea positiboki kargatua egon ohi da eta tinkoa
Mikel Lizeaga 1 XII/12/06
0. Sarrera 1. X izpiak eta erradiazioa 2. Nukleoaren osaketa. Isotopoak 3. Nukleoaren egonkortasuna. Naturako oinarrizko interakzioak 4. Masa-defektua eta lotura-energia 5. Erradioaktibitatea 6. Zergatik
ESTATISTIKA ETA DATUEN ANALISIA. BIGARREN ZATIA: Praktika. Data: 2012ko ekainaren 25. Ordua: 12:00
ESTATISTIKA ETA DATUEN ANALISIA. BIGARREN ZATIA: Praktika. I. ebazkizuna Data: 2012ko ekainaren 25. Ordua: 12:00 Makina bateko erregai-kontsumoa (litrotan) eta ekoizpena (kilotan) jaso dira ordu batzuetan
3. K a p itu lu a. Aldagai errealek o fu n tzio errealak
3. K a p itu lu a Aldagai errealek o fu n tzio errealak 49 50 3. K AP IT U L U A AL D AG AI E R R E AL E K O F U N T Z IO E R R E AL AK UEP D o n o stia M ate m atik a A p lik atu a S aila 3.1. ARAZOAREN
9. Gaia: Espektroskopiaren Oinarriak eta Espektro Atomiko
9. Gaia: Espektroskopiaren Oinarriak eta Espektro Atomikoak 1) Kimika Teorikoko Laborategia 2012.eko irailaren 21 Laburpena 1 Espektroskopiaren Oinarriak 2 Hidrogeno Atomoa Espektroskopia Esperimentua
ESTATISTIKA ETA DATUEN ANALISIA Irakaslea: Josemari Sarasola Data: 2017ko ekainaren 27a, 15:00 - Iraupena: Ordu t erdi. EBAZPENA
ESTATISTIKA ETA DATUEN ANALISIA Irakaslea: Josemari Sarasola Data: 2017ko ekainaren 27a, 15:00 - Iraupena: Ordu t erdi. I. ebazkizuna (2.5 puntu) EBAZPENA Kontxako hondartzan bainu-denboraldian zehar jasotako
I. KAPITULUA Zenbakia. Aldagaia. Funtzioa
I. KAPITULUA Zenbakia. Aldagaia. Funtzioa 1. ZENBAKI ERREALAK. ZENBAKI ERREALEN ADIERAZPENA ZENBAKIZKO ARDATZEKO PUNTUEN BIDEZ Matematikaren oinarrizko kontzeptuetariko bat zenbakia da. Zenbakiaren kontzeptua
Oxidazio-erredukzio erreakzioak
Oxidazio-erredukzio erreakzioak Lan hau Creative Commons-en Nazioarteko 3.0 lizentziaren mendeko Azterketa-Ez komertzial-partekatu lizentziaren mende dago. Lizentzia horren kopia ikusteko, sartu http://creativecommons.org/licenses/by-ncsa/3.0/es/
2. ERDIEROALEEN EZAUGARRIAK
2. ERDIEROALEEN EZAUGARRIAK Gaur egun, dispositibo elektroniko gehienak erdieroale izeneko materialez fabrikatzen dira eta horien ezaugarri elektrikoak dispositiboen funtzionamenduaren oinarriak dira.
1-A eta 1-8 ariketen artean bat aukeratu (2.5 puntu)
UNIBERTSITATERA SARTZEKO HAUTAPROBAK 2004ko EKAINA ELEKTROTEKNIA PRUEBAS DE ACCESO A LA UNIVERSIDAD JUNIO 2004 ELECTROTECNIA 1-A eta 1-8 ariketen artean bat aukeratu (2.5 1-A ARIKETA Zirkuitu elektriko
LOTURA KIMIKOA :LOTURA KOBALENTEA
Lotura kobalenteetan ez-metalen atomoen arteko elektroiak konpartitu egiten dira. Atomo bat beste batengana hurbiltzen denean erakarpen-indar berriak sortzen dira elektroiak eta bere inguruko beste atomo
Makina elektrikoetan sortzen diren energi aldaketak eremu magnetikoaren barnean egiten dira: M A K I N A. Sorgailua. Motorea.
Magnetismoa M1. MGNETISMO M1.1. Unitate magnetikoak Makina elektrikoetan sortzen diren energi aldaketak eremu magnetikoaren barnean egiten dira: M K I N Energia Mekanikoa Sorgailua Energia Elektrikoa Energia
Zirkunferentzia eta zirkulua
10 Zirkunferentzia eta zirkulua Helburuak Hamabostaldi honetan, hau ikasiko duzu: Zirkunferentzian eta zirkuluan agertzen diren elementuak identifikatzen. Puntu, zuzen eta zirkunferentzien posizio erlatiboak
3. KOADERNOA: Aldagai anitzeko funtzioak. Eugenio Mijangos
3. KOADERNOA: Aldagai anitzeko funtzioak Eugenio Mijangos 3. KOADERNOA: ALDAGAI ANITZEKO FUNTZIOAK Eugenio Mijangos Matematika Aplikatua, Estatistika eta Ikerkuntza Operatiboa Saila Zientzia eta Teknologia
Solido zurruna 1: biraketa, inertzia-momentua eta momentu angeluarra
Solido zurruna 1: biraketa, inertzia-momentua eta momentu angeluarra Gaien Aurkibidea 1 Definizioa 1 2 Solido zurrunaren zinematika: translazioa eta biraketa 3 2.1 Translazio hutsa...........................
Definizioa. 1.Gaia: Estatistika Deskribatzailea. Definizioa. Definizioa. Definizioa. Definizioa
Defiizioa 1Gaia: Estatistika Deskribatzailea Cristia Alcalde - Aratxa Zatarai Doostiako Uibertsitate Eskola Politekikoa - UPV/EHU Populazioa Elemetu multzo bate ezaugarrire bat ezagutu ahi duguea elemetu
LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa
Elektroteknia: Ariketa ebatzien bilduma LANBDE EKMENA LANBDE EKMENA LANBDE EKMENA roiektuaren bultzatzaileak Laguntzaileak Hizkuntz koordinazioa Egilea(k): JAO AAGA, Oscar. Ondarroa-Lekeitio BH, Ondarroa
MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA:
MATEMATIKAKO ARIKETAK. DBH 3. KOADERNOA IZENA: Koaderno hau erabiltzeko oharrak: Koaderno hau egin bazaizu ere, liburuan ezer ere idatz ez dezazun izan da, Gogora ezazu, orain zure liburua den hori, datorren
SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA
SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA 95i 10 cm-ko aldea duen karratu baten lau erpinetako hirutan, 5 μc-eko karga bat dago. Kalkula itzazu: a) Eremuaren intentsitatea laugarren erpinean. 8,63.10
Ekuazioak eta sistemak
4 Ekuazioak eta sistemak Helburuak Hamabostaldi honetan hauxe ikasiko duzu: Bigarren mailako ekuazio osoak eta osatugabeak ebazten. Ekuazio bikarratuak eta bigarren mailako batera murriztu daitezkeen beste
Magnetismoa. Ferromagnetikoak... 7 Paramagnetikoak... 7 Diamagnetikoak Elektroimana... 8 Unitate magnetikoak... 9
Magnetismoa manak eta imanen teoriak... 2 manaren definizioa:... 2 manen arteko interakzioak (elkarrekintzak)... 4 manen teoria molekularra... 4 man artifizialak... 6 Material ferromagnetikoak, paramagnetikoak
1. Aldagaiak. 0. Sarrera. Naturan dauden ezaugarriak neurtzen baditugu, zenbakiengatik ordezka ditzakegu. Horrela sor ditzakegu:
Bioestatistika eta Demografía (. edizioa):. Aldagaiak. Xabier Zupiria 7. Debekatua fotokopiak egitea. Aldagaiak. GAITASUNAK Gai hau bukatzerako ikaslea gai izango da: - Aldagai ezberdinak ezberdintzeko:
EUSKARA ERREKTOREORDETZAREN SARE ARGITALPENA
EUSKARA ERREKTOREORDETZAREN SARE ARGITALPENA 1.1. Topologia.. 1.. Aldagai anitzeko funtzio errealak. Definizioa. Adierazpen grafikoa... 5 1.3. Limitea. 6 1.4. Jarraitutasuna.. 9 11 14.1. Lehen mailako
Funtzioak FUNTZIO KONTZEPTUA FUNTZIO BATEN ADIERAZPENAK ENUNTZIATUA TAULA FORMULA GRAFIKOA JARRAITUTASUNA EREMUA ETA IBILTARTEA EBAKIDURA-PUNTUAK
Funtzioak FUNTZIO KONTZEPTUA FUNTZIO BATEN ADIERAZPENAK ENUNTZIATUA TAULA FORMULA GRAFIKOA JARRAITUTASUNA EREMUA ETA IBILTARTEA EBAKIDURA-PUNTUAK GORAKORTASUNA ETA BEHERAKORTASUNA MAIMOAK ETA MINIMOAK
6 INBERTSIOA ENPRESAN
6 INBERTSIOA ENPRESAN 6.1.- INBERTSIO KONTZEPTUA 6.2.- INBERTSIO MOTAK 6.3.- DIRUAREN BALIOA DENBORAN ZEHAR 6.2.1.- Oinarrizko hainbat kontzeptu 6.2.2.- Etorkizuneko kapitalen gutxietsien printzipioa 6.2.3.-
Hasi baino lehen. Zenbaki errealak. 2. Zenbaki errealekin kalkulatuz...orria 9 Hurbilketak Erroreen neurketa Notazio zientifikoa
1 Zenbaki errealak Helburuak Hamabostaldi honetan hau ikasiko duzu: Zenbaki errealak arrazional eta irrazionaletan sailkatzen. Zenbaki hamartarrak emandako ordena bateraino hurbiltzen. Hurbilketa baten
Fisika. Jenaro Guisasola Ane Leniz Oier Azula. Irakaslearen gidaliburua BATXILERGOA 2
Fisika BATXILEGOA Irakaslearen gidaliburua Jenaro Guisasola Ane Leniz Oier Azula Obra honen edozein erreprodukzio modu, banaketa, komunikazio publiko edo aldaketa egiteko, nahitaezkoa da jabeen baimena,
Mate+K. Koadernoak. Ikasplay, S.L.
Mate+K Koadernoak Ikasplay, S.L. AURKIBIDEA Aurkibidea 1. ZENBAKI ARRUNTAK... 3. ZENBAKI OSOAK... 0 3. ZATIGARRITASUNA... 34 4. ZENBAKI HAMARTARRAK... 53 5. ZATIKIAK... 65 6. PROPORTZIONALTASUNA ETA EHUNEKOAK...
9. K a p itu lu a. Ekuazio d iferen tzial arrun tak
9. K a p itu lu a Ekuazio d iferen tzial arrun tak 27 28 9. K A P IT U L U A E K U A Z IO D IF E R E N T Z IA L A R R U N T A K UEP D o n o stia M ate m atik a A p lik atu a S aila 29 Oharra: iku rra rekin
Ordenadore bidezko irudigintza
Ordenadore bidezko irudigintza Joseba Makazaga 1 Donostiako Informatika Fakultateko irakaslea Konputazio Zientziak eta Adimen Artifiziala Saileko kidea Asier Lasa 2 Donostiako Informatika Fakultateko ikaslea
7. K a p itu lu a. Integ ra l a nizk o itza k
7. K a p itu lu a Integ ra l a nizk o itza k 61 62 7. K A P IT U L U A IN T E G R A L A N IZ K O IT Z A K UEP D o n o stia M ate m atik a A p lik atu a S aila 7.1. ARAZOAREN AURKEZPENA 63 7.1 A ra zo a
Zinematika 2: Higidura zirkular eta erlatiboa
Zinematika 2: Higidura zirkular eta erlatiboa Gaien Aurkibidea 1 Higidura zirkularra 1 1.1 Azelerazioaren osagai intrintsekoak higidura zirkularrean..... 3 1.2 Kasu partikularrak..........................
EREDU ATOMIKOAK.- ZENBAKI KUANTIKOAK.- KONFIGURAZIO ELEKTRONIKOA EREDU ATOMIKOAK
EREDU ATOMIKOAK Historian zehar, atomoari buruzko eredu desberdinak sortu dira. Teknologia hobetzen duen neurrian datu gehiago lortzen ziren atomoaren izaera ezagutzeko, Beraz, beharrezkoa da aztertzea,
FISIKA ETA KIMIKA 4 DBH Higidurak
1 HASTEKO ESKEMA INTERNET Edukien eskema Erreferentzia-sistemak Posizioa Ibibidea eta lekualdaketa Higidura motak Abiadura Abiadura eta segurtasun tartea Batez besteko abiadura eta aldiuneko abiadura Higidura
1. MATERIAREN PROPIETATE OROKORRAK
http://thales.cica.es/rd/recursos/rd98/fisica/01/fisica-01.html 1. MATERIAREN PROPIETATE OROKORRAK 1.1. BOLUMENA Nazioarteko Sisteman bolumen unitatea metro kubikoa da (m 3 ). Hala ere, likido eta gasen
Antzekotasuna ANTZEKOTASUNA ANTZEKOTASUN- ARRAZOIA TALESEN TEOREMA TRIANGELUEN ANTZEKOTASUN-IRIZPIDEAK BIGARREN IRIZPIDEA. a b c
ntzekotasuna NTZEKOTSUN IRUI NTZEKOK NTZEKOTSUN- RRZOI NTZEKO IRUIK EGITE TLESEN TEOREM TRINGELUEN NTZEKOTSUN-IRIZPIEK LEHEN IRIZPIE $ = $' ; $ = $' IGRREN IRIZPIE a b c = = a' b' c' HIRUGRREN IRIZPIE
5. GAIA Solido zurruna
5. GAIA Solido zurruna 5.1 IRUDIA Giroskopioaren prezesioa. 161 162 5 Solido zurruna Solido zurruna partikula-sistema errazenetakoa dugu. Definizioak (hau da, puntuen arteko distantziak konstanteak izateak)
9.28 IRUDIA Espektro ikusgaiaren koloreak bilduz argi zuria berreskuratzen da.
9.12 Uhin elektromagnetiko lauak 359 Izpi ultramoreak Gasen deskargek, oso objektu beroek eta Eguzkiak sortzen dituzte. Erreakzio kimikoak sor ditzakete eta filmen bidez detektatzen dira. Erabilgarriak
Aldagai bakunaren azterketa deskribatzailea (I)
Aldagai bakuare azterketa deskribatzailea (I) 2007ko otsaila Cotets 1 Datu multzoe ezaugarriak 4 2 Zetralizazio eurriak 4 2.1 Batezbesteko aritmetiko siplea................... 5 2.2 Mediaa................................
LOGIKA. F. Xabier Albizuri go.ehu.eus/ii-md
LOGIKA F. Xabier Albizuri - 2018 fx.albizuri@ehu.eus go.ehu.eus/ii-md Logikako bi gaiak: 1. LOGIKA PROPOSIZIONALA 2. PREDIKATU LOGIKA Ikasliburuak: 1. Logic and Discrete Mathematics: A Computer Science
MAKINAK DISEINATZEA I -57-
INGENIERITZA MEKANIKOA, ENERGETIKOA ETA MATERIALEN AILA 005 V. BADIOLA 4. KARGA ALDAKORRAK Osagaiak nekea jasaten du txandakako kargak eusten dituenean: trenbidearen gurpila, leherketa-motorraren biela.
1.1 Sarrera: telekomunikazio-sistemak
1 TELEKOMUNIKAZIOAK 1.1 Sarrera: telekomunikazio-sistemak Telekomunikazio komertzialetan bi sistema nagusi bereiz ditzakegu: irratia eta telebista. Telekomunikazio-sistema horiek, oraingoz, noranzko bakarrekoak
Jose Miguel Campillo Robles. Ur-erlojuak
HIDRODINAMIKA Hidrodinamikako zenbait kontzeptu garrantzitsu Fluidoen garraioa Fluxua 3 Lerroak eta hodiak Jarraitasunaren ekuazioa 3 Momentuaren ekuazioa 4 Bernouilli-ren ekuazioa 4 Dedukzioa 4 Aplikazioak
Elementu baten ezaugarriak mantentzen dituen partikularik txikiena da atomoa.
Atomoa 1 1.1. MATERIAREN EGITURA Elektrizitatea eta elektronika ulertzeko gorputzen egitura ezagutu behar da; hau da, gorputz bakun guztiak hainbat partikula txikik osatzen dituztela kontuan hartu behar
Zenbaki errealak ZENBAKI ERREALAK HURBILKETAK ERROREAK HURBILKETETAN ZENBAKI ZENBAKI ARRAZIONALAK ORDENA- ERLAZIOAK IRRAZIONALAK
Zenbaki errealak ZENBAKI ERREALAK ZENBAKI ARRAZIONALAK ORDENA- ERLAZIOAK ZENBAKI IRRAZIONALAK HURBILKETAK LABURTZEA BIRIBILTZEA GEHIAGOZ ERROREAK HURBILKETETAN Lagun ezezaguna Mezua premiazkoa zirudien
TEKNIKA ESPERIMENTALAK - I Fisikako laborategiko praktikak
TEKNIKA ESPERIMENTALAK - I Fisikako laborategiko praktikak Fisikako Gradua Ingeniaritza Elektronikoko Gradua Fisikan eta Ingeniaritza Elektronikoan Gradu Bikoitza 1. maila 2014/15 Ikasturtea Saila Universidad
1. Higidura periodikoak. Higidura oszilakorra. Higidura bibrakorra.
1. Higidura periodikoak. Higidura oszilakorra. Higidura bibrakorra. 2. Higidura harmoniko sinplearen ekuazioa. Grafikoak. 3. Abiadura eta azelerazioa hhs-an. Grafikoak. 4. Malguki baten oszilazioa. Osziladore
EREMU GRABITATORIOA ETA UNIBERTSOKO GRABITAZIOA
AIXERROTA BHI EREMU GRABITATORIOA ETA UNIBERTSOKO GRABITAZIOA 2012 uztaila P1. Urtebete behar du Lurrak Eguzkiaren inguruko bira oso bat emateko, eta 149 milioi km ditu orbita horren batez besteko erradioak.
4. GAIA: Ekuazio diferenzialak
4. GAIA: Ekuazio diferenzialak Matematika Aplikatua, Estatistika eta Ikerkuntza Operatiboa Saila Zientzia eta Teknologia Fakultatea Euskal Herriko Unibertsitatea Aurkibidea 4. Ekuazio diferentzialak......................................
Gaiari lotutako EDUKIAK (127/2016 Dekretua, Batxilergoko curriculuma)
Termodinamika Gaiari lotutako EDUKIAK (127/2016 Dekretua, Batxilergoko curriculuma) Erreakzio kimikoetako transformazio energetikoak. Espontaneotasuna 1. Energia eta erreakzio kimikoa. Prozesu exotermikoak
PROGRAMA LABURRA (gutxiengoa)
PROGRAMA LABURRA gutiengoa Batilergo Zientiiko-Teknikoa MATEMATIKA I Ignacio Zuloaga BHI Eibar IGNACIO ZULOAGA B.I. EIBAR Gutiengo programa Zientiiko-Teknikoa. maila Ekuaio esponentialak Ariketa ebatiak:
Batxilergorako materialak. Logika sinbolikoa. Peru Urrutia Bilbao ISBN: Salneurria: 14 E
Batxilergorako materialak Logika sinbolikoa Peru Urrutia Bilbao ISBN: 9788445729267 9 788445 729267 Salneurria: 4 E Euskara Zerbitzua Ikasmaterialak Gabirel Jauregi Bilduma Batxilergorako materialak Logika
15. EREMU EFEKTUKO TRANSISTOREAK I: SAILKAPENA ETA MOSFETA
15. EREMU EFEKTUKO TRANSISTOREAK I: SAILKAPENA ETA MOSFETA KONTZEPTUA Eremu-efektuko transistorea (Field Effect Transistor, FET) zirkuitu analogiko eta digitaletan maiz erabiltzen den transistore mota
Emaitzak: a) 0,148 mol; 6,35 atm; b) 0,35; 0,32; 0,32; 2,2 atm; 2,03 atm; 2.03 atm c) 1,86; 0,043
KIMIKA OREKA KIMIKOA UZTAILA 2017 AP1 Emaitzak: a) 0,618; b) 0,029; 1,2 EKAINA 2017 AP1 Emaitzak:a) 0,165; 0,165; 1,17 mol b) 50 c) 8,89 atm UZTAILA 2016 BP1 Emaitzak: a) 0,148 mol; 6,35 atm; b) 0,35;
ERREAKZIOAK. Adizio elektrozaleak Erredukzio erreakzioak Karbenoen adizioa Adizio oxidatzaileak Alkenoen hausketa oxidatzailea
ERREAKZIAK Adizio elektrozaleak Erredukzio erreakzioak Karbenoen adizioa Adizio oxidatzaileak Alkenoen hausketa oxidatzailea ADIZI ELEKTRZALEK ERREAKZIAK idrogeno halurozko adizioak Alkenoen hidratazioa
MATEMATIKA DISKRETUA ETA ALGEBRA. Lehenengo zatia
MATEMATIKA DISKRETUA ETA ALGEBRA Lehenengo zatia http ://www.sc.ehu.es/ccwalirx/docs/materiala.htm 1. KALKULU PROPOSIZIONALA 2. PREDIKATU KALKULUA 3. MULTZOAK, OSOKOAK 4. ERLAZIOAK ETA FUNTZIOAK 5. GRAFOAK
Fisika BATXILERGOA 2. Jenaro Guisasola Ane Leniz Oier Azula
Fisika BATXILERGOA 2 Jenaro Guisasola Ane Leniz Oier Azula Obra honen edozein erreprodukzio modu, banaketa, komunikazio publiko edo aldaketa egiteko, nahitaezkoa da jabeen baimena, legeak aurrez ikusitako
10. GAIA Ingurune jarraituak
10. GAIA Ingurune jarraituak 10.1 IRUDIA Gainazal-tentsioaren ondorio ikusgarria. 417 418 10 Ingurune jarraituak Ingurune jarraituen oinarrizko kontzeptuak aztertuko dira gai honetan: elastikotasuna hasteko,
ERDI MAILAKO HEZIKETA ZIKLOETARAKO SARBIDE MATEMATIKA ATALA MATEMATIKA ARIKETAK ERANTZUNAK PROGRAMAZIOA
ERDI MAILAKO HEZIKETA ZIKLOETARAKO SARBIDE PROBA MATEMATIKA ATALA MATEMATIKA MODULUA ARIKETAK ERANTZUNAK BALIABIDEAK ETA PROGRAMAZIOA Modulua MATEMATIKA Oinarrizko Prestakuntza -. maila Erdi Mailako heziketa-zikloetarako
Estatistika deskribatzailea Excel-en bidez
Estatistika deskribatzailea Excel-en bidez Marta Barandiaran Galdos Mª Isabel Orueta Coria EUSKARA ERREKTOREORDETZAREN SARE ARGITALPENA Liburu honek UPV/EHUko Euskara Errektoreordetzaren dirulaguntza jaso
4. GAIA MASAREN IRAUPENAREN LEGEA: MASA BALANTZEAK
4. GAIA MASAREN IRAUPENAREN LEGEA: MASA BALANTZEAK GAI HAU IKASTEAN GAITASUN HAUEK LORTU BEHARKO DITUZU:. Sistema ireki eta itxien artea bereiztea. 2. Masa balantze sinpleak egitea.. Taula estekiometrikoa
6. Errodamenduak 1.1. DESKRIBAPENA ETA SAILKAPENAK
2005 V. IOL 6. Errodamenduak 1.1. ESKRIPEN ET SILKPENK Errodamenduak biziki ikertu eta garatu ziren autoak, abiadura handiko motorrak eta produkzio automatikorako makineria agertu zirenean. Horren ondorioz,
4. GAIA Indar zentralak
4. GAIA Indar zentralak 4.1 IRUDIA Planeten higiduraren ezaugarri batzuen simulazio mekanikoa zientzia-museoan. 121 122 4 Indar zentralak Aarteko garrantzia izan dute fisikaren historian indar zentralek:
7.1 Oreka egonkorra eta osziladore harmonikoa
7. GAIA Oszilazioak 7.1 IRUDIA Milurtekoaren zubia: Norman Foster-ek Londresen egin zuen zubi hau zabaldu bezain laster, ia bi urtez itxi behar izan zuten, egiten zituen oszilazio handiegiak zuzendu arte.
Antzekotasuna. Helburuak. Hasi baino lehen. 1.Antzekotasuna...orria 92 Antzeko figurak Talesen teorema Antzeko triangeluak
6 Antzekotasuna Helburuak Hamabostaldi honetan haue ikasiko duzu: Antzeko figurak ezagutzen eta marrazten. Triangeluen antzekotasunaren irizpideak aplikatzen. Katetoaren eta altueraren teoremak erakusten
2011 Kimikako Euskal Olinpiada
2011 Kimikako Euskal Olinpiada ARAUAK (Arretaz irakurri): Zuzena den erantzunaren inguruan zirkunferentzia bat egin. Ordu bete eta erdiko denbora epean ahalik eta erantzun zuzen gehien eman behar dituzu