Zentrum für Astronomie, Universität Heidelberg, Germany

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Zentrum für Astronomie, Universität Heidelberg, Germany"

Transcript

1 1,2 1 Astronomisches Rechen-Institut Zentrum für Astronomie, Universität Heidelberg, Germany 2 Εργαστήριο Αστρονομίας, Τομέας Αστροφυσικής, Αστρονομίας και Μηχανικής Τμήμα Φυσικής, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Θεσσαλονίκη 12 Σεπτεμβρίου / 45

2 Περίληψη 1 : Ενας νέος κώδικας Ν-σωμάτων (Konstantinidis S. & Kokkotas K.D. 2010) 2 Νεαρά σμήνη ως δομικοί λίθοι Υπέρ-πυκνων γαλαξιών νάνων: Δημιουργία της κεντρικής μελανής οπής (Amaro-Seoane P., Konstantinidis S., et al. 2011) Προσομοιώσεις μιας μελανής οπής μεσαίας μάζας κι ενός σμήνους Προσομοιώσεις μεγάλης κλίμακας 3 Στενά διπλά μεσαίου λόγου μαζών σε σφαιρωτά σμήνη (Konstantinidis et al. 2011) Προσομοιώσεις N-σωμάτων: Προσομοιώσεις N-σωμάτων: 2 / 45

3 Περίληψη 1 : Ενας νέος κώδικας Ν-σωμάτων (Konstantinidis S. & Kokkotas K.D. 2010) 2 Νεαρά σμήνη ως δομικοί λίθοι Υπέρ-πυκνων γαλαξιών νάνων: Δημιουργία της κεντρικής μελανής οπής (Amaro-Seoane P., Konstantinidis S., et al. 2011) 3 Στενά διπλά μεσαίου λόγου μαζών σε σφαιρωτά σμήνη (Konstantinidis et al. 2011) 3 / 45

4 Σύντομη Περιγραφή του κώδικα 1 Κώδικας για προσομοιώσεις N-σωμάτων 2 Ολοκλήρωση: Αλγόριθμος Hermite 4 ης τάξης 3 Στενά διπλά ή πολλαπλά : Χρονικά συμμετρικός αλγόριθμος Hermite 4 ης τάξης 4 Στενά διπλά μελανών οπών: Εξισώσεις μετα-νευτώνειας (post-newtonian) θεωρίας 5 Συγκρούσεις μελανών οπών: Ταχύτητα ανάδρασης 4 / 45

5 : Ολοκλήρωση Ο Αλγόριθμος Hermite 4 ης τάξης 1 Πρόβλεψη: (CPU) r p(t+ t) = r(t)+v(t) t+ 1 2 a(t) t ȧ(t) t3 (1) v p(t + t) = v(t) + a(t) t ȧ(t) t2 2 Υπολογισμός επιταχύνσεων και παραγώγων αυτών (GRAPE) 3 Υπολογισμός παραγώγων ανώτερης τάξης (CPU) 4 Διόρθωση: (CPU) r c(t+ t) = r p(t+ t) ä(t) t a (t) t 5 v c(t+ t) = v 1 p(t+ t) ä(t) t a (t) t 4 24 (3) (4) (2) 5 / 45

6 : GRAPE Η χρήση του GRAPE 6 / 45

7 : GRAPE Η χρήση του GRAPE 7 / 45

8 : Διπλά Ο χρονικά συμμετρικός Αλγόριθμος Hermite 4 ης τάξης 1 Πρόβλεψη: (CPU) r p(t+ t) = r(t)+v(t) t+ 1 2 a(t) t ȧ(t) t3 (5) 2 Επιλογή χρονικού βήματος v p(t + t) = v(t) + a(t) t ȧ(t) t2 3 Υπολογισμός επιταχύνσεων και παραγώγων αυτών (CPU) 4 Υπολογισμός παραγώγων ανώτερης τάξης (CPU) 5 Διόρθωση: (CPU) r c(t+ t) = r p(t+ t) ä(t) t a (t) t 5 v c(t+ t) = v 1 p(t+ t) ä(t) t a (t) t 4 24 (7) (8) (6) 8 / 45

9 : Διπλά γ = 2 m ( Rb ) 3 (9) m 1 + m 2 R 9 / 45

10 : Εξισώσεις μετα-νευτώνειας θεωρίας ā = ā c 2 ā1 + 1 c 4 ā2 + 1 c 5 ā2.5 (10) 10 / 45

11 : Ταχύτητα ανάδρασης v = (v m +v cos ξ)ê 1 +v sin ξê 2 +v // ê 3 (11) (Lousto et al. 2011) 11 / 45

12 Περίληψη 1 : Ενας νέος κώδικας Ν-σωμάτων (Konstantinidis S. & Kokkotas K.D. 2010) 2 Νεαρά σμήνη ως δομικοί λίθοι Υπέρ-πυκνων γαλαξιών νάνων: Δημιουργία της κεντρικής μελανής οπής (Amaro-Seoane P., Konstantinidis S., et al. 2011) Προσομοιώσεις μιας μελανής οπής μεσαίας μάζας κι ενός σμήνους Προσομοιώσεις μεγάλης κλίμακας 3 Στενά διπλά μεσαίου λόγου μαζών σε σφαιρωτά σμήνη (Konstantinidis et al. 2011) 12 / 45

13 : Παρατηρήσεις Συμπλέγματα Αστρικών Σμηνών Σχήμα: Οι γαλαξίες Antennæ Εκατοντάδες νεαρά αστρικά σμήνη σε περιοχές αστρικής δημιουργίας. Antennae (Whitmore et al. 1999, Whitmore et al. 2010), NGC 7673 (Homeier et al. 2002), M82 (Konstantopoulos et al. 2009), Apr24 (Cao & Wu 2007), NGC 6745 (Grijs et al. 2003), Stephan s Quintet (Gallagher 2001) Large Magellanic Clould: 1 στα 8 αστρικά σμήνη είναι μέλος ενός δεσμευμένου συστήματος (Diebal et al. 2002) 13 / 45

14 Παρατηρήσεις Συμπλέγματα Αστρικών Σμηνών Σχήμα: Οι γαλαξίες Antennæ: NGC4038/NGC4039 (Whitmore et al. 2010) 14 / 45

15 Παρατηρήσεις Συμπλέγματα Αστρικών Σμηνών Σχήμα: Συμπλέγματα Αστρικών Σμηνών στους γαλαξίες Antennæ (Whitmore et al. 2010) 15 / 45

16 Παρατηρήσεις Αστρικών Σμηνών Ακτίνα: έως και 600 pc Σχήμα: Knot S (Whitmore et al. 2010) Μάζα: M Μάζες των σμηνών: M Συνάρτηση μάζας των σμηνών: ψ(m) M 2 Αριθμός σμηνών: Εως και 160 Πολλά παραπάνω σμήνη μικρότερης μάζας (ως και χιλιάδες) (Fellhauer & Kroupa, 2002) 16 / 45

17 Προσομοιώσεις Υπέρ-πυκνοι γαλαξίες νάνοι προερχόμενοι συμπλέγματα Αστρικών Σμηνών Προσομοιώσεις: Τα μέλη Συμπλεγμάτων Αστρικών Σμηνών είναι οι δομικοί λίθοι Υπέρ-πυκνων γαλαξίων νάνων () (Kroupa 1998, Fellhauer & Kroupa, 2002, Bruens et al. 2010) 17 / 45

18 Μελανές οπές μεσαίας μάζας (IMBHs), Ανάδραση IMBHs σε Συμπλέγματα Αστρικών Σμηνών Κάποια τα σμήνη μπορεί να φιλοξενούν μια ΙΜΒΗ Σύγκρουση δύο σμηνών: Δημιουργία ενός διπλού συστήματος IMBHs το οποίο θα οδηγηθεί στη σύγκρουση έπειτα 5 Myr (Amaro-Seoane et al. 2009) 18 / 45

19 Μελανές οπές μεσαίας μάζας (IMBHs), Ανάδραση IMBHs σε Συμπλέγματα Αστρικών Σμηνών Συγρουόμενες μελανές οπές αποκτούν ταχύτητα ανάδρασης (Gonzales et al. 2007, Campanelli et al. 2007) Η ταχύτητα ανάδρασης εξαρτάται το spin και το λόγο μαζών Η ταχύτητα διαφυγής ενός σμήνους είναι ίση με την ταχύτητα διασποράς στο κέντρο του σμήνους Η ταχύτητα διαφυγής του Συμπλέγματος Εξαρτάται τη 19 / 45

20 Μελανές οπές μεσαίας μάζας σε Συμπλέγματα Αστρικών Σμηνών y [pc] x [pc] Ανάλογα με την ταχύτητα διαφυγής ενός Συμπλέγματος η αναδράζουσα μελανή οπή μπορεί να παραμείνει ή να διαφύγει το σύστημα Αλληλεπιδράσεις της αναδράζουσας μελανής οπής με Αστρικά Σμήνη; 20 / 45

21 Μελανές οπές μεσαίας μάζας σε Συμπλέγματα Αστρικών Σμηνών Αλληλεπιδράσεις της μελανής οπής με αστέρες; 400 y [pc] x [pc] Το εξελίσσεται προς τη δημιουργία ενός Υπερ-πυκνου γαλαξία νάνου, οπότε αν η IMBH παραμένει στο σύστημα, μπορεί να συγκρουστεί με μία άλλη IMBH; 21 / 45

22 Προσομοιώσεις μιας IMBH κι ενός σμήνους: M v x dmin vcl xcl Mcl Η IMBH και το σμήνος τίθενται αρχικά σε παραβολική τροξιά Διαφορετικές τιμές του λόγου μαζών M /M cl Διαφορετικές αρχικές σχετικές ταχύτητες v rel = v v cl Διαφορετικές περικεντρικές αποστάσεις d min 22 / 45

23 Προσομοιώσεις μιας IMBH κι ενός σμήνους: 23 / 45

24 Προσομοιώσεις μιας IMBH κι ενός σμήνους: 24 / 45

25 Προσομοιώσεις μιας IMBH κι ενός σμήνους: 25 / 45

26 Προσομοιώσεις μεγάλης κλίμακας: N αστρικά σμήνη κατανεμημένα σύμφωνα με ένα μοντέλο πυκνότητας Plummer Μάζες: M, Συνάρτηση μάζας: ψ(m) M 2 ΙΜΒΗ στο κέντρο. Αρχική ταχύτητα: 100 km/s Σημειακά σωματίδια. Συγκρούσεις μεταξυ σμηνών επιτρέπονται Κώδικας N-σωμάτων (Konstantinidis & Kokkotas 2010) Απώλεια μάζας έπειτα συγκρούσεις σμηνών. Αλληλεπιδράσεις ΙΜΒΗ-Σμήνους: διέλευση, σύγκρουση ή δορυφόρος Προσομοιώσεις N-σωμάτων IMBH-σμήνους: Απώλεια ενέργειας της IMBH στο τέλος της αλληλεπίδρασης 26 / 45

27 Προσομοιώσεις μεγάλης κλίμακας: Χώρος παραμέτρων Μάζα της IMBH: M Αριθμός σμηνών: Ν = Κατανομή πυκνότητας: μοντέλο Plummer Μάζες των σμηνών: M cl = M M Μέγεθος του Συμπλέγματος Αστρικών Σμηνών: R cc = pc Ταχύτητα διαφυγής στο κέντρο: V esc = km/s 27 / 45

28 Προσομοιώσεις μεγάλης κλίμακας: Χώρος παραμέτρων ID N M CC (M ) R CC (pc) ID N M CC (M ) R CC (pc) Α Ε Α Ε Α Ε Α Ε Α Β F Β F Β F Β F Β C G C G C G C G D Η D Η D Η D Η / 45

29 Προσομοιώσεις μεγάλης κλίμακας: 400 Total mass [x 10 7 M sun ] R cc [pc] Number of clusters 29 / 45

30 Προσομοιώσεις μεγάλης κλίμακας: Παγίδευση της IMBH ID Coll Τ[Myr] R capt [pc] M cl [M ] M UCD [M ] T DF [Myr] Ε Ε F F F G G G Η Η Η / 45

31 Προσομοιώσεις μεγάλης κλίμακας: Σχηματισμός του Υπέρ-πυκνου γαλαξία νάνου 31 / 45

32 Προσομοιώσεις μεγάλης κλίμακας: που περιέχει 10 αναδράζουσες IMBHs 32 / 45

33 Προσομοιώσεις μεγάλης κλίμακας: Η IMBH διαφεύγει το σύστημα όταν V esc < 70 km/s Οταν η IMBH διαφεύγει: ορισμένες (λιγότερες 10) αλληλεπιδράσεις με σμήνη είναι πιθανές Οταν η IMBH παραμένει: δεκάδες αλληλεπιδράσεις έως ότου η IMBH παγιδεύεται το κεντρικό σμήνος Χρονικές κλίμακες Μέσος χρόνος μεταξύ δυο αλληλεπιδράσεων IMBH-Σμήνους: 0.33 Myr Μέσος χρόνος διαφυγής της IMBH: Myr Δημιουργία του Υπέρ-πυκνου γαλαξία νάνου: Myr 33 / 45

34 IMBHs με μικρές ταχύτητες ανάδρασης μπορούν να παραμείνουν σε ένα Αστρικών Σμηνών Αλληλεπιδράσεις IMBH-Σμήνους: Συγκρούσεις είναι πιθανές Σε ένα Αστρικών Σμηνών η αρχική μορφή ενός γαλαξία νάνου δημιουργείται ήδη στα πρώτα 100 Myr Αν οι IMBH είναι σχετικά συχνές στα αστρικά σμήνη, τότε κάποιες αυτές θα συγκρουστούν μέσα στον σχηματιζόμενο γαλαξία, δημιουργώντας την αρχική μορφή της μελανής οπής στο κέντρο του 34 / 45

35 Περίληψη 1 : Ενας νέος κώδικας Ν-σωμάτων (Konstantinidis S. & Kokkotas K.D. 2010) 2 Νεαρά σμήνη ως δομικοί λίθοι Υπέρ-πυκνων γαλαξιών νάνων: Δημιουργία της κεντρικής μελανής οπής (Amaro-Seoane P., Konstantinidis S., et al. 2011) 3 Στενά διπλά μεσαίου λόγου μαζών σε σφαιρωτά σμήνη (Konstantinidis et al. 2011) Προσομοιώσεις N-σωμάτων: Προσομοιώσεις N-σωμάτων: 35 / 45

36 Ποιές οι συνέπειες της δημιουργίας μιας IMBH στο κέντρο ενός σμήνους; 1 Δημιουργία ενός διπλού συστήματος IMBH-BH; 2 Σύγκρουση του διπλού συστήματος IMBH-BH; 3 Ανάδραση της παραγόμενης IMBH; Προσομοιώσεις N-σωμάτων 36 / 45

37 Ποιές οι συνέπειες της δημιουργίας μιας IMBH στο κέντρο ενός σμήνους; 1 Δημιουργία ενός διπλού συστήματος IMBH-BH; 2 Σύγκρουση του διπλού συστήματος IMBH-BH; 3 Ανάδραση της παραγόμενης IMBH; Προσομοιώσεις N-σωμάτων 36 / 45

38 Προσομοιώσεις N-σωμάτων: Αριθμός N = Κατανομή πυκνότητας: Μοντέλο King με παράμετρο συγκέντρωσης W 0 = 6, 7 Αρχική κατανομή μάζας τύπου Kroupa (Kroupa 2001) M low = 0.2M και M high = 150M Αστρική εξέλιξη ως T = 5 Myr Δημιουργία ενός αριθμού N bh μελανές οπές αστρικής μάζας Τοποθέτηση μιας IMBH μάζας M imbh = 500M 1000M στο κέντρο του σμήνους Δυναμική ισορροπία Προσομοίωση με τη χρήση του κώδικα 37 / 45

39 Προσομοιώσεις N-σωμάτων: Πίνακας Simulation W 0 M IMBH [M ] (α 1, α 2 ) N BH Α (1.3, 2.4) 62 Β (1.3, 2.5) 52 C (1.3, 2.5) 48 D (1.2, 2.7) / 45

40 Προσομοιώσεις N-σωμάτων: Δυναμική Σχήμα: Αποστάσεις των μεγαλύτερων σε μάζα μελανών οπών το κέντρο του συστήματος 39 / 45

41 Προσομοιώσεις N-σωμάτων: Δυναμική Σχήμα: Ακτίνες Lagrange του σμήνους ως συναρτήσεις του χρόνου 40 / 45

42 Προσομοιώσεις N-σωμάτων: Εξέλιξη του διπλού συστήματος m, 18 m, 2 m, 11 Σχήμα: Μεγάλος ημιάξονας και εκκεντρότητα ως συναρτήσεις του χρόνου 41 / 45

43 Προσομοιώσεις N-σωμάτων: Εξέλιξη του διπλού συστήματος Σχήμα: Μεγάλος ημιάξονας vs εκκεντρότητα 42 / 45

44 Προσομοιώσεις N-σωμάτων: 43 / 45

45 1 Ενα διπλό σύστημα IMBH-BH σε ένα αστρικό σμήνος μπορεί να οδηγηθεί σε σύγκρουση σε σχετικά μικρές χρονικές κλίμακες (< 100 Myr) εξαιτίας των αλληλεπιδράσεών του με τις υπόλοιπες μελανές οπές αστρικής μάζας που συγκεντρώνονται στο κέντρο του σμήνους. 2 Η βαρυτική που εκμπέμπεται το διπλό σύστημα, θα είναι εύκολα ανιχνεύσιμη διαστημικούς ανιχνευτές (LISA και ALIA), αν το σμήνος βρίσκεται σε αποστάσεις μικρότερες των 10 Gpc. 3 Αν η IMBH έχει μάζα της τάξης μερικών εκατοντάδων M, έχει πιθανότητα 20 % να διαφύγει το σμήνος έπειτα μία σύγκρουση με μελανή οπή αστρικής μάζας. 4 Επιπλέον προσομοιώσεις απαιτούνται για την επιβεβαίωση του αποτελέσματος. 44 / 45

46 Σας ευχαριστώ πολύ 45 / 45

ΒΑΡΥΤΙΚΗ ΑΚΤΙΝΟΒΟΛΙΑ ΑΠΟ ΣΥΣΤΗΜΑΤΑ ΑΣΤΕΡΩΝ ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

ΒΑΡΥΤΙΚΗ ΑΚΤΙΝΟΒΟΛΙΑ ΑΠΟ ΣΥΣΤΗΜΑΤΑ ΑΣΤΕΡΩΝ ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΑΣΤΡΟΝΟΜΙΑΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΑΣΤΡΟΝΟΜΙΑΣ ΚΩΝΣΤΑΝΤΙΝΙΔΗ ΣΥΜΕΩΝ ΠΤΥΧΙΟΥΧΟΥ ΦΥΣΙΚΟΥ ΒΑΡΥΤΙΚΗ ΑΚΤΙΝΟΒΟΛΙΑ ΑΠΟ ΣΥΣΤΗΜΑΤΑ ΑΣΤΕΡΩΝ

Διαβάστε περισσότερα

Αστρικά Συστήματα και Γαλαξίες

Αστρικά Συστήματα και Γαλαξίες Αστρικά Συστήματα και Γαλαξίες Κοσμάς Γαζέας Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Αστρικά Σμήνη Οι ομάδες των αστέρων Κοσμάς Γαζέας Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Αστρικά σμήνη Είναι

Διαβάστε περισσότερα

Η πρόβλεψη της ύπαρξης και η έµµεση παρατήρηση των µελανών οπών θεωρείται ότι είναι ένα από τα πιο σύγχρονα επιτεύγµατα της Κοσµολογίας.

Η πρόβλεψη της ύπαρξης και η έµµεση παρατήρηση των µελανών οπών θεωρείται ότι είναι ένα από τα πιο σύγχρονα επιτεύγµατα της Κοσµολογίας. Η πρόβλεψη της ύπαρξης και η έµµεση παρατήρηση των µελανών οπών θεωρείται ότι είναι ένα από τα πιο σύγχρονα επιτεύγµατα της Κοσµολογίας. Παρ' όλα αυτά, πρώτος ο γάλλος µαθηµατικός Λαπλάςτο 1796 ανέφερε

Διαβάστε περισσότερα

Μέρος A: Νευτώνιες τροχιές (υπό την επίδραση συντηρητικών δυνάμεων) (3.0 μονάδες)

Μέρος A: Νευτώνιες τροχιές (υπό την επίδραση συντηρητικών δυνάμεων) (3.0 μονάδες) Theory LIGO-GW150914 (10 μονάδες) Q1-1 Το 015, το παρατηρητήριο βαρυτικών κυμάτων LIGO ανίχνευσε για πρώτη φορά τη διέλευση των βαρυτικών κυμάτων (gravitational waves ή GW) διαμέσου της Γης. Το συμβάν

Διαβάστε περισσότερα

Κίνηση πλανητών Νόµοι του Kepler

Κίνηση πλανητών Νόµοι του Kepler ΦΥΣ 111 - Διαλ.29 1 Κίνηση πλανητών Νόµοι του Keple! Θα υποθέσουµε ότι ο ήλιος είναι ακίνητος (σχεδόν σωστό αφού έχει τόσο µεγάλη µάζα και η γη δεν τον κινεί).! Οι τροχιές των πλανητών µοιάζουν κάπως σα

Διαβάστε περισσότερα

ΑΣΤΡΙΚΑ ΣΜΗΝΗ Τα ρολόγια του σύμπαντος. Δρ Μάνος Δανέζης Επίκουρος Καθηγητής Αστροφυσικής Πανεπιστήμιο Αθηνών Τμήμα Φυσικής

ΑΣΤΡΙΚΑ ΣΜΗΝΗ Τα ρολόγια του σύμπαντος. Δρ Μάνος Δανέζης Επίκουρος Καθηγητής Αστροφυσικής Πανεπιστήμιο Αθηνών Τμήμα Φυσικής ΑΣΤΡΙΚΑ ΣΜΗΝΗ Τα ρολόγια του σύμπαντος Δρ Μάνος Δανέζης Επίκουρος Καθηγητής Αστροφυσικής Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Αστρικό σμήνος είναι 1 ομάδα από άστρα που Καταλαμβάνουν σχετικά μικρό χώρο στο

Διαβάστε περισσότερα

L = T V = 1 2 (ṙ2 + r 2 φ2 + ż 2 ) U (3)

L = T V = 1 2 (ṙ2 + r 2 φ2 + ż 2 ) U (3) ΥΠΟΛΟΓΙΣΤΙΚΗ ΑΣΤΡΟΔΥΝΑΜΙΚΗ 3): Κινήσεις αστέρων σε αστρικά συστήματα Βασικές έννοιες Θεωρούμε αστρικό σύστημα π.χ. γαλαξία ή αστρικό σμήνος) αποτελούμενο από μεγάλο αριθμό αστέρων της τάξης των 10 8 10

Διαβάστε περισσότερα

k 3/5 P 3/5 ρ = cp 3/5 (1) dp dr = ρg (2) P 3/5 = cgdz (3) cgz + P0 cg(z h)

k 3/5 P 3/5 ρ = cp 3/5 (1) dp dr = ρg (2) P 3/5 = cgdz (3) cgz + P0 cg(z h) Αριστοτελειο Πανεπιστημιο Θεσσαλονικης ΤΜΗΜΑ ΦΥΣΙΚΗΣ 3ο Σετ Ασκήσεων Αστρονομίας Author: Σταμάτης Βρετινάρης Supervisor: Νικόλαος Στεργιούλας Λουκάς Βλάχος December 5, 215 1 Άσκηση Σφαιρικός αστέρας με

Διαβάστε περισσότερα

ΚΟΣΜΟΛΟΓΙΑ ΚΟΣΜΟΛΟΓΙΑ είναι ο τομέας τις ϕυσικής που προσπαθεί να εξηγήσει την γένεση και την εξέλιξη του σύμπαντος χρησιμοποιώντας παρατηρήσεις και τ

ΚΟΣΜΟΛΟΓΙΑ ΚΟΣΜΟΛΟΓΙΑ είναι ο τομέας τις ϕυσικής που προσπαθεί να εξηγήσει την γένεση και την εξέλιξη του σύμπαντος χρησιμοποιώντας παρατηρήσεις και τ ΗΡΑΚΛΕΙΟ, 10 Οκτωβρίου, 2017 ΚΟΣΜΟΛΟΓΙΑ ΓΙΑ ΑΡΧΑΡΙΟΥΣ Πανεπιστήμιο Κρήτης 1- ΚΟΣΜΟΛΟΓΙΑ ΚΟΣΜΟΛΟΓΙΑ είναι ο τομέας τις ϕυσικής που προσπαθεί να εξηγήσει την γένεση και την εξέλιξη του σύμπαντος χρησιμοποιώντας

Διαβάστε περισσότερα

Αστέρες Νετρονίων και Μελανές Οπές:

Αστέρες Νετρονίων και Μελανές Οπές: Αστέρες Νετρονίων και Μελανές Οπές: Η Γένεσή τους και η Ανίχνευση Βαρυτικών Κυμάτων Βίκυ Καλογερά Τμημα Φυσικής & Αστρονομίας Γενικό Σεµινάριο Τµήµατος Φυσικής Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης 5

Διαβάστε περισσότερα

Βαρύτητα Βαρύτητα Κεφ. 12

Βαρύτητα Βαρύτητα Κεφ. 12 Κεφάλαιο 1 Βαρύτητα 6-1-011 Βαρύτητα Κεφ. 1 1 Νόμος βαρύτητας του Νεύτωνα υο ή περισσότερες μάζες έλκονται Βαρυτική δύναμη F G m1m ˆ Βαρυτική σταθερά G =667*10 6.67 11 N*m Nm /kg παγκόσμια σταθερά 6-1-011

Διαβάστε περισσότερα

Κεφάλαιο 1: ΕΙΣΑΓΩΓΗ

Κεφάλαιο 1: ΕΙΣΑΓΩΓΗ ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 130 Κεφάλαιο 1: ΕΙΣΑΓΩΓΗ Α. Απαντήσεις στις ερωτήσεις πολλαπλής επιλογής 1. α, β 2. γ 3. ε 4. β, δ 5. γ 6. α, β, γ, ε Β. Απαντήσεις στις ερωτήσεις συµπλήρωσης κενού 1. η αρχαιότερη

Διαβάστε περισσότερα

Υπάρχουν οι Μελανές Οπές;

Υπάρχουν οι Μελανές Οπές; Υπάρχουν οι Μελανές Οπές; ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Θεσσαλονίκη, 10/2/2014 Σκοτεινοί αστέρες 1783: Ο John Michell ανακαλύπτει την έννοια ενός σκοτεινού αστέρα,

Διαβάστε περισσότερα

Αστροφυσική. Ενότητα # 2: Αστρική Δομή - Εφαρμογές Ρευστοδυναμικής. Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Αστροφυσική. Ενότητα # 2: Αστρική Δομή - Εφαρμογές Ρευστοδυναμικής. Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αστροφυσική Ενότητα # 2: Αστρική Δομή - Εφαρμογές Ρευστοδυναμικής Λουκάς Βλάχος Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Ερωτήσεις Λυκείου 21 ου Πανελλήνιου Διαγωνισμού Αστρονομίας Διαστημικής 2016

Ερωτήσεις Λυκείου 21 ου Πανελλήνιου Διαγωνισμού Αστρονομίας Διαστημικής 2016 ΠΡΟΣΟΧΗ: Αυτό το έγγραφο ΔΕΝ θα το αποστείλετε ηλεκτρονικά (μέσω e-mail). Απλά το αναρτήσαμε για την δική σας διευκόλυνση. Μόλις βρείτε τις απαντήσεις που γνωρίζετε και τις σημειώσετε σ αυτό το έντυπο,

Διαβάστε περισσότερα

ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ

ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ Κ. Ν. Γουργουλιάτος ΜΑΥΡΕΣ ΤΡΥΠΕΣ Η ΒΑΣΙΚΗ ΙΔΕΑ Αντικείμενα που εμποδίζουν την διάδοση φωτός από αυτά Πρωτοπροτάθηκε γύρω στα 1783 (John( John Michell) ως αντικείμενο

Διαβάστε περισσότερα

Εισαγωγή στην Αστροφυσική

Εισαγωγή στην Αστροφυσική Εισαγωγή στην Αστροφυσική Ενότητα: Ασκήσεις Ξενοφών Μουσάς Τμήμα: Φυσικής Σελίδα 2 1. Ασκήσεις... 4 Σελίδα 3 1. Ασκήσεις Άσκηση 1 α. Τι είναι οι κηλίδες; β. Πώς δημιουργούνται; Αναπτύξτε την σχετική θεωρία

Διαβάστε περισσότερα

Θεωρητική Εξέταση. 23 ος Πανελλήνιος Διαγωνισμός Αστρονομίας και Διαστημικής η φάση: «ΠΤΟΛΕΜΑΙΟΣ»

Θεωρητική Εξέταση. 23 ος Πανελλήνιος Διαγωνισμός Αστρονομίας και Διαστημικής η φάση: «ΠΤΟΛΕΜΑΙΟΣ» 23 ος Πανελλήνιος Διαγωνισμός Αστρονομίας και Διαστημικής 2018 4 η φάση: «ΠΤΟΛΕΜΑΙΟΣ» Θεωρητική Εξέταση 23 ος Πανελλήνιος Διαγωνισμός Αστρονομίας 2018 4 η φάση Θεωρητική Εξέταση 1 Παρακαλούμε, διαβάστε

Διαβάστε περισσότερα

1η Εργασία στο Μάθημα Γενική Φυσική ΙΙΙ - Τμήμα Τ1. Λύσεις Ασκήσεων 1 ου Κεφαλαίου

1η Εργασία στο Μάθημα Γενική Φυσική ΙΙΙ - Τμήμα Τ1. Λύσεις Ασκήσεων 1 ου Κεφαλαίου 1η Εργασία στο Μάθημα Γενική Φυσική ΙΙΙ - Τμήμα Τ1 Λύσεις Ασκήσεων 1 ου Κεφαλαίου 1. Στον άξονα βρίσκονται δύο σημειακά φορτία q A = 1 μ και q Β = 45 μ, καθώς και ένα τρίτο σωματίδιο με άγνωστο φορτίο

Διαβάστε περισσότερα

Αστρικά Σµήνη: Απόσταση του Σµήνους των Υάδων

Αστρικά Σµήνη: Απόσταση του Σµήνους των Υάδων Αστρικά Σµήνη: Απόσταση του Σµήνους των Υάδων!1 Επειδή τα Αστρικά Σµήνη: (α) βρίσκονται στην ίδια απόσταση (άρα δm=δm) και διεύθυνση και εποµένως πάσχουν από την ίδια Γαλαξιακή και ατµοσφαιρική απορρόφηση,

Διαβάστε περισσότερα

Αστροφυσική ΙΙ Tεστ II- 16 Ιανουαρίου 2009

Αστροφυσική ΙΙ Tεστ II- 16 Ιανουαρίου 2009 Αστροφυσική ΙΙ Tεστ II- 16 Ιανουαρίου 2009 1. Μία περιοχή στο μεσοαστρικό χώρο με ερυθρωπή απόχρωση είναι a. Ο ψυχρός πυρήνας ενός μοριακού νέφους b. Μία περιοχή θερμού ιονισμένου αερίου c. Μία περιοχή

Διαβάστε περισσότερα

βαρυτικά συστήματα αστέρων, γαλαξιακών αερίων, αστρικής σκοτεινής ύλης. Η ετυμολογία της λέξης αναφέρεται στον δικό μας

βαρυτικά συστήματα αστέρων, γαλαξιακών αερίων, αστρικής σκοτεινής ύλης. Η ετυμολογία της λέξης αναφέρεται στον δικό μας Οι γαλαξίες αποτελούν τεράστια βαρυτικά συστήματα αστέρων, γαλαξιακών αερίων, αστρικής σκόνης και (πιθανώς) αόρατης σκοτεινής ύλης. Η ετυμολογία της λέξης προέρχεται από τα ελληνικά και σημαίνει άξονας

Διαβάστε περισσότερα

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής ΔΗΜΙΟΥΡΓΙΑ ΤΟΥ ΗΛΙΑΚΟΥ ΣΥΣΤΗΜΑΤΟΣ. Κλεομένης Τσιγάνης

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής ΔΗΜΙΟΥΡΓΙΑ ΤΟΥ ΗΛΙΑΚΟΥ ΣΥΣΤΗΜΑΤΟΣ. Κλεομένης Τσιγάνης Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής ΔΗΜΙΟΥΡΓΙΑ ΤΟΥ ΗΛΙΑΚΟΥ ΣΥΣΤΗΜΑΤΟΣ Κλεομένης Τσιγάνης Σεμινάριο στα πλαίσια του Μαθήματος Εισαγωγή στην Αστρονομία (τμ. Λ. Βλάχου), Νοέμβριος 2009 Εξερεύνηση

Διαβάστε περισσότερα

Αστροφυσική. Ενότητα # 4: Αστρικοί άνεμοι, σφαιρική προσαύξηση και δίσκοι προσαύξησης. Λουκάς Βλάχος Τμήμα Φυσικής

Αστροφυσική. Ενότητα # 4: Αστρικοί άνεμοι, σφαιρική προσαύξηση και δίσκοι προσαύξησης. Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αστροφυσική Ενότητα # 4: Αστρικοί άνεμοι, σφαιρική προσαύξηση και δίσκοι προσαύξησης Λουκάς Βλάχος Τμήμα Φυσικής Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Προςομοιϊςεισ Διπλϊν Συςτημάτων Συμπαγϊν Αςτζρων ςτην Ελλειψοειδή Προςζγγιςη

Προςομοιϊςεισ Διπλϊν Συςτημάτων Συμπαγϊν Αςτζρων ςτην Ελλειψοειδή Προςζγγιςη Αριςτοτζλειο Πανεπιςτιμιο Θεςςαλονίκθσ Τμιμα Φυςικισ Τομζασ Αςτροφυςικισ, Αςτρονομίασ & Μθχανικισ Πρόγραμμα Μεταπτυχιακών Σπουδών Υπολογιςτικισ Φυςικισ Διπλωματικι Εργαςία Προςομοιϊςεισ Διπλϊν Συςτημάτων

Διαβάστε περισσότερα

Ερωτήσεις Γυμνασίου 22 ου Πανελλήνιου Διαγωνισμού Αστρονομίας Διαστημικής 2017

Ερωτήσεις Γυμνασίου 22 ου Πανελλήνιου Διαγωνισμού Αστρονομίας Διαστημικής 2017 ΠΡΟΣΟΧΗ: Δεν θα συμπληρώσετε τίποτα πάνω σε αυτό το έγγραφο, ούτε θα το αποστείλετε ηλεκτρονικά (μέσω e-mail). Απλά το αναρτήσαμε για την δική σας διευκόλυνση. Μόλις βρείτε τις απαντήσεις που γνωρίζετε,

Διαβάστε περισσότερα

Σφαιρικά σώµατα και βαρύτητα

Σφαιρικά σώµατα και βαρύτητα ΦΥΣ 131 - Διαλ.28 1 Σφαιρικά σώµατα και βαρύτητα q Χρησιµοποιήσαµε τις εκφράσεις F() =! GMm που ισχύουν για σηµειακές µάζες Μ και m. 2 και V () =! GMm q Ένα χαρακτηριστικό γεγονός, που κάνει τους υπολογισµούς

Διαβάστε περισσότερα

Θεωρητική Εξέταση. 24 ος Πανελλήνιος Διαγωνισμός Αστρονομίας και Διαστημικής η φάση: «ΠΤΟΛΕΜΑΙΟΣ»

Θεωρητική Εξέταση. 24 ος Πανελλήνιος Διαγωνισμός Αστρονομίας και Διαστημικής η φάση: «ΠΤΟΛΕΜΑΙΟΣ» 24 ος Πανελλήνιος Διαγωνισμός Αστρονομίας και Διαστημικής 2019 3 η φάση: «ΠΤΟΛΕΜΑΙΟΣ» Θεωρητική Εξέταση 24 ος Πανελλήνιος Διαγωνισμός Αστρονομίας 2019 3 η φάση Θεωρητική Εξέταση 1 Παρακαλούμε, διαβάστε

Διαβάστε περισσότερα

Εξερευνώντας το Σύμπαν με τα Κύματα της Βαρύτητας

Εξερευνώντας το Σύμπαν με τα Κύματα της Βαρύτητας Εξερευνώντας το Σύμπαν με τα Κύματα της Βαρύτητας ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Νάουσα, 28/11/2015 Πως διαδίδεται η βαρυτική έλξη; 1900: ο Lorentz προτείνει

Διαβάστε περισσότερα

Πηγές, επιτάχυνση Κοσμικών Ακτίνων

Πηγές, επιτάχυνση Κοσμικών Ακτίνων Πηγές, επιτάχυνση Κοσμικών Ακτίνων Διαστάσεις Γαλαξία Διαστάσεις Γαλαξία: Ακτίνα 5 kpsc, ύψος δίσκου 500 psc (psc= 3, 0 6 m). Ο ήλιος βρίσκεται σε απόσταση 8,5 kpc από το κέντρο του γαλαξία. Πυκνότητα

Διαβάστε περισσότερα

ΠΡΟΣΟΧΗ: Διαβάστε προσεκτικά τις κάτωθι Οδηγίες για την συμμετοχή σας στην 1 η φάση «Εύδοξος»

ΠΡΟΣΟΧΗ: Διαβάστε προσεκτικά τις κάτωθι Οδηγίες για την συμμετοχή σας στην 1 η φάση «Εύδοξος» ΠΡΟΣΟΧΗ: Διαβάστε προσεκτικά τις κάτωθι Οδηγίες για την συμμετοχή σας στην 1 η φάση «Εύδοξος» Για να θεωρηθεί έγκυρη η συμμετοχή σας στην 1 η φάση, θα πρέπει απαραίτητα να έχετε συμπληρώσει τον πίνακα

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 6. Ηλικία και απόσταση Αστρικών Σµηνών

ΑΣΚΗΣΗ 6. Ηλικία και απόσταση Αστρικών Σµηνών ΑΣΚΗΣΗ 6 Ηλικία και απόσταση Αστρικών Σµηνών Περιεχόµενα Διάγραµµα µεγέθους-χρώµατος o Κύρια Ακολουθία o Κύρια Ακολουθία Μηδενικής Ηλικίας o Ισόχρονες Μεσοαστρική Απόσβεση Εκτίµηση ηλικίας και απόστασης

Διαβάστε περισσότερα

Αστρονομία στις ακτίνες γ

Αστρονομία στις ακτίνες γ Αστρονομία στις ακτίνες γ Τηλεσκόπια Μελέτη αστρονομικών αντικειμένων Αστρονομία ακτίνων γ Φωτόνια με ενέργειες από 0.5 MeV ~200 TeV (τα πιο ενεργά φωτόνια που έχουν ανιχνευθεί μέχρι σήμερα) Αστρονομία

Διαβάστε περισσότερα

Αλληλεπίδραση Φωτονίου-Φωτονίου

Αλληλεπίδραση Φωτονίου-Φωτονίου Αλληλεπίδραση Φωτονίου-Φωτονίου 4 4.1 Βασικές έννοιες Οπως αναφέραμε στο προηγούμενο Κεφάλαιο, η αλληλεπίδραση φωτονίουφωτονίου προς παραγωγή ζεύγους ηλεκτρονίου-ποζιτρονίου αποτελεί μία από τις βασικές

Διαβάστε περισσότερα

ΑΣΤΡΟΝΟΜΙΑ ΚΑΙ ΑΣΤΡΟΦΥΣΙΚΗ 7 ο ΕΞΑΜΗΝΟ ΤΜΗΜΑ ΦΥΣIΚΗΣ ΑΠΘ

ΑΣΤΡΟΝΟΜΙΑ ΚΑΙ ΑΣΤΡΟΦΥΣΙΚΗ 7 ο ΕΞΑΜΗΝΟ ΤΜΗΜΑ ΦΥΣIΚΗΣ ΑΠΘ ΑΣΤΡΟΝΟΜΙΑ ΚΑΙ ΑΣΤΡΟΦΥΣΙΚΗ 7 ο ΕΞΑΜΗΝΟ 2016-2017 ΤΜΗΜΑ ΦΥΣIΚΗΣ ΑΠΘ 1ο Σ Ε Τ Α Σ Κ Η Σ Ε Ω Ν 1. Να κατασκευαστεί η ουράνια σφαίρα για έναν παρατηρητή που βρίσκεται σε γεωγραφικό πλάτος 25º και να τοποθετηθούν

Διαβάστε περισσότερα

1 Ο παράγοντας κλίμακας και ο Νόμος του Hubble

1 Ο παράγοντας κλίμακας και ο Νόμος του Hubble ΤΟ ΚΑΘΙΕΡΩΜΕΝΟ ΠΡΟΤΥΠΟ ΤΗΣ ΚΟΣΜΟΛΟΓΙΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς Ο παράγοντας κλίμακας και ο Νόμος του Hubble Σύμφωνα με την Κοσμολογική Αρχή το Σύμπαν είναι σε μεγάλες κλίμακες ομογενές και ισότροπο.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ε. Στυλιάρης

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ε. Στυλιάρης (Με ιδέες και υλικό από ΦΥΣΙΚΗ Ι ΤΜΗΜΑ Α Ε. Στυλιάρης από παλαιότερες διαφάνειες του κ. Καραμπαρμπούνη) ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, 05 06 06 ΒΑΡΥΤΗΤΑ Νόμος της Βαρύτητας Βαρύτητα στο Εσωτερικό και Πάνω από

Διαβάστε περισσότερα

Λουκάς Βλάχος Τµήµα Φυσικής, ΑΠΘ Εισαγωγή στην αστρονοµία Κεφάλαιο 11: Ο Θάνατος των αστέρων

Λουκάς Βλάχος Τµήµα Φυσικής, ΑΠΘ Εισαγωγή στην αστρονοµία Κεφάλαιο 11: Ο Θάνατος των αστέρων Εισαγωγή στην αστρονοµία Κεφάλαιο 11: Ο Θάνατος των αστέρων Λουκάς Βλάχος Τµήµα Φυσικής, ΑΠΘ 28 Νοεµβρίου 2009 Εισαγωγή στην αστρονοµία Κεφάλαιο 11: Ο Θάνατος των αστέρων Λουκάς Βλάχος Τµήµα Φυσικής, ΑΠΘ

Διαβάστε περισσότερα

Κοσμολογία & Αστροσωματιδική Φυσική Μάγδα Λώλα CERN, 28/9/2010

Κοσμολογία & Αστροσωματιδική Φυσική Μάγδα Λώλα CERN, 28/9/2010 Κοσμολογία & Αστροσωματιδική Φυσική Μάγδα Λώλα CERN, 28/9/2010 Η φυσική υψηλών ενεργειών µελετά το µικρόκοσµο, αλλά συνδέεται άµεσα µε το µακρόκοσµο Κοσµολογία - Μελέτη της δηµιουργίας και εξέλιξης του

Διαβάστε περισσότερα

Δρ Μάνος Δανέζης Επίκουρος Καθηγητής Αστροφυσικής Τμήμα Φυσικής ΕΚΠΑ. Μελανές Οπές

Δρ Μάνος Δανέζης Επίκουρος Καθηγητής Αστροφυσικής Τμήμα Φυσικής ΕΚΠΑ. Μελανές Οπές Δρ Μάνος Δανέζης Επίκουρος Καθηγητής Αστροφυσικής Τμήμα Φυσικής ΕΚΠΑ Μελανές Οπές Αν η μάζα που απομένει να είναι μεγαλύτερη από 3,2 ηλιακές μάζες (M>3,2Mο), ο αστέρας δεν μπορεί να ισορροπήσει ούτε ως

Διαβάστε περισσότερα

ΘΑΥΜΑΤΑ ΚΑΙ ΜΥΣΤΗΡΙΑ ΤΟΥ ΣΥΜΠΑΝΤΟΣ

ΘΑΥΜΑΤΑ ΚΑΙ ΜΥΣΤΗΡΙΑ ΤΟΥ ΣΥΜΠΑΝΤΟΣ ΘΑΥΜΑΤΑ ΚΑΙ ΜΥΣΤΗΡΙΑ ΤΟΥ ΣΥΜΠΑΝΤΟΣ Μέλη ομάδας Οικονόμου Γιώργος Οικονόμου Στέργος Πιπέρης Γιάννης Χατζαντώνης Μανώλης Χαυλή Αθηνά Επιβλέπων Καθηγητής Βασίλειος Βαρσάμης Στόχοι: Να μάθουμε τα είδη των

Διαβάστε περισσότερα

θεμελιακά Ερωτήματα Κοσμολογίας & Αστροφυσικής

θεμελιακά Ερωτήματα Κοσμολογίας & Αστροφυσικής θεμελιακά Ερωτήματα Απόστολος Δ. Παναγιώτου Ομότιμος Καθηγητής Πανεπιστημίου Αθηνών Επιστημονικός Συνεργάτης στο CERN Σχολή Αστρονομίας και Διαστήματος Βόλος, 5 Απριλίου, 2014 1 BIG BANG 10 24 μ 10-19

Διαβάστε περισσότερα

Μαγνητικοί άνεμοι και απώλεια στροφορμής

Μαγνητικοί άνεμοι και απώλεια στροφορμής 8 Μαγνητικοί άνεμοι και απώλεια στροφορμής Σχήμα 8.1: Μορφολογία ενός αστρικού ανέμου στο ισημερινό επίπεδο στα πλαίσια της αντιμετώπισής του από το απλοποιημένο μοντέλο του μαγνητοπεροστροφικού ανέμου

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Θέµα 1 (25 µονάδες) Ένα εκκρεµές µήκους l κρέµεται έτσι ώστε η σηµειακή µάζα να βρίσκεται ακριβώς

Διαβάστε περισσότερα

ΦΥΣ η ΠΡΟΟΔΟΣ 8-Μάρτη-2014

ΦΥΣ η ΠΡΟΟΔΟΣ 8-Μάρτη-2014 ΦΥΣ. 11 1 η ΠΡΟΟΔΟΣ 8-Μάρτη-014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

3) το παράθυρο Πίνακας τιμών όπου εμφανίζονται οι τιμές που παίρνουν οι παράμετροι

3) το παράθυρο Πίνακας τιμών όπου εμφανίζονται οι τιμές που παίρνουν οι παράμετροι Ο Δ Η Γ Ι Ε Σ Γ Ι Α Τ Ο M O D E L L U S 0.0 4. 0 5 Για να κατεβάσουμε το πρόγραμμα Επιλέγουμε Download στη διεύθυνση: http://modellus.co/index.php/en/download. Στη συνέχεια εκτελούμε το ModellusX_windows_0_4_05.exe

Διαβάστε περισσότερα

Τα παρατηρήσιμα μεγέθη των αστεριών (λαμπρότητα, L, επιφανειακή θερμοκρασία, T eff

Τα παρατηρήσιμα μεγέθη των αστεριών (λαμπρότητα, L, επιφανειακή θερμοκρασία, T eff ΚΥΡΙΑ ΑΚΟΛΟΥΘΙΑ: oνομάζουμε το σύνολο των θέσεων που καταλαμβάνουν τα αστέρια σε διάγραμμα Λαμπρότητας Θερμοκρασίας όταν καίνε Η στο εσωτερικό τους και παράγουν He. Τα παρατηρήσιμα μεγέθη των αστεριών

Διαβάστε περισσότερα

Εισαγωγή στην παρατήρηση και τον αστρονομικό εξοπλισμό

Εισαγωγή στην παρατήρηση και τον αστρονομικό εξοπλισμό Εισαγωγή στην παρατήρηση και τον αστρονομικό εξοπλισμό Θεόφιλος Στεργίου Αστρονομική Εταιρία ΩΡΙΩΝ Είδη Ερασιτεχνικής αστρονομίας (Δεν είναι αστροφυσική) Αστρονόμος του καναπέ Παρατηρησιακός αστρονόμος

Διαβάστε περισσότερα

Πρόβλεψη αστέρων νετρονίων

Πρόβλεψη αστέρων νετρονίων Πρόβλεψη αστέρων νετρονίων Η μοίρα των αστέρων μεγάλης μάζας είναι η κατάρρευση; Μπορεί να υπάρξει «νέα φυσική» που να αναχαιτίσει τη βαρυτική κατάρρευση πέρα από το όριο Chandrasekhar Πώς θα είναι ένα

Διαβάστε περισσότερα

Τα Κύματα της Βαρύτητας

Τα Κύματα της Βαρύτητας Τα Κύματα της Βαρύτητας ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΟΦΑ, 24/1/2015 Πως διαδίδεται η βαρυτική έλξη; 1900: ο Lorentz προτείνει ότι η δύναμη της βαρύτητας δε

Διαβάστε περισσότερα

3 + O. 1 + r r 0. 0r 3 cos 2 θ 1. r r0 M 0 R 4

3 + O. 1 + r r 0. 0r 3 cos 2 θ 1. r r0 M 0 R 4 Μηχανική Ι Εργασία #7 Χειμερινό εξάμηνο 8-9 Ν. Βλαχάκης. (α) Ποια είναι η ένταση και το δυναμικό του βαρυτικού πεδίου που δημιουργεί μια ομογενής σφαίρα πυκνότητας ρ και ακτίνας σε όλο το χώρο; Σχεδιάστε

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1

ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1 ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 00 ΘΕΜΑ : (α) Ταχύτητα ΚΜ: u KM = mu + mu m = u + u Εποµένως u = u u + u = u u, u = u u + u = u u (β) Διατήρηση ορµής στο ΚΜ: mu + mu = mv + mv u + u = V + V = 0 V = V

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Σχολή Θετικών Επιστηµών και Τεχνολογίας. Πρόγραµµα Σπουδών ΠΡΟΧΩΡΗΜΕΝΕΣ ΣΠΟΥ ΕΣ ΣΤΗ ΦΥΣΙΚΗ.

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Σχολή Θετικών Επιστηµών και Τεχνολογίας. Πρόγραµµα Σπουδών ΠΡΟΧΩΡΗΜΕΝΕΣ ΣΠΟΥ ΕΣ ΣΤΗ ΦΥΣΙΚΗ. Σηµείωση: Οι εικόνες οι οποίες έχουν περιληφθεί στον παρόντα τόµο χρησιµοποιούνται για καθαρά εκπαιδευτικούς σκοπούς και υποκαθιστούν την προβολή εικαστικού υλικού στο πλαίσιο µιας διάλεξης. Παρατίθενται

Διαβάστε περισσότερα

Αστρονομία. Ενότητα # 10: Τελικές Καταστάσεις (Λευκοί Νάνοι Αστέρες Νετρονίων) Νικόλαος Στεργιούλας Τμήμα Φυσικής ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ

Αστρονομία. Ενότητα # 10: Τελικές Καταστάσεις (Λευκοί Νάνοι Αστέρες Νετρονίων) Νικόλαος Στεργιούλας Τμήμα Φυσικής ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αστρονομία Ενότητα # 10: Τελικές Καταστάσεις (Λευκοί Νάνοι Αστέρες Νετρονίων) Νικόλαος Στεργιούλας Τμήμα Φυσικής Αριστοτέλειο Πανεπιστήμιο

Διαβάστε περισσότερα

Κεφάλαιο 8. Βαρυτικη Δυναμικη Ενεργεια { Εκφραση του Βαρυτικού Δυναμικού, Ταχύτητα Διαφυγής, Τροχιές και Ενέργεια Δορυφόρου}

Κεφάλαιο 8. Βαρυτικη Δυναμικη Ενεργεια { Εκφραση του Βαρυτικού Δυναμικού, Ταχύτητα Διαφυγής, Τροχιές και Ενέργεια Δορυφόρου} Κεφάλαιο 8 ΒΑΡΥΤΙΚΟ ΠΕΔΙΟ Νομος της Βαρυτητας {Διανυσματική Εκφραση, Βαρύτητα στη Γη και σε Πλανήτες} Νομοι του Kepler {Πεδίο Κεντρικών Δυνάμεων, Αρχή Διατήρησης Στροφορμής, Κίνηση Πλανητών και Νόμοι του

Διαβάστε περισσότερα

Δρ. Ελένη Χατζηχρήστου, Μάιος 2008 ΙΝΣΤΙΤΟΥΤΟ ΑΣΤΡΟΝΟΜΙΑΣ ΚΑΙ ΑΣΤΡΟΦΥΣΙΚΗΣ, ΕΑΑ

Δρ. Ελένη Χατζηχρήστου, Μάιος 2008 ΙΝΣΤΙΤΟΥΤΟ ΑΣΤΡΟΝΟΜΙΑΣ ΚΑΙ ΑΣΤΡΟΦΥΣΙΚΗΣ, ΕΑΑ Γαλαξιακές συγκρούσεις και αστρικά πυροτεχνήματα Δρ. Ελένη Χατζηχρήστου, Μάιος 2008 ΙΝΣΤΙΤΟΥΤΟ ΑΣΤΡΟΝΟΜΙΑΣ ΚΑΙ ΑΣΤΡΟΦΥΣΙΚΗΣ, ΕΑΑ Download PDF Πρόσφατα, δόθηκε στη δημοσιότητα η μεγαλύτερη συλλογή εικόνων

Διαβάστε περισσότερα

Εισαγωγή Οι µαύρες τρύπες είναι ουράνια σώµατα σαν όλα τα άλλα, όπως οι πλανήτες και ο ήλιος, τα οποία όµως διαφέρουν από αυτά σε µία µικρή αλλά θεµελ

Εισαγωγή Οι µαύρες τρύπες είναι ουράνια σώµατα σαν όλα τα άλλα, όπως οι πλανήτες και ο ήλιος, τα οποία όµως διαφέρουν από αυτά σε µία µικρή αλλά θεµελ ιαθεµατική Εργασία µε Θέµα: Οι Φυσικές Επιστήµες στην Καθηµερινή µας Ζωή Τµήµα: Β 2 Γυµνασίου Υπεύθυνος Καθηγητής: Παζούλης Παναγιώτης Συντακτική Οµάδα: Πάνου Μαρία, Πάνου Γεωργία 1 Εισαγωγή Οι µαύρες

Διαβάστε περισσότερα

Ερευνητική Εργασία με θέμα: «Ερευνώντας τα χρονικά μυστικά του Σύμπαντος»

Ερευνητική Εργασία με θέμα: «Ερευνώντας τα χρονικά μυστικά του Σύμπαντος» Ερευνητική Εργασία με θέμα: «Ερευνώντας τα χρονικά μυστικά του Σύμπαντος» Σωτήρης Τσαντίλας (PhD, MSc), Μαθηματικός Αστροφυσικός Σύντομη περιγραφή: Χρησιμοποιώντας δεδομένα από το διαστημικό τηλεσκόπιο

Διαβάστε περισσότερα

19 ος Πανελλήνιος Διαγωνισμός Αστρονομίας και Διαστημικής 2014. 4 η φάση: «ΠΤΟΛΕΜΑΙΟΣ» Θεωρητική Εξέταση

19 ος Πανελλήνιος Διαγωνισμός Αστρονομίας και Διαστημικής 2014. 4 η φάση: «ΠΤΟΛΕΜΑΙΟΣ» Θεωρητική Εξέταση 19 ος Πανελλήνιος Διαγωνισμός Αστρονομίας και Διαστημικής 2014 4 η φάση: «ΠΤΟΛΕΜΑΙΟΣ» Θεωρητική Εξέταση Παρακαλούμε, διαβάστε προσεκτικά τα παρακάτω: 1. Ο διαθέσιμος χρόνος για την απάντηση των θεωρητικών

Διαβάστε περισσότερα

ΠΑΡΑΤΗΡΗΣΙΑΚΗ ΚΟΣΜΟΛΟΓΙΑ

ΠΑΡΑΤΗΡΗΣΙΑΚΗ ΚΟΣΜΟΛΟΓΙΑ Ελένη Πετράκου - National Taiwan University ΠΑΡΑΤΗΡΗΣΙΑΚΗ ΚΟΣΜΟΛΟΓΙΑ Πρόγραμμα επιμόρφωσης ελλήνων εκπαιδευτικών CERN, 7 Νοεμβρίου 2014 You are here! 1929: απομάκρυνση γαλαξιών θεωρία της μεγάλης έκρηξης

Διαβάστε περισσότερα

Υπολογισμός Κυματικής Δύναμης σε σύστημα πασσάλων Θαλάσσιας Εξέδρας

Υπολογισμός Κυματικής Δύναμης σε σύστημα πασσάλων Θαλάσσιας Εξέδρας Υπολογισμός Κυματικής Δύναμης σε σύστημα πασσάλων Θαλάσσιας Εξέδρας Περιγραφή Προβλήματος Απαιτείται η κατασκευή μιας θαλάσσιας εξέδρας σε θαλάσσια περιοχή με κυματικά χαρακτηριστικά Η = 4.65m, T = 8.5sec.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Πτυχιακή εξέταση στη Μηχανική ΙI 20 Σεπτεμβρίου 2007

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Πτυχιακή εξέταση στη Μηχανική ΙI 20 Σεπτεμβρίου 2007 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Πτυχιακή εξέταση στη Μηχανική ΙI 0 Σεπτεμβρίου 007 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε στα ερωτήματα που ακολουθούν με σαφήνεια, ακρίβεια και απλότητα. Όλα τα

Διαβάστε περισσότερα

ΤΕΠΑΚ, Τμήμα Πολιτικών Μηχ. / Τοπογράφων Μηχ. και Μηχ. Γεωπληροφορικής

ΤΕΠΑΚ, Τμήμα Πολιτικών Μηχ. / Τοπογράφων Μηχ. και Μηχ. Γεωπληροφορικής ΤΕΠΑΚ, Τμήμα Πολιτικών Μηχ. / Τοπογράφων Μηχ. και Μηχ. Γεωπληροφορικής Μάθημα 6ου Εξαμήνου: Δορυφορική Γεωδαισία (Ακαδ. Έτος 211-12) ΟΝΟΜΑΤΕΠΩΝΥΜΟ... ΕΞΑΜΗΝΟ... Ενδιάμεσο Διαγώνισμα Διάρκεια 11 Επιλέξτε

Διαβάστε περισσότερα

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Έστω F=f κεντρικό πεδίο δυνάμεων. Είναι εύκολο να δείξουμε ότι F=0, δηλ. είναι διατηρητικό: F= V. Σε σφαιρικές συντεταγμένες, γενικά: V ma = F =, V maθ = Fθ =,

Διαβάστε περισσότερα

ΔΙΠΛΑ ΣΥΣΤΗΜΑΤΑ ΑΣΤΕΡΩΝ

ΔΙΠΛΑ ΣΥΣΤΗΜΑΤΑ ΑΣΤΕΡΩΝ ΔΙΠΛΑ ΣΥΣΤΗΜΑΤΑ ΑΣΤΕΡΩΝ Οι διπλοί αστέρες διακρίνονται ως τέτοιοι αν η γωνιώδης απόσταση τους, ω, είναι µεγαλύτερη από την διακριτική ικανότητα του τηλεσκοπίου: ω min =1.22 λ/d λ=µήκος κύµατος παρατήρησης

Διαβάστε περισσότερα

θ = D d = m

θ = D d = m Απαντήσεις Λυκείου 21 ου Πανελλήνιου Διαγωνισμού Αστρονομίας Διαστημικής 2016 1. Πόσο χρόνο χρειαζόταν να περιμένει το κέντρο ελέγχου της αποστολής Messenger, που επισκέφτηκε τον Ερμή, για να επιστρέψει

Διαβάστε περισσότερα

Πώς μια μάζα αντιλαμβάνεται ότι κάπου υπάρχει μια άλλη και αλληλεπιδρά με αυτή ; Η αλληλεπίδραση μεταξύ μαζών περιγράφεται με την έννοια του πεδίου.

Πώς μια μάζα αντιλαμβάνεται ότι κάπου υπάρχει μια άλλη και αλληλεπιδρά με αυτή ; Η αλληλεπίδραση μεταξύ μαζών περιγράφεται με την έννοια του πεδίου. ΒΑΡΥΤΙΚΟ ΠΕΔΙΟ ΓΕΝΙΚΑ Δυο σημειακές μάζες που απέχουν απόσταση r έλκονται με δύναμη που είναι ανάλογη του γινομένου των μαζών και αντίστροφα ανάλογη του τετραγώνου της απόστασής τους. Όπου G η σταθερά

Διαβάστε περισσότερα

ΔΙΠΛΟΙ ΕΚΛΕΙΠΤΙΚΟΙ. Το διπλό σύστηµα Algol. Φαίνεται η διαφορά στο φαινόµενο µέγεθος που προκαλείται από τις κύριες και δευτερεύουσες εκλείψεις

ΔΙΠΛΟΙ ΕΚΛΕΙΠΤΙΚΟΙ. Το διπλό σύστηµα Algol. Φαίνεται η διαφορά στο φαινόµενο µέγεθος που προκαλείται από τις κύριες και δευτερεύουσες εκλείψεις ΔΙΠΛΟΙ ΕΚΛΕΙΠΤΙΚΟΙ Διπλά εκλειπτικά συστήµατα φαίνονται ως µεταβλητός αστέρας, π.χ. ο µεταβλητός Algol που ανακαλύφθηκε το 1669 και ερµηνεύτηκε αργότερα ως διπλό σύστηµα. Το διπλό σύστηµα Algol. Φαίνεται

Διαβάστε περισσότερα

c 4 (1) Robertson Walker (x 0 = ct) , R 2 (t) = R0a 2 2 (t) (2) p(t) g = (3) p(t) g 22 p(t) g 33

c 4 (1) Robertson Walker (x 0 = ct) , R 2 (t) = R0a 2 2 (t) (2) p(t) g = (3) p(t) g 22 p(t) g 33 ΤΟ ΚΑΘΙΕΡΩΜΕΝΟ ΠΡΟΤΥΠΟ ΤΗΣ ΚΟΣΜΟΛΟΓΙΑΣ Α. Η ΕΞΙΣΩΣΗ EINSTEIN Διδάσκων: Θεόδωρος Ν. Τομαράς G µν R µν 1 g µν R = κ T µν, κ 8πG N c 4 (1) Β. Η ΕΞΙΣΩΣΗ FRIEDMANN. Για ομογενή και ισότροπο χωρόχρονο έχουμε

Διαβάστε περισσότερα

Σχηματισμός Πλανητών. Μάθημα 9ο 10ο

Σχηματισμός Πλανητών. Μάθημα 9ο 10ο Σχηματισμός Πλανητών Μάθημα 9ο 10ο Οδικός Χάρτης O πρωτοπλανητικός δίσκος αερίου / σκόνης Σχηματισμός πλανητοειδών συσσωματώσεις σκόνης στερεά σώματα ~10 km Σχηματισμός στερεών πλανητών και πυρήνων γιγάντιων

Διαβάστε περισσότερα

Θεωρία Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας

Θεωρία Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας Θεωρία Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας Νόμος της Βαρύτητας επιτάχυνση της βαρύτητας Κίνηση δορυφόρου Νόμοι Keple Το σύμπαν και οι δυνάμεις βαρύτητας Ο λόγος που

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 11 Εισαγωγή στην Ηλεκτροδυναμική Ηλεκτρικό φορτίο Ηλεκτρικό πεδίο ΦΥΣ102 1 Στατικός

Διαβάστε περισσότερα

ΦΥΣ η ΠΡΟΟΔΟΣ 8-Μάρτη-2014

ΦΥΣ η ΠΡΟΟΔΟΣ 8-Μάρτη-2014 ΦΥΣ. 11 1 η ΠΡΟΟΔΟΣ 8-Μάρτη-014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

αστερισμοί Φαινομενικά αμετάβλητοι σχηματισμοί αστέρων που παρατηρούμε στον ουρανό

αστερισμοί Φαινομενικά αμετάβλητοι σχηματισμοί αστέρων που παρατηρούμε στον ουρανό αστερισμοί Φαινομενικά αμετάβλητοι σχηματισμοί αστέρων που παρατηρούμε στον ουρανό Αστερισμός του χαμαιλέοντα Φυσικά χαρακτηριστικά αστέρων Λαμπρότητα Μέγεθος Θερμοκρασία-χρώμα Φασματικός τύπος Λαμπρότητα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 Ο ΕΚΘΕΤΙΚΗ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 4 Ο ΕΚΘΕΤΙΚΗ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 4 Ο ΕΚΘΕΤΙΚΗ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 4 Ο ΕΚΘΕΤΙΚΗ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΙΔΙΟΤΗΤΕΣ ΔΥΝΑΜΕΩΝ Από προηγούμενες τάξεις γνωρίζουμε τις παρακάτω ιδιότητες

Διαβάστε περισσότερα

Θεωρητική Εξέταση - Σύντοµες Ερωτήσεις

Θεωρητική Εξέταση - Σύντοµες Ερωτήσεις 1. Στο Εθνικό Αστεροσκοπείο της Βραζιλίας, που βρίσκεται στη πόλη Ρίο ντε Τζανέιρο ( 22 54ʹ S, 43 12ʹ W), υπάρχει ένα ηλιακό ρολόι πάνω από την πόρτα του θόλου που είναι εγκατεστηµένο το τηλεσκόπιο των

Διαβάστε περισσότερα

Ηρώων Πολυτεχνείου 9, Ζωγράφου, Αθήνα, Τηλ: , Fax: URL

Ηρώων Πολυτεχνείου 9, Ζωγράφου, Αθήνα, Τηλ: , Fax: URL ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης και Βέλτιστου Σχεδιασμού Δικτύων - NETMODE

Διαβάστε περισσότερα

Ερευνητικό έργο Βασικοί Τομείς

Ερευνητικό έργο Βασικοί Τομείς Ερευνητικό έργο Βασικοί Τομείς Θεωρητική Αστροφυσική και Κοσμολογία Παρατηρησιακή Αστροφυσική Ηλιακή Φυσική και Φυσική Διαστήματος Μηχανική και Μη γραμμικά συστήματα Θεωρητική Αστροφυσική και Κοσμολογία

Διαβάστε περισσότερα

Κοσμολογική ερυθρομετατόπιση Ιδιότητα του διαστελλόμενου χώρου. Όπως το Σύμπαν διαστέλλεται το μήκος κύματος του φωτονίου διαστέλλεται ανάλογα με τον παράγοντα διαστολής [συντελεστής Κοσμικής κλίμακας,

Διαβάστε περισσότερα

Δυναμική Εξέλιξη του Ηλιακού Συστήματος: σύγχρονες απόψεις

Δυναμική Εξέλιξη του Ηλιακού Συστήματος: σύγχρονες απόψεις Δυναμική Εξέλιξη του Ηλιακού Συστήματος: σύγχρονες απόψεις Κλεομένης Τσιγάνης Σεμινάριο του Τμήματος Φυσικής, 17/3/2010, Α31 Περίληψη Περιγραφή του Ηλιακού Συστήματος (ΗΣ) Δυναμική του ΗΣ για t > -3.8

Διαβάστε περισσότερα

Διαταραχές Τροχιάς (2)

Διαταραχές Τροχιάς (2) Διαταραχές Τροχιάς (2) Μάθημα 6 ο Βαρυτικές διαταραχές δυναμικό πεπλατυσμένου σώματος Επίδραση τρίτου σώματος (α) γραμμική αέναη κίνηση (β) κίνηση σε συντονισμό Μη βαρυτικές διαταραχές Μεταβολές του μεγάλου

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 10. Η σταθερά του Hubble: µέτρηση αποστάσεων γαλαξιών

ΑΣΚΗΣΗ 10. Η σταθερά του Hubble: µέτρηση αποστάσεων γαλαξιών ΑΣΚΗΣΗ 10 Η σταθερά του Hubble: µέτρηση αποστάσεων γαλαξιών Περιεχόµενα Κηφείδες Ερυθρά µετατόπιση Φάσµατα γαλαξιών Σκοπός της άσκησης Η µέτρηση της ερυθρής µετατόπισης των γαλαξιών είναι η βασική µέθοδος

Διαβάστε περισσότερα

Κοσμολογία. Η δημιουργία και η εξέλιξη του Σύμπαντος. Κοσμάς Γαζέας. Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών

Κοσμολογία. Η δημιουργία και η εξέλιξη του Σύμπαντος. Κοσμάς Γαζέας. Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Κοσμολογία Η δημιουργία και η εξέλιξη του Σύμπαντος Κοσμάς Γαζέας Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Οι σχετικές αποστάσεις στο Σύμπαν Hubble Deep Field Hubble Ultra Deep Field Το φαινόμενο

Διαβάστε περισσότερα

Reynolds. du 1 ξ2 sin 2 u. (2n)!! ( (http://www.natgeotv.com/uk/street-genius/ videos/bulletproof-balloons) n=0

Reynolds. du 1 ξ2 sin 2 u. (2n)!! ( (http://www.natgeotv.com/uk/street-genius/ videos/bulletproof-balloons) n=0 Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ. Τσίγκανου & Ν. Βλαχάκη, Μαΐου 7 Διάρκεια εξέτασης 3 ώρες, Καλή επιτυχία ( = bonus ερωτήματα) Ονοματεπώνυμο:,

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Isaac Newton: Θεωρείται πατέρας της Κλασικής Φυσικής, καθώς ξεκινώντας από τις παρατηρήσεις του Γαλιλαίου αλλά και τους νόμους του Κέπλερ για την κίνηση των πλανητών

Διαβάστε περισσότερα

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών. Κοσμάς Γαζέας

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών. Κοσμάς Γαζέας Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Κοσμάς Γαζέας Η γέννηση της Αστροφυσικής Οι αστρονόμοι μελετούν τα ουράνια σώματα βασισμένοι στο φως, που λαμβάνουν από αυτά. Στα πρώτα χρόνια των παρατηρήσεων,

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος 2012

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος 2012 ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος ΘΕΜΑ α) Υλικό σημείο μάζας κινείται στον άξονα Ο υπό την επίδραση του δυναμικού V=V() Αν για t=t βρίσκεται στη θέση = με ενέργεια Ε δείξτε ότι η κίνησή του δίνεται από

Διαβάστε περισσότερα

= 2, s! 8,23yr. Απαντήσεις Γυμνασίου 21 ου Πανελλήνιου Διαγωνισμού Αστρονομίας Διαστημικής 2016

= 2, s! 8,23yr. Απαντήσεις Γυμνασίου 21 ου Πανελλήνιου Διαγωνισμού Αστρονομίας Διαστημικής 2016 Απαντήσεις Γυμνασίου 21 ου Πανελλήνιου Διαγωνισμού Αστρονομίας Διαστημικής 2016 1. Αστρική μέρα ονομάζουμε: (α) τον χρόνο από την ανατολή μέχρι τη δύση ενός αστέρα (β) τον χρόνο περιστροφής ενός αστέρα

Διαβάστε περισσότερα

ΦΥΣ. 111 Κατ οίκον εργασία # 8 - Επιστροφή Πέµπτη 09/11/2017

ΦΥΣ. 111 Κατ οίκον εργασία # 8 - Επιστροφή Πέµπτη 09/11/2017 ΦΥΣ. 111 Κατ οίκον εργασία # 8 - Επιστροφή Πέµπτη 09/11/2017 Οι ασκήσεις 1-10 στηρίζονται στα κεφάλαια 8 και 9 και των βιβλίων των Young και Serway και οι ασκήσεις 11-17 στο νόµο της παγκόσµιας έλξης κεφάλαιο

Διαβάστε περισσότερα

website:

website: Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 31 Μαρτίου 2019 1 Δυνάμεις μάζας και επαφής Δυνάμεις μάζας ή δυνάμεις όγκου ονομάζονται οι δυνάμεις που είναι

Διαβάστε περισσότερα

Εφαρμογές με Ρομποτικά Τηλεσκόπια στην Σχολική Τάξη

Εφαρμογές με Ρομποτικά Τηλεσκόπια στην Σχολική Τάξη Το Ανακαλυτικό Μοντέλο Διδασκαλίας στις Φυσικές Επιστήμες Εφαρμογές με Ρομποτικά Τηλεσκόπια στην Σχολική Τάξη Δρ. Αγγελος Λαζούδης Τμήμα Έρευνας & Ανάπτυξης Ελληνογερμανική Αγωγή Απαιτείται επαναπροσδιορισμός

Διαβάστε περισσότερα

ΟΙ ΚΙΝΗΣΕΙΣ ΤΗΣ ΓΗΣ. www.meteo.gr - 1 -

ΟΙ ΚΙΝΗΣΕΙΣ ΤΗΣ ΓΗΣ. www.meteo.gr - 1 - ΟΙ ΚΙΝΗΣΕΙΣ ΤΗΣ ΓΗΣ H Γη είναι ένας πλανήτης από τους οκτώ συνολικά του ηλιακού μας συστήματος, το οποίο αποτελεί ένα από τα εκατοντάδες δισεκατομμύρια αστρικά συστήματα του Γαλαξία μας, ο οποίος με την

Διαβάστε περισσότερα

Κεφάλαιο 3 ο. Χημική Κινητική. Παναγιώτης Αθανασόπουλος Χημικός, Διδάκτωρ Πανεπιστημίου Πατρών. 35 panagiotisathanasopoulos.gr

Κεφάλαιο 3 ο. Χημική Κινητική. Παναγιώτης Αθανασόπουλος Χημικός, Διδάκτωρ Πανεπιστημίου Πατρών. 35 panagiotisathanasopoulos.gr . Κεφάλαιο 3 ο Χημική Κινητική Χημικός, 35 Διδάκτωρ Πανεπιστημίου Πατρών Χημικός Διδάκτωρ Παν. Πατρών 36 Γενικα για τη χημικη κινητικη και τη χημικη Τι μελετά η Χημική Κινητική; Πως αντλεί τα δεδομένα

Διαβάστε περισσότερα

ΑΣΤΕΡΟΣΚΟΠΕΙΟ ΕΛΛΗΝΟΓΕΡΜΑΝΙΚΗ ΑΓΩΓΗ. Πρόγραμμα βραδιών παρατηρήσεων Μάιος 2009 7 Μαΐου 14 Μαΐου 21 Μαΐου 28 Μαΐου

ΑΣΤΕΡΟΣΚΟΠΕΙΟ ΕΛΛΗΝΟΓΕΡΜΑΝΙΚΗ ΑΓΩΓΗ. Πρόγραμμα βραδιών παρατηρήσεων Μάιος 2009 7 Μαΐου 14 Μαΐου 21 Μαΐου 28 Μαΐου ΑΣΤΕΡΟΣΚΟΠΕΙΟ ΕΛΛΗΝΟΓΕΡΜΑΝΙΚΗ ΑΓΩΓΗ Πρόγραμμα βραδιών παρατηρήσεων Μάιος 2009 7 Μαΐου 14 Μαΐου 21 Μαΐου 28 Μαΐου www.ea.gr/ep/cosmos www.discoveryspace.net Οι βραδιές παρατήρησης υποστηρίζονται από τα

Διαβάστε περισσότερα

Κίνηση πλανητών Νόµοι του Kepler

Κίνηση πλανητών Νόµοι του Kepler ΦΥΣ 111 - Διαλ.29 1 Κίνηση πλανητών Νόµοι του Kepler q Τρεις οι νόµοι του Kepler: Ø Oι πλανήτες κινούνται σε ελλειπτικές τροχιές µε τον ήλιο σε µια εστία τους. Ø Η επιβατική ακτίνα ενός πλανήτη διαγράφει

Διαβάστε περισσότερα

Theory Greek (Greece) Μεγάλος Επιταχυντής Αδρονίων (LHC) (10 Μονάδες)

Theory Greek (Greece) Μεγάλος Επιταχυντής Αδρονίων (LHC) (10 Μονάδες) Q3-1 Μεγάλος Επιταχυντής Αδρονίων (LHC) (10 Μονάδες) Παρακαλείστε να διαβάσετε τις Γενικές Οδηγίες στον ξεχωριστό φάκελο πριν ξεκινήσετε το πρόβλημα αυτό. Σε αυτό το πρόβλημα θα ασχοληθείτε με τη Φυσική

Διαβάστε περισσότερα

S dt T V. Επιμέλεια - Υπολογισμοί: Κ. Παπαμιχάλης Δρ. Φυσικής

S dt T V. Επιμέλεια - Υπολογισμοί: Κ. Παπαμιχάλης Δρ. Φυσικής Μελέτη της κίνησης μηχανικού ταλαντωτή που προκαλεί διάδοση ελαστικού κύματος σε μονοδιάστατο ελαστικό μέσο Επιμέλεια - Υπολογισμοί: Κ. Παπαμιχάλης Δρ. Φυσικής Κεντρική ιδέα Στην εργασία αυτή, γίνεται

Διαβάστε περισσότερα

ΕΞΕΡΕΥΝΩΝΤΑΣ ΤΟ ΣΥΜΠΑΝ ΜΕ ΤΑ ΚΥΜΑΤΑ ΤΗΣ ΒΑΡΥΤΗΤΑΣ

ΕΞΕΡΕΥΝΩΝΤΑΣ ΤΟ ΣΥΜΠΑΝ ΜΕ ΤΑ ΚΥΜΑΤΑ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΕΞΕΡΕΥΝΩΝΤΑΣ ΤΟ ΣΥΜΠΑΝ ΜΕ ΤΑ ΚΥΜΑΤΑ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Κατερίνη, 7/5/2016 14 Σεπτεµβρίου 2015 14 Σεπτεµβρίου 2015 14 Σεπτεµβρίου 2015

Διαβάστε περισσότερα

Αστρική Εξέλιξη. Η ζωή και ο θάνατος των αστέρων. Κοσμάς Γαζέας. Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών

Αστρική Εξέλιξη. Η ζωή και ο θάνατος των αστέρων. Κοσμάς Γαζέας. Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Αστρική Εξέλιξη Η ζωή και ο θάνατος των αστέρων Κοσμάς Γαζέας Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Αστρική εξέλιξη Η εξέλιξη ενός αστέρα καθορίζεται από την κατανάλωση διαδοχικών «κύκλων» πυρηνικών

Διαβάστε περισσότερα