Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare
|
|
- Αφροδίσιος Λιάπης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Miisterul Educaţiei Națioale Cetrul Naţioal de Evaluare şi Eamiare Eameul de bacalaureat aţioal 08 Proba E c) Matematică M_mate-ifo Clasa a XI-a Toate subiectele sut obligatorii Se acordă 0 pucte di oficiu Timpul de lucru efectiv este de ore Simulare 5p Determiați umărul comple z, știid că z + iz = 4 + 5i, ude z este cojugatul lui z 5p Se cosideră fucția f : R R, f ( ) = Determiați valorile reale ale lui petru care ( )( ) f f < 5p Rezolvaţi î mulţimea umerelor reale ecuaţia + 7 = 5p 4 Calculaţi probabilitatea ca, alegâd o submulțime ditre submulțimile cu două elemete ale A = 0,,,, 4,5, aceasta să coțiă umai umere pare mulțimii { } 5p 5 Se cosideră dreptughiul ABCD cu AB = 8, AD = 4 și puctul M, mijlocul laturii CD Calculați lugimea vectorului v = DC + BM 8 5p 6 Se cosideră E ( ) = si cos, ude este umăr real Arătați că umărul E π 4 este atural 0 0 Se cosideră matricele I = și ( ) 5p a) Arătați că det ( A( ) ) = 5p b) Determiați valorile reale ale lui petru care ( A( ) I ) a + a a a A a = a a a + a, ude a este umăr real 0 0 det 0 5p c) Î reperul cartezia Oy se cosideră puctele Pa ( a a, a a) +, ude a este umăr real Demostrați că petru orice umăr real eul a, puctele P a, P a și O u sut coliiare 0 Se cosideră matricea M ( ) = 0 0, ude este umăr real 0 0 5p a) Demostrați că M ( ) M ( ) M ( 0) 5p b) Calculați iversa matricei M ( ), R 5p c) Arătați că ( ) ( ) ( ) =, petru orice umăr real ( M + M + + M ) = ( ) det, petru orice umăr atural eul Se cosideră fucţia f :(, + ) R, f ( ) ( ) = + ( + ) f 5p a) Calculați lim 0 5p b) Determiați ecuația asimptotei orizotale spre + la graficul fucției f 5p c) Demostrați că șirul ( a ) cu a ( ) ( ) ( ) ( ) = f f f f este descrescător Pagia di
2 Miisterul Educaţiei Națioale Cetrul Naţioal de Evaluare şi Eamiare ( ) + si + m, Se cosideră fucţia f : R R, f ( ) =, ude m este umăr real, > lim f = 4 5p a) Arătați că ( ) > 5p b) Determiați umărul real m petru care fucţia f este cotiuă pe R 5p c) Petru 5 m =, demostrați că ecuația f ( ) = 0 are cel puți o soluție î itervalul ( 0, ) 4 Pagia di
3 Miisterul Educaţiei Națioale Cetrul Naţioal de Evaluare şi Eamiare Eameul de bacalaureat aţioal 07 Proba E c) Matematică M_mate-ifo Clasa a XI-a Toate subiectele sut obligatorii Se acordă 0 pucte di oficiu Timpul de lucru efectiv este de ore Simulare 5p Se cosideră umărul comple z = 4 i Calculați z z z z, ude z este cojugatul lui z 5p Determiați umărul real m, știid că aa O este tagetă graficului fucției f : R R, f ( ) = ( m + ) + m m + 5p Rezolvaţi î mulţimea umerelor reale ecuaţia ( ) log 5 + log 5 = 5 5p 4 Calculaţi probabilitatea ca, alegâd u umăr di mulțimea umerelor aturale de trei cifre, acesta să fie multiplu de 5p 5 Se cosideră triughiul ABC, puctul M mijlocul laturii BC și puctul N mijlocul mediaei AM Demostrați că BN = AB + AC 4 4 5p 6 Arătați că, dacă ( si cos ) ( cos si ) π + y + y = 0 și, y 0,, atuci = y Se cosideră determiatul ( ) 5p a) Arătați că ( 0,) = 5p b) Arătați că (, y) ( )( y )( y ) 5p c) Demostrați că umărul ( m, ), y = + y +, ude și y sut umere reale + y + y =, petru orice umere reale și y Se cosideră matricea A( a) 5p a) Calculați A( 0) + A( ) 5p b) Arătați că A( a) A( b) A( ab a b ) 5p c) Arătați că este divizibil cu, petru orice umere îtregi m și a 0 a = 0 0, ude a este umăr real a 0 a = +, petru orice umere reale a și b 5 07 A A A A = A Se cosideră fucţia f :( 0, + ) R, f ( ) 5p a) Arătați că f ( ) = ( + ) + + = ( + ), petru orice ( 0, + ) 5p b) Determiați ecuația asimptotei orizotale spre + la graficul fucției f 5p c) Calculați lim ( f ( ) + f ( ) + f ( ) + + f ( ) ) + 5 Pagia di
4 Miisterul Educaţiei Națioale Cetrul Naţioal de Evaluare şi Eamiare + + a, 0 Se cosideră fucţia f : R R, f ( ) = 4 e, ude a este umăr real, > 0 e f ( ) 5p a) Calculați lim 5p b) Determiați umărul real a petru care fucţia f este cotiuă î puctul = 0 5p c) Demostrați că, dacă a ( 6, ), atuci ecuația f ( ) = 0 are cel puți două soluții reale disticte î itervalul (, ) Pagia di
5 Miisterul Educaţiei Naţioale Cetrul Naţioal de Evaluare şi Eamiare Eameul de bacalaureat aţioal 04 Proba E c) Matematică M_mate-ifo Simulare petru elevii clasei a XI-a Toate subiectele sut obligatorii Se acordă 0 pucte di oficiu Timpul de lucru efectiv este de ore 5p Calculați z + z, știid că z = + 4i și z este cojugatul umărului comple z 5p Determiați umărul real pozitiv m petru care dreapta = este aă de simetrie a graficului fucţiei f : R R, f ( ) = ( m ) + log = log 5p Rezolvaţi î mulţimea umerelor reale ecuaţia ( ) 5p 4 Determiaţi câte umere aturale abc, cu a, b şi c eule, au suma cifrelor egală cu 5 5p 5 Se cosideră triughiul ABC şi puctul D astfel îcât DB + DC = 0 Determiaţi umărul real p AD = p AB + AC petru care ( ) 4 5p 6 Calculaţi lugimea razei cercului circumscris triughiului ABC, ştiid că AC = 6 şi cos B = 5 Se cosideră determiatul ( ) 5p a) Calculați D(, ) 5p b) Arătați că D(, y) ( )( y )( y ) D, y = y, ude și y sut umere reale + y + 5 =, petru orice umere reale și y 5p c) Determiați umerele reale petru care ( ) Se cosideră matricea A( ) D,4 = 0 =, ude este umăr real 5p a) Calculați A( ) A( ) 5p b) Demostraţi că A( ) este iversabilă petru orice umăr atural, 5p c) Determiaţi iversa matricei A ( 0) Se cosideră şirul de umere reale ( ) 5p a) Arătați că 5p b) Demostraţi că şirul ( a ) 5p c) Calculaţi lim ( a ) a, + a = a + < petru orice umăr atural eul a + + este mărgiit + a, < Se cosideră fucţia f : R R, f ( ) = 0, =, ude a și b sut umere reale b, > + 5p a) Determiaţi ecuația asimptotei spre + la graficul fucției f 5p b) Determiaţi umerele reale a și b petru care fucţia f este cotiuă pe R 5p c) Petru b =, rezolvaţi î mulţimea (, + ) iecuaţia f ( ) ( )( ) Pagia di Simulare petru elevii clasei a XI-a
6 Miisterul Educaţiei și Cercetării Știițifice Cetrul Naţioal de Evaluare şi Eamiare Eameul de bacalaureat aţioal 05 Proba E c) Matematică M_mate-ifo Clasa a XI-a Toate subiectele sut obligatorii Se acordă 0 pucte di oficiu Timpul de lucru efectiv este de ore Simulare 5p Determiați umărul real petru care umerele 5, +, + 7 sut termei cosecutivi ai uei progresii aritmetice 5p Arătați că, petru orice umăr real m, graficul fucției f : R R, f ( ) = + ( m ) m itersectează aa O 5p Rezolvați î mulţimea umerelor reale ecuaţia = 5p 4 Calculați probabilitatea ca, alegâd u umăr di mulţimea {,,,4,5 }, acesta să verifice relaţia ( ) > + 5! 5p 5 Determiaţi umerele reale a și b, ştiid că, î reperul cartezia Oy, puctul de itersecție a dreptelor ( ) + a + y 4 = 0 și by = este (, ) M a si 5p 6 Arătați că tg + cos = π, petru orice umăr real 0, Se cosideră determiatul D( y) 5p a) Arătaţi că, = y, ude şi y sut umere reale eule y D, 0 = D, y = y y, petru orice umere reale eule şi y y 5p b) Arătaţi că ( ) ( )( )( ) D log, = 0 5p c) Rezolvaţi î mulţimea umerelor reale ecuaţia ( ) 0 0 Se cosideră matricele I = şi A( a) a = a, ude a este umăr real a 5p a) Arătați că A( ) A( ) = A( ) 5p b) Determiaţi umerele reale a şi b petru care A( a) bi ( A( ) I )( A( ) I ) 5p c) Arătaţi că matricea A( ) este iversabilă petru orice umăr atural Se cosideră fucția f :( 0, + ) R, f ( ) ( ) ( ) ( ) a = f + f + + f + = l + = și şirul de umere reale ( ) 5p a) Determiați ecuația asimptotei orizotale spre + la graficul fucției f 5p b) Arătați că șirul ( a ) 5p c) Calculați lim ( )( a l ) + este crescător + a, Pagia di
7 Se cosideră fucţia f : Miisterul Educaţiei și Cercetării Știițifice Cetrul Naţioal de Evaluare şi Eamiare + a +, f =, ude a este umăr real + a, > R R, ( ) 5p a) Determiați umerele reale a petru care fucția f este cotiuă î = 5p b) Petru 5p c) Petru ( f f ) a =, calculați lim ( ) ( ) + + a =, arătați că ecuația f ( ) + = 0 are cel puți o soluție î itervalul [,0] Pagia di
8 Miisterul Educaţiei Națioale și Cercetării Știițifice Cetrul Naţioal de Evaluare şi Eamiare Eameul de bacalaureat aţioal 06 Proba E c) Matematică M_mate-ifo Clasa a XI-a Toate subiectele sut obligatorii Se acordă 0 pucte di oficiu Timpul de lucru efectiv este de ore 5 5p Arătați că log log06 + 0,065 = 4 5p Determiaţi umărul real m, petru care soluţiile ecuaţiei ( ) relaţia + = 5p Rezolvaţi î mulţimea umerelor reale ecuaţia = 0 Simulare m 4 + m = 0 verifică 5p 4 Calculaţi probabilitatea ca, alegâd u elemet di mulţimea { 0,,,, 9}, acesta să fie soluţie a f =, ude f : R R, f ( ) = + 4 ecuaţiei ( ) 0 5p 5 Se cosideră triughiul ABC cu AB = AC = 6 şi m( A ) = 0 Calculaţi lugimea vectorului AC AB π 5p 6 Arătați că si ( a + b) =, știid că a, b 0,, a b și si a + cos a = si b + cos b Se cosideră determiatul (, y) y y 5p a) Calculați (,0 ) 5p b) Demostrați că (, y) ( y)( y y ) =, ude și y sut umere reale = +, petru orice umere reale și y, 8 y = 5p c) Determiați umerele îtregi disticte și y, știid că ( y) Se cosideră matricea A( ) 5p a) Calculați A( ) A( 0) 5p b) Determiați iversa matricei A ( ) = 0, ude este umăr atural 0 0 5p c) Demostrați că, dacă A( ) A( ) = A( p), atuci = 0 și p = Se cosideră fucţia f :( 0, + ) R, f ( ) ( ) = f l +, = şi şirul de umere reale ( ) 5p a) Determiați ecuația asimptotei orizotale spre + la graficul fucției f 5p b) Demostrați că şirul ( ) este descrescător 5p c) Demostrați că l < l, petru orice umăr atural, Pagia di
9 5p Se cosideră fucţia f : a) Calculați lim f ( ) Miisterul Educaţiei Națioale și Cercetării Știițifice Cetrul Naţioal de Evaluare şi Eamiare 8 + 7, < R R, f ( ) = 4 +, ude a este umăr real a, 5p b) Determiați umărul real a, petru care fucţia f este cotiuă î puctul = 5p c) Petru a =, calculaţi > ( f ( ) ) l lim Pagia di
Examenul de bacalaureat nańional 2013 Proba E. c) Matematică M_mate-info. log 2 = log x. 6 j. DeterminaŃi lungimea segmentului [ AC ].
Miisterul EducaŃiei, Cercetării, Tieretului şi Sportului Cetrul NaŃioal de Evaluare şi Eamiare Eameul de bacalaureat ańioal 0 Proba E c) Matematică M_mate-ifo Filiera teoretică, profilul real, specializarea
Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1
Calea 13 Septembrie, r 09, Sector 5, 0507, București Tel: +40 (0)1 317 36 50 Fax: +40 (0)1 317 36 54 Olimpiada Naţioală de Matematică Etapa locală -00016 Clasa a IX-a M 1 Fie 1 abc,,, 6 şi ab c 1 Să se
COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi
OMBINATORIĂ Mulţimile ordoate care se formează cu elemete di elemete date se umesc permutări. P =! Proprietăţi 0! = ( ) ( ) ( ) ( ) ( ) ( )! =!! =!! =! +... Submulţimile ordoate care se formează cu elemete
Varianta 1
Filiera vocaţioală, profilul militar, specializarea matematică-iformatică Toate subiectele sut obligatorii Timpul efectiv de lucru este de ore Se acordă pucte di oficiu La toate subiectele se cer rezolvări
Varianta 1. SUBIECTUL I (30p) Varianta 001 5p 1. Să se determine numărul natural x din egalitatea x = p
Filiera vocaţioală, profilul militar, specializarea matematică-iformatică Toate subiectele sut obligatorii Timpul efectiv de lucru este de ore Se acordă pucte di oficiu La toate subiectele se cer rezolvări
Concursul Naţional Al. Myller Ediţia a VI - a Iaşi, 2008
Cocursul Naţioal Al. Myller CLASA a VII-a Numerele reale disticte x, yz, au proprietatea că Să se arate că x+ y+ z = 0. 3 3 3 x x= y y= z z. a) Să se arate că, ditre cici umere aturale oarecare, se pot
R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
CLASA a V-a CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ EDIŢIA A IV-A MAI I. Să se determine abcd cu proprietatea
EDIŢIA A IV-A 4 6 MAI 004 CLASA a V-a I. Să se determie abcd cu proprietatea abcd - abc - ab -a = 004 Gheorghe Loboţ II Comparaţi umerele A B ude A = 00 00 004 004 şi B = 00 004 004 00. Vasile Şerdea III.
PROBLEME CU PARTEA ÎNTREAGĂ ŞI
PROBLEME CU PARTEA ÎNTREAGĂ ŞI PARTEA FRACŢIONARĂ. Să se rezolve ecuaţia {x} {008 x} =.. Fie r R astfel ca r 9 ] 00 Determiaţi 00r]. r 0 ] r ]... r 9 ] = 546. 00 00 00 Cocurs AIME (SUA), 99. Câte ditre
Clasa a IX-a. 1. Rezolvaţi în R ecuaţiile: (3p) b) x x x Se consideră mulţimile A = { }, (2p) a) Determinaţi elementele mulţimii A
1 Rezolvaţi î R ecuaţiile: (4p) a) x 1 5 = 8 (3p) b) Clasa a IX-a x 1 x x 1 + + + =, N x x x Se cosideră mulţimile A = { }, A = { 3,5}, A { 7, 9,11}, 1 1 3 = (p) a) Determiaţi elemetele mulţimii A 6 (3p)
OLIMPIADA DE MATEMATICĂ FAZA LOCALĂ CLASA a V-a
CLASA a V-a 1. Îtr-o familie de 4 persoae, suma vârstelor acestora este de 97 de ai. Băiatul s-a ăscut câd tatăl avea 3 de ai, iar fata s-a ăscut câd mama avea de ai şi fratele său 4 ai.puteţi găsi ce
a) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A.
Bac Variata Proil: mate-izica, iormatica, metrologie Subiectul I (3 p) Se cosidera matricele: X =, Y = ( ) si A= a) (3p) Sa se calculeze XY A b) (4p) Sa se calculeze determiatul si ragul matricei A c)
CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ Ediţia a XI-a, 6 7 MAI CLASA a IV-a
Ediţia a XI-a, 6 7 MAI 011 CLASA a IV-a SUBIECTUL Aflaţi difereţa ditre umerele aturale [( 4 a : ) :1 5] 4 6 = 4 [( b 7 ): 5 8] 8 5 = 7 a şi b ştiid că ele verifică egalităţile: Gheorghe Loboţ Suma a două
Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.
Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea
Analiza matematica Specializarea Matematica vara 2010/ iarna 2011
Aaliza matematica Specializarea Matematica vara 010/ iara 011 MULTIPLE HOIE 1 Se cosidera fuctia Atuci derivata mita de ordi data de este egala cu 1 y Derivata partiala de ordi a lui i raport cu variabila
Capitole fundamentale de algebra si analiza matematica 2012 Analiza matematica
Capitole fudametale de algebra si aaliza matematica 01 Aaliza matematica MULTIPLE CHOICE 1. Se cosidera fuctia. Atuci derivata mixta de ordi data de este egala cu. Derivata partiala de ordi a lui i raport
SOCIETATEA DE ŞTIINŢE MATEMATICE DIN ROMÂNIA- FILIALA CLUJ
CLASA a IV-a U gospodar are î curte găii și iepuri, î total 30 de capete și 84 de picioare. Săptămâal, petru hraa uei păsări sut folosite, î medie, 500 g de grăuțe, iar petru hraa uui iepure de 4 ori mai
COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care
6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă
Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi
SUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare
SUBGRUPURI CLASICE. SUBGRUPURI recapitulare Defiiţia. Fie (G, u rup şi H o parte evidă a sa. H este subrup al lui G dacă:. H este parte stabilă a lui G;. H îzestrată cu operaţia idusă este rup. Teorema.
BAREM DE CORECTARE CLASA A IX A
ETAPA JUDEŢEANĂ - martie 0 Filiera tehologica : profil tehic BAREM DE CORECTARE CLASA A IX A a) Daţi exemplu de o ecuaţie de gradul al doilea avâd coeficieţi raţioali care admite ca rădăciă umărul x= +
SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a
Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii
CONCURSUL NAŢIONAL DE MATEMATICĂ APLICATĂ "ADOLF HAIMOVICI"
INSPECTORATUL ŞCOLAR JUDEŢEAN IAŞI CONCURSUL NAŢIONAL DE MATEMATICĂ APLICATĂ "ADOLF HAIMOVICI" ETAPA NAŢIONALĂ aprilie FACULTATEA CONSTRUCŢII DE MAŞINI ŞI MANAGEMENT INDUSTRIAL Filiera tehologică: profilul
Clasa a V-a. Clasa a VI-a. Clasa a VII-a
CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ MATEMATICA, DE DRAG EDIŢIA I, 4-6006 Clasa a V-a a+ b Numerele a, b, c, d N verifică relaţia: b+ c + c+ d + d+ a + = 5 Calculaţi: a + b+ c+ d 7 (G M /006) Suma a două
T R A I A N. Numere complexe în formă algebrică z a. Fie z, z a bi, Se numeşte partea reală a numărului complex z :
Numere complexe î formă algebrcă a b Fe, a b, ab,,, Se umeşte partea reală a umărulu complex : Re a Se umeşte coefcetul părţ magare a umărulu complex : Se umeşte modulul umărulu complex : Im b, ş evdet
Varianta 1 - rezolvari mate MT1
Variata - rezolvari mate MT Soluţii a + a + a + ; + 5 + 9 + + a + ; ; a + a ; a,, ;, y >, y + ; f :,,, f submulţimi cu trei elemete C 5 m + + m 6 cos ; m ± 6+ cos cos a Calcul direct b Se demostrează pri
CULEGERE DE PROBLEME
Colecţia "LICEU CULEGERE DE PROBLEME petru eameul de admitere la Facultatea de Automatică şi Calculatoare, Facultatea de Electroică şi Telecomuicaţii, Facultatea de Arhitectură Descrierea CIP a Bibliotecii
Partea întreagă, partea fracţionară a unui număr real
Cocursul Gazeta Matematică și ViitoriOlimpiciro Ediția a IV-a 0-0 Partea îtreagă, partea fracţioară a uui umăr real ABSTRACT: Materialul coţie câteva proprietăţi şi rezultate legate de partea îtreagă şi
Polinoame Fibonacci, polinoame ciclotomice
Polioame Fiboacci, polioame ciclotomice Loredaa STRUGARIU, Cipria STRUGARIU 1 Deoarece şirul lui Fiboacci este cuoscut elevilor îcă dicl.aix-a,iarrădăciile de ordiul ale uităţii şi polioamele ciclotomice
PENTRU CERCURILE DE ELEVI
G.-F. Şerba, Aplicaţii la teorema lui Frobeius despre matrice 7 PENTRU CERCURILE DE ELEVI APLICAŢII LA TEOREMA LUI FROBENIUS DESPRE MATRICE George-Flori Şerba 1) Î această lecţie vom prezeta rezolvarea
Sisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
Inegalitati. I. Monotonia functiilor
Iegalitati I acest compartimet vor fi prezetate diverse metode de demostrare a iegalitatilor, utilizad metodele propuse vor fi demostrate atat iegalitati clasice precum si iegalitati propuse la diferite
CONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ
UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ CONCURS DE ADMITERE, 7 iulie 207 Proba scrisă la MATEMATICĂ SUBIECTUL I (30 puncte) ) (0 puncte) Să se arate că oricare ar
Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ
UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, aprilie 7 Proba scrisă la MATEMATICĂ SUBIECTUL I (3 puncte) ) (5 puncte) Fie matricele A = 3 4 9 8
MATEMATICĂ. - frecvenţă redusă - clasa a IX a. Prof. Baran Mihaela Gabriela
MATEMATICĂ clasa a IX a - frecveţă redusă - Prof. Bara Mihaela Gariela CUPRINS. Mulţimi şi elemete de logică matematică Mulţimea umerelor reale Elemete de logică matematică Şiruri. Fuctii, ecuaţii, iecuaţii
T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.
Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică
7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE
7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE 7. NOŢIUNI GENERALE. TEOREMA DE EXISTENŢĂ ŞI UNICITATE Pri ecuaţia difereţială de ordiul îtâi îţelegem o ecuaţie de forma: F,, = () ude F este o fucţie reală
5.1. ŞIRURI DE FUNCŢII
Modulul 5 ŞIRURI ŞI SERII DE FUNCŢII Subiecte :. Şiruri de fucţii.. Serii de fucţii. 3. Serii de puteri. Evaluare :. Covergeţa puctuală şi covergeţa uiformă la şiruri şi serii de fucţii.. Teorema lui Abel.
lim = dacă se aplică teorema lui 3. Derivate de ordin superior. Aplicaţii.
5 Petru limita determiată: 2 + lim = dacă se aplică terema lui LHspital: 2 + 2 lim = lim = rezultatul este icrect. 3. Derivate de rdi superir. Aplicaţii. Fie A R mulţime care îşi cţie puctele de acumulare
Profesor Blaga Mirela-Gabriela DREAPTA
DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
1. Operaţii cu numere reale Funcţii Ecuaţii şi inecuaţii de gradul întâi Numere complexe Progresii...
Cupris 1. Operaţii cu umere reale... 1 1.1. Radicali, puteri... 1 1.1.1. Puteri... 1 1.1.. Radicali... 1 1.. Idetităţi... 1.3. Iegalităţi... 3. Fucţii... 6.1. Noţiuea de fucţii... 6.. Fucţii ijective,
TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:
TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi
CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii
Clasa a IX-a 1 x 1 a) Demonstrați inegalitatea 1, x (0, 1) x x b) Demonstrați că, dacă a 1, a,, a n (0, 1) astfel încât a 1 +a + +a n = 1, atunci: a +a 3 + +a n a1 +a 3 + +a n a1 +a + +a n 1 + + + < 1
Concursul Interjudeţean de Matematică Academician Radu Miron Vaslui, noiembrie Subiecte clasa a VII-a
Concursul Interjudeţean de Matematică Academician Radu Miron Vaslui, -3 noiembrie 0 Subiecte clasa a VII-a. Fie în exteriorul triunghiului ascuţitunghic ABC, triunghiurile dreptunghice ABP şi ACT cu ipotenuzele
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
matricelor pătratice de ordinul 2, cu elemente numere reale; a11 a12 a13, mulńimea matricelor pătratice de ordinul 3, cu elemente
LECłII DE SINTEZĂ î vederea pregătirii sesiuii iulie-august a eameului de BACALAUREAT - M petru cadidańii absolveńi ai liceelor di filiera tehologică, profil: servicii, resurse aturale şi protecńia mediului,
3. Serii de puteri. Serii Taylor. Aplicaţii.
Fucţiile f ( ) cos t = sut de clasă C pe R cu α si derivatelor satisface codiţiile: α f ' ( ) si = şi seria ' ( ), α α f R cu = b α ' coverge petru α > f este (ormal covergetă) absolut şi uiform covergetă
Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.
pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu
PENTRU CERCURILE DE ELEVI
122 Petru cercurile de elevi PENTRU CERCURILE DE ELEVI Petru N, otăm: POLINOAME CICLOTOMICE Marcel Ţea 1) U = x C x = 1} = cos 2kπ + i si 2kπ } k = 0, 1. Mulţimea U se umeşte mulţimea rădăciilor de ordi
Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
4. Ecuaţii diferenţiale de ordin superior
4.. Ecuaţii liiare 4. Ecuaţii difereţiale de ordi superior O problemã iportatã este rezolvarea ecuaţiilor difereţiale de ordi mai mare ca. Sut puţie ecuaţiile petru care se poate preciza forma aaliticã
GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii
GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile
Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
BACALAUREAT 2007 SESIUNEA IULIE M1-1
BACALAUREAT 2007 SESIUNEA IULIE M1-1 Filiera teoretică, specializarea matematică - informatică. Filiera vocaţională, profil Militar, specializarea matematică - informatică. a) Să se calculeze modulul vectorului
EXAMENE ŞI CONCURSURI
8 Examee şi Cocursuri EXAMENE ŞI CONCURSURI A IV-A EDIŢIE A CONCURSULUI FACULTĂŢII DE MATEMATICĂ ŞI INFORMATICĂ A UNIVERSITĂŢII,,OVIDIUS DIN CONSTANŢA prezetare de Laureţiu Hometcovshi ) şi Diaa Savi )
Subiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
Subiecte Clasa a VII-a
lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate
CURS III, IV. Capitolul II: Serii de numere reale. a n sau cu a n. Deci lungimea segmentului este suma lungimilor sub-segmentelor obţinute, adică
Capitolul II: Serii de umere reale Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC CURS III, IV Capitolul
Formula lui Taylor. 25 februarie 2017
Formula lui Taylor Radu Trîmbiţaş 25 februarie 217 1 Formula lui Taylor I iterval, f : I R o fucţie derivabilă de ori î puctul a I Poliomul lui Taylor de gradul, ataşat fucţiei f î puctul a: (T f)(x) =
GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. = înălţimea triunghiului echilateral h =, R =, r = R = bh lh 2 A D ++ D. abc. abc =
GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile
CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2016 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii
ADOLF HAIMOVICI, 206 Clasa a IX-a profil științe ale naturii, tehnologic, servicii. Se consideră predicatul binar p(x, y) : 4x + 3y = 206, x, y N și mulțimea A = {(x, y) N N 4x+3y = 206}. a) Determinați
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
5..8 Ecuaţia difereţială Riccati Ecuaţia difereţială de ordiul îtâi de forma: d q( ) p( ) r( ) d + + (4) r sut fucţii cotiue pe u iterval, cuoscute, iar fucţia ude q( ), p ( ) şi ( ) este ecuoscuta se
Structuri algebrice, grupuri, probleme bacalaureat 2009
Grup Fie G-evidã şi *: GxG G, (x,y) x*y, œx,y0g. Axiomele grupului: G1. (x*y)*z = x*(y*z) x,y,z G (asociativitatea); G2. e G astfel îcât x*e = e*x = x, x G (e elemet eutru); G3. x G x G astfel îcât x *x
Soluţiile problemelor pentru pregătirea concursurilor propuse în nr. 2/2013
Rezultă căb 7 +b m 5 b 0, m, N şi, de aici, cocluzia problemei. XII.145. Fie (A, +, ) iel cu 1 0, avâd u umăr impar de elemete, î care are loc implicaţia:,,dacă x xy + y = 1 + 1 + 1 + 1, atuci x + y =
1. ŞIRURI ŞI SERII DE NUMERE REALE
. ŞIRURI ŞI SERII DE NUMERE REALE. Eerciţii rezolvte Eerciţiul Stbiliţi dcă următorele şiruri sut fudmetle: ), N 5 b) + + + +, N * c) + + +, N * cos(!) d), N ( ) e), N Soluţii p p ) +p - < şi mjortul este
CAPITOLUL IV CALCULUL DIFERENŢIAL PENTRU FUNCŢII REALE DE O VARIABILA REALĂ
CAPITOLUL IV CALCULUL DIFEENŢIAL PENTU FUNCŢII EALE DE O VAIABILA EALĂ Fucţii derivabile Fucţii difereţiabile Derivata şi difereţiala sut duă ccepte fudametale ale matematicii, care reprezită siteză pe
Tema: şiruri de funcţii
Tem: şiruri de fucţii. Clculţi limit (simplă) şirului de fucţii f : [ 0,], f ( ) R Avem lim f ( 0) = ir petru 0, vem lim f ( ) Î cocluzie, dcă otăm f: [ 0, ], f ( ) =, = 0 =, 0 + + = +, tuci lim f f =..
Cursul 7. Spaţii euclidiene. Produs scalar. Procedeul de ortogonalizare Gram-Schmidt. Baze ortonormate
Lector uv dr Crsta Nartea Cursul 7 Spaţ eucldee Produs scalar Procedeul de ortogoalzare Gram-Schmdt Baze ortoormate Produs scalar Spaţ eucldee Defţ Exemple Defţa Fe E u spaţu vectoral real Se umeşte produs
Spaţii topologice. Spaţii metrice. Spaţii normate. Spaţii Hilbert
Metode de Optimizare Noţiui recapitulative de Aaliză Matematică şi Algebră Liiară Spaţii topologice. Spaţii metrice. Spaţii ormate. Spaţii Hilbert Reamitim o serie de defiiţii şi teoreme legate de spaţiile
Metode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
Curs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
sistemelor de algebrice liniarel
Uivesitatea Tehică a Moldovei Facultatea de Eergetică Catedra Electroeergetica Soluţioarea sistemelor de ecuaţii algebrice liiarel lect.uiv. Victor Gropa «Programarea si Utilizarea Calculatoarelor I» Cupris
MODELE DE TESTE GRILĂ PENTRU ADMITEREA DISCIPLINA: ALGEBRĂ (cls. a IX-a, a X-a, a XI-a)
Universitatea "Dunărea de Jos" din Galaţi MODELE DE TESTE GRILĂ PENTRU ADMITEREA 01 DISCIPLINA: ALGEBRĂ (cls. a IX-a, a X-a, a XI-a Testele sunt recomandate pentru următoarele domenii de licenţă şi facultăţi:
CONCURSUL NAŢIONAL DE MATEMATICĂ APLICATĂ "ADOLF HAIMOVICI"
aprilie 0 Filiera tehologică: profilul servicii, resurse aturale şi protecţia mediului Clasa a IX-a BAREM. Cosiderăm mulțimea A = / i ;00, j ;00 i j. a) Stabiliți dacă 88 și sut sau u elemete ale mulțimii
Programa olimpiadei de matematică clasele V VIII An şcolar 2008 / 2009
R O M  N I A MINISTERUL EDUCAłIEI, CERCETĂRII ŞI TINERETULUI DIRECłIA GENERALĂ MANAGEMENT ÎNVĂłĂMÂNT PREUNIVERSITAR CONSILIUL NAłIONAL PENTRU CURRICULUM ŞI EVALUARE ÎN ÎNVĂłĂMÂNTUL PREUNIVERITAR Programa
1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. <
Copyright c 009 NG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Tineretului al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 17 iunie
Curs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
Integrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
Asupra unei inegalităţi date la barajul OBMJ 2006
Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale
Algebră 1. Disciplină obligatorie; Anul I, Sem. 1, ore săptămânal, învăţământ de zi: 2 curs, 2 seminar, total ore semestru 56; 6 credite; examen.
Uiversitate Spiru Haret Facultatea de Matematica-Iformatica Algebră 1 Discipliă obligatorie; Aul I, Sem 1, ore săptămâal, îvăţămât de zi: curs, semiar, total ore semestru 56; 6 credite; exame I CONŢINUTUL
Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn.
86 ECUAŢII 55 Vriile letore discrete Sut vriile letore cre iu o ifiitte umărilă de vlori Digrm uei vriile letore discrete re form f, p p p ude p = = Distriuţi Poisso Are digrm 0 e e e e!!! Se costtă că
VARIANTE PENTRU BACALAUREAT, M1-1, 2007
VARIANTE PENTRU BACALAUREAT, M-, 27 VARIANTA SUBIECTUL I. a) Să se determine ecuația dreptei care trece prin punctul A(2; 5;3) și este paralelă cu dreapta x = y 2 4 6 = z +3 9. b) Să se determine valoarea
CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1998 Clasa a V-a
CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 998 Clasa a V-a. La gara Timișoara se eliberează trei bilete de tren: unul pentru Arad, altul pentru Deva și al treilea pentru Reșița. Cel pentru Deva
Functii Breviar teoretic 8 ianuarie ianuarie 2011
Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)
2.1. DEFINIŢIE. EXEMPLE
Modulul SPAŢII METRICE Subiecte :. Spaţii metrice. Defiiţii, exemple.. Mulţimi deschise, mulţimi îchise î spaţii metrice. Mulţimi compacte. 3. Spaţii metrice complete. Pricipiul cotracţiei. Evaluare:.Răspusuri
a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
CERCUL. Prof. V Corcalciuc Scoala nr. 146 I.G. Duca Bucuresti ( Lectie facuta dupa manualul de clasa a 7-a Prof.Radu)
ERUL Prof. V orcalciuc Scoala r. 46 I.G. Duca ucuresti ( Lectie facuta dupa maualul de clasa a 7-a Prof.Radu) Defiitie:ercul cu cetrul i si de raza r este multimea tuturor puctelor di pla situate la distata
CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2017 Clasa a V-a
CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2017 Clasa a V-a 1. Fiind dat un număr natural nenul n, vom nota prin n! produsul 1 2 3... n (de exemplu, 4! = 1 2 3 4). Determinați numerele naturale
Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n.
Semir 3 Serii Probleme rezolvte Problem 3 Să se studieze tur seriei Soluţie 3 Avem ieglitte = ) u = ) ) = v, Seri = v este covergetă fiid o serie geometrică cu rţi q = < Pe bz criteriului de comprţie cu
Curs 2 Şiruri de numere reale
Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un
CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ. Ediţia a X-a, MAI 2010 CLASA A IV-A
Ediţia a X-a, 4 5 MAI 00 CLASA A IV-A I. Suma a două numere naturale este 75. Dacă adunăm de patru ori primul număr cu de trei ori al doilea număr obţinem 40. Aflaţi numărul cel mai mare. Eugenia Miron
Progresii aritmetice si geometrice. Progresia aritmetica.
Progresii aritmetice si geometrice Progresia aritmetica. Definitia 1. Sirul numeric (a n ) n N se numeste progresie aritmetica, daca exista un numar real d, numit ratia progresia, astfel incat a n+1 a
1. Completati caseta, astfel incat propozitia obtinuta sa fie adevarata lg 4 =.
Copyright c ONG TCV Scoala Virtuala a Tanarului Matematician Ministerul Educatiei al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 4 iunie Profilul real Timp
CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2018 Clasa a V-a. 1. Scriem numerele naturale nenule consecutive sub forma:
CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2018 Clasa a V-a 1. Scriem numerele naturale nenule consecutive sub forma: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,... (pe fiecare
Statisticǎ - curs 2. 1 Parametrii şi statistici ai tendinţei centrale 2. 2 Parametrii şi statistici ai dispersiei 5
Statisticǎ - curs Cupris Parametrii şi statistici ai tediţei cetrale Parametrii şi statistici ai dispersiei 5 3 Parametrii şi statistici factoriali ai variaţei 8 4 Parametrii şi statistici ale poziţiei