SELEKTIBITATEKO ARIKETAK: OPTIKA
|
|
- Ῥέα Ασπάσιος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 SELEKTIBITATEKO ARIKETAK: OPTIKA TEORIA 1. (2012/2013) Argiaren errefrakzioa. Guztizko islapena. Zuntz optikoak. Azaldu errefrakzioaren fenomenoa, eta bere legeak eman. Guztizko islapen a azaldu eta definitu muga-angelua. Deskribatu zuntz optikoa, eta haren zenbait aplikazio zerrendatu. (2,5 puntu) 2. (2009/2010) Deskribatu zer den argiaren errefrakzio fenomenoa. (puntu 1) Adierazi zein baldintzatan gertatzen den guztizko barne-islapen fenomenoa. (0,75 puntu) Deskribatu fenomeno horretaz baliatzen den dispositibo bat. (0,75 puntu) 3. (2009/2010) Ispilu ahur bat izanik, lortu grafikoki fokuaren eta ispiluaren artean dagoen objektu baten irudia (1,5 puntu) Deskribatu irudi horren ezaugarriak. (puntu 1) 4. ( ) Azaldu argi-sorta zuri batek prisma optiko bat zeharkatzen duenean gertatzen den fenomenoa. 5. ( ) Lente konbergente bat izanik, lortu grafikoki fokuaren eta lentearen artean dagoen objektu baten irudia. Aipatu irudi horren ezaugarriak. 6. Lente konbergente bat izanik, lortu grafikoki fokuaren eta lentearen artean dagoen objektu baten irudia. Aipatu irudi horren ezaugarriak. 7. a) Argiaren uhin izaera agerian jartzen duen fenomeno bat deskribatu. b) argiaren izaera gorpuzkularra agerian jartzen duen fenomeno bat deskribatu. c) argiaren zeharkako uhin izaera frogatzen duen fenomenoa deskribatu. 8. Azaldu zergatik diren prisma optikoak gai, argi zuriaren osagaiak hainbat norabidetan bereizteko. 9. Tresna optikoak: lupa, mikroskopioa eta betaurreko astronomikoa. 10. a) Argiaren islapen erabatekoaren fenomenoa azaldu b) Zuntz optikoaren funtzionamendua azaldu. 11. Deduzitu lente finen oinarrizko teoria. 12. Azaldu argiaren uhin izaera, uhin elektromagnetikoa den aldetik. 13. Azaldu argiaren dispertsio fenomenoa prisma optiko bat zeharkatzen duenean. 14. Argiaren errefrakzioa. Islapen erabatekoa 15. Azaldu argiaren polarizazio fenomenoa 16. Deduzitu ispiluen ekuazio orokorra 17. Azaldu: a) miopia zer den eta b) nola zuzen daitekeen. Azalpena marrazkiekin lagundu. TEORIA-PRAKTIKA 1. (2011/2012) a. Deskribatu zertan den argiaren errefrakzio fenomenoa, eta enuntziatu berau arautzen duten legeak. Adierazi zein baldintzatan gertatzen de guztizko barne-islapen fenomenoa. b. Argi monokromatiko izpi batek beira bat zeharkatzen du v = 1, m/s-ko abiaduran, eta beira/airea bereizten dituen gainazalari erasotzen dio α i = 30º-ko eraso-angeluarekin. Errefraktatutako izpiak airean α r = 56 º-ko errefrakzio angelua azaltzen du. Zehaztu muga-angelua. v 1=1, m/s 4. Gaia: Selektibitateko ariketak 1 IES Zizur BHI
2 2. (2009/2010) Deskribatu zer den argiaren errefrakzio fenomenoa. (puntu 1) Adierazi zein baldintzatan gertatzen den guztizko barne-islapen fenomenoa. (0,75 puntu) Deskribatu fenomeno horretaz baliatzen den dispositibo bat. (0,75 puntu) 3. (2009/2010) Ispilu ahur bat izanik, lortu grafikoki fokuaren eta ispiluaren artean dagoen objektu baten irudia (1,5 puntu) Deskribatu irudi horren ezaugarriak. (puntu 1) 4. ( ) Azaldu argi-sorta zuri batek prisma optiko bat zeharkatzen duenean gertatzen den fenomenoa. 5. ( ) Lente konbergente bat izanik, lortu grafikoki fokuaren eta lentearen artean dagoen objektu baten irudia. Aipatu irudi horren ezaugarriak. 6. (2007) Azaldu zergatik diren prisma optikoak gai, argi zuriaren osagaiak hainbat norabidetan bereizteko. (07 Iraila) 4. Gaia: Selektibitateko ariketak 2 IES Zizur BHI
3 4. Gaia: Selektibitateko ariketak 3 IES Zizur BHI
4 ARIKETAK 1. ( ) Ispilu baten bidez 2 cm-ko objektu baten irudia proiektatu nahi dugu pantaila lau baten gainean, irudiak 5 cm-ko tamaina izan dezan, a. Zer nolako ispilua erabili behar dugu? (0,25 puntu) b. Pantaila objektutik 3 m-ra badago, kalkulatu zein den distantzia ispilutik objektura, eta ispilutik irudira. (0,75 p) c. Kalkulatu ispiluaren erradioa (0,75 puntu) d. Egin eraikuntza geometrikoa (0,75 puntu) a) Pantaila batean proiektatu ahal izateko, osatutako irudiak erreala izan behar du, beraz ispiluak konkaboa izan behar du (konbexuek irudi birtualak sortzen baitituzte). Bestaldetik datuetatik hau ondorioztatu dezakegu: 1. Gogoratu ispiluetan irudi erreal guztiak alderantzikatuta daude; beraz y 2 <0 (negatiboa) da. 2. y 2 <y 1, beraz objektua C eta F artean dago. b) Eskatzen da s 1 eta s 2 kalkulatzea: c) s 2 = -3-2 = -5 m d) -3 m S 2 S 1 4. Gaia: Selektibitateko ariketak 4 IES Zizur BHI
5 2. ( ) Lente konbergente batek 10 cm-ko distantzia fokala dauka, eta bere ardatz optikoaren gainean perpendikular jarritako y = 1 cm-ko argi-objektu linean baten irudia osatzeko erabiltzen da. Argia ezkerretik eskuinera doa. a. Non jarriko dugu objektua, irudia lentearen eskuinean azaltzea eta objektua baino bi aldiz handiagoa izatea nahi badugu? Zein da irudiaren izaera? Marraztu irudiaren eraikuntza geometrikoa. b. Non jarriko dugu objektua, irudia lentearen ezkerrean 8 cm-tara azaltzea nahi badugu? Ezaugarritu irudia eta egin irudi horren eraikuntza geometrikoa. Irudia erreala izango da, handiagoa eta alderantzikatua a) b) s 1 s 1 s 2 = -8 cm f = -10 cm 4. Gaia: Selektibitateko ariketak 5 IES Zizur BHI
6 3. ( ) Ispilu esferiko ahur bat erabiltzen da pantaila lau batean 10 cm-ko garaiera duen objektu baten irudia proiektatzeko. Irudi horren tamaina 30 cm-koa izatea nahi badugu, pantaila objektutik 2 m-ra jarri behar dugu.. a. Zehaztu objektu eta irudi distantziak. (0,75 puntu) b. Zehaztu ispiluaren kurba-erradioa eta distantzia fokala. (0,75 puntu) c. Geometrikoki eratu irudia. (puntu 1) y 1 = 10 cm a) y 2 = 30 cm 2 m s 2 s 1 s 2 - s 1 = -2 (Negatiboa da distantzia hau jatorritik ezkerraldean dagoelako) s 2 (-1) = -2 s 2 = -3 m b) 4. ( ) Diapositiba proiektore baten lente konbergente batek +15,0 cm-ko distantzia fokala dauka, eta 3,5 cm zabal den diapositiba baten irudi garbia proiektatzen du lentetik 4,0 m-ra dagoen pantaila batean. a. Zer distantzia dago lentetik diapositiba jarrita dagoen tokiraino? (0,75 puntu) b. Zein da proiektoreak pantailan eratzen duen irudiaren tamaina? (0,50 puntu) c. Grafikoki eratu irudia. (1,25 puntu) a) b) 4. Gaia: Selektibitateko ariketak 6 IES Zizur BHI
7 5. ( ) Lente mehe konbergente batek bere aurrean dagoen objektu baten irudi erreala, iraulia eta objektua halako tamaina bikoitza duena ematen du. Irudi hori lentetik 30 cm-ra sortzen dela jakinda, kalkulatu: a. Lentearen potentzia dioptriatan. b. Lentearen aurrean 5 cm-ra objektu bat badago, lenteak sortuko duen irudiaren posizioa eta ezaugarriak eraikuntza geometrikoa eginez. a) Beraz b) 4. Gaia: Selektibitateko ariketak 7 IES Zizur BHI
8 6. ( ) Ispilu esferiko ganbil batek egiten du geldirik dagoen auto baten atzerako ispiluaren lana, eta abiadura konstantean hurbiltzen den ibilgailu baten irudi birtuala ematen du. Ibilgailua ispilutik 8 m-ra dagoenean, tamaina errealaren 1/10 da irudiaren tamaina. a. Zein da ispiluaren kurbadura erradioa? b. Ispilutik zer distantziatara sortzen da irudi birtuala? c. Egin izpien diagrama. 4. Gaia: Selektibitateko ariketak 8 IES Zizur BHI
9 7. Ispilu esferiko ahur batek 1,2 m-ko kurba-erradioa du. Bere aurrean, 90 cm-ra, 10 cm-ko altuera duen objektu bat paratzen da. a. kalkula ezazu irudia non eratzen den. b. Kalkula ezazu irudiaren tamaina c. Sistema grafikoki irudikatu, bere izpi-trazatuarekin. r =-1,2 m s 1 =-0,90 m y 1 = 0,10 m aldiz handiago egin den diapositiba baten irudia horma baten gainean proiektatu nahi dugu, lente baten bidez. Lentearen eta hormaren arteko distantzia 12 m da. a. Esan ezazu erantzuna arrazonatuz, zer lente mota behar den. b. Kalkulatu zer posiziotan jarri behar den diapositiba c. Kalkulatu lentearen distantzia fokala. a) Pantaila batean proiektatu ahal izateko, osatutako irudiak erreala izan behar du. Hori dela eta lente KONBERGENTEA erabiliko dugu (Dibergentea erabiliz irudi birtuala izango litzateke). Beste aldetik irudia handiago bat lortzeko fokutik hurbil kokatu behar dugu objektua (diapositiba) eta marrazkian ikusten den bezala lorturiko irudia alderantzikatuta dago. Beraz, proiektagailuan alderantziz kokatu behar dugu. b) Diapositibaren posizioa: s 1 20 aldiz handiagoa denez y 2 = - 20 y Gaia: Selektibitateko ariketak 9 IES Zizur BHI
10 9. Auto baten argiko ispilu ahurrak lanpararen 4 mm-ko harizpiaren irudia osatzen du ispilutik 3 m-ra dagoen pareta baten gainean. Irudia 0,3 m-koa da. Kalkulatu: a. Harizpia non dagoen jarrita ispiluarekiko b. Ispiluaren erradioa c. Sistema grafikoki irudikatu, bere izpi-trazatuarekin 1. Irudia pareta baten gainean eratzen da. Honek esan hani du irudia ERREALA dela (bestela ezin izango zen pantaila batean bildu) Bi baldintza hauek objektua kurbadura zentroan eta fokuaren artean kokatzen denean besterik ez dira betetzen 2. Beste aldetik irudia, objektua baino handiagoa da. IKURRAK: s 1 eta s 2 ezkerraldean daude, biak negatiboak izango dira. S 2 = - 3 m y 2 < 0; alderantzikatua baita. y 2 = - 0,3 m eta y 1 = 0,004 m a) Harizpia non dago? S 1 ( ) b) Ispiluaren erradioa? 4. Gaia: Selektibitateko ariketak 10 IES Zizur BHI
11 10. Ispilu ahur baten kurba erradioa R=1m da eta 0,1 cm garai den lodiera mespretxagarriko objektu bat ispiluaren aurrean dago, bere ardatz optikoaren gainean elkarzut eta ispiluaren gainetik, 0,2 m-ko distantzian ispilutik. Kalkulatu: a. irudia non eratzen den b. irudiaren tamaina c. irudikatu sistema grafikoki, bere izpi trazatuarekin a) b) Irudia zuzena, birtuala eta handiagoa da. 11. Argi izpi batek airetik uretara egiten du, halako moldez non izpi erasotzaileak 30ºko angelua egiten baitu aire-ura bereizten duen gainazalaren normalarekin eta izpi errefraktatuak 22ºko angelua egiten baitu aipatutako normalarekin. Kalkulatu: a. uraren errefrakzio indizea b. argiak uretan zehar edukiko duen hedapen abiadura c. angelu limitea, zeinetatik aurrera aire-ura hedapenean erabateko islapena gertatzen baita. Datuak: Airearen errefrakzio indizea: n=1; argiaren abiadura hutsean c= m/s a) b) Argiaren abiadura uretan: c) Ez dago angelu limiterik, airetik uretara pasatzen denean, errefrakzioa gero eta itxiagoa da eta islapena ez da inoiz gertatuko. Hori gertatu ahal izateko uretatik airera pasatu behar da, beti n txikiagoa duen ingurune batera pasatu behar da. 4. Gaia: Selektibitateko ariketak 11 IES Zizur BHI
12 12. Bi dioptria dituen lente ganbilbiko batetik 20 cm-ra 5 cm-ko altuera duen objektu bat daukagu. a) irudiaren posizioa eta tamaina kalkulatu, erreala edo alegiazkoa den aipatuz. b) sistema grafikoki irudikatu izpi trazatuak eta guzti. 13. Begi batek bere puntu hurbila 75 cm-ra baldin badauka, zein mota eta potentziako lenteak erabili beharko lituzke 25 cm.ra dagoen objektu bat garbi ikusi ahal izateko?. 14. Pertsona batek ezin ditu garbi ikusi 2,5 m baino urrunago dauden objektuak, bere urruneko puntua hori izanik. Determinatu: a) zein akats duen ikusmenean.b) erabili behar dituen betaurrekoen distantzia fokala. c) betaurreko-mota d) potentzia. 4. Gaia: Selektibitateko ariketak 12 IES Zizur BHI
ANGELUAK. 1. Bi zuzenen arteko angeluak. Paralelotasuna eta perpendikulartasuna
Metika espazioan ANGELUAK 1. Bi zuzenen ateko angeluak. Paalelotasuna eta pependikulatasuna eta s bi zuzenek eatzen duten angelua, beaiek mugatzen duten planoan osatzen duten angeluik txikiena da. A(x
= 32 eta β : z = 0 planoek osatzen duten angelua.
1 ARIKETA Kalkulatu α : 4x+ 3y+ 10z = 32 eta β : z = 0 planoek osatzen duten angelua. Aurki ezazu α planoak eta PH-k osatzen duten angelua. A'' A' 27 A''1 Ariketa hau plano-aldaketa baten bidez ebatzi
DERIBAZIO-ERREGELAK 1.- ALDAGAI ERREALEKO FUNTZIO ERREALAREN DERIBATUA. ( ) ( )
DERIBAZIO-ERREGELAK.- ALDAGAI ERREALEKO FUNTZIO ERREALAREN DERIBATUA. Izan bitez D multzo irekian definituriko f funtzio erreala eta puntuan deribagarria dela esaten da baldin f ( f ( D puntua. f zatidurak
SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA
SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA 1. (2015/2016) 20 cm-ko tarteak bereizten ditu bi karga puntual q 1 eta q 2. Bi kargek sortzen duten eremu elektrikoa q 1 kargatik 5 cm-ra dagoen A puntuan deuseztatu
Uhin guztien iturburua, argiarena, soinuarena, edo dena delakoarena bibratzen duen zerbait da.
1. Sarrera.. Uhin elastikoak 3. Uhin-higidura 4. Uhin-higiduraren ekuazioa 5. Energia eta intentsitatea uhin-higiduran 6. Uhinen arteko interferentziak. Gainezarmen printzipioa 7. Uhin geldikorrak 8. Huyghens-Fresnelen
Hirukiak,1. Inskribatutako zirkunferentzia. Zirkunskribatutako zirkunferentzia. Aldekidea. Isoszelea. Marraztu 53mm-ko aldedun hiruki aldekidea
Hirukiak, Poligonoa: elkar ebakitzen diren zuzenen bidez mugatutako planoaren zatia da. Hirukia: hiru aldeko poligonoa da. Hiruki baten zuzen bakoitza beste biren batuketa baino txiakiago da eta beste
Zirkunferentzia eta zirkulua
10 Zirkunferentzia eta zirkulua Helburuak Hamabostaldi honetan, hau ikasiko duzu: Zirkunferentzian eta zirkuluan agertzen diren elementuak identifikatzen. Puntu, zuzen eta zirkunferentzien posizio erlatiboak
1. Gaia: Mekanika Kuantikoaren Aurrekoak
1) Kimika Teorikoko Laborategia 2012.eko irailaren 12 Laburpena 1 Uhin-Partikula Dualtasuna 2 Trantsizio Atomikoak eta Espektroskopia Hidrogeno Atomoaren Espektroa Bohr-en Eredua 3 Argia: Partikula (Newton)
MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA:
MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA: Koaderno hau erabiltzeko oharrak: Koaderno hau egin bazaizu ere, liburuan ezer ere idatz ez dezazun izan da, Gogora ezazu, orain zure liburua den hori,
7.GAIA. ESTATISTIKA DESKRIBATZAILEA. x i n i N i f i
7.GAIA. ESTATISTIKA DESKRIBATZAILEA 1. Osatu ondorengo maiztasun-taula: x i N i f i 1 4 0.08 2 4 3 16 0.16 4 7 0.14 5 5 28 6 38 7 7 45 0.14 8 2. Ondorengo banaketaren batezbesteko aritmetikoa 11.5 dela
Trigonometria ANGELU BATEN ARRAZOI TRIGONOMETRIKOAK ANGELU BATEN ARRAZOI TRIGONOMETRIKOEN ARTEKO ERLAZIOAK
Trigonometria ANGELU BATEN ARRAZOI TRIGONOMETRIKOAK SINUA KOSINUA TANGENTEA ANGELU BATEN ARRAZOI TRIGONOMETRIKOEN ARTEKO ERLAZIOAK sin α + cos α = sin α cos α = tg α 0º, º ETA 60º-KO ANGELUEN ARRAZOI TRIGONOMETRIKOAK
INDUSTRI TEKNOLOGIA I, ENERGIA ARIKETAK
INDUSTRI TEKNOLOGIA I, ENERGIA ARIKETAK 1.-100 m 3 aire 33 Km/ordu-ko abiaduran mugitzen ari dira. Zenbateko energia zinetikoa dute? Datua: ρ airea = 1.225 Kg/m 3 2.-Zentral hidroelektriko batean ur Hm
1 GEOMETRIA DESKRIBATZAILEA...
Aurkibidea 1 GEOMETRIA DESKRIBATZAILEA... 1 1.1 Proiekzioa. Proiekzio motak... 3 1.2 Sistema diedrikoaren oinarriak... 5 1.3 Marrazketarako hitzarmenak. Notazioak... 10 1.4 Puntuaren, zuzenaren eta planoaren
ERREAKZIOAK. Adizio elektrozaleak Erredukzio erreakzioak Karbenoen adizioa Adizio oxidatzaileak Alkenoen hausketa oxidatzailea
ERREAKZIAK Adizio elektrozaleak Erredukzio erreakzioak Karbenoen adizioa Adizio oxidatzaileak Alkenoen hausketa oxidatzailea ADIZI ELEKTRZALEK ERREAKZIAK idrogeno halurozko adizioak Alkenoen hidratazioa
SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA
SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA 95i 10 cm-ko aldea duen karratu baten lau erpinetako hirutan, 5 μc-eko karga bat dago. Kalkula itzazu: a) Eremuaren intentsitatea laugarren erpinean. 8,63.10
MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA:
MATEMATIKAKO ARIKETAK. DBH 3. KOADERNOA IZENA: Koaderno hau erabiltzeko oharrak: Koaderno hau egin bazaizu ere, liburuan ezer ere idatz ez dezazun izan da, Gogora ezazu, orain zure liburua den hori, datorren
Solido zurruna 1: biraketa, inertzia-momentua eta momentu angeluarra
Solido zurruna 1: biraketa, inertzia-momentua eta momentu angeluarra Gaien Aurkibidea 1 Definizioa 1 2 Solido zurrunaren zinematika: translazioa eta biraketa 3 2.1 Translazio hutsa...........................
9.28 IRUDIA Espektro ikusgaiaren koloreak bilduz argi zuria berreskuratzen da.
9.12 Uhin elektromagnetiko lauak 359 Izpi ultramoreak Gasen deskargek, oso objektu beroek eta Eguzkiak sortzen dituzte. Erreakzio kimikoak sor ditzakete eta filmen bidez detektatzen dira. Erabilgarriak
EREMU GRABITATORIOA ETA UNIBERTSOKO GRABITAZIOA
AIXERROTA BHI EREMU GRABITATORIOA ETA UNIBERTSOKO GRABITAZIOA 2012 uztaila P1. Urtebete behar du Lurrak Eguzkiaren inguruko bira oso bat emateko, eta 149 milioi km ditu orbita horren batez besteko erradioak.
KANTEN ETIKA. Etika unibertsal baten bila. Gizaki guztientzat balioko zuen etika bat.
EN ETIKA Etika unibertsal baten bila. Gizaki guztientzat balioko zuen etika bat. Kantek esan zuen bera baino lehenagoko etikak etika materialak zirela 1 etika materialak Etika haiei material esaten zaie,
Antzekotasuna ANTZEKOTASUNA ANTZEKOTASUN- ARRAZOIA TALESEN TEOREMA TRIANGELUEN ANTZEKOTASUN-IRIZPIDEAK BIGARREN IRIZPIDEA. a b c
ntzekotasuna NTZEKOTSUN IRUI NTZEKOK NTZEKOTSUN- RRZOI NTZEKO IRUIK EGITE TLESEN TEOREM TRINGELUEN NTZEKOTSUN-IRIZPIEK LEHEN IRIZPIE $ = $' ; $ = $' IGRREN IRIZPIE a b c = = a' b' c' HIRUGRREN IRIZPIE
0.Gaia: Fisikarako sarrera. ARIKETAK
1. Zein da A gorputzaren gainean egin behar dugun indarraren balioa pausagunean dagoen B-gorputza eskuinalderantz 2 m desplazatzeko 4 s-tan. Kalkula itzazu 1 eta 2 soken tentsioak. (Iturria: IES Nicolas
12. GAIA: ZENTZUMEN BEREZIAK
12. GAIA: ZENTZUMEN BEREZIAK Existitzen diren bost zentzumen bereziak (usaimena, dastamena, entzumena, oreka eta ikusmena) entzefaloan kontzentratuak daude. Zentzumen somatikoetan bezala, hauetan ere,
Banaketa normala eta limitearen teorema zentrala
eta limitearen teorema zentrala Josemari Sarasola Estatistika enpresara aplikatua Josemari Sarasola Banaketa normala eta limitearen teorema zentrala 1 / 13 Estatistikan gehien erabiltzen den banakuntza
HASI ESKEMA INTERNET HASTEKO ESKEMA INTERNET
7 HASTEKO ESKEMA INTERNET Edukien eskema Uhin-higidura Soinua Higidura bibrakorra Soinu ekoizpena Uhin -higidura Uhin motak Uhin bat karakterizatzen duten magnitudeak Uhinen intentsitate eta energia Argia
1. Higidura periodikoak. Higidura oszilakorra. Higidura bibrakorra.
1. Higidura periodikoak. Higidura oszilakorra. Higidura bibrakorra. 2. Higidura harmoniko sinplearen ekuazioa. Grafikoak. 3. Abiadura eta azelerazioa hhs-an. Grafikoak. 4. Malguki baten oszilazioa. Osziladore
1. jarduera. Zer eragin du erresistentzia batek zirkuitu batean?
1. jarduera Zer eragin du erresistentzia batek zirkuitu batean? 1. Hastapeneko intentsitatearen neurketa Egin dezagun muntaia bat, generadore bat, anperemetro bat eta lanpa bat seriean lotuz. 2. Erresistentzia
EREMU NAGNETIKOA ETA INDUKZIO ELEKTROMAGNETIKOA
EREMU NAGNETIKOA ETA INDUKZIO ELEKTROMAGNETIKOA Datu orokorrak: Elektroiaren masa: 9,10 10-31 Kg, Protoiaren masa: 1,67 x 10-27 Kg Elektroiaren karga e = - 1,60 x 10-19 C µ ο = 4π 10-7 T m/ampere edo 4π
Funtzioak FUNTZIO KONTZEPTUA FUNTZIO BATEN ADIERAZPENAK ENUNTZIATUA TAULA FORMULA GRAFIKOA JARRAITUTASUNA EREMUA ETA IBILTARTEA EBAKIDURA-PUNTUAK
Funtzioak FUNTZIO KONTZEPTUA FUNTZIO BATEN ADIERAZPENAK ENUNTZIATUA TAULA FORMULA GRAFIKOA JARRAITUTASUNA EREMUA ETA IBILTARTEA EBAKIDURA-PUNTUAK GORAKORTASUNA ETA BEHERAKORTASUNA MAIMOAK ETA MINIMOAK
Inekuazioak. Helburuak. 1. Ezezagun bateko lehen orria 74 mailako inekuazioak Definizioak Inekuazio baliokideak Ebazpena Inekuazio-sistemak
5 Inekuazioak Helburuak Hamabostaldi honetan hauxe ikasiko duzu: Ezezagun bateko lehen eta bigarren mailako inekuazioak ebazten. Ezezagun bateko ekuaziosistemak ebazten. Modu grafikoan bi ezezaguneko lehen
FISIKA ETA KIMIKA 4 DBH Higidurak
1 HASTEKO ESKEMA INTERNET Edukien eskema Erreferentzia-sistemak Posizioa Ibibidea eta lekualdaketa Higidura motak Abiadura Abiadura eta segurtasun tartea Batez besteko abiadura eta aldiuneko abiadura Higidura
6.1. Estatistika deskribatzailea.
6. gaia Ariketak. 6.1. Estatistika deskribatzailea. 1. Zerrenda honek edari-makina baten aurrean dauden 15 bezerok txanpona sartzen duenetik edaria atera arteko denbora (segundotan neurtuta) adierazten
Fisika. Jenaro Guisasola Ane Leniz Oier Azula. Irakaslearen gidaliburua BATXILERGOA 2
Fisika BATXILEGOA Irakaslearen gidaliburua Jenaro Guisasola Ane Leniz Oier Azula Obra honen edozein erreprodukzio modu, banaketa, komunikazio publiko edo aldaketa egiteko, nahitaezkoa da jabeen baimena,
3. Ikasgaia. MOLEKULA ORGANIKOEN GEOMETRIA: ORBITALEN HIBRIDAZIOA ISOMERIA ESPAZIALA:
3. Ikasgaia. MLEKULA RGAIKE GEMETRIA: RBITALE IBRIDAZIA KARB DERIBATUE ISMERIA ESPAZIALA Vant off eta LeBel-en proposamena RBITAL ATMIKE IBRIDAZIA ibridaio tetragonala ibridaio digonala Beste hibridaioak
Solido zurruna 2: dinamika eta estatika
Solido zurruna 2: dinamika eta estatika Gaien Aurkibidea 1 Solido zurrunaren dinamikaren ekuazioak 1 1.1 Masa-zentroarekiko ekuazioak.................... 3 2 Solido zurrunaren biraketaren dinamika 4 2.1
Emaitzak: a) 0,148 mol; 6,35 atm; b) 0,35; 0,32; 0,32; 2,2 atm; 2,03 atm; 2.03 atm c) 1,86; 0,043
KIMIKA OREKA KIMIKOA UZTAILA 2017 AP1 Emaitzak: a) 0,618; b) 0,029; 1,2 EKAINA 2017 AP1 Emaitzak:a) 0,165; 0,165; 1,17 mol b) 50 c) 8,89 atm UZTAILA 2016 BP1 Emaitzak: a) 0,148 mol; 6,35 atm; b) 0,35;
DBH3 MATEMATIKA ikasturtea Errepaso. Soluzioak 1. Aixerrota BHI MATEMATIKA SAILA
DBH MATEMATIKA 009-010 ikasturtea Errepaso. Soluzioak 1 ALJEBRA EKUAZIOAK ETA EKUAZIO SISTEMAK. EBAZPENAK 1. Ebazpena: ( ) ( x + 1) ( )( ) x x 1 x+ 1 x 1 + 6 x + x+ 1 x x x 1+ 6 6x 6x x x 1 x + 1 6x x
9. K a p itu lu a. Ekuazio d iferen tzial arrun tak
9. K a p itu lu a Ekuazio d iferen tzial arrun tak 27 28 9. K A P IT U L U A E K U A Z IO D IF E R E N T Z IA L A R R U N T A K UEP D o n o stia M ate m atik a A p lik atu a S aila 29 Oharra: iku rra rekin
Antzekotasuna. Helburuak. Hasi baino lehen. 1.Antzekotasuna...orria 92 Antzeko figurak Talesen teorema Antzeko triangeluak
6 Antzekotasuna Helburuak Hamabostaldi honetan haue ikasiko duzu: Antzeko figurak ezagutzen eta marrazten. Triangeluen antzekotasunaren irizpideak aplikatzen. Katetoaren eta altueraren teoremak erakusten
Unibertsitaera sartzeko hautaprobak 1995.eko Ekaina
Unibertsitaera sartzeko hautaprobak 1995.eko Ekaina FISIKA Aukera itzazu probletna-niuítzo bar eta bi gaidera A MULTZOA (3p) 1.- 1.000 kg-tako suziri bat orbitaan jarri da Lurreko gaínazaletik 800 km-tara
1-A eta 1-8 ariketen artean bat aukeratu (2.5 puntu)
UNIBERTSITATERA SARTZEKO HAUTAPROBAK 2004ko EKAINA ELEKTROTEKNIA PRUEBAS DE ACCESO A LA UNIVERSIDAD JUNIO 2004 ELECTROTECNIA 1-A eta 1-8 ariketen artean bat aukeratu (2.5 1-A ARIKETA Zirkuitu elektriko
9. Gaia: Espektroskopiaren Oinarriak eta Espektro Atomiko
9. Gaia: Espektroskopiaren Oinarriak eta Espektro Atomikoak 1) Kimika Teorikoko Laborategia 2012.eko irailaren 21 Laburpena 1 Espektroskopiaren Oinarriak 2 Hidrogeno Atomoa Espektroskopia Esperimentua
Hasi baino lehen. Zenbaki errealak. 2. Zenbaki errealekin kalkulatuz...orria 9 Hurbilketak Erroreen neurketa Notazio zientifikoa
1 Zenbaki errealak Helburuak Hamabostaldi honetan hau ikasiko duzu: Zenbaki errealak arrazional eta irrazionaletan sailkatzen. Zenbaki hamartarrak emandako ordena bateraino hurbiltzen. Hurbilketa baten
Zinematika 2: Higidura zirkular eta erlatiboa
Zinematika 2: Higidura zirkular eta erlatiboa Gaien Aurkibidea 1 Higidura zirkularra 1 1.1 Azelerazioaren osagai intrintsekoak higidura zirkularrean..... 3 1.2 Kasu partikularrak..........................
1.1 Sarrera: telekomunikazio-sistemak
1 TELEKOMUNIKAZIOAK 1.1 Sarrera: telekomunikazio-sistemak Telekomunikazio komertzialetan bi sistema nagusi bereiz ditzakegu: irratia eta telebista. Telekomunikazio-sistema horiek, oraingoz, noranzko bakarrekoak
Jose Miguel Campillo Robles. Ur-erlojuak
HIDRODINAMIKA Hidrodinamikako zenbait kontzeptu garrantzitsu Fluidoen garraioa Fluxua 3 Lerroak eta hodiak Jarraitasunaren ekuazioa 3 Momentuaren ekuazioa 4 Bernouilli-ren ekuazioa 4 Dedukzioa 4 Aplikazioak
1. Ur-ponpa batek 200 W-eko potentzia badu, kalkulatu zenbat ZP dira [0,27 ZP]
Ariketak Liburukoak (78-79 or): 1,2,3,4,7,8,9,10,11 Osagarriak 1. Ur-ponpa batek 200 W-eko potentzia badu, kalkulatu zenbat ZP dira [0,27 ZP] 2. Gorputz bat altxatzeko behar izan den energia 1,3 kwh-koa
1.1. Aire konprimituzko teknikaren aurrerapenak
1.- SARRERA 1.1. Aire konprimituzko teknikaren aurrerapenak Aire konprimitua pertsonak ezagutzen duen energia-era zaharrenetarikoa da. Seguru dakigunez, KTESIBIOS grekoak duela 2.000 urte edo gehiago katapulta
Zenbaki errealak ZENBAKI ERREALAK HURBILKETAK ERROREAK HURBILKETETAN ZENBAKI ZENBAKI ARRAZIONALAK ORDENA- ERLAZIOAK IRRAZIONALAK
Zenbaki errealak ZENBAKI ERREALAK ZENBAKI ARRAZIONALAK ORDENA- ERLAZIOAK ZENBAKI IRRAZIONALAK HURBILKETAK LABURTZEA BIRIBILTZEA GEHIAGOZ ERROREAK HURBILKETETAN Lagun ezezaguna Mezua premiazkoa zirudien
PROGRAMA LABURRA (gutxiengoa)
PROGRAMA LABURRA gutiengoa Batilergo Zientiiko-Teknikoa MATEMATIKA I Ignacio Zuloaga BHI Eibar IGNACIO ZULOAGA B.I. EIBAR Gutiengo programa Zientiiko-Teknikoa. maila Ekuaio esponentialak Ariketa ebatiak:
ARRAZOI TRIGONOMETRIKOAK
ARRAZOI TRIGONOMETRIKOAK 1.- LEHEN DEFINIZIOAK Jatorri edo erpin berdina duten bi zuzenerdien artean gelditzen den plano zatiari, angelua planoan deitzen zaio. Zirkunferentziaren zentroan erpina duten
1. INGENIARITZA INDUSTRIALA. INGENIARITZAREN OINARRI FISIKOAK 1. Partziala 2009.eko urtarrilaren 29a
1. Partziala 2009.eko urtarrilaren 29a ATAL TEORIKOA: Azterketaren atal honek bost puntu balio du totalean. Hiru ariketak berdin balio dute. IRAUPENA: 75 MINUTU. EZ IDATZI ARIKETA BIREN ERANTZUNAK ORRI
Ordenadore bidezko irudigintza
Ordenadore bidezko irudigintza Joseba Makazaga 1 Donostiako Informatika Fakultateko irakaslea Konputazio Zientziak eta Adimen Artifiziala Saileko kidea Asier Lasa 2 Donostiako Informatika Fakultateko ikaslea
Oinarrizko mekanika:
OINARRIZKO MEKANIKA 5.fh11 /5/08 09:36 P gina C M Y CM MY CY CMY K 5 Lanbide Heziketarako Materialak Oinarrizko mekanika: mugimenduen transmisioa, makina arruntak eta mekanismoak Gloria Agirrebeitia Orue
UNITATE DIDAKTIKOA ELEKTRIZITATEA D.B.H JARDUERA. KORRONTE ELEKTRIKOA. Helio atomoa ASKATASUNA BHI 1.- ATOMOAK ETA KORRONTE ELEKTRIKOA
1. JARDUERA. KORRONTE ELEKTRIKOA. 1 1.- ATOMOAK ETA KORRONTE ELEKTRIKOA Material guztiak atomo deitzen diegun partikula oso ttipiez osatzen dira. Atomoen erdigunea positiboki kargatua egon ohi da eta tinkoa
Fisika BATXILERGOA 2. Jenaro Guisasola Ane Leniz Oier Azula
Fisika BATXILERGOA 2 Jenaro Guisasola Ane Leniz Oier Azula Obra honen edozein erreprodukzio modu, banaketa, komunikazio publiko edo aldaketa egiteko, nahitaezkoa da jabeen baimena, legeak aurrez ikusitako
6. Aldagai kualitatibo baten eta kuantitatibo baten arteko harremana
6. Aldagai kualitatibo baten eta kuantitatibo baten arteko harremana GAITASUNAK Gai hau bukatzerako ikaslea gai izango da: - Batezbestekoaren estimazioa biztanlerian kalkulatzeko. - Proba parametrikoak
Aldagai Anitzeko Funtzioak
Aldagai Anitzeko Funtzioak Bi aldagaiko funtzioak Funtzio hauen balioak bi aldagai independenteen menpekoak dira: 1. Adibidea: x eta y aldeetako laukizuzenaren azalera, S, honela kalkulatzen da: S = x
EUSKARA ERREKTOREORDETZAREN SARE ARGITALPENA
EUSKARA ERREKTOREORDETZAREN SARE ARGITALPENA 1.1. Topologia.. 1.. Aldagai anitzeko funtzio errealak. Definizioa. Adierazpen grafikoa... 5 1.3. Limitea. 6 1.4. Jarraitutasuna.. 9 11 14.1. Lehen mailako
Oxidazio-erredukzio erreakzioak
Oxidazio-erredukzio erreakzioak Lan hau Creative Commons-en Nazioarteko 3.0 lizentziaren mendeko Azterketa-Ez komertzial-partekatu lizentziaren mende dago. Lizentzia horren kopia ikusteko, sartu http://creativecommons.org/licenses/by-ncsa/3.0/es/
Elementu baten ezaugarriak mantentzen dituen partikularik txikiena da atomoa.
Atomoa 1 1.1. MATERIAREN EGITURA Elektrizitatea eta elektronika ulertzeko gorputzen egitura ezagutu behar da; hau da, gorputz bakun guztiak hainbat partikula txikik osatzen dituztela kontuan hartu behar
ESTATISTIKA ENPRESARA APLIKATUA (Bigarren zatia: praktika). Irakaslea: Josemari Sarasola Data: 2016ko maiatzaren 12a - Iraupena: Ordu t erdi
ESTATISTIKA ENPRESARA APLIKATUA (Bigarren zatia: praktika). Irakaslea: Josemari Sarasola Data: 2016ko maiatzaren 12a - Iraupena: Ordu t erdi I. ebazkizuna (2.25 puntu) Poisson, esponentziala, LTZ Zentral
2011 Kimikako Euskal Olinpiada
2011 Kimikako Euskal Olinpiada ARAUAK (Arretaz irakurri): Zuzena den erantzunaren inguruan zirkunferentzia bat egin. Ordu bete eta erdiko denbora epean ahalik eta erantzun zuzen gehien eman behar dituzu
ESTATISTIKA ENPRESARA APLIKATUA (Praktika: Bigarren zatia) Irakaslea: JOSEMARI SARASOLA Data: 2013ko maiatzaren 31a. Iraupena: 90 minutu
ESTATISTIKA ENPRESARA APLIKATUA (Praktika: Bigarren zatia) Irakaslea: JOSEMARI SARASOLA Data: 2013ko maiatzaren 31a. Iraupena: 90 minutu I. ebazkizuna Ekoizpen-prozesu batean pieza bakoitza akastuna edo
7. K a p itu lu a. Integ ra l a nizk o itza k
7. K a p itu lu a Integ ra l a nizk o itza k 61 62 7. K A P IT U L U A IN T E G R A L A N IZ K O IT Z A K UEP D o n o stia M ate m atik a A p lik atu a S aila 7.1. ARAZOAREN AURKEZPENA 63 7.1 A ra zo a
Diamanteak osatzeko beharrezkoak diren baldintzak dira:
1 Diamanteak osatzeko beharrezkoak diren baldintzak dira: T= 2,000 C eta P= 50,000 a 100,000 atmosfera baldintza hauek bakarrik ematen dira sakonera 160 Km-koa denean eta beharrezkoak dira miloika eta
1. MATERIAREN PROPIETATE OROKORRAK
http://thales.cica.es/rd/recursos/rd98/fisica/01/fisica-01.html 1. MATERIAREN PROPIETATE OROKORRAK 1.1. BOLUMENA Nazioarteko Sisteman bolumen unitatea metro kubikoa da (m 3 ). Hala ere, likido eta gasen
LOTURA KIMIKOA :LOTURA KOBALENTEA
Lotura kobalenteetan ez-metalen atomoen arteko elektroiak konpartitu egiten dira. Atomo bat beste batengana hurbiltzen denean erakarpen-indar berriak sortzen dira elektroiak eta bere inguruko beste atomo
UNIBERTSITATERA SARTZEKO HAUTAPROBAK ATOMOAREN EGITURA ETA SISTEMA PERIODIKOA. LOTURA KIMIKOA
UNIBERTSITATERA SARTZEKO HAUTAPROBAK ATOMOAREN EGITURA ETA SISTEMA PERIODIKOA. LOTURA KIMIKOA 1. (98 Ekaina) Demagun Cl - eta K + ioiak. a) Beraien konfigurazio elektronikoak idatz itzazu, eta elektroi
I. KAPITULUA Zenbakia. Aldagaia. Funtzioa
I. KAPITULUA Zenbakia. Aldagaia. Funtzioa 1. ZENBAKI ERREALAK. ZENBAKI ERREALEN ADIERAZPENA ZENBAKIZKO ARDATZEKO PUNTUEN BIDEZ Matematikaren oinarrizko kontzeptuetariko bat zenbakia da. Zenbakiaren kontzeptua
2011ko UZTAILA KIMIKA
A AUKERA 2ko UZTAILA KIMIKA P.. 8 g hidrogeno eta 522.8 g iodo (biak gasegoeran eta molekula gisa) berotzen ditugunean, orekan 279 g hidrogeno ioduro (gasegoeran) sortzen dira 55 ºCan (arinki exotermikoa
1 Aljebra trukakorraren oinarriak
1 Aljebra trukakorraren oinarriak 1.1. Eraztunak eta gorputzak Geometria aljebraikoa ikasten hasi aurretik, hainbat egitura aljebraiko ezagutu behar ditu irakurleak: espazio bektorialak, taldeak, gorputzak,
Agoitz DBHI Unitatea: JOKU ELEKTRIKOA Orria: 1 AGOITZ. Lan Proposamena
Agoitz DBHI Unitatea: JOKU ELEKTRIKOA Orria: 1 1. AKTIBITATEA Lan Proposamena ARAZOA Zurezko oinarri baten gainean joko elektriko bat eraiki. Modu honetan jokoan asmatzen dugunean eta ukitzen dugunean
3. K a p itu lu a. Aldagai errealek o fu n tzio errealak
3 K a p itu lu a Aldagai errealek o fu n tzio errealak 13 14 3 K AP IT U L U A AL D AG AI E R R E AL E K O F U N T Z IO E R R E AL AK UEP D o n o stia M ate m atik a A p lik atu a S aila 31 FUNTZIOAK:
Gaiari lotutako EDUKIAK (127/2016 Dekretua, Batxilergoko curriculuma)
Termodinamika Gaiari lotutako EDUKIAK (127/2016 Dekretua, Batxilergoko curriculuma) Erreakzio kimikoetako transformazio energetikoak. Espontaneotasuna 1. Energia eta erreakzio kimikoa. Prozesu exotermikoak
ARIKETAK (I) : KONPOSATU ORGANIKOEN LOTURAK [1 5. IKASGAIAK]
Arikk-I (1-5 Ikasgaiak) 1 ARIKETAK (I) : KPSATU RGAIKE LTURAK [1 5. IKASGAIAK] 1.- 3 6 formula molekularreko 8 egitur-formula marraztu. 2.- Azido bentzoiko solidoararen disolbagarritasuna urn honako hau
EREDU ATOMIKOAK.- ZENBAKI KUANTIKOAK.- KONFIGURAZIO ELEKTRONIKOA EREDU ATOMIKOAK
EREDU ATOMIKOAK Historian zehar, atomoari buruzko eredu desberdinak sortu dira. Teknologia hobetzen duen neurrian datu gehiago lortzen ziren atomoaren izaera ezagutzeko, Beraz, beharrezkoa da aztertzea,
PLANETENTZAKO AURKITZAILEAK
ASTRONOMIA PLANETENTZAKO AURKITZAILEAK Jesus Arregi Ortzean planetak ezagutzeko, eskuarki, bi ohar eman ohi dira. Lehenengoa, izarrekiko duten posizioa aldatu egiten dutela, nahiz eta posizio-aldaketa
3. KOADERNOA: Aldagai anitzeko funtzioak. Eugenio Mijangos
3. KOADERNOA: Aldagai anitzeko funtzioak Eugenio Mijangos 3. KOADERNOA: ALDAGAI ANITZEKO FUNTZIOAK Eugenio Mijangos Matematika Aplikatua, Estatistika eta Ikerkuntza Operatiboa Saila Zientzia eta Teknologia
Ekuazioak eta sistemak
4 Ekuazioak eta sistemak Helburuak Hamabostaldi honetan hauxe ikasiko duzu: Bigarren mailako ekuazio osoak eta osatugabeak ebazten. Ekuazio bikarratuak eta bigarren mailako batera murriztu daitezkeen beste
ESTATISTIKA ETA DATUEN ANALISIA. BIGARREN ZATIA: Praktika. Data: 2012ko ekainaren 25. Ordua: 12:00
ESTATISTIKA ETA DATUEN ANALISIA. BIGARREN ZATIA: Praktika. I. ebazkizuna Data: 2012ko ekainaren 25. Ordua: 12:00 Makina bateko erregai-kontsumoa (litrotan) eta ekoizpena (kilotan) jaso dira ordu batzuetan
4. Hipotesiak eta kontraste probak.
1 4. Hipotesiak eta kontraste probak. GAITASUNAK Gai hau bukatzerako ikaslea gai izango da ikerketa baten: - Helburua adierazteko. - Hipotesia adierazteko - Hipotesi nulua adierazteko - Hipotesi nulu estatistikoa
Gorputz geometrikoak
orputz geometrikoak POLIEDROAK ELEMENTUAK EULERREN FORMULA PRISMAK ETA PIRAMIDEAK ELEMENTUAK MOTAK AZALERAK BIRAKETA-ORPUTZAK IRUDI ESFERIKOAK AZALERAK BOLUMENAK CAVALIERIREN PRINTZIPIOA PRISMEN ETA PIRAMIDEEN
5. GAIA Solido zurruna
5. GAIA Solido zurruna 5.1 IRUDIA Giroskopioaren prezesioa. 161 162 5 Solido zurruna Solido zurruna partikula-sistema errazenetakoa dugu. Definizioak (hau da, puntuen arteko distantziak konstanteak izateak)
Proba parametrikoak. Josemari Sarasola. Gizapedia. Josemari Sarasola Proba parametrikoak 1 / 20
Josemari Sarasola Gizapedia Josemari Sarasola Proba parametrikoak 1 / 20 Zer den proba parametrikoa Proba parametrikoak hipotesi parametrikoak (hau da parametro batek hartzen duen balioari buruzkoak) frogatzen
1. Oinarrizko kontzeptuak
1. Oinarrizko kontzeptuak Sarrera Ingeniaritza Termikoa deritzen ikasketetan hasi berri den edozein ikaslerentzat, funtsezkoa suertatzen da lehenik eta behin, seguru aski sarritan entzun edota erabili
1. SARRERA. 2. OSZILOSKOPIO ANALOGIKOA 2.1 Funtzionamenduaren oinarriak
1. SARRERA Osziloskopioa, tentsio batek denborarekin duen aldaketa irudikatzeko tresna da. v(t) ADIBIDEZ Y Ardatza (adib.): 1 dibisio = 1 V X Ardatza (adib.): 1 dibisio = 1 ms t 4.1 Irudia. Osziloskopioaren
15. EREMU EFEKTUKO TRANSISTOREAK I: SAILKAPENA ETA MOSFETA
15. EREMU EFEKTUKO TRANSISTOREAK I: SAILKAPENA ETA MOSFETA KONTZEPTUA Eremu-efektuko transistorea (Field Effect Transistor, FET) zirkuitu analogiko eta digitaletan maiz erabiltzen den transistore mota
Irrati-teleskopioak. NASAk Robledoko Astrobiologia Zentroan (INTA-CSIC) duen irrati-teleskopioa erabiliz egindako proiektu akademikoa.
Irrati-teleskopioak Laburpena Unitate honetan, irrati-teleskopioen berri emango diegu ikasleei; irrati-teleskopioak teleskopio optikoekin alderatuko ditugu, nola ibiltzen diren azalduko dugu eta haien
BIZIDUNEN OSAERA ETA EGITURA
BIZIDUNEN OSAERA ETA EGITURA 1 1.1. EREDU ATOMIKO KLASIKOAK 1.2. SISTEMA PERIODIKOA 1.3. LOTURA KIMIKOA 1.3.1. LOTURA IONIKOA 1.3.2. LOTURA KOBALENTEA 1.4. LOTUREN POLARITATEA 1.5. MOLEKULEN ARTEKO INDARRAK
GAILU ETA ZIRKUITU ELEKTRONIKOAK. 2011/2015-eko AZTERKETEN BILDUMA (ENUNTZIATUAK ETA SOLUZIOAK)
GAILU ETA ZIRKUITU ELEKTRONIKOAK. 2011/2015-eko AZTERKETEN BILDUMA (ENUNTZIATUAK ETA SOLUZIOAK) Recart Barañano, Federico Pérez Manzano, Lourdes Uriarte del Río, Susana Gutiérrez Serrano, Rubén EUSKARAREN
3. K a p itu lu a. Aldagai errealek o fu n tzio errealak
3. K a p itu lu a Aldagai errealek o fu n tzio errealak 49 50 3. K AP IT U L U A AL D AG AI E R R E AL E K O F U N T Z IO E R R E AL AK UEP D o n o stia M ate m atik a A p lik atu a S aila 3.1. ARAZOAREN
LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa
Elektroteknia: Ariketa ebatzien bilduma LANBDE EKMENA LANBDE EKMENA LANBDE EKMENA roiektuaren bultzatzaileak Laguntzaileak Hizkuntz koordinazioa Egilea(k): JAO AAGA, Oscar. Ondarroa-Lekeitio BH, Ondarroa
KIMIKA-2001 uztaila. c) Badakigu 7 litro gastatzen dituela 100 km-tan; beraz,
KIMIKA-2001 uztaila Al Auto bat daukagu, zazpi litro gasolina C 8 H 18 (l) 100 km-ko gastatzen dituena. a) gasolinaren errekuntz erreakzioa, doituta, idatz ezazu. b) gasolinaren errekuntz entalpiaren balioa
LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa
Analisia eta Kontrola Materialak eta entsegu fisikoak LANBIDE EKIMENA LANBIDE EKIMENA LANBIDE EKIMENA Proiektuaren bultzatzaileak Laguntzaileak Hizkuntz koordinazioa Egilea(k): HOSTEINS UNZUETA, Ana Zuzenketak:
Oinarrizko Elektronika Laborategia I PRAKTIKAK
Oinarrizko Elektronika Laborategia I PRAKTIKAK I. PRAKTIKA - Osziloskopioa I. Alternoko voltimetroa. Karga efektua. Helburuak Osziloskopioaren aginteen erabilpenean trebatzea. Neurgailuek zirkuituan eragiten
Mikel Lizeaga 1 XII/12/06
0. Sarrera 1. X izpiak eta erradiazioa 2. Nukleoaren osaketa. Isotopoak 3. Nukleoaren egonkortasuna. Naturako oinarrizko interakzioak 4. Masa-defektua eta lotura-energia 5. Erradioaktibitatea 6. Zergatik
1.- Hiru puntutatik konmutaturiko lanpara: 2.- Motore baten bira noranzkoaren aldaketa konmutadore baten bitartez: 3.- Praktika diodoekin:
1.- Hiru puntutatik konmutaturiko lanpara: 2.- Motore baten bira noranzkoaren aldaketa konmutadore baten bitartez: 3.- Praktika diodoekin: 1 Tentsio gorakada edo pikoa errele batean: Ikertu behar dugu
Makina elektrikoetan sortzen diren energi aldaketak eremu magnetikoaren barnean egiten dira: M A K I N A. Sorgailua. Motorea.
Magnetismoa M1. MGNETISMO M1.1. Unitate magnetikoak Makina elektrikoetan sortzen diren energi aldaketak eremu magnetikoaren barnean egiten dira: M K I N Energia Mekanikoa Sorgailua Energia Elektrikoa Energia
4. GAIA Indar zentralak
4. GAIA Indar zentralak 4.1 IRUDIA Planeten higiduraren ezaugarri batzuen simulazio mekanikoa zientzia-museoan. 121 122 4 Indar zentralak Aarteko garrantzia izan dute fisikaren historian indar zentralek: