3. TEHNICI DE MODULAŢIE DIGITALĂ. MODULATORE & DEMODULATOARE Semnale BPSK (Binary Phase Shift Keying) Semnalul transmis are.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "3. TEHNICI DE MODULAŢIE DIGITALĂ. MODULATORE & DEMODULATOARE Semnale BPSK (Binary Phase Shift Keying) Semnalul transmis are."

Transcript

1 3. HICI D ODULŢI DIGILĂ. ODULOR & DODULOR 3.. ml BK Biry h hi Kyig mlul rmi r - Dl rmi ±, [ k, k ] - mpliui - coă, ur i - Frcvţ - - Fz glă cu u upă cum - rmi /- BK co co, co co, oulorul. Dmoulorul. Rcr purăori.

2 k X co FB X x x x x 3 Fig. 3..miţăor / Rcpor / Rcr purăori l BK mă: morţi ucţioli chmi x 5 k V mlul rcpţio: r BK co θ Di pcrlă pur mlul mi po cri u orm: BK k p k co p σ σ ; 5

3 6 { } ic j j j F σ σ Di pcrl mlului moul ic ic BK BK BK BB BB Rprzr î pţiul mllor lg u vcor vcori oroormţi ϕ co co C C C ϕ ϕ ϕ ϕ ; C ϕ co ϕ rprziă vcorii î ucţi că ză co ϕ

4 co ϕ rprziă ci oi vcori î ucţi vcorul zi ϕ O:iţ ir cl ouă ml ivr proporţiolă cu proili ror Uilizr pţiului mllor pru rmir Ipoză: mlul Bk rmi prir-u cl c or ZG rprziă vcorul zgomo î ucţi vcorul zi 7

5 8 co ϕ v.. Guiă cu mi pric r mi σ rupuâ că - rmi şi o c. > σ σ σ u x x x x

6 Rgiu cizi pru Rgiu cizi pru 3.. ml K Dirţil DK şi K co irţil DK rolm: L mll BK pr o migui ză 8 ru rcr purăori riică mlul co l păr că mlul rcpţio r i o co purăor răcuă r i o cşi migui 8 l rcr purăori; 9

7 Uilizr DK limiă migui ză 8 ; Uilizr K co irţil DK limiă ci rcpţii cor; Grr lor DK - XOR X co ly Cor irţilă - - ivl Vlor ivl Vlor ivl Vlor logic V logic V logic V

8 xmplu Ck Orvţii: - că, -, uci câ îşi părză vlor, p câ îşi chimă vlor - î cl mi u m prupu - ; propri uţă mi u părză şi că -, l ii ivr. - Di l vlor prouului - î volţi ivrul vlorii lor procul moulr Dmoulr DK mlul rmi 5

9 v DK co ± co Coorm rgulii z v DK u chimă z v DK chimă cu co v DK Dcoorul rprz î igură, prupuâ r x X Cr igror rupuâ mlul rcpţio x r r r co θ [co co u - prupu: co θ co θ ] & co θ vj: u ciă moulr coră rcr purăori l RX 5

10 Dzvj : priţi ui rori cză iţi uccivi proili ror DK mi mr roril u iţ pr î prch r u oligoriu, l puâ pr şi igulr; xmplu 3.. ml DK BK co irţil rolm: Î czul DK moulorul ciă u circui îârzir cu cr rui ă lucrz î riorcvţă gru rliz! miţăorul DK: iic cu DK Rcporul DK iic cu BK ci icro!! pru rcr lor co, urm u circui cor î ză pru rcr lor 53

11 - - Orvţi: pr oir DK u roril puu păr â î prch câ şi imul, l DK roril pr îou î prch. c po i u vj i puc vr l coării. c lucru prc orc î czul DK cor c i cu i pri cizi hr l ârşiul icărui irvl i, p câ î czul DK mlul l işir rzulă pri comprr iului cur cu cl prc. m: xmplu 5

12 3.3. ml OK/K vj: ur imol lărgim ă cră rmirii mllor K jumă i c cră rmirii mllor BK miţăorul OK: CK oggl Flip- Flop D Flip- Flop v D Flip- Flop o CK CK o X / X co miţăorul OK. m xmplu ~ i o v 55

13 Dl u plic l irr milor iili ip D, r uul ir i îcri p roul poziiv l cului, clăll p roul giv Ci oi iili mmorză l p u irvl r i o şi R o R ; l o şi comuă lriv OK; că orş comur imulă cor rui irou u circui îârzir cu p rmur î ză; mlul rmi { { o co i K co [, ] co [, ] Rcporul OK c şi î czul BK cr moulr icroă rcr purăori 56

14 X k k V o o CBB D X k k V BF x x x 3 Dmoulorul OK şi chm rcr purăori m: morţi ucţioli Orvţi: circuiul rcr purăori r o migui ză 8 mll moul po i complmr clor rmi c 57

15 lucru po corc că uilizză cor irţilă l mii şi cor l rcpţi Rprzr î pţiul mllor lg vcori oroormţi cu coiţi uci ϕ ϕ co co ϕ i i { ± }, [, ] K o ϕ ϕ ; o ; 58

16 59 o o o o K co i co co i co, > < ϕ K, > < ϕ u: rprziă rgi imol

17 o - ϕ o o > ϕ 9 ϕ o - - o - Rprzr î pţiul mllor K/OK iţ ir ouă puc ic,, 3,. zgomoul rprz î clşi im cooro: ϕ ϕ o u o, u v.. Gui, ip, cu mi ulă şi vriţă σ 6

18 6 roili ror roili cţi corcă : prupuâ că - rmi cţi corcă că zgomoul u v pl vcorul rcpţiol r i primul cr, / > > σ σ σ σ σ σ c. / σ c i i c c σ Orvţi: mlul mi po i cri u orm

19 6, ; co g co i co i i o o o o o o K rzulâ i ; co i i o Di pcrlă pur K/OK Coorm xprimării mi u, mlul OK r impulul ză: [ ] p σ σ { } ic ic i j j j j j j j p F i pcrlă mi pur mlului î ză [ ] { } o ic ic z G

20 ci i pcrlă mi pur mlului K G BK Gz Gz 3.3. ml -K rolm: Î BK icr i rmi iiviul z mlului chimă cu {, 8 }; Î K icr prch iţi ormză u imol z mlului chimă cu {, 8 }; Dcă uilizză iţi pru orm u imol po i gr imoluri iri căror ză iră cu mlul rmi 63

21 K co φm coφm co iφm i 3 3 φ m p i ph p qurur m, m {,,..., } o miţăorul -K Covror Covror v m / D / - ură ml iuoil cări ză corolă v m ou V rmi z mlului - K rmi chm loc miţăorului -K 6

22 Covrorul / ochză iţi i şirul şi îi rmi covrorului D/ î prll işir v rămâ chimă p o ură Covrorul / grză u ml cu ivluri logic l işir, corpuzăor uuror comiţiilor imoluri plic irr v m pi imolul m m.. - ur ml iuoil v gr u ml mpliui coă cărui ză rmiă vlor lui v m z cui moiică l ârşiul icărui irvl imol Rcporul -K 65

23 r BF co i co p LF mo! Covror / D D im l rcpţi - p o chm loc rcporului -K mlul -K mi po cri, prâ compol î ză şi curură, u orm 66

24 K co 3 3 m co i m i p i ph po qurur rormâ-o îr- l moulr u pr l p şi p o cu ur u ml igil rprz p iţi p m rcg po Rprzr î pţiul mllor -K Vcorii oroormţi u ϕ co ϕ i Coorol clor ml poiil l işir u v co, i 67

25 68 v 3 i, 3 co u... rgi mlului m m v m i, co... v i, co Rprzr mlului -K î pţiul mllor

26 v / v / R / ϕ v - ϕ Rprzr mllor -K î pţiul mllor Diţ ir oricr ouă puc vci i i 69

27 7 p măură c umărul puc crş iţ ir puc ic c ru vlori mici l lui / vom v i şi roili ror : prupuâ că - rmi σ [ ] [ ] c c

28 7 c ru păr proili ror coă rui c. co k k rporul ml zgomo rui ă crcă îr-o miră xpoţilă cu Di pcrl pur Diăil pcrl pur l p o şi p u ic co ic m o G φ 3 ic i ic m G φ 3

29 Lărgim ă ocupă B p măură c umărul iţi p imol crş lrgim ă ocupă c r proili ror crş 3.3. ml cu moulţi î mpliui î curură -K rolm: Î BK, K, -K î icr irvl imol rmi ml cr iră ul ll or pri z purăori rmi, mpliui mlului ii coă î rprzr zorilă o pucl c p circumriţ uui crc cpci ii u ml lul c p măură c umărul ml crş. Î czul -K compol mlului î ză şi curură po v mpliuii iri comporr mi uă i puc vr l proiliăţii ror mlul po i cri u orm. 7

30 73 ; ; i co i i i i B, *u { } i i B ; log,, 3,, ± ± ± K ir u prmru l l îcâ rgi mi mlului * ă i cşi rupuâ că o mll u gl proil, { },, ± i i i i B i i B p p şi uilizâ i ; 6 i rzulă 3 6 i i i i B cu c rgi imol

31 co i i Bi i i Bi i Bi 3 3 u, rgi mi p imol miţăorul şi rcporul -K pru 6- i, B i { ±; ± 3 } 6 iţi / ză i / curură k k- k- k-3 D D D D CK D / cov. D / cov. co o i miţăor 7

32 r BF co i Circui rcr purăori / D covrr / D covrr Rcpor mă Dmorţi ucţioli circuiului rcr purăori 3 Rprzr î pţiul mllor -K 75

33 Vcorii oroormţi u ϕ co ϕ i ru i, B i { ±; ± 3 } 6 rprzr î pţiul mllor 76

34 i III I II 3 co I roili ror : prupuâ că - rmi 77

35 78 } 3 corc rcpi proili I ip m ml, III C II C I C u I σ σ roliăţil ror pru cl 3 rgiui cizi u }, { },, { u I C u 678 σ σ }, { }, { u u II C u u σ σ σ σ

36 79 u III C u σ σ Di pcrl mi pur K { } K i I K ic ic ic ic K B cşi c şi î czul -K 3.. ml cu moulţi î rcvţă ir B-FK Î czul mllor BFK rmi o coiuoiă rcvţă Ω p ur ui prio i î czul î cr, rpciv Ω î czul î cr - mlul rmi po cri

37 BFK co[ Ω] c c corpu BFK H co Ω,, co Ω,, BFK H Frcvţ H Ω umş rcvţ ughiulră uprioră ir L Ω umş rcvţ ughiulră irioră. miţăorul BFK uilizză ouă circui prou moulor chilir cr îmulţc cl ouă purăor H Ω şi L Ω cu ouă ml ir p H şi p L {,} p H p L V V -V V p H ; pl ; p co p co BFK {, } H H L L 8

38 co H p H p H co H BFK co L p L p L co L Rcporul BFK Grr mllor BFK 8

39 B H Dcor vlopă BFK FB B Compror L Dcor vlopă FB Rcporul BFK Orvţi: uci câ imul c zgomo işir comprorului po vri; i c moiv î locul corului vlopă po uiliz u igror şi u circui şior l ârşiul icărui irvl i cr u circui icroizr c. 8

40 Rcporul BFK mlul BFK po cri î ucţi p H şi p L p co p co BFK H H L L * Ficr rm i cuţi mi u u ml BK pru cr l p H şi p L {,}; pru ruc prolm l u cuocuă rcrim p H ph ; p' H {, } p L pl ; p' L {, } vbfk co H co L p H co H p L co L rlţi mi u ră că vm ouă pcr ip BK cr p rcvţl H Ω şi L Ω şi ouă impuluri Dirc mpliui / p clşi rcvţ; 83

41 Di pcrlă pur BFK pru c cl ouă pcr ip BK ă u îşi uprpuă loul pricipl rui c iţ ir cl ouă rcvţ ă i cl puţi H L **; î c cz ocupă B BFK H L H L 8

42 ci ouă ori mi mr câ BK Rprzr mlului BFK î pţiul mllor vâ i vr coiţi ** pum lg m H L m m Î c cz ci oi vcori i zi u uci H L ϕ ϕ ϕ ϕ co com, Oroormţi?Dmorţi!! 85

43 ϕ L H ϕ Rprzr BFK î pţiul mllor Orvţi: mll BFK u orogol iţ ir cl puc i rprzr î pţiul mllor roili ror > σ 86

44 3.5. ml -FK Dcă uilizză iţi pru orm u imol po i gr cvţ p rcvţl,,..., -, miţăorul / rcporul -FK L mii - icr pch iţi, c ormză u imol, plic uui covror /; - işir covrorului plică uui moulor F c po i rliz cu LL com î iu cr v gr u ml coiuoil cărui rcvţă lă imolul irr ir-u vlori poiil; L rcpţi - mlul plică uui ilr rc ă, cu rcvţl crl,,..., -, urm cor vlopă; - Işir cor plică uui compror cr v c mximul; - Î il mlul covri /D p iţi 87

45 B Covror Covror v m / D / - ură ml iuoil cări ză corolă v m V rmi rcvţ mlului - K rmi FK FB B FB Dcor vlopă Dcor vlopă Dcor xim Covror /D p iţi - B Dcor vlopă FB chm loc miţăorului / rcporului FK po ră că proili ror miimiză uci câ rcvţl,,..., -, u l î ş l îcâ mll ă i muul orogol rui pr îr l cu miim 88

46 89 D oici c rcvţ lg c muliplii îrgi uccivi i lui k k k k k... ; 3 ; ; ; î c mo lărgim ă ocupă miimă B

47 9 Rprzr î pţiul mllor lg vcorii zi... co co, co k k k ϕ ϕ ϕ ϕ ϕ 3 ϕ

48 5 Diţ ir ouă puc vci roili ror roili rcpţi corcă c < < < σ roili ror c σ σ 3.6. ml K mlul K oţi i OK că uilizză c impuluri purăor p co pru l cr comuă l muliplii impri i, rpciv q i pru l cr comuă l muliplii pri i

49 i co co i K o mlul mi po cri u orm o o K co Ω co Ω Ω o oâ cu CH, CL, H Ω, L Ω rzulă v C co C co K H H - că o C L şi C H ±. K ± co Ω - că -, C H şi C L ±. K ± co Ω L L rcvţl H şi L lg l îcâ ă i îpliiă coiţi orogoli 6

50 coh col H L şi H L m î plu, că Ω şi H Ω, L Ω, H şi L H L m H şi L u l câ mi prop cu puiţă l îcâ ă rpc coiţi orogoli iimum hi Kyig m m H şi L miţăorul / rcporul K O chm poiilă rlizr miţăorului / rcporului rprză î igur 7

51 co Ω FB Ω co FB -Ω miţăor 8

52 x o k k k şior morr com k k k k şior morr y mll x şi y u răcu l Rcpor 9

53 FB H x FJ mpliicr K co FB L - y mă: morţi ucţioli circuilor Rprzr î pţiul mllor lg vcorii zi: φh i H φ şi L L i Cl puc l colţii ml u rprz î igură. 5

54 ϕ L C L C H C L C H - C L C H ϕ H C L - C H Diţ ir ouă puc vci ; roili ror rmiă l l c î czul mllor K 5

55 5 c σ Di pcrl mi pur mlul K mi po cri u orm [ ] o o o K Ω co Impulul ză [ ] q p co σ σ j, co k k ± v..i.i.. { } { } k k ; co 3 co 6 zz

56 G BK Gz Gz 53

7. CONVOLUŢIA SEMNALELOR ANALOGICE

7. CONVOLUŢIA SEMNALELOR ANALOGICE 7. CONVOLUŢIA SEMNALELOR ANALOGICE S numş funcţi (prous) convoluţi în imp smnllor şi ingrl: f ( ) Noţi conscră prousului convoluţi în imp s urmăor: no Convoluţi unui smnl cu (7.) (7.) δ su u conuc l rzul

Διαβάστε περισσότερα

lim lim lim lim (criteriul cu şiruri); lim lim = lim ; Limite de funcńii NotaŃii: f :D R, D R, α - punct de acumulare a lui D;

lim lim lim lim (criteriul cu şiruri); lim lim = lim ; Limite de funcńii NotaŃii: f :D R, D R, α - punct de acumulare a lui D; Limit d fucńii Aliz mtmtică, cls XI- Limit d fucńii NotŃii: f :D R, D R, α - puct d cumulr lui D DfiiŃii l iti DfiiŃi f ( = l, l R, dcă ptru oric vciătt V lui l istă o vciătt α U lui α stfl îcât D U, α,

Διαβάστε περισσότερα

M p f(p, q) = (p + q) O(1)

M p f(p, q) = (p + q) O(1) l k M = E, I S = {S,..., S t } E S i = p i {,..., t} S S q S Y E q X S X Y = X Y I X S X Y = X Y I S q S q q p+q p q S q p i O q S pq p i O S 2 p q q p+q p q p+q p fp, q AM S O fp, q p + q p p+q p AM

Διαβάστε περισσότερα

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο ο φ. II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai

Διαβάστε περισσότερα

ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο

ο ο 3 α. 3* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο 18 ρ * -sf. NO 1 D... 1: - ( ΰ ΐ - ι- *- 2 - UN _ ί=. r t ' \0 y «. _,2. "* co Ι». =; F S " 5 D 0 g H ', ( co* 5. «ΰ ' δ". o θ * * "ΰ 2 Ι o * "- 1 W co o -o1= to»g ι. *ΰ * Ε fc ΰ Ι.. L j to. Ι Q_ " 'T

Διαβάστε περισσότερα

Seria Fourier. Analiza spectrala a semnalelor periodice

Seria Fourier. Analiza spectrala a semnalelor periodice Sri Fourir Aliz spcrl smllor prioic Rspusul sismlor coiu liir si ivri i imp l poil compl moul uir Siz uui sml pri covolui cu impulsul uir scompur Dscompur i bz fucii rigoomric Lor Eulr Dil Broulli Josph-Louis

Διαβάστε περισσότερα

ot ll1) r/l1i~u (X) f (Gf) Fev) f:-;~ (v:v) 1 lý) æ (v / find bt(xi (t-i; i/r-(~ v) ta.jpj -- (J ~ Cf, = 0 1l 3 ( J) : o-'t5 : - q 1- eft-1

ot ll1) r/l1i~u (X) f (Gf) Fev) f:-;~ (v:v) 1 lý) æ (v / find bt(xi (t-i; i/r-(~ v) ta.jpj -- (J ~ Cf, = 0 1l 3 ( J) : o-'t5 : - q 1- eft-1 - la /:_ )( -( = Y () :: ÚlJl:: ot ll) r/li~u (X) f (Gf) Fev) f:-;~ (v:v) lý) æ (v / find bt(i (t-i; i/r-(~ v) bj Ll, :: Qy -+ 4",)( + 3' r.) '.J ta.jpj -- (J ~ Cf, = l 3 ( J) : o-'t5 : - q - eft- F ~)ç2..'

Διαβάστε περισσότερα

5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.

5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο. 728!. -θ-cr " -;. '. UW -,2 =*- Os Os rsi Tf co co Os r4 Ι. C Ι m. Ι? U Ι. Ι os ν ) ϋ. Q- o,2 l g f 2-2 CT= ν**? 1? «δ - * * 5 Ι -ΐ j s a* " 'g cn" w *" " 1 cog 'S=o " 1= 2 5 ν s/ O / 0Q Ε!θ Ρ h o."o.

Διαβάστε περισσότερα

4.7. Stabilitatea sistemelor liniare cu o intrare şi o ieşire

4.7. Stabilitatea sistemelor liniare cu o intrare şi o ieşire 4.7. Sbilie sisemelor liire cu o irre şi o ieşire Se spue că u sisem fizic relizbil ese sbil fţă de o siuţie de echilibru sţior, dcă sub cţiue uei perurbţii eeriore (impuls Dirc) îşi părăseşe sre de echilibru

Διαβάστε περισσότερα

Cursul 10 T. rezultă V(x) < 0.

Cursul 10 T. rezultă V(x) < 0. ursul uţol ătrtă V: X R V s lsă stl: ) V st oztv tă ă X u X rzultă V(). ) V st tv tă ă X u X rzultă V()

Διαβάστε περισσότερα

!"!# ""$ %%"" %$" &" %" "!'! " #$!

!!# $ %% %$ & % !'!  #$! " "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(

Διαβάστε περισσότερα

T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ

T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α g r i l l b a r t a s o s Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 1 : 0 π μ Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ T ortiyas Σ ο υ

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ ΠΡΩΤΟΝ ΝΟΜΟΘΕΣΙΑ

ΠΑΡΑΡΤΗΜΑ ΠΡΩΤΟΝ ΝΟΜΟΘΕΣΙΑ ΠΑΡΑΡΤΗΜΑ ΠΡΩΤΝ ΤΗΣ ΕΠΙΣΗΜΥ ΕΦΗΜΕΡΙΔΣ ΤΗΣ ΔΗΜΚΡΑΤΙΑΣ υπ Άρ. 62 τής 19ης ΜΑΙΥ 1961 ΝΜΘΕΣΙΑ ΜΕΡΣ III ΚΙΝΤΙΚΙ ΝΜΙ ΤΥΡΚΙΚΗΣ ΚΙΝΤΙΚΗΣ ΣΥΝΕΛΕΎΣΕΩς Ό κττέρ νόμς της Τυρκικής Κιντικής Συνελεύσεις όστις υπεγράφη

Διαβάστε περισσότερα

! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.

! # $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 $ 6, ::: ;<$& = = 7 + > + 5 $?# 46(A *( / A 6 ( 1,*1 B',CD77E *+ *),*,*) F? $G'& 0/ (,. ! " #$%&'()' *('+$,&'-. /0 1$23(/%/4. 1$)('%%'($( )/,)$5)/6%6 7$85,-9$(- /0 :/986-$, ;2'$(2$ 1'$-/-$)('')5( /&5&-/ 5(< =(4'($$,'(4 1$%$2/996('25-'/(& ;/0->5,$ 1'$-/%'')$(($/3?$%9'&-/?$( 5(< @6%-'9$

Διαβάστε περισσότερα

TEORIA SISTEMELOR AUTOMATE. Prof. dr. ing. Valer DOLGA,

TEORIA SISTEMELOR AUTOMATE. Prof. dr. ing. Valer DOLGA, TEORIA SISTEMELOR AUTOMATE Prof. dr. ig. Vler DOLGA, Curi_7_ Aliz i ruul iemelor liire i domeiul im II. Sieme de ordiul. Ruul iemului l emle drd imul uir re uir rm 3. Noiui rivid clie iemului de ordiul

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

gr mol g lit mg lit mlit lit mol NaCl 96 NaCl HCl HCl

gr mol g lit mg lit mlit lit mol NaCl 96 NaCl HCl HCl 1 ( - ) ( ) : 5 ( CH 3 COOH ).1 0 /1M NaOH35ml CH COOH 3 = /3 gr mol 211/05 mg 3 /5mgr 210 /1gr 3 /5gr ppm.2 mg mlit mg lit g lit µg lit.3 1mol (58 /8 NaCl ) 0 /11F 14 /9ml NaCl.4 14 /9 96 0 /0149 0 /096

Διαβάστε περισσότερα

I S L A M I N O M I C J U R N A L J u r n a l E k o n o m i d a n P e r b a n k a n S y a r i a h

I S L A M I N O M I C J U R N A L J u r n a l E k o n o m i d a n P e r b a n k a n S y a r i a h A n a l i s a M a n a j e m e n B P I H d i B a n k S y a r i a h I S S N : 2 0 8 7-9 2 0 2 I S L A M I N O M I C P e n e r b i t S T E S I S L A M I C V I L L A G E P e n a n g g u n g J a w a b H. M

Διαβάστε περισσότερα

Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn.

Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn. 86 ECUAŢII 55 Vriile letore discrete Sut vriile letore cre iu o ifiitte umărilă de vlori Digrm uei vriile letore discrete re form f, p p p ude p = = Distriuţi Poisso Are digrm 0 e e e e!!! Se costtă că

Διαβάστε περισσότερα

7. INTEGRALA IMPROPRIE. arcsin x. cos xdx

7. INTEGRALA IMPROPRIE. arcsin x. cos xdx 7 INTEGRALA IMPROPRIE 7 Erciţii rzolv Erciţiul 7 Să s sudiz nur urăorlor ingrl irorii şi să s drin vloril csor în cz d convrgnţă: d c sin d 3 / rcsin d cos d d sin d > R Soluţii Funcţi f : - R f s ingrilă

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

3607 Ν. 7.28/88. E.E., Παρ. I, Αρ. 2371,

3607 Ν. 7.28/88. E.E., Παρ. I, Αρ. 2371, E.E., Παρ. I, Αρ. 271, 16.12. 607 Ν. 7.2/ περί Συμπληρματικύ Πρϋπλγισμύ Νόμς (Αρ. 5) τυ 19 εκδίδεται με δημσίευση στην επίσημη εφημερίδα της Κυπριακής Δημκρατίας σύμφνα με τ Άρθρ 52 τυ Συντάγματς- - Αριθμός

Διαβάστε περισσότερα

MICROMASTER Vector MIDIMASTER Vector

MICROMASTER Vector MIDIMASTER Vector s MICROMASTER Vector MIDIMASTER Vector... 2 1.... 4 2. -MICROMASTER VECTOR... 5 3. -MIDIMASTER VECTOR... 16 4.... 24 5.... 28 6.... 32 7.... 54 8.... 56 9.... 61 Siemens plc 1998 G85139-H1751-U553B 1.

Διαβάστε περισσότερα

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH

Διαβάστε περισσότερα

http://ekfe.chi.sch.gr ΦΕΒΡΟΥΑΡΙΟΣ 2010 Πειράματα Χημείας ΑΝΙΧΝΕΥΣΗ ΑΙΘΙΝΙΟΥ-ΑΝΟΡΘΩΣΗ ΤΡΙΠΛΟΥ ΔΕΣΜΟΥ ΠΑΡΑΣΚΕΥΗ ΚΑΙ ΚΑΥΣΗ ΑΙΘΙΝΙΟΥ(ΑΚΕΤΥΛΕΝΙΟΥ)

http://ekfe.chi.sch.gr ΦΕΒΡΟΥΑΡΙΟΣ 2010 Πειράματα Χημείας ΑΝΙΧΝΕΥΣΗ ΑΙΘΙΝΙΟΥ-ΑΝΟΡΘΩΣΗ ΤΡΙΠΛΟΥ ΔΕΣΜΟΥ ΠΑΡΑΣΚΕΥΗ ΚΑΙ ΚΑΥΣΗ ΑΙΘΙΝΙΟΥ(ΑΚΕΤΥΛΕΝΙΟΥ) http://ekfe.chi.sch.gr 7 η - 8 η Συνάντηση ΦΕΒΡΟΥΑΡΙΟΣ 010 Πειράματα Χημείας ΑΝΙΧΝΕΥΣΗ ΑΙΘΙΝΙΟΥ-ΑΝΟΡΘΩΣΗ ΤΡΙΠΛΟΥ ΔΕΣΜΟΥ ΠΑΡΑΣΚΕΥΗ ΚΑΙ ΚΑΥΣΗ ΑΙΘΙΝΙΟΥ(ΑΚΕΤΥΛΕΝΙΟΥ) ΑΝΙΧΝΕΥΣΗ ΑΛΔΕΥΔΩΝ ΚΑΙ ΑΠΛΩΝ ΣΑΚΧΑΡΩΝ ΟΞΕΙΔΩΣΗ

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n.

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n. Semir 3 Serii Probleme rezolvte Problem 3 Să se studieze tur seriei Soluţie 3 Avem ieglitte = ) u = ) ) = v, Seri = v este covergetă fiid o serie geometrică cu rţi q = < Pe bz criteriului de comprţie cu

Διαβάστε περισσότερα

E.E., Παρ. I, 767 Ν. 39/83 Αρ. 1871,

E.E., Παρ. I, 767 Ν. 39/83 Αρ. 1871, E.E., Πρ. I, 767 Ν. 9/8 Αρ. 1871, 24.6.8 περί Ειδικεύσεως Συμπληρωμτικής Πιστώσεως (Τμείν Ανπτύξεως) Νόμς (Αρ. 4) τυ 198 εκδίδετι διά δημσιεύσεως εις την επίσημν εφημερίδ της Κυπρικής Δημκρτίς συμφώνως

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (Δ.Π.Μ.Σ.) «ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ»

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (Δ.Π.Μ.Σ.) «ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ» ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (Δ.Π.Μ.Σ.) «ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ» ΜΑΘΗΜΑ ΚΟΡΜΟΥ «ΥΔΑΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ» ΥΔΑΤΙΚΑ ΟΙΚΟΣΥΣΤΗΜΑΤΑ Σημειώσεις

Διαβάστε περισσότερα

Ι Ε Θ Ν Ε Σ Ρ Ο Τ Α Ρ Υ Π Ε Ρ Ι Φ Ε Ρ Ε Ι Α 2 4 8 4

Ι Ε Θ Ν Ε Σ Ρ Ο Τ Α Ρ Υ Π Ε Ρ Ι Φ Ε Ρ Ε Ι Α 2 4 8 4 Ι Ε Θ Ν Ε Σ Ρ Ο Τ Α Ρ Υ Π Ε Ρ Ι Φ Ε Ρ Ε Ι Α 2 4 8 4 Ε Π Ι Σ Τ Ο Λ Η Δ Ι Ο Ι Κ Η Τ Η Α Υ Γ Ο Υ Σ Τ Ο Σ Μ η ν ι α ί α Ε π ι σ τ ο λ ή ι ο ι κ η τ ή 1 Π ε ρ ι ε χ ό μ ε ν α Σ ε λ ί δ ε ς Τ ο μ ή ν υ μ α τ

Διαβάστε περισσότερα

!"#$%#&'(#)*+,$-.#/ 0%&#1%&%#)*2!1/&%3) 0&/(*+"45 64.%*)52(/7

!#$%#&'(#)*+,$-.#/ 0%&#1%&%#)*2!1/&%3) 0&/(*+45 64.%*)52(/7 !"#$%#&'(#)*+,$-.#/ 0%&#1%&%#)*2!1/&%3) 0&/(*+"45 64.%*)52(/7 2010 2012 !"#$%!&'()$!!"#$% &!#'()* +(, $-(./!'$% $+0 '$ 1!")& '(, 2,3!4#*'& '&5 67µ3(, 0'$# (%!)%/µ(" '&5 $+849!:5 ()(-)&4:;(.# -$% & +4

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. 1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα

Διαβάστε περισσότερα

Problemas resueltos del teorema de Bolzano

Problemas resueltos del teorema de Bolzano Problemas resueltos del teorema de Bolzano 1 S e a la fun ción: S e puede af irm a r que f (x) está acotada en el interva lo [1, 4 ]? P or no se r c ont i nua f (x ) e n x = 1, la f unció n no e s c ont

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ ΠΡΩΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ της 22ας ΝΟΕΜΒΡΙΟΥ 2002 ΝΟΜΟΘΕΣΙΑ ΜΕΡΟΣ II

ΠΑΡΑΡΤΗΜΑ ΠΡΩΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ της 22ας ΝΟΕΜΒΡΙΟΥ 2002 ΝΟΜΟΘΕΣΙΑ ΜΕΡΟΣ II Ν. 7()/22 ΠΑΡΑΡΤΗΜΑ ΠΡΩΤ ΤΗΣ ΠΣΗΜΗΣ ΦΗΜΡΔΑΣ ΤΗΣ ΔΗΜΚΡΑΤΑΣ Αρ. 366 της 22ς ΝΜΡΥ 22 ΝΜΘΣΑ ΜΡΣ περί Συμπληρωμτικύ Πρϋπλγισμύ Νόμς (Αρ. 13) τυ 22 εκδίδετι με δημσίευση στην πίσημη φημερίδ της Κυπρικής Δημκρτίς

Διαβάστε περισσότερα

1951 {0, 1} N = N \ {0} n m M n, m N F x i = (x i 1,..., xi m) x j = (x 1 j,..., xn j ) i j M M i j x i j m n M M M M T f : F m F f(m) f M (f(x 1 1,..., x1 m),..., f(x n 1,..., xn m)) T R F M R M R x

Διαβάστε περισσότερα

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1 Sarò signor io sol Canzon, ottava stanza Domenico Micheli Soprano Soprano 2 Alto Alto 2 Α Α Sa rò si gnor io sol del mio pen sie io sol Sa rò si gnor io sol del mio pen sie io µ Tenor Α Tenor 2 Α Sa rò

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

Αλληλεπίδραση ακτίνων-χ με την ύλη

Αλληλεπίδραση ακτίνων-χ με την ύλη Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων

Διαβάστε περισσότερα

Ch : HÀM S LIÊN TC. Ch bám sát (lp 11 ban CB) Biên son: THANH HÂN A/ MC TIÊU:

Ch : HÀM S LIÊN TC. Ch bám sát (lp 11 ban CB) Biên son: THANH HÂN A/ MC TIÊU: Ch : HÀM S LIÊN TC Ch bám sát (lp ban CB) Biên son: THANH HÂN - - - - - - - - A/ MC TIÊU: - Cung cp cho hc sinh mt s dng bài tp th ng gp có liên quan n s liên tc cu hàm s và phng pháp gii các dng bài ó

Διαβάστε περισσότερα

1. ŞIRURI ŞI SERII DE NUMERE REALE

1. ŞIRURI ŞI SERII DE NUMERE REALE . ŞIRURI ŞI SERII DE NUMERE REALE. Eerciţii rezolvte Eerciţiul Stbiliţi dcă următorele şiruri sut fudmetle: ), N 5 b) + + + +, N * c) + + +, N * cos(!) d), N ( ) e), N Soluţii p p ) +p - < şi mjortul este

Διαβάστε περισσότερα

COMPLICITY COLLECTION autumn / winter

COMPLICITY COLLECTION autumn / winter COMP LI C I TY COLLE C TI ON a ut umn / winte r 2 0 1 7 1 8 «T o ρ ο ύ χ ο ε ί ν α ι τ ο σ π ί τ ι τ ο υ σ ώ μ ατ ο ς». Τ ο σ ώ μ α ν τ ύ ν ε τα ι μ ε φ υ σ ι κ ά ν ή μ ατα κ α ι υφά σ μ ατα α π ό τ η

Διαβάστε περισσότερα

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci 3 H 12.35 Y β Low 80 1 - - Betas: 19 (100%) 11 C 20.38 M β+, EC Low 400 1 5.97 13.7 13 N 9.97 M β+ Low 1 5.97 13.7 Positrons: 960 (99.7%) Gaas: 511 (199.5%) Positrons: 1,199 (99.8%) Gaas: 511 (199.6%)

Διαβάστε περισσότερα

κ α ι θ έ λ ω ν α μ ά θ ω...

κ α ι θ έ λ ω ν α μ ά θ ω... { ( a -r ν ρ ι -Μ Π ώτ 1 Γ '- fj T O O J CL κ α ι θ έ λ ω ν α μ ά θ ω < US η ixj* ί -CL* λ ^ t A u t\ * < τ : ; Γ ν c\ ) *) «*! «>» Μ I Λ 1,ν t f «****! ( y \ \, 0 0 # Περικλή_ Χαντζόπουλο κ α ι θ έ λ

Διαβάστε περισσότερα

!"! # $ %"" & ' ( ! " # '' # $ # # " %( *++*

!! # $ % & ' ( !  # '' # $ # #  %( *++* !"! # $ %"" & ' (! " # $% & %) '' # $ # # '# " %( *++* #'' # $,-"*++* )' )'' # $ (./ 0 ( 1'(+* *++* * ) *+',-.- * / 0 1 - *+- '!*/ 2 0 -+3!'-!*&-'-4' "/ 5 2, %0334)%3/533%43.15.%4 %%3 6!" #" $" % & &'"

Διαβάστε περισσότερα

3.4 Integrarea funcţiilor trigonometrice. t t. 2sin cos 2tg. sin + cos 1+ cos sin 1 tg t cos + sin 1+ x 1

3.4 Integrarea funcţiilor trigonometrice. t t. 2sin cos 2tg. sin + cos 1+ cos sin 1 tg t cos + sin 1+ x 1 3.4 Iegrre fucţiilor rigoomerice ) R( si,cos ) d Susiuţi recomdă ese: uei fucţii rţiole. g =, (, ) şi iegrl dă se reduce l iegrre si cos si cos g si + cos + g = = = + cos si g cos + si + g = = = + = rcg

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ. Θέμα Α. Θέμα Β Β1. Σωστό το iii Για το σύστημα ράβδος m: Στ (Ο) = Ι ολ α γων. Μg + gl = ( ML 2. B2.

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ. Θέμα Α. Θέμα Β Β1. Σωστό το iii Για το σύστημα ράβδος m: Στ (Ο) = Ι ολ α γων. Μg + gl = ( ML 2. B2. ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΥΗ 9 ΜΑΪΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΗΜΑ: ΦΥΣΙΚΗ ΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) έμα Α ΑΠΑΝΤΗΣΕΙΣ ΕΜΑΤΩΝ

Διαβάστε περισσότερα

ALGEBRA, GEOMETRIE ANALITICA ȘI DIFERENȚIALA SINTEZE TEORETICE ȘI APLICAȚII

ALGEBRA, GEOMETRIE ANALITICA ȘI DIFERENȚIALA SINTEZE TEORETICE ȘI APLICAȚII LGEBR GEOMETRIE NLITIC ȘI DIFERENȚIL SINTEZE TEORETICE ȘI PLICȚII cs mrl rpră u supor d curs ds sudțlor d ul I c cuprd s orc ș prolm rolv dsprs d volumul Elm d lgră lră gomr lcă ș drțlă uor: Io Vldmrscu

Διαβάστε περισσότερα

MÉTHODES ET EXERCICES

MÉTHODES ET EXERCICES J.-M. MONIER I G. HABERER I C. LARDON MATHS PCSI PTSI MÉTHODES ET EXERCICES 4 e édition Création graphique de la couverture : Hokus Pokus Créations Dunod, 2018 11 rue Paul Bert, 92240 Malakoff www.dunod.com

Διαβάστε περισσότερα

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ04.01 5 ο Γυμνάσιο Αγ. Παρασκευής Όπως συμβαίνει στη φύση έτσι και ο άνθρωπος θέλει να πετυχαίνει σπουδαία αποτελέσματα καταναλώνοντας το λιγότερο δυνατό

Διαβάστε περισσότερα

Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques

Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques Raphael Chenouard, Patrick Sébastian, Laurent Granvilliers To cite this version: Raphael

Διαβάστε περισσότερα

ITU-R P (2009/10)

ITU-R P (2009/10) ITU-R.45-4 (9/) % # GHz,!"# $$ # ITU-R.45-4.. (IR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.tu.t/itu-r/go/patets/e. (http://www.tu.t/publ/r-rec/e ) () ( ) BO BR BS BT F M RA S RS SA SF SM SNG TF V.ITU-R

Διαβάστε περισσότερα

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.

Διαβάστε περισσότερα

-! " #!$ %& ' %( #! )! ' 2003

-!  #!$ %& ' %( #! )! ' 2003 -! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ ΠΡΩΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ της 29ης ΝΟΕΜΒΡΙΟΥ 2004 ΝΟΜΟΘΕΣΙΑ

ΠΑΡΑΡΤΗΜΑ ΠΡΩΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ της 29ης ΝΟΕΜΒΡΙΟΥ 2004 ΝΟΜΟΘΕΣΙΑ Ν. 29(ΙΙ)/2004 ΠΑΡΑΡΤΗΜΑ ΠΡΩΤ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΚΡΑΤΙΑΣ Αρ. 3929 της 29ης ΝΕΜΒΡΙΥ 2004 ΝΜΘΕΣΙΑ ΜΕΡΣ περί Συμπληρωματικύ Πρϋπλγισμύ Νόμς (Αρ. 4) τυ 2004 εκδίδεται με δημσίευση στην Επίσημη

Διαβάστε περισσότερα

! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"

! #  $ %& ' %$(%& % &'(!!)!*!&+ ,! %$( - .$'! ! "#" "" $ "%& ' %$(%&!"#$ % &'(!!")!*!&+,! %$( -.$'!" /01&$23& &4+ $$ /$ & & / ( #(&4&4!"#$ %40 &'(!"!!&+ 5,! %$( - &$ $$$".$'!" 4(02&$ 4 067 4 $$*&(089 - (0:;

Διαβάστε περισσότερα

SWOT 1. Analysis and Planning for Cross-border Co-operation in Central European Countries. ISIGInstitute of. International Sociology Gorizia

SWOT 1. Analysis and Planning for Cross-border Co-operation in Central European Countries. ISIGInstitute of. International Sociology Gorizia SWOT 1 Analysis and Planning for Cross-border Co-operation in Central European Countries ISIGInstitute of International Sociology Gorizia ! " # $ % ' ( )!$*! " "! "+ +, $,,-,,.-./,, -.0",#,, 12$,,- %

Διαβάστε περισσότερα

HONDA. Έτος κατασκευής

HONDA. Έτος κατασκευής Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Άρα ο μέγιστος κβαντικός αριθμός του (n) που περιέχει ηλεκτρόνια είναι n = 3.

ΑΠΑΝΤΗΣΕΙΣ. Άρα ο μέγιστος κβαντικός αριθμός του (n) που περιέχει ηλεκτρόνια είναι n = 3. 1 ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 0 ΜΑΪΟΥ 016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) ΘΕΜΑ Α Α1. β Α. α Α. γ Α. δ Α. δ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Β Β1.α.

Διαβάστε περισσότερα

9. UTILIZAREA TRANSFORMATELOR LAPLACE ŞI Z ÎN STUDIUL SEMNALELOR

9. UTILIZAREA TRANSFORMATELOR LAPLACE ŞI Z ÎN STUDIUL SEMNALELOR 9. UIIAREA RASFORMAEOR APACE ŞI Î SUDIU SEMAEOR rform Forr (ră ş vră) rlă o rformr rprăr ml oml mp î oml frvţă ( ω) ş vr. Grlâ vrbl mgră ω omplă: σ ω (frvţ omplă), obţ mol m grl rprr mllor, m rform pl.

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ ΤΡΙΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ της 30ής ΣΕΠΤΕΜΒΡΙΟΥ 2004 ΑΙΟΙΚΗΤΪΚΕΣ ΠΡΑΞΕΙΣ

ΠΑΡΑΡΤΗΜΑ ΤΡΙΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ της 30ής ΣΕΠΤΕΜΒΡΙΟΥ 2004 ΑΙΟΙΚΗΤΪΚΕΣ ΠΡΑΞΕΙΣ K.AJI. 75/2004 ΠΑΡΑΡΤΗΜΑ ΤΡΙΤ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΚΡΑΤΙΑΣ Αρ. 906 της 0ής ΣΕΠΤΕΜΒΡΙΥ 2004 ΑΙΙΚΗΤΪΚΕΣ ΠΡΑΞΕΙΣ ΜΕΡΣ Ι Κννιστικές Διικητικές Πράξεις Αριθμός 75 Ι ΠΕΡΙ ΦΑΡΜΑΚΩ ΑΘΡΩΠΙΗΣ ΡΗΣΗΣ (ΕΛΕΓΣ

Διαβάστε περισσότερα

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t

Διαβάστε περισσότερα

Q Q Q 2Q b a a b

Q Q Q 2Q b a a b "! $# % &'()!, "!*.- -0, *# 354 36 4*78 8 :9* :65;< 3= $>?3@ 89A 3; 4CB 8D E :F :G 3$>%H3Ï J @KLK@NMPO O@Ï 3Q S "-T O J3QL'0 U * S -TW 3Q@XYS -Z-TW Q@@[U%'0 * \ * S ]9C;C 8 D_a` 8 b;a b=dce b9 3Q@Q@ 65F

Διαβάστε περισσότερα

a) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A.

a) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A. Bac Variata Proil: mate-izica, iormatica, metrologie Subiectul I (3 p) Se cosidera matricele: X =, Y = ( ) si A= a) (3p) Sa se calculeze XY A b) (4p) Sa se calculeze determiatul si ragul matricei A c)

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ Γ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ Γ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β) ΠΑΡΑΣΚΕΥΗ 9 ΜΑΙΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α1. Σωστό το α Α. Σωστό το β Α3.

Διαβάστε περισσότερα

ΕΤΗΣΙΑ ΑΝΑΦΟΡΑ ΠΡΟΣ ΤΗΝ ΕΠΙΤΡΟΠΗ ΔΙΑΧΕΙΡΙΣΗΣ ΥΓΡΟΤΟΠΟΥ. Σύνοψη συμπληρωματικών δράσεων διαχείρισης των νερών στην Πρέσπα για το έτος 2014

ΕΤΗΣΙΑ ΑΝΑΦΟΡΑ ΠΡΟΣ ΤΗΝ ΕΠΙΤΡΟΠΗ ΔΙΑΧΕΙΡΙΣΗΣ ΥΓΡΟΤΟΠΟΥ. Σύνοψη συμπληρωματικών δράσεων διαχείρισης των νερών στην Πρέσπα για το έτος 2014 ΕΤΗΣΙΑ ΑΝΑΦΟΡΑ ΠΡΟΣ ΤΗΝ ΕΠΙΤΡΟΠΗ ΔΙΑΧΕΙΡΙΣΗΣ ΥΓΡΟΤΟΠΟΥ Σύνοψη συμπληρωματικών δράσεων διαχείρισης των νερών στην Πρέσπα για το έτος 2014 Άγιος Γερμανός, Φεβρουάριος 2015 Ομάδα συγγραφής Βαλεντίνη Μάλιακα

Διαβάστε περισσότερα

ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t

ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t FichaCatalografica :: Fichacatalografica https://www3.dti.ufv.br/bbt/ficha/cadastrarficha/visua... Ficha catalográfica preparada

Διαβάστε περισσότερα

8. SEMNALE EŞANTIONATE

8. SEMNALE EŞANTIONATE 8. SEMNLE EŞNIONE U smal s compl drmia pri rprzara sa fi î domiul imp (formă d udă), fi î domiul frcvţă (spcru). P baza acsui cocp s poa raliza rasmira simulaă a mai mulor smal p u sigur caal d lcomuicaţii.

Διαβάστε περισσότερα

Συμβούλιο της Ευρωπαϊκής Ένωσης Βρυξέλλες, 7 Μαρτίου 2017 (OR. en)

Συμβούλιο της Ευρωπαϊκής Ένωσης Βρυξέλλες, 7 Μαρτίου 2017 (OR. en) Συμβούλιο της Ευρωπαϊκής Ένωσης Βρυξέλλες, 7 Μαρτίου 2017 (OR. en) 7057/17 ADD 1 TRANS 97 ΔΙΑΒΙΒΑΣΤΙΚΟ ΣΗΜΕΙΩΜΑ Αποστολέας: Ημερομηνία Παραλαβής: Αποδέκτης: Για τον Γενικό Γραμματέα της Ευρωπαϊκής Επιτροπής,

Διαβάστε περισσότερα

ITU-R P (2012/02) &' (

ITU-R P (2012/02) &' ( ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS

Διαβάστε περισσότερα

u = 0 u = ϕ t + Π) = 0 t + Π = C(t) C(t) C(t) = K K C(t) ϕ = ϕ 1 + C(t) dt Kt 2 ϕ = 0

u = 0 u = ϕ t + Π) = 0 t + Π = C(t) C(t) C(t) = K K C(t) ϕ = ϕ 1 + C(t) dt Kt 2 ϕ = 0 u = (u, v, w) ω ω = u = 0 ϕ u u = ϕ u = 0 ϕ 2 ϕ = 0 u t = u ω 1 ρ Π + ν 2 u Π = p + (1/2)ρ u 2 + ρgz ω = 0 ( ϕ t + Π) = 0 ϕ t + Π = C(t) C(t) C(t) = K K C(t) ϕ = ϕ 1 + C(t) dt Kt C(t) ϕ ϕ 1 ϕ = ϕ 1 p ρ

Διαβάστε περισσότερα

E.E. Παρ. Ι(ΙΙ) Αρ. 3253, Ν. 30(ΙΙ)/98

E.E. Παρ. Ι(ΙΙ) Αρ. 3253, Ν. 30(ΙΙ)/98 E.E. Παρ. Ι(ΙΙ) Αρ. 3253,10.7.98 1608 Ν. 30(ΙΙ)/98 περί Ειδικεύσεως Συμπληρωματικής Πιστώσεως (Ταμεί Αναπτύξεως) Νόμς (Αρ. 2) τυ 1998 εκδίδεται με δημσίευση στην Επίσημη Εφημερίδα της Κυπριακής Δημκρατίας

Διαβάστε περισσότερα

Πρώτον Πίνακα. Παράρτημα. Αρση ανωμαλιών και επίλυση προβλημάτων. Ποοοίμιο. 15(11) του Συνοπτικός τίτλος.

Πρώτον Πίνακα. Παράρτημα. Αρση ανωμαλιών και επίλυση προβλημάτων. Ποοοίμιο. 15(11) του Συνοπτικός τίτλος. Ε.Ε. Πρ. I() 1796 Ν. 46()/2 Αρ. 79, 2.7.2 περί Συμπληρωμτικύ Πρϋπλγιμύ τυ Κεντρικύ Φρέ Ιότιμης Κτνμής ρών Νόμς (Αρ. 1) τυ 2 εκδίδετι με δημίευη την Επίημη Εφημερίδ της Κυπρικής Δημκρτίς ύμφων με τ Αρθρ

Διαβάστε περισσότερα

Αριθμός 95 Ο ΠΕΡΙ ΠΟΛΕΟΔΟΜΙΑΣ ΚΑΙ ΧΩΡΟΤΑΞΙΑΣ ΝΟΜΟΣ (ΝΟΜΟΙ 90 ΤΟΥ 1972 ΚΑΙ 56 ΤΟΥ 1982)

Αριθμός 95 Ο ΠΕΡΙ ΠΟΛΕΟΔΟΜΙΑΣ ΚΑΙ ΧΩΡΟΤΑΞΙΑΣ ΝΟΜΟΣ (ΝΟΜΟΙ 90 ΤΟΥ 1972 ΚΑΙ 56 ΤΟΥ 1982) Ε.Ε.Πα.ΙΠ(Ι) 296 ΚΛ.Ώ. 95/95 Α. 2965,7.4.95 Αιθμός 95 ΠΕΙ ΠΛΕΔΙΑΣ ΚΑΙ ΩΤΑΞΙΑΣ ΝΣ (ΝΙ 90 ΤΥ 1972 ΚΑΙ 56 ΤΥ 1982) Διάταγμα Διατήησης σύμφνα με τ άθ 8(1) Ασκώντας τις εξυσίες πυ ηγύνται σ' αυτόν από τ εάφι

Διαβάστε περισσότερα

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l) ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I

➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I tr 3 P s tr r t t 0,5A s r t r r t s r r r r t st 220 V 3r 3 t r 3r r t r r t r r s e = I t = 0,5A 86400 s e = 43200As t r r r A = U e A = 220V 43200 As A = 9504000J r 1 kwh = 3,6MJ s 3,6MJ t 3r A = (9504000

Διαβάστε περισσότερα

1134 Ν. 8(ΙΙ)/2001. E.E. Παρ. 1(H) Αρ. 3475,

1134 Ν. 8(ΙΙ)/2001. E.E. Παρ. 1(H) Αρ. 3475, E.E.. (H) Α. 47,6.. 4. (ΙΙ)/ ί ϋλγμύ Τμί Τκκκώ ώ όμς κί μ μί ίμ φμί ς Κκής Δμκίς μφά μ Άθ Σάγμς. ίμ. Σκός ίλς. Έγκ λμής ό Τμί Τκκκώ ώ ύ 4.49.77 γ ή ές λήγ ς Δκμβί. ίκ ώ θ θύ. ίκς. μί ύμς μέ άθ γ κάλψ λλίμμς

Διαβάστε περισσότερα

m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx

m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx m r = F m r = F ( r) m r = F ( v) x F = F (x) m dv dt = F (x) d dt = dx dv dt dx = v dv dx vdv = F (x)dx 2 mv2 x 2 mv2 0 = F (x )dx x 0 K = 2 mv2 W x0 x = x x 0 F (x)dx K K 0 = W x0 x x, x 2 x K 2 K =

Διαβάστε περισσότερα

Βασικές γνώσεις Χημείας Λυκείου (Α, Β, Γ)

Βασικές γνώσεις Χημείας Λυκείου (Α, Β, Γ) Βασικές γνώσεις Χημείας Λυκείου (Α, Β, Γ) Διαλύματα Εκφράσεις περιεκτικότητας α λ% w/v: Σε 100 ml Διαλύματος περιέχονται λ g διαλυμένης ουσίας β λ% w/w: Σε 100 g Διαλύματος περιέχονται λ g διαλυμένης ουσίας

Διαβάστε περισσότερα

Επίσημη Εφημερίδα της Ευρωπαϊκής Ένωσης L 222/5

Επίσημη Εφημερίδα της Ευρωπαϊκής Ένωσης L 222/5 18.8.2012 Επίσημη Εφημερίδα της Ευρωπαϊκής Ένωσης L 222/5 ΕΚΤΕΛΕΣΤΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ (ΕΕ) αριθ. 751/2012 ΤΗΣ ΕΠΙΤΡΟΠΗΣ της 16ης Αυγούστου 2012 για τη διόρθωση του κανονισμού (ΕΚ) αριθ. 1235/2008 για τον καθορισμό

Διαβάστε περισσότερα

Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare

Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare Miisterul Educaţiei Națioale Cetrul Naţioal de Evaluare şi Eamiare Eameul de bacalaureat aţioal 08 Proba E c) Matematică M_mate-ifo Clasa a XI-a Toate subiectele sut obligatorii Se acordă 0 pucte di oficiu

Διαβάστε περισσότερα

' ( )* * +,,, ) - ". &!: &/#&$&0& &!& $#/&! 1 2!#&, #/&2!#&3 &"&!3, #&- &2!#&, "#4&#3 $!&$3% 2!% #!.1 & &!" //! &-!!

' ( )* * +,,, ) - . &!: &/#&$&0& &!& $#/&! 1 2!#&, #/&2!#&3 &&!3, #&- &2!#&, #4&#3 $!&$3% 2!% #!.1 & &! //! &-!! ..!! "#$% #&" 535.34 ' ( )* *,,, ) - ". &!: 1.4.7 &/#&$&& &!&11 5.7.1 $#/&! 1!#&, #/&!#&3 &"&!3, #&- &!#&, "#4&#3 $!&$3%!% #!.1 & &!" //! &-!!% 3 #&$&/!: /&!&# &-!!%, "#&&# 56$.., //! &-!!% ).. &$ 13 .

Διαβάστε περισσότερα

C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ

C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ »»...» -300-0 () -300-03 () -3300 3.. 008 4 54. 4. 5 :.. ;.. «....... :. : 008. 37.. :....... 008.. :. :.... 54. 4. 5 5 6 ... : : 3 V mnu V mn AU 3 m () ; N (); N A 6030 3 ; ( ); V 3. : () 0 () 0 3 ()

Διαβάστε περισσότερα

1546 Κ.Δ.Π. 182/98. Αριθμός 182 ΟΙ ΠΕΡΙ ΑΠΟΧΕΤΕΥΣΕΩΝ ΛΕΜΕΣΟΥ ΑΜΑΘΟΥΝΤΑΣ ΚΑΝΟΝΙΣΜΟΙ ΤΟΥ 1991 ΕΩΣ 1997

1546 Κ.Δ.Π. 182/98. Αριθμός 182 ΟΙ ΠΕΡΙ ΑΠΟΧΕΤΕΥΣΕΩΝ ΛΕΜΕΣΟΥ ΑΜΑΘΟΥΝΤΑΣ ΚΑΝΟΝΙΣΜΟΙ ΤΟΥ 1991 ΕΩΣ 1997 Ε.Ε. Παρ. ΙΙΙ(Ι) Αρ. 323,10.7.98 146 Κ.Δ.Π. 182/98 Αριθμός 182 Ι ΠΕΡΙ ΑΠΧΕΤΕΥΣΕΩΝ ΛΕΜΕΣΥ ΑΜΑΘΥΝΤΑΣ ΚΑΝΝΙΣΜΙ ΤΥ 1991 ΕΩΣ 1997 Τ Συμβύλι Απχετεύσεων Λεμεσύ Αμαθύντας στη συνεδρίαση τυ ημερμηνίας 17 Ιυνίυ

Διαβάστε περισσότερα

SONATA D 295X245. caza

SONATA D 295X245. caza SONATA D 295X245 caza 01 Γωνιακός καναπές προσαρμόζεται σε όλα τα μέτρα σε όλους τους χώρους με μηχανισμούς ανάκλησης στα κεφαλάρια για περισσότερή αναπαυτικότητα στην χρήση του-βγαίνει με κρεβάτι η χωρίς

Διαβάστε περισσότερα

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΓΕΩΠΟΝΙΚΗΣ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΟΛΟΓΙΑΣ ΚΑΙ ΜΟΡΦΟΛΟΓΙΑΣ ΦΥΤΩΝ

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΓΕΩΠΟΝΙΚΗΣ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΟΛΟΓΙΑΣ ΚΑΙ ΜΟΡΦΟΛΟΓΙΑΣ ΦΥΤΩΝ ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΓΕΩΠΟΝΙΚΗΣ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΟΛΟΓΙΑΣ ΚΑΙ ΜΟΡΦΟΛΟΓΙΑΣ ΦΥΤΩΝ ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΥΠΑΡΞΗΣ ΣΥΣΤΑΤΙΚΩΝ ΔΟΜΗΣ ΟΡΘΟ-ΔΙ- ΦΑΙΝΟΛΗΣ ΣΤΑ ΚΥΤΤΑΡΙΚΑ ΤΟΙΧΩΜΑΤΑ ΚΑΙ ΤΗΣ ΣΥΜΜΕΤΟΧΗΣ

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

LED reflektori 20W 30W 50W 70W 80W FL-30W-2 100W 10W PIR-10W. Beam Angle:120 Gray / White Edging WITH PIR SENSOR 120W 140W 160W. LED Podvodna svjetla

LED reflektori 20W 30W 50W 70W 80W FL-30W-2 100W 10W PIR-10W. Beam Angle:120 Gray / White Edging WITH PIR SENSOR 120W 140W 160W. LED Podvodna svjetla Kranjčevićeva 36 10000 Zagreb www.ledrasvjeta.hr info@ledrasvjeta.hr Tel: 01 4102 880 Fax: 01 4102 990 20W 30W 50W Lumens:1800lm±20 Lumens: 2700lm±20 Lumens:4500lm±25 70W 80W FL-30W-2 Lumens:6300lm±25

Διαβάστε περισσότερα

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1 Calea 13 Septembrie, r 09, Sector 5, 0507, București Tel: +40 (0)1 317 36 50 Fax: +40 (0)1 317 36 54 Olimpiada Naţioală de Matematică Etapa locală -00016 Clasa a IX-a M 1 Fie 1 abc,,, 6 şi ab c 1 Să se

Διαβάστε περισσότερα

2. CONVOLUTIA. 2.1 Suma de convolutie. Raspunsul sistemelor discrete liniare si invariante in timp la un semnal de intrare oarecare.

2. CONVOLUTIA. 2.1 Suma de convolutie. Raspunsul sistemelor discrete liniare si invariante in timp la un semnal de intrare oarecare. . CONVOLUIA. Sum de covoluie. Rspusul sisemelor discree liire si ivrie i imp l u seml de irre orecre. [ ] δ [ ] [ ] δ[ ] x x δ[ ] [ ] x x [ ] δ[ ] x x [ ] δ[ ] [ ] δ[ ] [ ] [ ] δ[ ] x x Rspusul sisemelor

Διαβάστε περισσότερα

Τεχνικοοικονομική Ανάλυση Γης Καλλιέργειας Πεπονιού Στην Ελλάδα

Τεχνικοοικονομική Ανάλυση Γης Καλλιέργειας Πεπονιού Στην Ελλάδα ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (ΤΕΙ) ΚΑΛΑΜΑΤΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΑΣ ΓΕΩΠΟΝΙΑΣ Πτυχιακή Εργασία Τεχνικοοικονομική Ανάλυση Γης Καλλιέργειας Πεπονιού Στην Ελλάδα

Διαβάστε περισσότερα

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is The Royal Society of Chemistry 2018 SUPPLEMENTAL INFORMATION Fully Automated Total Metals and Chromium

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 19 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 19 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 19 ΙΟΥΝΙΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ Α. γ Α. β Α. γ Α5. α. Κανόνας της οκτάδας:

Διαβάστε περισσότερα

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs

Διαβάστε περισσότερα

E.K., Παρ. I, Αρ. 2427, 14.7.89

E.K., Παρ. I, Αρ. 2427, 14.7.89 E.K., Πρ. I, Αρ. 2427, 4.7.89 3405 Ν. 39/89 περί Πρϋπλγισμύ τυ Κεντρικύ Σφγείυ Νόμς τυ 989 εκδίδετι με δημσίευση στην επίσημη εφημερίδ της Κυπρικής Δημκρτίς σύμφν με τ Άρθρ 52 τυ Συντάγμτς. Αριθμός 39

Διαβάστε περισσότερα

Dumnezeu este Domnul. Glas 4 T. bi ne es te cu vân tat Cel ce vi ne în tru nu me le Dom nu lui

Dumnezeu este Domnul. Glas 4 T. bi ne es te cu vân tat Cel ce vi ne în tru nu me le Dom nu lui 1 CANON DE MÂNGÂIERE către Sfântul Ioan Rusul Dumnezeu este Domnul. Glas 4 T. Dum ne zeu es te Dom nul şi S a a ră ta at no uă bi ne es te cu vân tat Cel ce vi ne în tru nu me le Dom nu lui Troparul Sfântului,

Διαβάστε περισσότερα

1417 Ν. 23(ΙΙ)/99. E.E. Παρ. Ι(Π) Αρ. 3322, 30.4.99

1417 Ν. 23(ΙΙ)/99. E.E. Παρ. Ι(Π) Αρ. 3322, 30.4.99 E.E. Παρ. Ι(Π) Αρ., 0.4.99 47 Ν. (ΙΙ)/99 περί Πρϋπλγισμύ τυ Ραδιφωνικύ Ιδρύματς Κύπρυ Νόμς τυ 999 εκδί-δεται με δημσίευση στην Επίσημη Εφημερίδα της Κυπριακής Δημκρατίας σύμφωνα με τ Άρθρ 5 τυ Συντάγματς.

Διαβάστε περισσότερα