Hirukiak,1. Inskribatutako zirkunferentzia. Zirkunskribatutako zirkunferentzia. Aldekidea. Isoszelea. Marraztu 53mm-ko aldedun hiruki aldekidea
|
|
- Κλεόπας Αγγελοπούλου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Hirukiak, Poligonoa: elkar ebakitzen diren zuzenen bidez mugatutako planoaren zatia da. Hirukia: hiru aldeko poligonoa da. Hiruki baten zuzen bakoitza beste biren batuketa baino txiakiago da eta beste biren keneketa baino handiagoa da. Hiruki baten barne angeluen batuketa 8º da. Hiruki baten erpinak letra larriz adierazten dira (angeluak ere batzutan) eta aurkako aldeak letra berdina baina xehez ldeen arabera, hirukiak izaten dira: ldekideak (aldeak berdinak) Isoszeleak (bi alde berdin) edo Eskalenoak (hiru aldeak ezberdinak) ngeluen ed arabera, hirukiak izaten dira: Zorrotzak (hiru angeluak <9º txikiagoak) ngeluzuzena (angelu bat = 9º) edo Kamutsa (angelu bat >9º handiagoa) Inskribatutako zirkunferentzia Zirkunskribatutako zirkunferentzia ldekidea Isoszelea Eskalenoa Zorrotza ngeluzuzena Kamutsa Marraztu mm-ko aldedun hiruki aldekidea Marraztu hiruki angeluzuzen hau: bere katetuak: mm. eta mm.-koak dira Marraztu hiruki angeluzuzena: hipotenusa:a=7mm. katetua:b=mm Marraztu hiruki angeluzuzena:katetua: b=mm. eta C angelua: C=º Marraztu hiruki angeluzuzena: katetuen batuketa: c+b=78mm. hipotenusa: mm. Marraztu hiruki angeluzuzena: katetuen kenketa:: c-b=8mm. hipotenusa: mm. hirumt
2 Hirukiak Egin ezazu hiruki angeluzuzena: perimetroa: 8mm. c katetua: mm. Egin ezazu hiruki angeluzuzen eta isoszelea: hipotenusa: mm. α Egin ezazu hiruki isoszelea:. oina: mm. eta aldameneko angelua: α Egin ezazu hiruki isoszelea, alde berdinak: mm dira eta osatzen duten angelua: º α Egin ezazu hiruki isoszelea, bere oina mm da eta aurkako angelua: α hirumt Egin ezazu hiruki hau: bere aldeen neurriak: mm. mm. eta 77mm. dira
3 Hirukiak angelu bat: 7º ; aldameneko bi aldeak: mm. eta mm. oina: mm. eta aldameneko angeluak: º eta º α Egin ezazu hiruki datu hauekin bi alde: 7mm. eta mm. eta horietako alde batekiko aurkako angelua: α angelua: º, b aldea: eta beste biren kenketa: c-a: 8mm. α β perimetroa: 8mm. eta aldameneko angeluak α, β hirumt bere perimetroa: 8mm. aldeak, 9, eta 7-rekiko proportzionalak dira.
4 Laukiak Laukia: lau aldeko poligonoa da. ere barne-angeluen batuketa ¼ da. Paralelogramo, trapezio eta trapezoideen artean sailkatzen dira. Paralelogramoak: aurkako bi aldeak paraleloak dira beti. karratu, laukizuzena, erronboa edo erronboidean bereizten dira. Karratuak: lau alde berdinak eta barneko angeluak zuzenak dituzte. Diagonal berdinak eta elkartzutak dituzte. Laukizuzenak: aldeak berdinak binaka, barneko angeluak zuzenak eta diagonal berdinak baina ez dute angelu zuzenik osatzen. Erronboak: lau alde berdinak, aurkako angeluak berdinak, aldamenekoekin betegarriak, diagonalak elkartzutak erdibitzaileetan ebakitzen direla. Erronboideak: aurkako aldeak berdinak, aldameneko angeluak betegarriak. Trapezioak: bi alde paralelo dituzten laukiak (oinak deitzen direnak) angeluzuzen, isoszele edo eskalenoan bereizten dira. Trapezio angeluzuzena: paraleloa ez den alde bat oinekiko elkartzuta da. Trapezio isoszelea: paraleloak ez diren aldeak berdinak eta simetrikoak dira. Trapezio eskalenoa: trapezio arruntena da. Trapezoidea: lauki arruntena da. Diagonala: poligono batean aldemeneko ez diren bi erpin lotzen duen zuzena da. Lauki ganbil inskribatua: bere lau erpin zirkunferentzi batean kokatuta daudenean. urkako angeluak betegarriak dira. Laukizuzena Karratua Erronboa Erronboidea Trapezio angeluzuzen Trapezio isoszelea Trapezio eskalenoa Trapezoidea Egin ezazu mm. aldedun karratua Egin ezazu mm. diagonala duen karratua Egin ezazu laukizuzen hau: aldeen neurriak: 8mm. eta mm. Egin ezazu laukizuzen hau: aldea: mm. eta diagonala: mm. laumt
5 Laukiak p b k α Egin ezazu laukizuzena: perimetro erdia: p zuzenkia eta bere diagonalak osatzen duten angelua: α. Egin ezazu laukizuzena, bere alde ezberdinen batuketa eta kenketa emanda Egin ezazu erronboa: bere diagonalak: mm. eta 7mm. dira Egin ezazu erronboa: aldea: mm. eta diagonal nagusia: mm. Egin ezazu erronboa: altuera:mm. eta diagonal nagusia: 7mm. Egin ezazu erronboa: aldea: 7mm. diagonalen batuketa: mm. laumt
6 Laukiak Egin ezazu erronboidea: aldeak: mm. eta mm. formatzen duten angelua: º Egin ezazu trapezio angeluzuzena: oina: 7mm. altuera: mm. eta aldea: mm. Egin ezazu trapezio isoszelea: oina nagusia: 7mm. oina txikia: mm. eta altuera: mm. Egin ezazu trapezio eskalenoa: oinak: mm. eta mm. diagonal bat: mm. eta oinarekiko º angelua osatzen du. = mm. D= mm. D= 9mm. C= 7mm. DC= mm. Egin ezazu trapezio eskalenoa: oinak: mm. eta mm. diagonalak: mm. eta mm. laumt Egin ezazu trapezoidea: lau alde eta diagonal bat ezagututa.
7 Poligono erregularrak- SISTEM OROKORRK Erradioa ezagututa ldea ezagututa polorokor
8 Poligono erregularrak Poligono erregularra: bere alde eta angelu guztiak berdinak dira Poligono irregularra: bere alde eta angelu guztiak ez dira berdinak. Inskribatutako poligonoa: bere erpinak zirkunferentzi batean kokatuak daude. Zirkunskribatutako poligonoa: bere aldeak zirkunferentzi batekiko ukitzaileak dira. Poligono erregular guztiak inskribatu eta zirkunskribatu daitezke. Poligono ganbila: bere osotasunean, bere aldetako zuzen batekiko planuerdi berdinean gelditzen denean. Zirkunferentziaren zatiketa: eta zati berdinetan Zirkunferentzian Inskribatutako hiruki eta hexagonoa eraiki Zirkunferentziaren zatiketa: eta 8 zati berdinetan Zirkunferentzian Inskribatutako karratu eta oktogonoa eraiki Zirkunferentziaren zatiketa: eta zati berdinetan Zirkunferentzian Inskribatutako pentagono eta dekagono eraiki Zirkunferentziaren zatiketa: "n" zati berdinetan Zirkunferentzian Inskribatutako heptagonoa, sistema orokorraz Marraztu pentagono erregularra aldea emanda: l= mm. polmt Marraztu hexagono erregularra aldea emanda: l= mm.
9 Poligono erregularrak, Pentagonoa Hexagonoa Hepatgonoa Hepatgonoa Oktogonoa Eneagonoa Eneagonoa Dekagonoa Dodekagonoa Izar erregularrak lortzeko, poligono ganbil erregularren aldeak bina edo hiruna, edo... lotuz. Inskribatu zirkunferentzian puntako izar erregularra ldea ezagututa, eraiki puntako izar erregularra Marraztu zirkunferentzian 7 puntako izar erregularra Inskribatu zirkunferentzian 8 puntako izar erregularra Marraztu zirkunferentzian 9 puntako izar erregularra polmt Inskribatu zirkunferentzian puntako izar erregularra
10 Poligono erregularrak, Hirukia Karratua Pentagonoa Hexagonoa Hepatgonoa Oktogonoa Eneagonoa Dekagonoa Undekagonoa Dodekagonoa ldea ezagututa, eraiki pentagono erregularra ldea ezagututa, eraiki hexagono erregularra ldea ezagututa, eraiki heptagonoa ldea ezagututa, eraiki oktogono erregularra Marraztu dekagono erregularra aldea emanda: l= mm. polmt eta -ren arteko aldeko poligonoen eraikuntza, aldea ezagututa. Marraztu eneagonoa aldea emanda: l= mm.
11 Marrazketa teknikoa -. Ebaluaketa. Izena: Taldea: Zirkunferentziaren zatiketa zati berdinetan Zirkunferentzian Inskribatutako pentagono sistema orokorrez eraiki ldea ezagututa, eraiki heptagonoa sistema orokorrez b k Egin ezazu erronboa: aldea: 7mm. diagonalen batuketa: mm. Egin ezazu trapezio eskalenoa: oinak: mm. eta mm. diagonalak: mm. eta mm. polaztrkimt Egin ezazu laukizuzena, bere alde ezberdinen batuketa eta kenketa emanda
12 Marrazketa teknikoa -. Ebaluaketa. Izena: Taldea: Zirkunferentziaren zatiketa 7 zati berdinetan Zirkunferentzian Inskribatutako heptagonoa sistema orokorraz eraiki ldea ezagututa, eraiki pentagonoa sistema orokorraz Emandako zirkunferentzian, inskribatu aldeko poligonoerregularra sistema orokorraz = mm. D= mm. D= mm. C= mm. DC= mm. Egin ezazu trapezoidea: lau alde eta diagonal bat ezagututa. polaztrkemt Marraztu hiruki angeluzuzena: katetuen batuketa: c+b=8mm. hipotenusa: mm
13 Marrazketa teknikoa -. Ebaluaketa. Izena: Taldea: Zirkunferentziaren zatiketa zati berdinetan Zirkunferentzian Inskribatutako undekagonoa sistema orokorraz eraiki ldea ezagututa, eraiki eneagonoa sistema orokorraz Egin ezazu hiruki angeluzuzena: perimetroa: 8mm. c katetua: mm. α β perimetroa: mm. eta aldameneko angeluak α, β polaztrkhmt Egin ezazu erronboa: aldea: 7mm. diagonalen batuketa: mm.
14 Marrazketa teknikoa -. Ebaluaketa. Izena: Taldea: α β perimetroa: 9mm. eta aldameneko angeluak α, β ldea ezagututa, eraiki heptagono bat sistema orokorraz bere perimetroa:mm. aldeak, 9, eta -rekiko proportzionalak dira. Emandako zirkunferentzian, inskribatu zazpi aldeko poligono erregularra Egin ezazu erronboa: altuera:mm. eta diagonal nagusia: 7mm. polaztrkermt
MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA:
MATEMATIKAKO ARIKETAK. DBH 3. KOADERNOA IZENA: Koaderno hau erabiltzeko oharrak: Koaderno hau egin bazaizu ere, liburuan ezer ere idatz ez dezazun izan da, Gogora ezazu, orain zure liburua den hori, datorren
MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA:
MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA: Koaderno hau erabiltzeko oharrak: Koaderno hau egin bazaizu ere, liburuan ezer ere idatz ez dezazun izan da, Gogora ezazu, orain zure liburua den hori,
= 32 eta β : z = 0 planoek osatzen duten angelua.
1 ARIKETA Kalkulatu α : 4x+ 3y+ 10z = 32 eta β : z = 0 planoek osatzen duten angelua. Aurki ezazu α planoak eta PH-k osatzen duten angelua. A'' A' 27 A''1 Ariketa hau plano-aldaketa baten bidez ebatzi
Antzekotasuna ANTZEKOTASUNA ANTZEKOTASUN- ARRAZOIA TALESEN TEOREMA TRIANGELUEN ANTZEKOTASUN-IRIZPIDEAK BIGARREN IRIZPIDEA. a b c
ntzekotasuna NTZEKOTSUN IRUI NTZEKOK NTZEKOTSUN- RRZOI NTZEKO IRUIK EGITE TLESEN TEOREM TRINGELUEN NTZEKOTSUN-IRIZPIEK LEHEN IRIZPIE $ = $' ; $ = $' IGRREN IRIZPIE a b c = = a' b' c' HIRUGRREN IRIZPIE
ANGELUAK. 1. Bi zuzenen arteko angeluak. Paralelotasuna eta perpendikulartasuna
Metika espazioan ANGELUAK 1. Bi zuzenen ateko angeluak. Paalelotasuna eta pependikulatasuna eta s bi zuzenek eatzen duten angelua, beaiek mugatzen duten planoan osatzen duten angeluik txikiena da. A(x
Trigonometria ANGELU BATEN ARRAZOI TRIGONOMETRIKOAK ANGELU BATEN ARRAZOI TRIGONOMETRIKOEN ARTEKO ERLAZIOAK
Trigonometria ANGELU BATEN ARRAZOI TRIGONOMETRIKOAK SINUA KOSINUA TANGENTEA ANGELU BATEN ARRAZOI TRIGONOMETRIKOEN ARTEKO ERLAZIOAK sin α + cos α = sin α cos α = tg α 0º, º ETA 60º-KO ANGELUEN ARRAZOI TRIGONOMETRIKOAK
1 GEOMETRIA DESKRIBATZAILEA...
Aurkibidea 1 GEOMETRIA DESKRIBATZAILEA... 1 1.1 Proiekzioa. Proiekzio motak... 3 1.2 Sistema diedrikoaren oinarriak... 5 1.3 Marrazketarako hitzarmenak. Notazioak... 10 1.4 Puntuaren, zuzenaren eta planoaren
Antzekotasuna. Helburuak. Hasi baino lehen. 1.Antzekotasuna...orria 92 Antzeko figurak Talesen teorema Antzeko triangeluak
6 Antzekotasuna Helburuak Hamabostaldi honetan haue ikasiko duzu: Antzeko figurak ezagutzen eta marrazten. Triangeluen antzekotasunaren irizpideak aplikatzen. Katetoaren eta altueraren teoremak erakusten
Zirkunferentzia eta zirkulua
10 Zirkunferentzia eta zirkulua Helburuak Hamabostaldi honetan, hau ikasiko duzu: Zirkunferentzian eta zirkuluan agertzen diren elementuak identifikatzen. Puntu, zuzen eta zirkunferentzien posizio erlatiboak
ARRAZOI TRIGONOMETRIKOAK
ARRAZOI TRIGONOMETRIKOAK 1.- LEHEN DEFINIZIOAK Jatorri edo erpin berdina duten bi zuzenerdien artean gelditzen den plano zatiari, angelua planoan deitzen zaio. Zirkunferentziaren zentroan erpina duten
3. Ikasgaia. MOLEKULA ORGANIKOEN GEOMETRIA: ORBITALEN HIBRIDAZIOA ISOMERIA ESPAZIALA:
3. Ikasgaia. MLEKULA RGAIKE GEMETRIA: RBITALE IBRIDAZIA KARB DERIBATUE ISMERIA ESPAZIALA Vant off eta LeBel-en proposamena RBITAL ATMIKE IBRIDAZIA ibridaio tetragonala ibridaio digonala Beste hibridaioak
DERIBAZIO-ERREGELAK 1.- ALDAGAI ERREALEKO FUNTZIO ERREALAREN DERIBATUA. ( ) ( )
DERIBAZIO-ERREGELAK.- ALDAGAI ERREALEKO FUNTZIO ERREALAREN DERIBATUA. Izan bitez D multzo irekian definituriko f funtzio erreala eta puntuan deribagarria dela esaten da baldin f ( f ( D puntua. f zatidurak
Banaketa normala eta limitearen teorema zentrala
eta limitearen teorema zentrala Josemari Sarasola Estatistika enpresara aplikatua Josemari Sarasola Banaketa normala eta limitearen teorema zentrala 1 / 13 Estatistikan gehien erabiltzen den banakuntza
7.GAIA. ESTATISTIKA DESKRIBATZAILEA. x i n i N i f i
7.GAIA. ESTATISTIKA DESKRIBATZAILEA 1. Osatu ondorengo maiztasun-taula: x i N i f i 1 4 0.08 2 4 3 16 0.16 4 7 0.14 5 5 28 6 38 7 7 45 0.14 8 2. Ondorengo banaketaren batezbesteko aritmetikoa 11.5 dela
PROGRAMA LABURRA (gutxiengoa)
PROGRAMA LABURRA gutiengoa Batilergo Zientiiko-Teknikoa MATEMATIKA I Ignacio Zuloaga BHI Eibar IGNACIO ZULOAGA B.I. EIBAR Gutiengo programa Zientiiko-Teknikoa. maila Ekuaio esponentialak Ariketa ebatiak:
9. Gaia: Espektroskopiaren Oinarriak eta Espektro Atomiko
9. Gaia: Espektroskopiaren Oinarriak eta Espektro Atomikoak 1) Kimika Teorikoko Laborategia 2012.eko irailaren 21 Laburpena 1 Espektroskopiaren Oinarriak 2 Hidrogeno Atomoa Espektroskopia Esperimentua
Gorputz geometrikoak
orputz geometrikoak POLIEDROAK ELEMENTUAK EULERREN FORMULA PRISMAK ETA PIRAMIDEAK ELEMENTUAK MOTAK AZALERAK BIRAKETA-ORPUTZAK IRUDI ESFERIKOAK AZALERAK BOLUMENAK CAVALIERIREN PRINTZIPIOA PRISMEN ETA PIRAMIDEEN
ERREAKZIOAK. Adizio elektrozaleak Erredukzio erreakzioak Karbenoen adizioa Adizio oxidatzaileak Alkenoen hausketa oxidatzailea
ERREAKZIAK Adizio elektrozaleak Erredukzio erreakzioak Karbenoen adizioa Adizio oxidatzaileak Alkenoen hausketa oxidatzailea ADIZI ELEKTRZALEK ERREAKZIAK idrogeno halurozko adizioak Alkenoen hidratazioa
1. jarduera. Zer eragin du erresistentzia batek zirkuitu batean?
1. jarduera Zer eragin du erresistentzia batek zirkuitu batean? 1. Hastapeneko intentsitatearen neurketa Egin dezagun muntaia bat, generadore bat, anperemetro bat eta lanpa bat seriean lotuz. 2. Erresistentzia
1. Gaia: Mekanika Kuantikoaren Aurrekoak
1) Kimika Teorikoko Laborategia 2012.eko irailaren 12 Laburpena 1 Uhin-Partikula Dualtasuna 2 Trantsizio Atomikoak eta Espektroskopia Hidrogeno Atomoaren Espektroa Bohr-en Eredua 3 Argia: Partikula (Newton)
Hasi baino lehen. Zenbaki errealak. 2. Zenbaki errealekin kalkulatuz...orria 9 Hurbilketak Erroreen neurketa Notazio zientifikoa
1 Zenbaki errealak Helburuak Hamabostaldi honetan hau ikasiko duzu: Zenbaki errealak arrazional eta irrazionaletan sailkatzen. Zenbaki hamartarrak emandako ordena bateraino hurbiltzen. Hurbilketa baten
Zenbaki errealak ZENBAKI ERREALAK HURBILKETAK ERROREAK HURBILKETETAN ZENBAKI ZENBAKI ARRAZIONALAK ORDENA- ERLAZIOAK IRRAZIONALAK
Zenbaki errealak ZENBAKI ERREALAK ZENBAKI ARRAZIONALAK ORDENA- ERLAZIOAK ZENBAKI IRRAZIONALAK HURBILKETAK LABURTZEA BIRIBILTZEA GEHIAGOZ ERROREAK HURBILKETETAN Lagun ezezaguna Mezua premiazkoa zirudien
4. Hipotesiak eta kontraste probak.
1 4. Hipotesiak eta kontraste probak. GAITASUNAK Gai hau bukatzerako ikaslea gai izango da ikerketa baten: - Helburua adierazteko. - Hipotesia adierazteko - Hipotesi nulua adierazteko - Hipotesi nulu estatistikoa
Solido zurruna 1: biraketa, inertzia-momentua eta momentu angeluarra
Solido zurruna 1: biraketa, inertzia-momentua eta momentu angeluarra Gaien Aurkibidea 1 Definizioa 1 2 Solido zurrunaren zinematika: translazioa eta biraketa 3 2.1 Translazio hutsa...........................
SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA
SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA 95i 10 cm-ko aldea duen karratu baten lau erpinetako hirutan, 5 μc-eko karga bat dago. Kalkula itzazu: a) Eremuaren intentsitatea laugarren erpinean. 8,63.10
Ekuazioak eta sistemak
4 Ekuazioak eta sistemak Helburuak Hamabostaldi honetan hauxe ikasiko duzu: Bigarren mailako ekuazio osoak eta osatugabeak ebazten. Ekuazio bikarratuak eta bigarren mailako batera murriztu daitezkeen beste
SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA
SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA 1. (2015/2016) 20 cm-ko tarteak bereizten ditu bi karga puntual q 1 eta q 2. Bi kargek sortzen duten eremu elektrikoa q 1 kargatik 5 cm-ra dagoen A puntuan deuseztatu
DBH3 MATEMATIKA ikasturtea Errepaso. Soluzioak 1. Aixerrota BHI MATEMATIKA SAILA
DBH MATEMATIKA 009-010 ikasturtea Errepaso. Soluzioak 1 ALJEBRA EKUAZIOAK ETA EKUAZIO SISTEMAK. EBAZPENAK 1. Ebazpena: ( ) ( x + 1) ( )( ) x x 1 x+ 1 x 1 + 6 x + x+ 1 x x x 1+ 6 6x 6x x x 1 x + 1 6x x
SELEKTIBITATEKO ARIKETAK: OPTIKA
SELEKTIBITATEKO ARIKETAK: OPTIKA TEORIA 1. (2012/2013) Argiaren errefrakzioa. Guztizko islapena. Zuntz optikoak. Azaldu errefrakzioaren fenomenoa, eta bere legeak eman. Guztizko islapen a azaldu eta definitu
Zinematika 2: Higidura zirkular eta erlatiboa
Zinematika 2: Higidura zirkular eta erlatiboa Gaien Aurkibidea 1 Higidura zirkularra 1 1.1 Azelerazioaren osagai intrintsekoak higidura zirkularrean..... 3 1.2 Kasu partikularrak..........................
Agoitz DBHI Unitatea: JOKU ELEKTRIKOA Orria: 1 AGOITZ. Lan Proposamena
Agoitz DBHI Unitatea: JOKU ELEKTRIKOA Orria: 1 1. AKTIBITATEA Lan Proposamena ARAZOA Zurezko oinarri baten gainean joko elektriko bat eraiki. Modu honetan jokoan asmatzen dugunean eta ukitzen dugunean
1-A eta 1-8 ariketen artean bat aukeratu (2.5 puntu)
UNIBERTSITATERA SARTZEKO HAUTAPROBAK 2004ko EKAINA ELEKTROTEKNIA PRUEBAS DE ACCESO A LA UNIVERSIDAD JUNIO 2004 ELECTROTECNIA 1-A eta 1-8 ariketen artean bat aukeratu (2.5 1-A ARIKETA Zirkuitu elektriko
Funtzioak FUNTZIO KONTZEPTUA FUNTZIO BATEN ADIERAZPENAK ENUNTZIATUA TAULA FORMULA GRAFIKOA JARRAITUTASUNA EREMUA ETA IBILTARTEA EBAKIDURA-PUNTUAK
Funtzioak FUNTZIO KONTZEPTUA FUNTZIO BATEN ADIERAZPENAK ENUNTZIATUA TAULA FORMULA GRAFIKOA JARRAITUTASUNA EREMUA ETA IBILTARTEA EBAKIDURA-PUNTUAK GORAKORTASUNA ETA BEHERAKORTASUNA MAIMOAK ETA MINIMOAK
MARRAZKETA TEKNIKOA. Batxilergoa 1. Rafael Ciriza Roberto Galarraga Mª Angeles García José Antonio Oriozabala. erein
MRRZKET TEKNIKO atxilegoa 1 Rafael Ciiza Robeto Galaaga Mª ngeles Gacía José ntonio Oiozabala eein Eusko Jaulaitzako Hezkuntza, Unibetsitate eta Ikeketa sailak onetsia (2003-09-25) zalaen diseinua: Itui
3. K a p itu lu a. Aldagai errealek o fu n tzio errealak
3 K a p itu lu a Aldagai errealek o fu n tzio errealak 13 14 3 K AP IT U L U A AL D AG AI E R R E AL E K O F U N T Z IO E R R E AL AK UEP D o n o stia M ate m atik a A p lik atu a S aila 31 FUNTZIOAK:
EREDU ATOMIKOAK.- ZENBAKI KUANTIKOAK.- KONFIGURAZIO ELEKTRONIKOA EREDU ATOMIKOAK
EREDU ATOMIKOAK Historian zehar, atomoari buruzko eredu desberdinak sortu dira. Teknologia hobetzen duen neurrian datu gehiago lortzen ziren atomoaren izaera ezagutzeko, Beraz, beharrezkoa da aztertzea,
1. Oinarrizko kontzeptuak
1. Oinarrizko kontzeptuak Sarrera Ingeniaritza Termikoa deritzen ikasketetan hasi berri den edozein ikaslerentzat, funtsezkoa suertatzen da lehenik eta behin, seguru aski sarritan entzun edota erabili
9. K a p itu lu a. Ekuazio d iferen tzial arrun tak
9. K a p itu lu a Ekuazio d iferen tzial arrun tak 27 28 9. K A P IT U L U A E K U A Z IO D IF E R E N T Z IA L A R R U N T A K UEP D o n o stia M ate m atik a A p lik atu a S aila 29 Oharra: iku rra rekin
Aldagai Anitzeko Funtzioak
Aldagai Anitzeko Funtzioak Bi aldagaiko funtzioak Funtzio hauen balioak bi aldagai independenteen menpekoak dira: 1. Adibidea: x eta y aldeetako laukizuzenaren azalera, S, honela kalkulatzen da: S = x
LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa
Elektroteknia: Ariketa ebatzien bilduma LANBDE EKMENA LANBDE EKMENA LANBDE EKMENA roiektuaren bultzatzaileak Laguntzaileak Hizkuntz koordinazioa Egilea(k): JAO AAGA, Oscar. Ondarroa-Lekeitio BH, Ondarroa
MATEMATIKARAKO SARRERA OCW 2015
MATEMATIKARAKO SARRERA OCW 2015 Mathieu Jarry iturria: Flickr CC-BY-NC-ND-2.0 https://www.flickr.com/photos/impactmatt/4581758027 Leire Legarreta Solaguren EHU-ko Zientzia eta Teknologia Fakultatea Matematika
Elementu baten ezaugarriak mantentzen dituen partikularik txikiena da atomoa.
Atomoa 1 1.1. MATERIAREN EGITURA Elektrizitatea eta elektronika ulertzeko gorputzen egitura ezagutu behar da; hau da, gorputz bakun guztiak hainbat partikula txikik osatzen dituztela kontuan hartu behar
Inekuazioak. Helburuak. 1. Ezezagun bateko lehen orria 74 mailako inekuazioak Definizioak Inekuazio baliokideak Ebazpena Inekuazio-sistemak
5 Inekuazioak Helburuak Hamabostaldi honetan hauxe ikasiko duzu: Ezezagun bateko lehen eta bigarren mailako inekuazioak ebazten. Ezezagun bateko ekuaziosistemak ebazten. Modu grafikoan bi ezezaguneko lehen
FISIKA ETA KIMIKA 4 DBH Higidurak
1 HASTEKO ESKEMA INTERNET Edukien eskema Erreferentzia-sistemak Posizioa Ibibidea eta lekualdaketa Higidura motak Abiadura Abiadura eta segurtasun tartea Batez besteko abiadura eta aldiuneko abiadura Higidura
ARIKETAK (I) : KONPOSATU ORGANIKOEN LOTURAK [1 5. IKASGAIAK]
Arikk-I (1-5 Ikasgaiak) 1 ARIKETAK (I) : KPSATU RGAIKE LTURAK [1 5. IKASGAIAK] 1.- 3 6 formula molekularreko 8 egitur-formula marraztu. 2.- Azido bentzoiko solidoararen disolbagarritasuna urn honako hau
Definizioa. 1.Gaia: Estatistika Deskribatzailea. Definizioa. Definizioa. Definizioa. Definizioa
Defiizioa 1Gaia: Estatistika Deskribatzailea Cristia Alcalde - Aratxa Zatarai Doostiako Uibertsitate Eskola Politekikoa - UPV/EHU Populazioa Elemetu multzo bate ezaugarrire bat ezagutu ahi duguea elemetu
Solido zurruna 2: dinamika eta estatika
Solido zurruna 2: dinamika eta estatika Gaien Aurkibidea 1 Solido zurrunaren dinamikaren ekuazioak 1 1.1 Masa-zentroarekiko ekuazioak.................... 3 2 Solido zurrunaren biraketaren dinamika 4 2.1
ESTATISTIKA ENPRESARA APLIKATUA (Praktika: Bigarren zatia) Irakaslea: JOSEMARI SARASOLA Data: 2013ko maiatzaren 31a. Iraupena: 90 minutu
ESTATISTIKA ENPRESARA APLIKATUA (Praktika: Bigarren zatia) Irakaslea: JOSEMARI SARASOLA Data: 2013ko maiatzaren 31a. Iraupena: 90 minutu I. ebazkizuna Ekoizpen-prozesu batean pieza bakoitza akastuna edo
I. KAPITULUA Zenbakia. Aldagaia. Funtzioa
I. KAPITULUA Zenbakia. Aldagaia. Funtzioa 1. ZENBAKI ERREALAK. ZENBAKI ERREALEN ADIERAZPENA ZENBAKIZKO ARDATZEKO PUNTUEN BIDEZ Matematikaren oinarrizko kontzeptuetariko bat zenbakia da. Zenbakiaren kontzeptua
6.1. Estatistika deskribatzailea.
6. gaia Ariketak. 6.1. Estatistika deskribatzailea. 1. Zerrenda honek edari-makina baten aurrean dauden 15 bezerok txanpona sartzen duenetik edaria atera arteko denbora (segundotan neurtuta) adierazten
Kojineteak. Eskuarki, forma zilindrikoa izaten dute; jasan ditzaketen kargen arabera, bi motatan bereiz daitezke:
KOJINETEAK Kojineteak Marruskadura-kojineteak Eskuarki, "kojinete" bakarrik esaten zaie. Haien helburua da ardatzei eta transmisio-ardatzei eustea eta biratzen uztea. Horretarako, ardatzetan ahokatzen
LOTURA KIMIKOA :LOTURA KOBALENTEA
Lotura kobalenteetan ez-metalen atomoen arteko elektroiak konpartitu egiten dira. Atomo bat beste batengana hurbiltzen denean erakarpen-indar berriak sortzen dira elektroiak eta bere inguruko beste atomo
(5,3-x)/1 (7,94-x)/1 2x/1. Orekan 9,52 mol HI dago; 2x, hain zuzen ere. Hortik x askatuko dugu, x = 9,52/2 = 4,76 mol
KIMIKA 007 Ekaina A-1.- Litro bateko gas-nahasketa bat, hasiera batean 7,94 mol hidrogenok eta 5,30 mol iodok osatzen dutena, 445 C-an berotzen da eta 9,5 mol Hl osatzen dira orekan, erreakzio honen arabera:
(1)σ (2)σ (3)σ (a)σ n
5 Gaia 5 Determinanteak 1 51 Talde Simetrikoa Gogoratu, X = {1,, n} bada, X-tik X-rako aplikazio bijektiboen multzoa taldea dela konposizioarekiko Talde hau, n mailako talde simetrikoa deitzen da eta S
ESTATISTIKA ENPRESARA APLIKATUA (Bigarren zatia: praktika). Irakaslea: Josemari Sarasola Data: 2016ko maiatzaren 12a - Iraupena: Ordu t erdi
ESTATISTIKA ENPRESARA APLIKATUA (Bigarren zatia: praktika). Irakaslea: Josemari Sarasola Data: 2016ko maiatzaren 12a - Iraupena: Ordu t erdi I. ebazkizuna (2.25 puntu) Poisson, esponentziala, LTZ Zentral
9.28 IRUDIA Espektro ikusgaiaren koloreak bilduz argi zuria berreskuratzen da.
9.12 Uhin elektromagnetiko lauak 359 Izpi ultramoreak Gasen deskargek, oso objektu beroek eta Eguzkiak sortzen dituzte. Erreakzio kimikoak sor ditzakete eta filmen bidez detektatzen dira. Erabilgarriak
2. ERDIEROALEEN EZAUGARRIAK
2. ERDIEROALEEN EZAUGARRIAK Gaur egun, dispositibo elektroniko gehienak erdieroale izeneko materialez fabrikatzen dira eta horien ezaugarri elektrikoak dispositiboen funtzionamenduaren oinarriak dira.
4. GAIA Indar zentralak
4. GAIA Indar zentralak 4.1 IRUDIA Planeten higiduraren ezaugarri batzuen simulazio mekanikoa zientzia-museoan. 121 122 4 Indar zentralak Aarteko garrantzia izan dute fisikaren historian indar zentralek:
Atal honetan, laborategiko zirkuituetan oinarrizkoak diren osagai pasibo nagusiak analizatuko ditugu: erresistentziak, kondentsadoreak eta harilak.
1. SARRERA Atal honetan, laborategiko zirkuituetan oinarrizkoak diren osagai pasibo nagusiak analizatuko ditugu: erresistentziak, kondentsadoreak eta harilak. Horien artean interesgarrienak diren erresistentziak
Mikel Lizeaga 1 XII/12/06
0. Sarrera 1. X izpiak eta erradiazioa 2. Nukleoaren osaketa. Isotopoak 3. Nukleoaren egonkortasuna. Naturako oinarrizko interakzioak 4. Masa-defektua eta lotura-energia 5. Erradioaktibitatea 6. Zergatik
AURKIBIDEA I. KORRONTE ZUZENARI BURUZKO LABURPENA... 7
AURKIBIDEA Or. I. KORRONTE ZUZENARI BURUZKO LABURPENA... 7 1.1. MAGNITUDEAK... 7 1.1.1. Karga elektrikoa (Q)... 7 1.1.2. Intentsitatea (I)... 7 1.1.3. Tentsioa ()... 8 1.1.4. Erresistentzia elektrikoa
3. K a p itu lu a. Aldagai errealek o fu n tzio errealak
3. K a p itu lu a Aldagai errealek o fu n tzio errealak 49 50 3. K AP IT U L U A AL D AG AI E R R E AL E K O F U N T Z IO E R R E AL AK UEP D o n o stia M ate m atik a A p lik atu a S aila 3.1. ARAZOAREN
UNITATE DIDAKTIKOA ELEKTRIZITATEA D.B.H JARDUERA. KORRONTE ELEKTRIKOA. Helio atomoa ASKATASUNA BHI 1.- ATOMOAK ETA KORRONTE ELEKTRIKOA
1. JARDUERA. KORRONTE ELEKTRIKOA. 1 1.- ATOMOAK ETA KORRONTE ELEKTRIKOA Material guztiak atomo deitzen diegun partikula oso ttipiez osatzen dira. Atomoen erdigunea positiboki kargatua egon ohi da eta tinkoa
1.1 Sarrera: telekomunikazio-sistemak
1 TELEKOMUNIKAZIOAK 1.1 Sarrera: telekomunikazio-sistemak Telekomunikazio komertzialetan bi sistema nagusi bereiz ditzakegu: irratia eta telebista. Telekomunikazio-sistema horiek, oraingoz, noranzko bakarrekoak
4.GAIA. ESPAZIO BEKTORIALAK
4.GAIA. ESPAZIO BEKTORIALAK. Defiizioa. Propietateak 3. Azpiespazio bektorialak 4. Kobiazio liealak 5. Depedetzia eta idepedetzia lieala 6. Oiarria eta dimetsioa 7. Oiarri-aldaketa 8. Azpiespazio bektoriale
6. Aldagai kualitatibo baten eta kuantitatibo baten arteko harremana
6. Aldagai kualitatibo baten eta kuantitatibo baten arteko harremana GAITASUNAK Gai hau bukatzerako ikaslea gai izango da: - Batezbestekoaren estimazioa biztanlerian kalkulatzeko. - Proba parametrikoak
Makina elektrikoetan sortzen diren energi aldaketak eremu magnetikoaren barnean egiten dira: M A K I N A. Sorgailua. Motorea.
Magnetismoa M1. MGNETISMO M1.1. Unitate magnetikoak Makina elektrikoetan sortzen diren energi aldaketak eremu magnetikoaren barnean egiten dira: M K I N Energia Mekanikoa Sorgailua Energia Elektrikoa Energia
1. INGENIARITZA INDUSTRIALA. INGENIARITZAREN OINARRI FISIKOAK 1. Partziala 2009.eko urtarrilaren 29a
1. Partziala 2009.eko urtarrilaren 29a ATAL TEORIKOA: Azterketaren atal honek bost puntu balio du totalean. Hiru ariketak berdin balio dute. IRAUPENA: 75 MINUTU. EZ IDATZI ARIKETA BIREN ERANTZUNAK ORRI
5. GAIA Solido zurruna
5. GAIA Solido zurruna 5.1 IRUDIA Giroskopioaren prezesioa. 161 162 5 Solido zurruna Solido zurruna partikula-sistema errazenetakoa dugu. Definizioak (hau da, puntuen arteko distantziak konstanteak izateak)
Irrati-teleskopioak. NASAk Robledoko Astrobiologia Zentroan (INTA-CSIC) duen irrati-teleskopioa erabiliz egindako proiektu akademikoa.
Irrati-teleskopioak Laburpena Unitate honetan, irrati-teleskopioen berri emango diegu ikasleei; irrati-teleskopioak teleskopio optikoekin alderatuko ditugu, nola ibiltzen diren azalduko dugu eta haien
1 Aljebra trukakorraren oinarriak
1 Aljebra trukakorraren oinarriak 1.1. Eraztunak eta gorputzak Geometria aljebraikoa ikasten hasi aurretik, hainbat egitura aljebraiko ezagutu behar ditu irakurleak: espazio bektorialak, taldeak, gorputzak,
Aldehido eta Zetonak(II). Enolatoak eta Karbonilodun α,β-asegabeak
Aldehido eta Zetonak(II). Enolatoak eta Karbonilodun α,β-asegabeak Konposatu Karbonilikoen α Hidrogenoen Azidotasuna: Enolatoak Karboniloarekiko α hidrogenoak ohi baino azidoagoak dira Sortzen den anioia
EGITURAREN ANALISIA ETA SINTESIA. KONTZEPTU OROKORRAK
1. GAIA 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 EGITURAREN ANALISIA ETA SINTESIA. KONTZEPTU OROKORRAK Definizioak 1.1.1 MakinaetaMekanismoa 1.1.2 MailaedoElementua 1.1.3 PareZinematikoa 1.1.4 KateZinematikoa
UNIBERTSITATERA SARTZEKO HAUTAPROBAK ATOMOAREN EGITURA ETA SISTEMA PERIODIKOA. LOTURA KIMIKOA
UNIBERTSITATERA SARTZEKO HAUTAPROBAK ATOMOAREN EGITURA ETA SISTEMA PERIODIKOA. LOTURA KIMIKOA 1. (98 Ekaina) Demagun Cl - eta K + ioiak. a) Beraien konfigurazio elektronikoak idatz itzazu, eta elektroi
2011 Kimikako Euskal Olinpiada
2011 Kimikako Euskal Olinpiada ARAUAK (Arretaz irakurri): Zuzena den erantzunaren inguruan zirkunferentzia bat egin. Ordu bete eta erdiko denbora epean ahalik eta erantzun zuzen gehien eman behar dituzu
PLANETENTZAKO AURKITZAILEAK
ASTRONOMIA PLANETENTZAKO AURKITZAILEAK Jesus Arregi Ortzean planetak ezagutzeko, eskuarki, bi ohar eman ohi dira. Lehenengoa, izarrekiko duten posizioa aldatu egiten dutela, nahiz eta posizio-aldaketa
7. K a p itu lu a. Integ ra l a nizk o itza k
7. K a p itu lu a Integ ra l a nizk o itza k 61 62 7. K A P IT U L U A IN T E G R A L A N IZ K O IT Z A K UEP D o n o stia M ate m atik a A p lik atu a S aila 7.1. ARAZOAREN AURKEZPENA 63 7.1 A ra zo a
ESTATISTIKA ETA DATUEN ANALISIA. Azterketa ebatziak ikasturtea Donostiako Ekonomia eta Enpresa Fakultatea. EHU
ESTATISTIKA ETA DATUEN ANALISIA Azterketa ebatziak. 2018-2019 ikasturtea Donostiako Ekonomia eta Enpresa Fakultatea. EHU Egilea eta irakasgaiaren irakaslea: Josemari Sarasola Gizapedia gizapedia.hirusta.io
Gaiari lotutako EDUKIAK (127/2016 Dekretua, Batxilergoko curriculuma)
Termodinamika Gaiari lotutako EDUKIAK (127/2016 Dekretua, Batxilergoko curriculuma) Erreakzio kimikoetako transformazio energetikoak. Espontaneotasuna 1. Energia eta erreakzio kimikoa. Prozesu exotermikoak
C, H, O, N, (S, P, Cl, Br...)
1. Ikasgaia. KIMIKA RGAIKA SARRERA KIMIKA RGAIKA ZER DA ETA ZERTARAK BALI DU? Kimika rganikoaren definizioa Zer du karbonoak Taula Periodikoko beste elementu kimikoek ez dutena? Zertarako balio du Kimika
Proba parametrikoak. Josemari Sarasola. Gizapedia. Josemari Sarasola Proba parametrikoak 1 / 20
Josemari Sarasola Gizapedia Josemari Sarasola Proba parametrikoak 1 / 20 Zer den proba parametrikoa Proba parametrikoak hipotesi parametrikoak (hau da parametro batek hartzen duen balioari buruzkoak) frogatzen
Oxidazio-erredukzio erreakzioak
Oxidazio-erredukzio erreakzioak Lan hau Creative Commons-en Nazioarteko 3.0 lizentziaren mendeko Azterketa-Ez komertzial-partekatu lizentziaren mende dago. Lizentzia horren kopia ikusteko, sartu http://creativecommons.org/licenses/by-ncsa/3.0/es/
Magnetismoa. Ferromagnetikoak... 7 Paramagnetikoak... 7 Diamagnetikoak Elektroimana... 8 Unitate magnetikoak... 9
Magnetismoa manak eta imanen teoriak... 2 manaren definizioa:... 2 manen arteko interakzioak (elkarrekintzak)... 4 manen teoria molekularra... 4 man artifizialak... 6 Material ferromagnetikoak, paramagnetikoak
Jakintza-arloa: Kimika
Jakintza-arloa: Kimika Diodo-laser bidezko espektroskopia infragorria espantsio supertsonikoan: bentzenoaren eta C6H5X (X=F, C1, NH2) deribatu monoordezkatuen bibrazioerrotazioko espektroak Egilea: ARAITZ
Lehen Hezkuntza ISBN: MATEMATIKA. Ibaizabal i.blai. Lehen Hezkuntza. Batuan
Lehen Hezkuntza ISBN: 978-84-8394-279-6 9 788483 942796 1 5 1 2 3 MATEMATIKA Ibaizabal i.blai 05 Lehen Hezkuntza Batuan Programazioak 0. unitatea. Gogoan dut Hizkuntza-komunikaziorako gaitasuna: 7., 10.
Konposatu Organikoak
6. Ikasgaia. HIDRKARBURE MEKLATURA ETA FRMULAZIA ERRADIKALAK ETA FUTZI-TALDEAK Konposatu organikoen sailkapena Kate karbonoduna eta funtzio-taldeak Segida homologoak I.U.P.A.C. MEKLATURA-SISTEMA Izen arruntak,
1.- KIMIKA ORGANIKOA SARRERA. 1.- Kimika organikoa Bilakaera historikoa eta definizioa Kimika organikoaren garrantzia
SAEA 1.- Kimika organikoa. 1.1.- Bilakaera historikoa eta definizioa 1.2.- Kimika organikoaren garrantzia 1.- KIMIKA GANIKA 1.1.- Bilakaera historikoa eta definizioa. Konposatu organikoak antzinatik ezagutzen
1. Higidura periodikoak. Higidura oszilakorra. Higidura bibrakorra.
1. Higidura periodikoak. Higidura oszilakorra. Higidura bibrakorra. 2. Higidura harmoniko sinplearen ekuazioa. Grafikoak. 3. Abiadura eta azelerazioa hhs-an. Grafikoak. 4. Malguki baten oszilazioa. Osziladore
Ordenadore bidezko irudigintza
Ordenadore bidezko irudigintza Joseba Makazaga 1 Donostiako Informatika Fakultateko irakaslea Konputazio Zientziak eta Adimen Artifiziala Saileko kidea Asier Lasa 2 Donostiako Informatika Fakultateko ikaslea
LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa
Analisia eta Kontrola Materialak eta entsegu fisikoak LANBIDE EKIMENA LANBIDE EKIMENA LANBIDE EKIMENA Proiektuaren bultzatzaileak Laguntzaileak Hizkuntz koordinazioa Egilea(k): HOSTEINS UNZUETA, Ana Zuzenketak:
ERDI MAILAKO HEZIKETA ZIKLOETARAKO SARBIDE MATEMATIKA ATALA MATEMATIKA ARIKETAK ERANTZUNAK PROGRAMAZIOA
ERDI MAILAKO HEZIKETA ZIKLOETARAKO SARBIDE PROBA MATEMATIKA ATALA MATEMATIKA MODULUA ARIKETAK ERANTZUNAK BALIABIDEAK ETA PROGRAMAZIOA Modulua MATEMATIKA Oinarrizko Prestakuntza -. maila Erdi Mailako heziketa-zikloetarako
Emaitzak: a) 0,148 mol; 6,35 atm; b) 0,35; 0,32; 0,32; 2,2 atm; 2,03 atm; 2.03 atm c) 1,86; 0,043
KIMIKA OREKA KIMIKOA UZTAILA 2017 AP1 Emaitzak: a) 0,618; b) 0,029; 1,2 EKAINA 2017 AP1 Emaitzak:a) 0,165; 0,165; 1,17 mol b) 50 c) 8,89 atm UZTAILA 2016 BP1 Emaitzak: a) 0,148 mol; 6,35 atm; b) 0,35;
5 Hizkuntza aljebraikoa
Hizkuntza aljebraikoa Unitatearen aurkezpena Unitate honetan, aljebra ikasteari ekingo diogu; horretarako, aurreko ikasturteetan landutako prozedurak gogoratuko eta sakonduko ditugu. Ikasleek zenbait zailtasun
Materialen elastikotasun eta erresistentzia
Materialen elastikotasun eta erresistentzia Juan Luis Osa Amilibia EUSKARA ETA ELEANIZTASUNEKO ERREKTOREORDETZAREN SARE ARGITALPENA Liburu honek UPV/EHUko Euskara eta Eleaniztasuneko Errektoreordetzaren
ETA Hack VR kw. Potentzia handiko ezpal galdara industria, enpresa eta bero sareetarako. Perfekzioarekiko grina.
ETA Hack VR 330-500 kw Potentzia handiko ezpal galdara industria, enpresa eta bero sareetarako Perfekzioarekiko grina. www.eta.co.at ERABILERA EREMUAK Enpresak Nekazaritza instalakuntzak Ostalaritza Familia
LOGIKA. F. Xabier Albizuri go.ehu.eus/ii-md
LOGIKA F. Xabier Albizuri - 2018 fx.albizuri@ehu.eus go.ehu.eus/ii-md Logikako bi gaiak: 1. LOGIKA PROPOSIZIONALA 2. PREDIKATU LOGIKA Ikasliburuak: 1. Logic and Discrete Mathematics: A Computer Science
Basamortua eta basamortutzea
ATARIKOA.. aurkibidea.. Basamortutzea Duela urte batzuez geroztik, ingurumena ardatz duen zenbaki berezia izaten da Elhuyar Zientzia eta Teknika aldizkariaren hil honetakoa. Ekainaren 5ean ospatzen da
Oinarrizko mekanika:
OINARRIZKO MEKANIKA 5.fh11 /5/08 09:36 P gina C M Y CM MY CY CMY K 5 Lanbide Heziketarako Materialak Oinarrizko mekanika: mugimenduen transmisioa, makina arruntak eta mekanismoak Gloria Agirrebeitia Orue
Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntza-koordinazioa
MEKANIZAZIO BIDEZKO PRODUKZIOA Neurtzeko tresnak eta teknikak LANBIDE EKIMENA Proiektuaren bultzatzaileak Laguntzaileak Hizkuntza-koordinazioa Egilea(k): TOMAS AGIRRE: Neurtzeko tresnak eta teknikak,
EUSKARA ERREKTOREORDETZAREN SARE ARGITALPENA
EUSKARA ERREKTOREORDETZAREN SARE ARGITALPENA 1.1. Topologia.. 1.. Aldagai anitzeko funtzio errealak. Definizioa. Adierazpen grafikoa... 5 1.3. Limitea. 6 1.4. Jarraitutasuna.. 9 11 14.1. Lehen mailako