UNITATE DIDAKTIKOA ELEKTRIZITATEA D.B.H JARDUERA. KORRONTE ELEKTRIKOA. Helio atomoa ASKATASUNA BHI 1.- ATOMOAK ETA KORRONTE ELEKTRIKOA
|
|
- Ὀλυσσεύς Καραμήτσος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 1. JARDUERA. KORRONTE ELEKTRIKOA ATOMOAK ETA KORRONTE ELEKTRIKOA Material guztiak atomo deitzen diegun partikula oso ttipiez osatzen dira. Atomoen erdigunea positiboki kargatua egon ohi da eta tinkoa da; kanpoaldea aldiz, negatiboki kargatua egoten da eta bere partikulak atomoz atomo mugi daitezke. Gorputz bati karga negatiboa kentzen badiogu, positiboki kargatua geratzen da. Bere barnetik karga pasatzen uzten duenari material eroalea deitzen diogu; eta karga elektrikoa pasatzen uzten ez duenari isolatzailea. Horrela bada: positiboki kargatua dagoen gorputz bat negatiboki kargatua dagoen bertze gorputz batekin, eroale baten bidez elkartzen badugu, korronte elektrikoa batetik bertzera pasatzen da. Karga negatiboa gehien duenetik gutxien duenera. Korronte-pasa hori da bonbillak pizten edota aparailu elektrikoak martxan jartzen dituena. Helio atomoa 1.- Ariketa: Begiratu behean dituzun zirkuituak eta saiatu azaltzen zer gertatzen den bakoitzean, zer duten komunean eta zertan diren desberdinak. M P p V v
2 2. JARDUERA. SORGAILUAK SORGAILUAK EDO GENERADOREAK Zirkuitu elektriko batean, potentzial diferentzia dituzten bi puntu elkartzerakoan, korronte elektrikoa sortzen bada, bi puntu hauen potentzialak berdintzerakoan, korronte elektrikoa bukatuko litzateke. Horrela bada, zirkuituan korronte elektrikoa buka ez dadin, potentzial diferentzia mantenduko duen elementu bat izatea beharrezkoa da. Elementu honi generadore edo sorgailu deritzo, eta bere funtzioa potentzial diferentzia mantentzea da. Kontuz: nahiz eta sorgailu izena izan ez du energia edo elektrizitatea sortzen, potentziala mantendu edo energia mota desberdinak transformatu baino ez du egiten. Pila eta bateriak generadoreen motak ezberdinak dira. Generadoreak potentzial diferentzia (U A - U B edo V) edo desnibel elektrikoa mantentzen du, korronte elektriko bat sortuz. Horretarako transformatzen du energia mota bat bertze batean, hala nola: Erreakzio kimiko batengandik sortutako energia (piletan) Ur jauzi batean sortutako energia zinetikoa Bero energia Etab. Honako sinboloarekin adieraziko dugu Potentzial diferentzia, boltaje edo tentsioa deitzen zaio ere. Bere unitatea Volta da eta V z adierazten da. Voltaren multiplo bat kilo-volta da, mila volta baitira. Eta azpi-multiplo milivolta da, voltaren milarena da. Tentsio elektrikoa neurtzeko voltimetro tresna erabiltzen da. Voltimetroren ikurra V letra barnean duen borobil bat da. Bi puntuen arteko potentzial diferentzia jakiteko voltimetro beti paraleloz konektatzen da. 3.- ELEKTRIZITATE KANTITATEA. KARGA ELEKTRIKOA Eroale batean zehar ibiltzen diren elektroi kopurua da. Q letraz adierazten da. Karga elektrikoaren unitatea Coulomb -a da, C. Zirkuitu elektrikoa, zirkuitu hidraulikoarekin alderatu ezkero, karga elektrikoa hodien zehar pasatzen den ur kopurua da zirkuitu hidraulikoan. Jakin behar duzu elektroi baten karga elektrikoa dela: Elektroi 1 = 1,6 x 10-19
3 3. JARDUERA. INTENTSITATEA KORRONTE INTENTSITATEA Zirkuitu hidrauliko batean ur kantitatea jakitea ez da nahikoa, honek zirkuitua ibiltzen behar duen denbora jakitea beharrezkoa baita ere. Zirkuitu elektriko batean gauza bera pasatzen da. Elektrizitate kantitatea ezagutzeaz gain, eroale pasatzeko igarotzen den denbora ere interesatzen zaigu Korronte intentsitatea denbora unitate batean eroale baten zehar ibiltzen den elektrizitate kantitatea da. I letraz adierazten da. INTENTSITATEA = ELEKTRIZITATE KANTITATEA DENBORA I = Q t Intentsitatearen unitatea amperea da eta A letraz adierazten da. Q Coulomb I = = = Amperea (A) t segundo Beraz: 1 KA = 1000 A 1 ma = 0,001 A Amperio 1 = Coulomb 1 Segundo 1 Intentsitatea neurtzeko Amperemetroa erabiltzen da eta seriez kokatzen da beti. Bere ikurra A letra barruan duen borobil bat da. 2. Ariketa: Kalkulatu eroale batetik pasatzen den korronte intentsitatea, jakinik 20 minututan 5000 coulomb pasatu direla.
4 4. JARDUERA. OHM-EN LEGEA OHM-EN LEGEA. ERRESISTENTZIA. Eroale baten bi puntuen artean potentzial diferentzia (V) sortzen denean, korronte intentsitate batek (I) zeharkatzen du eroalea. Intentsitatea bi faktore edo alderdien menpe dago: eroalearen neurriak (luzera eta lodiera edo azalera) eroalearen materiala Potentzial diferentzia eta intentsitatearen artean dagoen erlazioari deitzen diogu eroalearen ERRESISTENTZIA (R) eta Ohmak dira beraren unitateak (Ω ). R = V I Baina esan dugu eroale guztiek ez dutela pasatzen uzten korronte elektrikoa modu berean, eta hiru alderdien menpe dagoela erresistentzia: materiala luzera azalera Eta hori kalkulatzeko: R = ρ L s OHM-EN LEGEA Definizioa: Zirkuitu baten muturren zehar pasatzen den korronte intentsitatea, bi muturren arteko tentsioarekiko zuzenki proportzionala da eta zirkuituak duen erresistentziarekiko alderantziz proportzionala. R = V I
5 4. JARDUERA. OHM-EN LEGEA. 5 Ohm-en legea aztertuz gero, esan daiteke: Erresistentzia finko duen zirkuitu batean, tentsio gehikuntza baten ondorioz, intentsitate gehikuntza proportzional bat izanen duela. ZENBAIT ETA TENTSIO GEHIAGO, ORDUAN ETA INTENTSITATE GEHIAGO Era berean tentsioa gutxitzen bada, intentsitatea proportzio berean gutxituko da. ZENBAIT ETA TENTSIO GUTXIAGO, ORDUAN ETA INTENTSITATE GUTXIAGO Tentsioa tinkoa mantentzen denean, berriz, erresistentzia handitzerakoan, intentsitatea gutxitzen da. ZENBAIT ETA ERRESISTENTZIA GEHIAGO, ORDUAN ETA INTENTSITATE GUTXIAGO. Azkenean, tentsio finko batentzako, erresistentzia gutxitzen denean, intentsitatea proportzio berean handitzen da. ZENBAIT ETA ERRESISTENTZIA GUTXIAGO, ORDUAN ETA INTENTISTATE GEHIAGO. 3. Ariketa: Bi erresistentzia dituen zirkuitu baten zehar, aplikatzen den tentsioa 6 voltakoa denean, ibiltzen den intentsitatea kalkulatu. 6.- TENTSIO ERORKETA Zirkuituaren elementu bakoitzean suertatzen den tentsio galerari, tentsio erorketa deritzo. Zirkuitu elektriko guztietan, hartzaileen tentsio erorketak eta elikadurarenak kontuan hartu behar dira. Elikadura lerroa motza denean, honen tentsio erorketa ez da kontuan hartzen. Hartzaile baten tentsio erorketa, bere erresistentzia eta honen zehar pasatzen den intentsitatearen biderketa da. V c = R x I 4.- Ariketa: Bi Ohm dituen eroale baten bidez, 5 ampereko intentsitatea behar duen motore bat instalatu nahi dugu. Eroalearen tentsio erorketa kalkulatu.
6 5. JARDUERA. ERRESISTENTZIAK ERRESISTENTZIEN ASOZIAZIOAK Elkar konektatzen ditugunean bi erresistentzia edo gehiago, multzoak jokatzen du erresistentzia bat izanen balitz bezala. Bere balioari deitzen diogu asoziazioaren erresistentzia baliokidea. Erresistentziak ere jarri ditzakegu paraleloz edo seriez Paraleloz konektaturiko erresistentzia baliokidea Erresistentziek potentzial diferentzia berdina dutenean eta zirkuituaren intentsitatea haien artean banatua dagoenean, paraleloz daude konektatuak = + + R e R 1 R 2 R Seriez konektaturiko erresistentzia baliokidea Erresistentzia guztietatik intentsitate berdina pasatzen denean eta potentzial diferentzia haien artean banatzen denean, seriez daude konektatuak erresistentzia horiek. R e = R 1 + R 2 + R Ariketa: Kalkula ezazu zirkuitu baten erresistentzia baliokidea hiru erresistentzia paraleloz ditugularik: R 1 = 12 Ω; R 2 = 6Ω; R 3 = 4Ω. 6.- Ariketa: Kalkula ezazu zirkuitu baten erresistentzia baliokidea lau erresistentzia seriez ditugularik: R 1 = 4Ω; R 2 = 5Ω; R 3 = 2Ω; R 4 = 1Ω Zein izango da zirkuituan dabilen korronte intentsitatea tentsioa 120 V-koa bada?
7 5. JARDUERA. ERRESISTENTZIAK Erresistoreak edo hargailuak Badira elementu ezberdin batzuk korronte pasatzeari oztopo edo erresistentzia jartzen diotenak. Hauek korronte elektrikoa hartu eta baliagarri (argi, bero, mugimendu, soinu, etab.) bihurtzen dute. Horregatik deitzen diegu hargailuak. Batzuen erresistentzia aldakorra da eta zirkuituan dabilen intentsitatea aldarazten dute. Hargailuen erresistentzia adierazteko erabiltzen da kolore-kode bat. Lehengo bi koloreak adierazten dute lehenengo bi zifra edo zenbaki. Hirugarren koloreak adierazten du zero kopurua. Eta laugarren koloreak adierazten du tolerantzia, hau da, aurreko zenbaki osoaren zehaztasuna. Kolorea 1. zerrenda 2. zerrenda 3. zerrenda 4. zerrenda 1. Zifra 2. Zifra Biderkatzailea Perdoia Zilarra 0,100 %5 Urrea 0,10 % 10 Beltza Marroia % 1 Gorria % 2 Laranja Horia Koloregabe %20 Berdea Urdina Morea Grisa Ariketa: Irakasleak emandako erresistentziak aztertu eta bere balioa kalkulatu.
8 6. JARDUERA. ENERGIA ETA LANA. POTENTZIA ENERGIA ETA LAN ELEKTRIKOA Ikasi dugunez, sorgailuak dira energia mota desberdinak kontsumitzen dutelarik (kimikoa, eolikoa, termikoa...) bi poloen arteko potentzial diferentzia bat sortzen duten aparailuak. Hau da, korronte elektriko bat sortzen dutela. Korronte honen intentsitatea bi faktoreen menpe dago: lortutako potentzial diferentzia (tentsioa) eta hariak jartzen duen oztopo edo erresistentzia. Laburbilduz: sorgailu batek energia mota bat energia elektrikoan transformatzen du. Orduan, Lan elektrikoa (W) Bere unitatea Julio-a (J) da. W = V x Q da kargek egiten dutena eroaletik pasatzean. Ariketa 8: Kalkula ezazu 1500 μc-eko kargak egiten duen lan elektrikoa 2 puntuen artean pasatzean 12 V-ko potentzial diferentziarekin. Ariketa 9: Kalkulatu 0,5 A-ko korronteak sortzen duen lana 50 segundotan pasatzen denean 6 V-koa potentzial diferentzia duten bi puntuen artean. 9.- KORRONTE ELEKTRIKOAREN POTENTZIA Potentzia beti lana eta lan hori egitean kostatu den denboraren arteko erlazioa edo zatiketa da. Beraz Potentzia elektrikoa kargak egiten duen lana eroaletik ibiltzean zati kostatu den denbora izango da. Bere unitateak dira wattak (W). P = W t Baina dakigunez: W = V x Q Eta : Q = I x t Beraz: W = V x I x t Eta hortik: P = V x I x t t Ondorioz: P = V x I
9 6. JARDUERA. ENERGIA ETA LANA. POTENTZIA. 9 Ariketa 10: Linterna baten lanparatik 1.25 A-ko intentsitatea pasatzen da eta badauka 4 pila serien konektatuak 1,5 V-koak. Zein izango da lanpara horren potentzia? 10.- ENERGIA ELEKTRIKOA Edozein lana egiteko energia kontsumitu behar da. Beraz energia elektrikoa izango da zirkuitu elektriko batean denbora jakin edo zehatz batean beharrezkoa den potentzia lan bat garatzeko. Kalkulatzen da formula honen bitartez: E = P x t Normalean kontsumitutako energia gure etxeetan neurtzen da kilowatta x ordutan (kw * h). Ariketa 11: Kalkulatu telebista batek kontsumitzen duen energia tentsio 220Vkoa eta intentsitatea 1,5 A-koa direnean. Ariketa 12: kw h baten prezioa 20 pztakoa bada, zenbat gastatuko duen etxeko hozkailuak aste batean dabilen intentsitatea 1,5 A-koa bada? 11.- JOULE-REN LEGEA Aurretik esan dugunez, energia elektrikoa ez da transmititzen bere osotasunean hari eroaleetatik, parte txiki bat galtzen baita elektroiak atomoekin igurtzitzen direnean (hau da, marruskaduran); galtzen den energia hori bero-energia bihurtzen da. Bero hau kalorietan (Cal) neurtuko dugu, jakinda: Julio 1 = 0,239 Cal. Dakigunez: W = V I t Eta: V = I R W = (I R) I t W = R I 2 t (Julioak) BERAZ: Q = 0,239 R I 2 t (Cal) Ariketa 13: Kalkulatu 7 Ω-eko kobrezko eroale batean sortzen den bero kantitatea edo berotasuna pasatzen direnean 2 minututan 1, 25 A-ko intentsitatea.
Agoitz DBHI Unitatea: JOKU ELEKTRIKOA Orria: 1 AGOITZ. Lan Proposamena
Agoitz DBHI Unitatea: JOKU ELEKTRIKOA Orria: 1 1. AKTIBITATEA Lan Proposamena ARAZOA Zurezko oinarri baten gainean joko elektriko bat eraiki. Modu honetan jokoan asmatzen dugunean eta ukitzen dugunean
Elementu baten ezaugarriak mantentzen dituen partikularik txikiena da atomoa.
Atomoa 1 1.1. MATERIAREN EGITURA Elektrizitatea eta elektronika ulertzeko gorputzen egitura ezagutu behar da; hau da, gorputz bakun guztiak hainbat partikula txikik osatzen dituztela kontuan hartu behar
1. jarduera. Zer eragin du erresistentzia batek zirkuitu batean?
1. jarduera Zer eragin du erresistentzia batek zirkuitu batean? 1. Hastapeneko intentsitatearen neurketa Egin dezagun muntaia bat, generadore bat, anperemetro bat eta lanpa bat seriean lotuz. 2. Erresistentzia
= 32 eta β : z = 0 planoek osatzen duten angelua.
1 ARIKETA Kalkulatu α : 4x+ 3y+ 10z = 32 eta β : z = 0 planoek osatzen duten angelua. Aurki ezazu α planoak eta PH-k osatzen duten angelua. A'' A' 27 A''1 Ariketa hau plano-aldaketa baten bidez ebatzi
DERIBAZIO-ERREGELAK 1.- ALDAGAI ERREALEKO FUNTZIO ERREALAREN DERIBATUA. ( ) ( )
DERIBAZIO-ERREGELAK.- ALDAGAI ERREALEKO FUNTZIO ERREALAREN DERIBATUA. Izan bitez D multzo irekian definituriko f funtzio erreala eta puntuan deribagarria dela esaten da baldin f ( f ( D puntua. f zatidurak
SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA
SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA 95i 10 cm-ko aldea duen karratu baten lau erpinetako hirutan, 5 μc-eko karga bat dago. Kalkula itzazu: a) Eremuaren intentsitatea laugarren erpinean. 8,63.10
9. Gaia: Espektroskopiaren Oinarriak eta Espektro Atomiko
9. Gaia: Espektroskopiaren Oinarriak eta Espektro Atomikoak 1) Kimika Teorikoko Laborategia 2012.eko irailaren 21 Laburpena 1 Espektroskopiaren Oinarriak 2 Hidrogeno Atomoa Espektroskopia Esperimentua
1-A eta 1-8 ariketen artean bat aukeratu (2.5 puntu)
UNIBERTSITATERA SARTZEKO HAUTAPROBAK 2004ko EKAINA ELEKTROTEKNIA PRUEBAS DE ACCESO A LA UNIVERSIDAD JUNIO 2004 ELECTROTECNIA 1-A eta 1-8 ariketen artean bat aukeratu (2.5 1-A ARIKETA Zirkuitu elektriko
AURKIBIDEA I. KORRONTE ZUZENARI BURUZKO LABURPENA... 7
AURKIBIDEA Or. I. KORRONTE ZUZENARI BURUZKO LABURPENA... 7 1.1. MAGNITUDEAK... 7 1.1.1. Karga elektrikoa (Q)... 7 1.1.2. Intentsitatea (I)... 7 1.1.3. Tentsioa ()... 8 1.1.4. Erresistentzia elektrikoa
Elementu honek elektrizitatea sortzen du, hau da, bi punturen artean potentzial-diferentzia mantentzen du.
Korronte zuzena 1 1.1. ZIRKUITU ELEKTRIKOA Instalazio elektrikoetan, elektroiak sorgailuaren borne batetik irten eta beste bornera joaten dira. Beraz, elektroiek desplazatzeko egiten duten bidea da zirkuitu
1. Gaia: Mekanika Kuantikoaren Aurrekoak
1) Kimika Teorikoko Laborategia 2012.eko irailaren 12 Laburpena 1 Uhin-Partikula Dualtasuna 2 Trantsizio Atomikoak eta Espektroskopia Hidrogeno Atomoaren Espektroa Bohr-en Eredua 3 Argia: Partikula (Newton)
Banaketa normala eta limitearen teorema zentrala
eta limitearen teorema zentrala Josemari Sarasola Estatistika enpresara aplikatua Josemari Sarasola Banaketa normala eta limitearen teorema zentrala 1 / 13 Estatistikan gehien erabiltzen den banakuntza
7.GAIA. ESTATISTIKA DESKRIBATZAILEA. x i n i N i f i
7.GAIA. ESTATISTIKA DESKRIBATZAILEA 1. Osatu ondorengo maiztasun-taula: x i N i f i 1 4 0.08 2 4 3 16 0.16 4 7 0.14 5 5 28 6 38 7 7 45 0.14 8 2. Ondorengo banaketaren batezbesteko aritmetikoa 11.5 dela
ANGELUAK. 1. Bi zuzenen arteko angeluak. Paralelotasuna eta perpendikulartasuna
Metika espazioan ANGELUAK 1. Bi zuzenen ateko angeluak. Paalelotasuna eta pependikulatasuna eta s bi zuzenek eatzen duten angelua, beaiek mugatzen duten planoan osatzen duten angeluik txikiena da. A(x
SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA
SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA 1. (2015/2016) 20 cm-ko tarteak bereizten ditu bi karga puntual q 1 eta q 2. Bi kargek sortzen duten eremu elektrikoa q 1 kargatik 5 cm-ra dagoen A puntuan deuseztatu
Magnetismoa. Ferromagnetikoak... 7 Paramagnetikoak... 7 Diamagnetikoak Elektroimana... 8 Unitate magnetikoak... 9
Magnetismoa manak eta imanen teoriak... 2 manaren definizioa:... 2 manen arteko interakzioak (elkarrekintzak)... 4 manen teoria molekularra... 4 man artifizialak... 6 Material ferromagnetikoak, paramagnetikoak
1.- Hiru puntutatik konmutaturiko lanpara: 2.- Motore baten bira noranzkoaren aldaketa konmutadore baten bitartez: 3.- Praktika diodoekin:
1.- Hiru puntutatik konmutaturiko lanpara: 2.- Motore baten bira noranzkoaren aldaketa konmutadore baten bitartez: 3.- Praktika diodoekin: 1 Tentsio gorakada edo pikoa errele batean: Ikertu behar dugu
MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA:
MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA: Koaderno hau erabiltzeko oharrak: Koaderno hau egin bazaizu ere, liburuan ezer ere idatz ez dezazun izan da, Gogora ezazu, orain zure liburua den hori,
LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa
Elektroteknia: Ariketa ebatzien bilduma LANBDE EKMENA LANBDE EKMENA LANBDE EKMENA roiektuaren bultzatzaileak Laguntzaileak Hizkuntz koordinazioa Egilea(k): JAO AAGA, Oscar. Ondarroa-Lekeitio BH, Ondarroa
INDUSTRI TEKNOLOGIA I, ENERGIA ARIKETAK
INDUSTRI TEKNOLOGIA I, ENERGIA ARIKETAK 1.-100 m 3 aire 33 Km/ordu-ko abiaduran mugitzen ari dira. Zenbateko energia zinetikoa dute? Datua: ρ airea = 1.225 Kg/m 3 2.-Zentral hidroelektriko batean ur Hm
EREMU NAGNETIKOA ETA INDUKZIO ELEKTROMAGNETIKOA
EREMU NAGNETIKOA ETA INDUKZIO ELEKTROMAGNETIKOA Datu orokorrak: Elektroiaren masa: 9,10 10-31 Kg, Protoiaren masa: 1,67 x 10-27 Kg Elektroiaren karga e = - 1,60 x 10-19 C µ ο = 4π 10-7 T m/ampere edo 4π
LAN PROPOSAMENA. Alarma bat eraiki beharko duzu, trantsistorizatuta dagoen instalazio bat eginez, errele bat eta LDR bat erabiliz.
- 1-1. JARDUERA. LAN PROPOSAMENA. 1 LAN PROPOSAMENA Alarma bat eraiki beharko duzu, trantsistorizatuta dagoen instalazio bat eginez, errele bat eta LDR bat erabiliz. BALDINTZAK 1.- Bai memoria (txostena),
Hirukiak,1. Inskribatutako zirkunferentzia. Zirkunskribatutako zirkunferentzia. Aldekidea. Isoszelea. Marraztu 53mm-ko aldedun hiruki aldekidea
Hirukiak, Poligonoa: elkar ebakitzen diren zuzenen bidez mugatutako planoaren zatia da. Hirukia: hiru aldeko poligonoa da. Hiruki baten zuzen bakoitza beste biren batuketa baino txiakiago da eta beste
Makina elektrikoetan sortzen diren energi aldaketak eremu magnetikoaren barnean egiten dira: M A K I N A. Sorgailua. Motorea.
Magnetismoa M1. MGNETISMO M1.1. Unitate magnetikoak Makina elektrikoetan sortzen diren energi aldaketak eremu magnetikoaren barnean egiten dira: M K I N Energia Mekanikoa Sorgailua Energia Elektrikoa Energia
9. K a p itu lu a. Ekuazio d iferen tzial arrun tak
9. K a p itu lu a Ekuazio d iferen tzial arrun tak 27 28 9. K A P IT U L U A E K U A Z IO D IF E R E N T Z IA L A R R U N T A K UEP D o n o stia M ate m atik a A p lik atu a S aila 29 Oharra: iku rra rekin
EREDU ATOMIKOAK.- ZENBAKI KUANTIKOAK.- KONFIGURAZIO ELEKTRONIKOA EREDU ATOMIKOAK
EREDU ATOMIKOAK Historian zehar, atomoari buruzko eredu desberdinak sortu dira. Teknologia hobetzen duen neurrian datu gehiago lortzen ziren atomoaren izaera ezagutzeko, Beraz, beharrezkoa da aztertzea,
2. ERDIEROALEEN EZAUGARRIAK
2. ERDIEROALEEN EZAUGARRIAK Gaur egun, dispositibo elektroniko gehienak erdieroale izeneko materialez fabrikatzen dira eta horien ezaugarri elektrikoak dispositiboen funtzionamenduaren oinarriak dira.
MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA:
MATEMATIKAKO ARIKETAK. DBH 3. KOADERNOA IZENA: Koaderno hau erabiltzeko oharrak: Koaderno hau egin bazaizu ere, liburuan ezer ere idatz ez dezazun izan da, Gogora ezazu, orain zure liburua den hori, datorren
Aldagai Anitzeko Funtzioak
Aldagai Anitzeko Funtzioak Bi aldagaiko funtzioak Funtzio hauen balioak bi aldagai independenteen menpekoak dira: 1. Adibidea: x eta y aldeetako laukizuzenaren azalera, S, honela kalkulatzen da: S = x
1. Higidura periodikoak. Higidura oszilakorra. Higidura bibrakorra.
1. Higidura periodikoak. Higidura oszilakorra. Higidura bibrakorra. 2. Higidura harmoniko sinplearen ekuazioa. Grafikoak. 3. Abiadura eta azelerazioa hhs-an. Grafikoak. 4. Malguki baten oszilazioa. Osziladore
ARRAZOI TRIGONOMETRIKOAK
ARRAZOI TRIGONOMETRIKOAK 1.- LEHEN DEFINIZIOAK Jatorri edo erpin berdina duten bi zuzenerdien artean gelditzen den plano zatiari, angelua planoan deitzen zaio. Zirkunferentziaren zentroan erpina duten
1 Aljebra trukakorraren oinarriak
1 Aljebra trukakorraren oinarriak 1.1. Eraztunak eta gorputzak Geometria aljebraikoa ikasten hasi aurretik, hainbat egitura aljebraiko ezagutu behar ditu irakurleak: espazio bektorialak, taldeak, gorputzak,
Trigonometria ANGELU BATEN ARRAZOI TRIGONOMETRIKOAK ANGELU BATEN ARRAZOI TRIGONOMETRIKOEN ARTEKO ERLAZIOAK
Trigonometria ANGELU BATEN ARRAZOI TRIGONOMETRIKOAK SINUA KOSINUA TANGENTEA ANGELU BATEN ARRAZOI TRIGONOMETRIKOEN ARTEKO ERLAZIOAK sin α + cos α = sin α cos α = tg α 0º, º ETA 60º-KO ANGELUEN ARRAZOI TRIGONOMETRIKOAK
MOTOR ASINKRONOAK TRIFASIKOAK Osaera Funtzionamendua Bornen kaxa: Konexio motak (Izar moduan edo triangelu moduan):...
Makina Elektrikoak MAKINA ELEKTRIKOAK... 3 Motak:... 3 Henry-Faradayren legea... 3 ALTERNADOREA:... 6 DINAMOA:... 7 Ariketak generadoreak (2010eko selektibitatekoa):... 8 TRANSFORMADOREAK:... 9 Ikurrak...
1. MATERIALEN EZAUGARRIAK
1. MATERIALEN EZAUGARRIAK Materialek dituzten ezaugarri kimiko, fisiko eta mekanikoek oso eragin handia dute edozein soldadura-lanetan. Hori guztia, hainbat prozesu erabiliz, metal desberdinen soldadura
Mikel Lizeaga 1 XII/12/06
0. Sarrera 1. X izpiak eta erradiazioa 2. Nukleoaren osaketa. Isotopoak 3. Nukleoaren egonkortasuna. Naturako oinarrizko interakzioak 4. Masa-defektua eta lotura-energia 5. Erradioaktibitatea 6. Zergatik
Solido zurruna 1: biraketa, inertzia-momentua eta momentu angeluarra
Solido zurruna 1: biraketa, inertzia-momentua eta momentu angeluarra Gaien Aurkibidea 1 Definizioa 1 2 Solido zurrunaren zinematika: translazioa eta biraketa 3 2.1 Translazio hutsa...........................
MATEMATIKARAKO SARRERA OCW 2015
MATEMATIKARAKO SARRERA OCW 2015 Mathieu Jarry iturria: Flickr CC-BY-NC-ND-2.0 https://www.flickr.com/photos/impactmatt/4581758027 Leire Legarreta Solaguren EHU-ko Zientzia eta Teknologia Fakultatea Matematika
1. Ur-ponpa batek 200 W-eko potentzia badu, kalkulatu zenbat ZP dira [0,27 ZP]
Ariketak Liburukoak (78-79 or): 1,2,3,4,7,8,9,10,11 Osagarriak 1. Ur-ponpa batek 200 W-eko potentzia badu, kalkulatu zenbat ZP dira [0,27 ZP] 2. Gorputz bat altxatzeko behar izan den energia 1,3 kwh-koa
Jose Miguel Campillo Robles. Ur-erlojuak
HIDRODINAMIKA Hidrodinamikako zenbait kontzeptu garrantzitsu Fluidoen garraioa Fluxua 3 Lerroak eta hodiak Jarraitasunaren ekuazioa 3 Momentuaren ekuazioa 4 Bernouilli-ren ekuazioa 4 Dedukzioa 4 Aplikazioak
15. EREMU EFEKTUKO TRANSISTOREAK I: SAILKAPENA ETA MOSFETA
15. EREMU EFEKTUKO TRANSISTOREAK I: SAILKAPENA ETA MOSFETA KONTZEPTUA Eremu-efektuko transistorea (Field Effect Transistor, FET) zirkuitu analogiko eta digitaletan maiz erabiltzen den transistore mota
Poisson prozesuak eta loturiko banaketak
Gizapedia Poisson banaketa Poisson banaketak epe batean (minutu batean, ordu batean, egun batean) gertaera puntualen kopuru bat (matxura kopurua, istripu kopurua, igarotzen den ibilgailu kopurua, webgune
1. INGENIARITZA INDUSTRIALA. INGENIARITZAREN OINARRI FISIKOAK 1. Partziala 2009.eko urtarrilaren 29a
1. Partziala 2009.eko urtarrilaren 29a ATAL TEORIKOA: Azterketaren atal honek bost puntu balio du totalean. Hiru ariketak berdin balio dute. IRAUPENA: 75 MINUTU. EZ IDATZI ARIKETA BIREN ERANTZUNAK ORRI
FISIKA ETA KIMIKA 4 DBH Lana eta energia
5 HASTEKO ESKEMA INTERNET Edukien eskema Energia Energia motak Energiaren propietateak Energia iturriak Energia iturrien sailkapena Erregai fosilen ustiapena Energia nuklearraren ustiapena Lana Zer da
Solido zurruna 2: dinamika eta estatika
Solido zurruna 2: dinamika eta estatika Gaien Aurkibidea 1 Solido zurrunaren dinamikaren ekuazioak 1 1.1 Masa-zentroarekiko ekuazioak.................... 3 2 Solido zurrunaren biraketaren dinamika 4 2.1
(1)σ (2)σ (3)σ (a)σ n
5 Gaia 5 Determinanteak 1 51 Talde Simetrikoa Gogoratu, X = {1,, n} bada, X-tik X-rako aplikazio bijektiboen multzoa taldea dela konposizioarekiko Talde hau, n mailako talde simetrikoa deitzen da eta S
1 GEOMETRIA DESKRIBATZAILEA...
Aurkibidea 1 GEOMETRIA DESKRIBATZAILEA... 1 1.1 Proiekzioa. Proiekzio motak... 3 1.2 Sistema diedrikoaren oinarriak... 5 1.3 Marrazketarako hitzarmenak. Notazioak... 10 1.4 Puntuaren, zuzenaren eta planoaren
Hidrogeno atomoaren energi mailen banatzea eremu kubiko batean
Hidrogeno atomoaren energi mailen banatzea eremu kubiko batean Pablo Mínguez Elektrika eta Elektronika Saila Euskal Herriko Unibertsitatea/Zientzi Fakultatea 644 P.K., 48080 BILBAO Laburpena: Atomo baten
Zirkunferentzia eta zirkulua
10 Zirkunferentzia eta zirkulua Helburuak Hamabostaldi honetan, hau ikasiko duzu: Zirkunferentzian eta zirkuluan agertzen diren elementuak identifikatzen. Puntu, zuzen eta zirkunferentzien posizio erlatiboak
2011 Kimikako Euskal Olinpiada
2011 Kimikako Euskal Olinpiada ARAUAK (Arretaz irakurri): Zuzena den erantzunaren inguruan zirkunferentzia bat egin. Ordu bete eta erdiko denbora epean ahalik eta erantzun zuzen gehien eman behar dituzu
ESTATISTIKA ENPRESARA APLIKATUA (Bigarren zatia: praktika). Irakaslea: Josemari Sarasola Data: 2016ko maiatzaren 12a - Iraupena: Ordu t erdi
ESTATISTIKA ENPRESARA APLIKATUA (Bigarren zatia: praktika). Irakaslea: Josemari Sarasola Data: 2016ko maiatzaren 12a - Iraupena: Ordu t erdi I. ebazkizuna (2.25 puntu) Poisson, esponentziala, LTZ Zentral
SELEKTIBITATEKO ARIKETAK: OPTIKA
SELEKTIBITATEKO ARIKETAK: OPTIKA TEORIA 1. (2012/2013) Argiaren errefrakzioa. Guztizko islapena. Zuntz optikoak. Azaldu errefrakzioaren fenomenoa, eta bere legeak eman. Guztizko islapen a azaldu eta definitu
EREMU GRABITATORIOA ETA UNIBERTSOKO GRABITAZIOA
AIXERROTA BHI EREMU GRABITATORIOA ETA UNIBERTSOKO GRABITAZIOA 2012 uztaila P1. Urtebete behar du Lurrak Eguzkiaren inguruko bira oso bat emateko, eta 149 milioi km ditu orbita horren batez besteko erradioak.
LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa
ELEKTROTEKNIA Makina elektriko estatikoak eta birakariak LANBIDE EKIMENA LANBIDE EKIMENA LANBIDE EKIMENA Proiektuaren bultzatzaileak Laguntzaileak LANBIDE HEZIKETAKO ZUZENDARITZA DIRECCION DE FORMACION
1. Oinarrizko kontzeptuak
1. Oinarrizko kontzeptuak Sarrera Ingeniaritza Termikoa deritzen ikasketetan hasi berri den edozein ikaslerentzat, funtsezkoa suertatzen da lehenik eta behin, seguru aski sarritan entzun edota erabili
3. Ikasgaia. MOLEKULA ORGANIKOEN GEOMETRIA: ORBITALEN HIBRIDAZIOA ISOMERIA ESPAZIALA:
3. Ikasgaia. MLEKULA RGAIKE GEMETRIA: RBITALE IBRIDAZIA KARB DERIBATUE ISMERIA ESPAZIALA Vant off eta LeBel-en proposamena RBITAL ATMIKE IBRIDAZIA ibridaio tetragonala ibridaio digonala Beste hibridaioak
ELEKTRIZITATEA. Elektrizitatearen atalak: 2.- Korronte elektrikoa. 1.- Karga elektrikoa Korronte elektrikoaren arriskuak
ELEKTRIZITATEA D.B.H. 1 Joseba Arruabarrena 2007ko Otsaila ren atalak: 1. Karga elektrikoa 2. Korronte elektrikoa 3. Zirkuitu elektrikoa 4. Magnitudeak: : Ohmen legea 5. Irudikapena eta ikurrak 6. Korronte
EIB sistemaren oinarriak 1
EIB sistemaren oinarriak 1 1.1. Sarrera 1.2. Ezaugarri orokorrak 1.3. Transmisio teknologia 1.4. Elikatze-sistema 1.5. Datuen eta elikatzearen arteko isolamendua 5 Instalazio automatizatuak: EIB bus-sistema
KONPUTAGAILUEN TEKNOLOGIAKO LABORATEGIA
eman ta zabal zazu Euskal Herriko Unibertsitatea Informatika Fakultatea Konputagailuen Arkitektura eta Teknologia saila KONPUTAGAILUEN TEKNOLOGIAKO LABORATEGIA KTL'2000-2001 Oinarrizko dokumentazioa lehenengo
ESTATISTIKA ENPRESARA APLIKATUA (Praktika: Bigarren zatia) Irakaslea: JOSEMARI SARASOLA Data: 2013ko maiatzaren 31a. Iraupena: 90 minutu
ESTATISTIKA ENPRESARA APLIKATUA (Praktika: Bigarren zatia) Irakaslea: JOSEMARI SARASOLA Data: 2013ko maiatzaren 31a. Iraupena: 90 minutu I. ebazkizuna Ekoizpen-prozesu batean pieza bakoitza akastuna edo
ARIKETAK (I) : KONPOSATU ORGANIKOEN LOTURAK [1 5. IKASGAIAK]
Arikk-I (1-5 Ikasgaiak) 1 ARIKETAK (I) : KPSATU RGAIKE LTURAK [1 5. IKASGAIAK] 1.- 3 6 formula molekularreko 8 egitur-formula marraztu. 2.- Azido bentzoiko solidoararen disolbagarritasuna urn honako hau
KONPUTAGAILUEN TEKNOLOGIAKO LABORATEGIA
eman ta zabal zazu Euskal Herriko Unibertsitatea Informatika Fakultatea Konputagailuen rkitektura eta Teknologia saila KONPUTGILUEN TEKNOLOGIKO LBORTEGI KTL'000-00 Bigarren parteko dokumentazioa: Sistema
ERREAKZIOAK. Adizio elektrozaleak Erredukzio erreakzioak Karbenoen adizioa Adizio oxidatzaileak Alkenoen hausketa oxidatzailea
ERREAKZIAK Adizio elektrozaleak Erredukzio erreakzioak Karbenoen adizioa Adizio oxidatzaileak Alkenoen hausketa oxidatzailea ADIZI ELEKTRZALEK ERREAKZIAK idrogeno halurozko adizioak Alkenoen hidratazioa
Emaitzak: a) 0,148 mol; 6,35 atm; b) 0,35; 0,32; 0,32; 2,2 atm; 2,03 atm; 2.03 atm c) 1,86; 0,043
KIMIKA OREKA KIMIKOA UZTAILA 2017 AP1 Emaitzak: a) 0,618; b) 0,029; 1,2 EKAINA 2017 AP1 Emaitzak:a) 0,165; 0,165; 1,17 mol b) 50 c) 8,89 atm UZTAILA 2016 BP1 Emaitzak: a) 0,148 mol; 6,35 atm; b) 0,35;
Energia-metaketa: erredox orekatik baterietara
Energia-metaketa: erredox orekatik baterietara Paula Serras Verónica Palomares ISBN: 978-84-9082-038-4 EUSKARAREN ARLOKO ERREKTOREORDETZAREN SARE ARGITALPENA Liburu honek UPV/EHUko Euskararen Arloko Errektoreordetzaren
4. Hipotesiak eta kontraste probak.
1 4. Hipotesiak eta kontraste probak. GAITASUNAK Gai hau bukatzerako ikaslea gai izango da ikerketa baten: - Helburua adierazteko. - Hipotesia adierazteko - Hipotesi nulua adierazteko - Hipotesi nulu estatistikoa
EUSKARA ERREKTOREORDETZAREN SARE ARGITALPENA
EUSKARA ERREKTOREORDETZAREN SARE ARGITALPENA 1.1. Topologia.. 1.. Aldagai anitzeko funtzio errealak. Definizioa. Adierazpen grafikoa... 5 1.3. Limitea. 6 1.4. Jarraitutasuna.. 9 11 14.1. Lehen mailako
Uhin guztien iturburua, argiarena, soinuarena, edo dena delakoarena bibratzen duen zerbait da.
1. Sarrera.. Uhin elastikoak 3. Uhin-higidura 4. Uhin-higiduraren ekuazioa 5. Energia eta intentsitatea uhin-higiduran 6. Uhinen arteko interferentziak. Gainezarmen printzipioa 7. Uhin geldikorrak 8. Huyghens-Fresnelen
Diamanteak osatzeko beharrezkoak diren baldintzak dira:
1 Diamanteak osatzeko beharrezkoak diren baldintzak dira: T= 2,000 C eta P= 50,000 a 100,000 atmosfera baldintza hauek bakarrik ematen dira sakonera 160 Km-koa denean eta beharrezkoak dira miloika eta
Antzekotasuna ANTZEKOTASUNA ANTZEKOTASUN- ARRAZOIA TALESEN TEOREMA TRIANGELUEN ANTZEKOTASUN-IRIZPIDEAK BIGARREN IRIZPIDEA. a b c
ntzekotasuna NTZEKOTSUN IRUI NTZEKOK NTZEKOTSUN- RRZOI NTZEKO IRUIK EGITE TLESEN TEOREM TRINGELUEN NTZEKOTSUN-IRIZPIEK LEHEN IRIZPIE $ = $' ; $ = $' IGRREN IRIZPIE a b c = = a' b' c' HIRUGRREN IRIZPIE
GAILU ETA ZIRKUITU ELEKTRONIKOAK. 2011/2015-eko AZTERKETEN BILDUMA (ENUNTZIATUAK ETA SOLUZIOAK)
GAILU ETA ZIRKUITU ELEKTRONIKOAK. 2011/2015-eko AZTERKETEN BILDUMA (ENUNTZIATUAK ETA SOLUZIOAK) Recart Barañano, Federico Pérez Manzano, Lourdes Uriarte del Río, Susana Gutiérrez Serrano, Rubén EUSKARAREN
DBH3 MATEMATIKA ikasturtea Errepaso. Soluzioak 1. Aixerrota BHI MATEMATIKA SAILA
DBH MATEMATIKA 009-010 ikasturtea Errepaso. Soluzioak 1 ALJEBRA EKUAZIOAK ETA EKUAZIO SISTEMAK. EBAZPENAK 1. Ebazpena: ( ) ( x + 1) ( )( ) x x 1 x+ 1 x 1 + 6 x + x+ 1 x x x 1+ 6 6x 6x x x 1 x + 1 6x x
Inekuazioak. Helburuak. 1. Ezezagun bateko lehen orria 74 mailako inekuazioak Definizioak Inekuazio baliokideak Ebazpena Inekuazio-sistemak
5 Inekuazioak Helburuak Hamabostaldi honetan hauxe ikasiko duzu: Ezezagun bateko lehen eta bigarren mailako inekuazioak ebazten. Ezezagun bateko ekuaziosistemak ebazten. Modu grafikoan bi ezezaguneko lehen
2. ELEKTRONIKA-LABORATEGIKO TEGIKO TRESNERIA 2.1 POLIMETROA Ω. 100 Ω. 10 Ω Analogikoa OINARRIZKO ELEKTRONIKA
2. ELEKTRONIKA-LABORATEGIKO TEGIKO TRESNERIA Elektronikan adituak bere lana ondo burutzeko behar dituen tresnak honakoak dira:.- Polimetro analogikoa edo digitala..- Elikatze-iturria..- Behe-maiztasuneko
LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa
Analisia eta Kontrola Materialak eta entsegu fisikoak LANBIDE EKIMENA LANBIDE EKIMENA LANBIDE EKIMENA Proiektuaren bultzatzaileak Laguntzaileak Hizkuntz koordinazioa Egilea(k): HOSTEINS UNZUETA, Ana Zuzenketak:
Antzekotasuna. Helburuak. Hasi baino lehen. 1.Antzekotasuna...orria 92 Antzeko figurak Talesen teorema Antzeko triangeluak
6 Antzekotasuna Helburuak Hamabostaldi honetan haue ikasiko duzu: Antzeko figurak ezagutzen eta marrazten. Triangeluen antzekotasunaren irizpideak aplikatzen. Katetoaren eta altueraren teoremak erakusten
OREKA KIMIKOA GAIEN ZERRENDA
GAIEN ZERRENDA Nola lortzen da oreka kimikoa? Oreka konstantearen formulazioa Kc eta Kp-ren arteko erlazioa Disoziazio-gradua Frakzio molarrak eta presio partzialak Oreka kimikoaren noranzkoa Le Chatelier-en
I. KAPITULUA Zenbakia. Aldagaia. Funtzioa
I. KAPITULUA Zenbakia. Aldagaia. Funtzioa 1. ZENBAKI ERREALAK. ZENBAKI ERREALEN ADIERAZPENA ZENBAKIZKO ARDATZEKO PUNTUEN BIDEZ Matematikaren oinarrizko kontzeptuetariko bat zenbakia da. Zenbakiaren kontzeptua
Zinematika 2: Higidura zirkular eta erlatiboa
Zinematika 2: Higidura zirkular eta erlatiboa Gaien Aurkibidea 1 Higidura zirkularra 1 1.1 Azelerazioaren osagai intrintsekoak higidura zirkularrean..... 3 1.2 Kasu partikularrak..........................
Gaiari lotutako EDUKIAK (127/2016 Dekretua, Batxilergoko curriculuma)
Termodinamika Gaiari lotutako EDUKIAK (127/2016 Dekretua, Batxilergoko curriculuma) Erreakzio kimikoetako transformazio energetikoak. Espontaneotasuna 1. Energia eta erreakzio kimikoa. Prozesu exotermikoak
PROGRAMA LABURRA (gutxiengoa)
PROGRAMA LABURRA gutiengoa Batilergo Zientiiko-Teknikoa MATEMATIKA I Ignacio Zuloaga BHI Eibar IGNACIO ZULOAGA B.I. EIBAR Gutiengo programa Zientiiko-Teknikoa. maila Ekuaio esponentialak Ariketa ebatiak:
Polimetroa. Osziloskopioa. Elikatze-iturria. Behe-maiztasuneko sorgailua.
Elektronika Analogikoa 1 ELEKTRONIKA- -LABORATEGIKO TRESNERIA SARRERA Elektronikako laborategian neurketa, baieztapen eta proba ugari eta desberdinak egin behar izaten dira, diseinatu eta muntatu diren
Unibertsitaera sartzeko hautaprobak 1995.eko Ekaina
Unibertsitaera sartzeko hautaprobak 1995.eko Ekaina FISIKA Aukera itzazu probletna-niuítzo bar eta bi gaidera A MULTZOA (3p) 1.- 1.000 kg-tako suziri bat orbitaan jarri da Lurreko gaínazaletik 800 km-tara
Atal honetan, laborategiko zirkuituetan oinarrizkoak diren osagai pasibo nagusiak analizatuko ditugu: erresistentziak, kondentsadoreak eta harilak.
1. SARRERA Atal honetan, laborategiko zirkuituetan oinarrizkoak diren osagai pasibo nagusiak analizatuko ditugu: erresistentziak, kondentsadoreak eta harilak. Horien artean interesgarrienak diren erresistentziak
3. KOADERNOA: Aldagai anitzeko funtzioak. Eugenio Mijangos
3. KOADERNOA: Aldagai anitzeko funtzioak Eugenio Mijangos 3. KOADERNOA: ALDAGAI ANITZEKO FUNTZIOAK Eugenio Mijangos Matematika Aplikatua, Estatistika eta Ikerkuntza Operatiboa Saila Zientzia eta Teknologia
1.1 Sarrera: telekomunikazio-sistemak
1 TELEKOMUNIKAZIOAK 1.1 Sarrera: telekomunikazio-sistemak Telekomunikazio komertzialetan bi sistema nagusi bereiz ditzakegu: irratia eta telebista. Telekomunikazio-sistema horiek, oraingoz, noranzko bakarrekoak
Funtzioak FUNTZIO KONTZEPTUA FUNTZIO BATEN ADIERAZPENAK ENUNTZIATUA TAULA FORMULA GRAFIKOA JARRAITUTASUNA EREMUA ETA IBILTARTEA EBAKIDURA-PUNTUAK
Funtzioak FUNTZIO KONTZEPTUA FUNTZIO BATEN ADIERAZPENAK ENUNTZIATUA TAULA FORMULA GRAFIKOA JARRAITUTASUNA EREMUA ETA IBILTARTEA EBAKIDURA-PUNTUAK GORAKORTASUNA ETA BEHERAKORTASUNA MAIMOAK ETA MINIMOAK
Oinarrizko mekanika:
OINARRIZKO MEKANIKA 5.fh11 /5/08 09:36 P gina C M Y CM MY CY CMY K 5 Lanbide Heziketarako Materialak Oinarrizko mekanika: mugimenduen transmisioa, makina arruntak eta mekanismoak Gloria Agirrebeitia Orue
6. Aldagai kualitatibo baten eta kuantitatibo baten arteko harremana
6. Aldagai kualitatibo baten eta kuantitatibo baten arteko harremana GAITASUNAK Gai hau bukatzerako ikaslea gai izango da: - Batezbestekoaren estimazioa biztanlerian kalkulatzeko. - Proba parametrikoak
FISIKA ETA KIMIKA 4 DBH Higidurak
1 HASTEKO ESKEMA INTERNET Edukien eskema Erreferentzia-sistemak Posizioa Ibibidea eta lekualdaketa Higidura motak Abiadura Abiadura eta segurtasun tartea Batez besteko abiadura eta aldiuneko abiadura Higidura
1.1. Aire konprimituzko teknikaren aurrerapenak
1.- SARRERA 1.1. Aire konprimituzko teknikaren aurrerapenak Aire konprimitua pertsonak ezagutzen duen energia-era zaharrenetarikoa da. Seguru dakigunez, KTESIBIOS grekoak duela 2.000 urte edo gehiago katapulta
Fisika. Jenaro Guisasola Ane Leniz Oier Azula. Irakaslearen gidaliburua BATXILERGOA 2
Fisika BATXILEGOA Irakaslearen gidaliburua Jenaro Guisasola Ane Leniz Oier Azula Obra honen edozein erreprodukzio modu, banaketa, komunikazio publiko edo aldaketa egiteko, nahitaezkoa da jabeen baimena,
Hasi baino lehen. Zenbaki errealak. 2. Zenbaki errealekin kalkulatuz...orria 9 Hurbilketak Erroreen neurketa Notazio zientifikoa
1 Zenbaki errealak Helburuak Hamabostaldi honetan hau ikasiko duzu: Zenbaki errealak arrazional eta irrazionaletan sailkatzen. Zenbaki hamartarrak emandako ordena bateraino hurbiltzen. Hurbilketa baten
Fisika BATXILERGOA 2. Jenaro Guisasola Ane Leniz Oier Azula
Fisika BATXILERGOA 2 Jenaro Guisasola Ane Leniz Oier Azula Obra honen edozein erreprodukzio modu, banaketa, komunikazio publiko edo aldaketa egiteko, nahitaezkoa da jabeen baimena, legeak aurrez ikusitako
BIZIDUNEN OSAERA ETA EGITURA
BIZIDUNEN OSAERA ETA EGITURA 1 1.1. EREDU ATOMIKO KLASIKOAK 1.2. SISTEMA PERIODIKOA 1.3. LOTURA KIMIKOA 1.3.1. LOTURA IONIKOA 1.3.2. LOTURA KOBALENTEA 1.4. LOTUREN POLARITATEA 1.5. MOLEKULEN ARTEKO INDARRAK
Oxidazio-erredukzio erreakzioak
Oxidazio-erredukzio erreakzioak Lan hau Creative Commons-en Nazioarteko 3.0 lizentziaren mendeko Azterketa-Ez komertzial-partekatu lizentziaren mende dago. Lizentzia horren kopia ikusteko, sartu http://creativecommons.org/licenses/by-ncsa/3.0/es/
6.1. Estatistika deskribatzailea.
6. gaia Ariketak. 6.1. Estatistika deskribatzailea. 1. Zerrenda honek edari-makina baten aurrean dauden 15 bezerok txanpona sartzen duenetik edaria atera arteko denbora (segundotan neurtuta) adierazten
UNIBERTSITATERA SARTZEKO HAUTAPROBAK ATOMOAREN EGITURA ETA SISTEMA PERIODIKOA. LOTURA KIMIKOA
UNIBERTSITATERA SARTZEKO HAUTAPROBAK ATOMOAREN EGITURA ETA SISTEMA PERIODIKOA. LOTURA KIMIKOA 1. (98 Ekaina) Demagun Cl - eta K + ioiak. a) Beraien konfigurazio elektronikoak idatz itzazu, eta elektroi
LAUGARREN MULTZOA: EREMU EFEKTUKO TRANSISTOREA
LAUGARREN MULZOA: EREMU EFEKUKO RANSSOREA 15. EREMU EFEKUKO RANSSOREAK : SALKAPENA EA MOSFEA 59 15.1 MOSFE transistorearen oinarria: MOS egitura 61 15.1.1 Metal-Oxido-Erdieroale egitura orekan 61 15.1.
LOTURA KIMIKOA :LOTURA KOBALENTEA
Lotura kobalenteetan ez-metalen atomoen arteko elektroiak konpartitu egiten dira. Atomo bat beste batengana hurbiltzen denean erakarpen-indar berriak sortzen dira elektroiak eta bere inguruko beste atomo