2. CONVOLUTIA. 2.1 Suma de convolutie. Raspunsul sistemelor discrete liniare si invariante in timp la un semnal de intrare oarecare.
|
|
- Δορκάς Βιτάλης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 . CONVOLUIA. Sum de covoluie. Rspusul sisemelor discree liire si ivrie i imp l u seml de irre orecre. [ ] δ [ ] [ ] δ[ ] x x δ[ ] [ ] x x [ ] δ[ ] x x [ ] δ[ ] [ ] δ[ ] [ ] [ ] δ[ ] x x
2 Rspusul sisemelor discree liire si ivrie i imp l u seml de irre orecre [ ] Sd{ x [ ]} Sd x [ ] δ[ ] x [ ] Sd { [ ] } [ ] { δ[ ]} δ S d [ ] [ ] [ ] x Sum de covoluie [ ] [ ] [ ] x [ ] [ ] [ ] [ ] x x
3 ( x )[ ] x[ ] [ ] Covolui dou semle de dure iie N si N ese covere si de dur N + N -. 3
4 .. Codii de cuzlie uui sisem discre [ ] [ ] [ ] [ ] < σ Z [ ] [ ] [ ] [ ] [ ] x x [ ] [ ] x Dc semlul de irre c si sisemul su cuzle uci si semlul de iesire ese cuzl... Codii de BIBO sbilie sisemelor discree liire si ivrie i imp Dc semlul de irre ese mrii uci si rspusul rebuie s ie mrii. x [ ] M Z [ ] x [ ] [ ] x [ ] [ ] M [ ] [ ] < [ ] < [ ] l codiie suicie - 4
5 Necesie codiiei [ ] ( [ ]) M x s x s s [ ] [ ] [ ] ( [ ]) [ ] ( ) [ ] [ ] [ ] [ ] [ ] < [ ] < [ ] l codiie ecesr l- [ ] K.i. < K [ ] σ[ ] U exemplu [ ] x [ ] x [ ] - cuzl [ ] x [ ] - cumulor x [ ] σ[ ] [ ] + Acumulorul ese isbil. 5
6 ..3 Cev propriei le covoluiei si semiici lor δ[] ese eleme euru peru covoluie. [] rspusul sisemului l impulsul uir. Sisemul peru cre []δ[] ese uul de ideie. Sisemul peru cre []δ[- ] ese uul de irziere. x [] δ[ ] x[] δ[ ]...x + x [ ] δ[ ] + x[ ] δ[ ] [ + ] δ[ ] +... x[ ] + 6
7 Asociivie covoluiei. Coecre i cscd (serie) sisemelor liire si ivrie i imp discre [] ( x[] [] ) [ ] x[ ] ( [ ] [ ] ) [] [] [] e Pri coecre i cscd siseme sbile se obie o u sisem sbil. [] l [ ] l ( )[ ] l Sum de covoluie ese comuiv. [] [] [ ] [ ] [ ] e L coecre i cscd u coez ordie. 7
8 Sisemul ivers Sisemul cu rspusul l impuls cu rspusul l impuls [] [] [] δ[] [ ] dc pri coecre lor i cscd se obie u sisem de ideie. ese iversul sisemului Disribuivie covoluiei de dure. Coecre i derivie (prlel) sisemelor liire si ivrie i imp discre [] x[] [] x[] [ ] [] x[] [] x[] [ ] [] + [] x[] ( [ ] + [ ] ) [] x[] [ ] e [] [] + [] e 8
9 9. Rspusul uui sisem discre liir si ivri i imp l rep uir rspusul idicil [] [] [] [] [] [] [] [] [] [ ] [] [] [] < σ σ s s s s s x peru ese cuzl Dc sisemul.3 Siseme discree cu rspus ii l impuls (FIR) si siseme discree cu rspus iii l impuls (IIR) [ ] [ ] [] [ ] [ ] [ ] [ ] [] i res ; si I ipoez c ; M b x x b... x b M N N M FIR (Fiie Impulse Respose Ssems).
10 Siseme IIR (Iiie Impulse Respose Ssems) [ ].5 [ ] [ ] [ ] ; [ ].5 [ ] [ ] [ ] [ ] [ ] [].5 [ ] [] [].5 [] [] [ ].5 [ ] [ ] [ ].5 [ ] [ ] [ 3].5 [ ] [ 3] 3 [ 3].5 [ 3] [ 3] [ ].5 σ[ ] x x x x x.4 Implemere sisemelor discree liire si ivrie i imp crcerize pri ecuii cu dieree iie liire si cu coeiciei cosi [] + [ ] b x[ ] + b x[ ]
11 .4. Implemere direc I [ ] [ ] [ ] [ ] [] [] [ ] [] [] [ ] ( ) z x b x b z x b x b [] [ ] [ ] [ ] + + x b x b
12 N M [ ] b x[ ] ; FIR orm rsversl
13 .4. Implemere direc II.5 Produsul de covoluie. Rspusul sisemelor coiue liire si ivrie i imp l u seml de irre orecre (rre eurisic) dirδ () Δ < < Δ i res xˆ () Δx( Δ) dirδ ( Δ) ; xˆ () x() 3
14 dirδ U sir reprezeiv peru disribui Dirc Δ < < Δ () lim dirδ () i res b < < b d Δ < b < su < < b lim dirδ Δ () δ() ŷ xˆ () Δx( Δ) dirδ ( Δ) ; ( ) S x( Δ) dir ( Δ) Δ x( Δ) S{ dir ( Δ) } Δ lim Δ τ lim Δ S - operor coiuu Δ ŷ Δ lim Δ dτ () () lim S {} x S{ lim x} Δ Δ 4
15 S () lim x( Δ) S{ dirδ ( Δ) } Δ x( τ) S{ δ( τ) } { δ( τ) } ( ) () x( τ) τ () () S{ δ() } dτ () x( τ)( τ) dτ x() () Δ Δ x lim xˆ Δ Δ τ τ rspusul Dc sisemul ese ivri i imp () x() x()( τ δ τ) dτ () x() δ() x()( τ δ τ)τ d τ l impuls l sisemului dτ () S{ δ( τ) } ( τ).5. Produsul de covoluie ire ucii () () loc Δ L ( )() ()( τ τ) dτ ()( τ τ) Δ ( )( ) ( )( ) Operi de covoluie ese comuiv.p.. dτ 5
16 . Dc Codiii de covere covoluiei L ; i) - ii) L ( )( ) d ( u) du ( v) iii) Norm i L se clculez cu ormul : : R () d < C uci dv ( )( ) exis.p.. si : ( )( ). Dc ; : uci exis ese mrii si coiu vd propriee de disribuivie. ( )( ) 3. Dc L si L; : R C uci exis si ese di L. L R C 4. Dc L si ese o ( )( ) ucie mrii pe R < M; : R C uci exis ese mrii si coiu pe R. 6
17 5. Dc loc : dr u re suporul compc L R C I ( )( ) (de exemplu ) uci exis si ese di Lloc dr u re i eerl suporul compc. Numi dc mbele ucii u suporul compc covolui re supor compc. 6. Dc loc : [ ) uci ( ) ( )( ) L A R A exis si ese di Lloc.p.. Suporul covoluiei ese iclus i A supp A. Exemple R R () L + i) : deorece du d d < L u + u () () - L dτ τ τ dτ τ τ+ ( )( ) ( ) ( ) ( ) Covolui exis.p.. dr u peru. 7
18 8 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )( ) ( ) ( ) ( )( ). ; ; ; ;. cu Se deplsez Se cosruiese si Fie ii) + > + + < < d d d τ τ τ τ τ τ τ τ τ τ σ σ σ σ Suporul covoluiei ese + sum suporurilor celor dou semle. ( )() ( )() () () () ( )( ) ( ) ( ) ( ); ; ; L σ + σ σ σ + < < > iii)
19 9 () () () ( ) ( )( ). l L ; σ σ + < < σ σ σ + + supor iii. re ; iv) ( )( ) ( ) ( ) (). d σ < τ τ τ σ σ σ σ v) ( ) ( ) ( ) () () () () () τ τ τ τ δ σ σ δ d x d x Rspusul l impuls l uui ieror ese σ().
20 Asociivie covoluiei Covolui ese sociiv : ( () () ) () () ( () () ) dc : ) si su di L ; ) si su di L 3) si su di L loc loc icis iclus i [ ). si dou dire ele u supor compc; si oe rei u drep supor o mulime.5. Produsul de covoluie ire o disribuie si o ucie. Covolui c operie de reulrizre uei disribuii Pri deiiie covolui disribuiiei cu uci es ϕ ese uci ψ : ψ () ( )() ( τ) ϕ( τ) ( + Δ) ψ( ) ϕ () ( + Δ τ) ϕ( τ) τ ψ Δ Δ Pri recere l limi cd Δ se obie : ψ' () ( τ) ϕ' ( τ). ( δ ϕ)( ) δ( τ) ϕ( τ) ϕ();
21 Eecul de reulrizre l disribuiei (soci uei ucii discoiue) pri covoluie. eorem de reprezere sisemelor coiue liire si ivrie i imp i) Peru disribui i imp S exis iodeu o disribuie uic S {} ϕ ϕ oricre r i uci es ϕ. ix plici ϕ operor liir coiuu si ivri i imp. ϕ ese u ii) Reciproc peru orice operor liir coiuu si ivri sel ic
22 .5.3 Covolui disribuiilor Produsul direc l disribuiilor () ( τ) ϕ( τ) () ( τ) ϕ( τ) ddτ () ( τ)( ϕ τ) () τ ()( ϕ τ) Se deiese produsul direc l disribuiilor disribui : () ( τ) ϕ( τ) () ( τ) ϕ( τ) () τ () ϕ( τ) Exemplu δ () δ() τ ϕ( τ) δ() δ() τ ϕ( τ) δ() ϕ( ) ϕ( ) δ( τ) δ( ) δ( τ) ( τ) ϕ( τ) ϕ( ) Se mi oez δ d dτ. si si se oez dτ d ϕ Suporul Covolui disribuiilor ϕ ϕ( u + v) ϕ uciei ϕ( u + v) u ese compc.
23 K reiue di pl compc; α α ( uv) - sir de ucii ( uv) > N( K ) covolui disribuiilor si se deiese : ϕ lim cu propriee c ( u) ( v) α ( uv) ϕ( u + v) ϕ Exemple i) δ ϕ lim lim lim ( u) ( v) α ( uv) ϕ( u + v) ( u) δ( v) α ( uv) ϕ( u + v) ( u) α ( ) ϕ( u) ϕ δ δ ii) Deriv covoluiei disribuiei ( ) ' ϕ ϕ' () ( u) ( v) ϕ' ( u + v) ( u) ( v) ϕv' ( u + v) ( u) v' ( v) ϕ( u + v) ϕ( u + v) ' ϕ cu oi ϕ ' ( u + v) v v 3
24 4 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ' ' ' ' ' ' v u v u ' ' v u v u v u ' v u ' u u u δ ϕ + ϕ + ϕ + ϕ ϕ Pri iducie se poe demosr c : ( ) ( ) ( ) ( ) () ( ) ( ) ( ) ( ) () ( ) ( ) ( ) ( ) ( ). R priculre Czuri rsli i imp iii) δ δ δ δ δ
25 iv) Asociivie covoluiei disribuiilor δ ' σ ( ) ( δ' ) σ ( ' δ) σ σ δσ δσ ( ) ( ' ) ( ') δδ ( ) δ ( ) ( ) ; I eerl covolui disribuiilor u ese sociiv. Reul de sociivie peru rei cori se poe plic umi dc: ) cel pui doi cori u supor compc ) oi rei corii u suporul de orm [ ). Eecul de reulrizre l covoluiei disribuiilor eorem. Peru orice disribuie exis u sir {φ } de ucii es sel ic φ peru. Aces sir poe i obiu pri covolui disribuiei cu u sir de ucii es {ψ }: ϕ ψ Coorm proprieii de reulrizre operiei de covoluie elemeele sirului {φ } su reulrize. Deci disribui reprezi limi slb sirului {φ } de reulrize le ei (ψ δ cd δ). 5
26 eorem de reprezere eorem.3. Orice disribuie ese limi uei combiii liire ( ) de disribuii Dirc: δ. m Aces eorem s l bz modelrii microscopice semlelor elecrice. Cu juorul cesei eoreme poe i eerliz eorem de modelre sisemelor liire si ivrie i imp pri operori de covoluie l czul disribuiilor. Modelre sisemelor liire si ivrie i imp pri operori de covoluie eorem.4. U operor S ese liir coiuu pri siruri si ivri l rslii dc si umi dc ese de ip covoluie. As isem c exis disribui sel ic S Aces disribuie ese uic si el cu S{ δ}. 6
27 Rspusul idicil l uui sisem liir si ivri i imp { } ( )( ) ( ) σ ( ) σ. ' ( σ )' σ ' δ () () () () () () () s S s { } ( ()) ( ) ( )() () x σ S σ σ " σ " δ. ;.5.4 Codii c u u sisem coiuu liir si ivri i imp s ie cuzl () < ( ) ( ) σ( ) () () x() x( τ)( τ) dτ x( τ)( τ) dτ semlul de irre ese cuzl x() x() σ() Dc si se obie : () () x() x( τ)( τ) x()( τ τ) dτ x( τ)() τ () () σ() dτ dτ; 7
28 .5.5 Codii de BIBO sbilie sisemelor coiue liire si ivrie i imp x () M () x( τ) ( τ) M () τ dτ () M () O codiie suicie ese dτ () L. Necesie codiiei x [ ] () s[ ( ) ] s ( ) [ ] ( ) ( τ) x( τ) dτ ( τ) s ( τ) () τ s{ () τ } dτ ( τ) dτ () Codii () L ese deci ecesr. ; dτ 8
29 U corexemplu Ierorul u ese sbil. () σ() L ; () x( τ) Dc semlul de irre ese cuzl: () x( τ) dτ; x() σ() ese mrii () dτ seml emrii. x() ese de dur limi uci () ese mrii. Semlul Dc dτ.5.6 Semiici prcic proprieilor produsului de covoluie x( ) ( ) x( ) ; ( ) ( ) x( ) () ( () x() ); () () ( () x() ) ( () () ) x() e () x() () () () () () e l impuls () x(). ( ) () cre re propriee () () δ() Iversul sisemului cu rspusul l impuls ese sisemul cu rspusul. Sisemul obiu pri coecre i cscd sisemelor direc si ivers ese u sisem de ideie 9
30 Coecre i derivie sisemelor liire si ivrie i imp () () + ( ) ( ) x( ) + ( ) x( ) ( () + () ) x() e () x() ; () () + () e s.5.7 Rspusul uui sisem coiuu liir si ivri i imp l rep uie. Rspusul idicil () () σ() ( τ) () ( () σ() )' () δ() (). () (). s s' s' dτ. Rspusul idicil l uui () () σ() ( τ)τ d s () () σ() ( τ) dτ. () ( () σ() )' () σ' () () δ() () () (). s' s' Dc sisemul ese cuzl uci: s () () σ() ( τ)τ d sisem cuzl se clculez cu reli :. 3
31 .5.8 Implemere sisemelor coiue liire si ivrie i imp crcerize de ecuii diereile liire cu coeiciei cosi Form direc II de implemere olosid derivore. N d d ( ) N d x( ) b d N Form direc II de implemere olosid ierore ( )() () N ( ) d x( ) d b N d d... N ()() () () ( ) σ τ dτ ( )() () () () ( ) ( )() ( )() () ( ) ( )() () ()() () σ() σ... τ dτ dτ... dτ dτ x x ; x x... τ σ σ τ dτ dτ τ τ τ Ierd de N ori ecui diereil se obie: N ( )() ( )(). N N bx N 3
32 i) Exemple N d d N N ( ) d x( ) b ( )() ( )() N N N LC RC x ; d bx ( )() + ()() + ( )() ( )() LC RC b. ii) () x() + x( ) x( N ) N () x() δ( ) x() () N () δ( ). Srucur rsversl. N 3
4.7. Stabilitatea sistemelor liniare cu o intrare şi o ieşire
4.7. Sbilie sisemelor liire cu o irre şi o ieşire Se spue că u sisem fizic relizbil ese sbil fţă de o siuţie de echilibru sţior, dcă sub cţiue uei perurbţii eeriore (impuls Dirc) îşi părăseşe sre de echilibru
TEORIA SISTEMELOR AUTOMATE. Prof. dr. ing. Valer DOLGA,
TEORIA SISTEMELOR AUTOMATE Prof. dr. ig. Vler DOLGA, Curi_7_ Aliz i ruul iemelor liire i domeiul im II. Sieme de ordiul. Ruul iemului l emle drd imul uir re uir rm 3. Noiui rivid clie iemului de ordiul
Transformata z (TZ) TZ este echivalenta Transformatei Laplace (TL) in domeniul sistemelor discrete. In domeniul sistemelor continui: Sistem continuu
Prelucrre umeric semlelor Trsformt Trsformt este echivlet Trsformtei Lplce TL i domeiul sistemelor discrete. I domeiul sistemelor cotiui: xt s Sistem cotiuu yt Ys ht; Hs I domeiul sistemelor discrete:
REZUMAT CURS 3. i=1. Teorema 2.2. Daca f este (R)-integrabila pe [a, b] atunci f este marginita
REZUMAT CURS 3. Clse de uctii itegrbile Teorem.. Dc :, b] R este cotiu tuci este itegrbil pe, b]. Teorem.2. Dc :, b] R este mooto tuci este itegrbil pe, b]. 2. Sume Riem. Criteriul de itegrbilitte Riem
Tema: şiruri de funcţii
Tem: şiruri de fucţii. Clculţi limit (simplă) şirului de fucţii f : [ 0,], f ( ) R Avem lim f ( 0) = ir petru 0, vem lim f ( ) Î cocluzie, dcă otăm f: [ 0, ], f ( ) =, = 0 =, 0 + + = +, tuci lim f f =..
cele mai ok referate
Permur www.refereo.ro cele m o refere.noue de permure. Fe A o mulme f de elemee, dc A{,, 3,, }. O fuce becv σ:aàa e umee permure ubue de grdul. P:Numrul uuror permurlor de ord ee egl cu!..produul compuere
Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n.
Semir 3 Serii Probleme rezolvte Problem 3 Să se studieze tur seriei Soluţie 3 Avem ieglitte = ) u = ) ) = v, Seri = v este covergetă fiid o serie geometrică cu rţi q = < Pe bz criteriului de comprţie cu
Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn.
86 ECUAŢII 55 Vriile letore discrete Sut vriile letore cre iu o ifiitte umărilă de vlori Digrm uei vriile letore discrete re form f, p p p ude p = = Distriuţi Poisso Are digrm 0 e e e e!!! Se costtă că
3.4 Integrarea funcţiilor trigonometrice. t t. 2sin cos 2tg. sin + cos 1+ cos sin 1 tg t cos + sin 1+ x 1
3.4 Iegrre fucţiilor rigoomerice ) R( si,cos ) d Susiuţi recomdă ese: uei fucţii rţiole. g =, (, ) şi iegrl dă se reduce l iegrre si cos si cos g si + cos + g = = = + cos si g cos + si + g = = = + = rcg
Elementul de întârziere de ordinul doi, T 2
5..04 u Fig..83.5..3. Elemeul de îârziere de ordiul doi, Elemeul de îârziere de ordiul doi coţie douǎ elemee cumulore de eergie su subsţǎ. Peru elemeul de ordi doi ecuţi difereţilǎ se oe scrie î mi mule
3. CONVOLUŢIA. Sinteza semnalului de intrare Produsul intre un impuls Dirac intarziat cu k si semnalul x[n] extrage valoarea esantionului x[k]:
3. COVOLUŢIA Inroducem operaia de convoluţie in imp discre (suma de convoluie) si in imp coninuu (produsul de convoluie). Calculul răspunsului sisemelor liniare şi invariane in imp, la un semnal de inrare
BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)
BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul
1. ŞIRURI ŞI SERII DE NUMERE REALE
. ŞIRURI ŞI SERII DE NUMERE REALE. Eerciţii rezolvte Eerciţiul Stbiliţi dcă următorele şiruri sut fudmetle: ), N 5 b) + + + +, N * c) + + +, N * cos(!) d), N ( ) e), N Soluţii p p ) +p - < şi mjortul este
6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă
Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi
OperaŃii cu numere naturale
MulŃime umereleor turle www.webmteifo.com Petru scrie u umr orecre trebuie s combim itre ele uele ditre cele 0 simboluri: 0,,,, 4,, 6, 7, 8, 9.Aceste simboluri se umesc cifre. Ele sut de origie rb. Ν =
Integrale cu parametru
1 Integrle proprii cu prmetru 2 3 Integrle proprii cu prmetru Definiţi 1.1 Dcă f : [, b ] E R, E R este o funcţie cu propriette că pentru orice y E, funcţi de vribilă x x f (x, y) este integrbilă pe intervlul
4. Serii de numere reale
I. (,) lim x lim + II. x şi lim x III. > x ( + ) ( + ) şi cum lim ( >) ; lim x lim lim lim x + ; (,) (, ). 4. Serii de umere rele Coceptul de serie umerică este o geerlizre turlă oţiuii de sum fiită de
1. Functions and Operators (1.1) (1.2) (1.3) (1.4) (1.5) (1.6) 2. Trigonometric Identities (2.1) (2.2) (2.3) (2.4) (2.5) (2.6) (2.7) (2.8) (2.
ECE 3 Mh le Sprig, 997. Fucio d Operor, (. ic( i( π (. ( β,, π (.3 Im, Re (.4 δ(, ; δ( d, < (.5 u( 5., (.6 rec u( + 5. u( 5., > rc( β /, π + rc( β /,
Convergenţa uniformă a şirurilor de funcţii
Convergenţ uniformă şirurilor de funcţii Considerăm un inervl închis orecre [, b ] R şi noăm cu F [,b ] mulţime uuror funcţiilor definie pe [, b ] cu vlori în R, F [,b ] = {x : [, b ] R ; x funcţie orecre}.
Sisteme de ordinul I şi II
Siseme de ordiul I şi II. Scopul lucrării Se sudiază comporarea î domeiul imp şi frecveţă a sisemelor de ordiul II. Siseme de ordiul I. Comporarea î domeiul imp a sisemelor de ordiul I U sisem de ordiul
SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a
Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii
a) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A.
Bac Variata Proil: mate-izica, iormatica, metrologie Subiectul I (3 p) Se cosidera matricele: X =, Y = ( ) si A= a) (3p) Sa se calculeze XY A b) (4p) Sa se calculeze determiatul si ragul matricei A c)
(2), ,. 1).
178/1 L I ( ) ( ) 2019/1111 25 2019,, ( ), 81 3,,, ( 1 ), ( 2 ),, : (1) 15 2014 ( ). 2201/2003. ( 3 ) ( ). 2201/2003,..,,. (2),..,,, 25 1980, («1980»),.,,. ( 1 ) 18 2018 ( C 458 19.12.2018,. 499) 14 2019
Seminariile 1 2 Capitolul I. Integrale improprii
Cpitolul I: Integrle improprii Lect. dr. Lucin Mticiuc Fcultte de Mtemtică Clcul integrl şi Aplicţii, Semestrul I Lector dr. Lucin MATICIUC Seminriile Cpitolul I. Integrle improprii. Să se studieze ntur
7. CONVOLUŢIA SEMNALELOR ANALOGICE
7. CONVOLUŢIA SEMNALELOR ANALOGICE S numş funcţi (prous) convoluţi în imp smnllor şi ingrl: f ( ) Noţi conscră prousului convoluţi în imp s urmăor: no Convoluţi unui smnl cu (7.) (7.) δ su u conuc l rzul
V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
Seria Fourier. Analiza spectrala a semnalelor periodice
Sri Fourir Aliz spcrl smllor prioic Rspusul sismlor coiu liir si ivri i imp l poil compl moul uir Siz uui sml pri covolui cu impulsul uir scompur Dscompur i bz fucii rigoomric Lor Eulr Dil Broulli Josph-Louis
Γενικό ποσοστό συμμετοχής στην αγορά εργασίας πληθυσμού χρονών - σύνολο
πληθυσμού 15-64 χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το γενικό ποσοστό συμμετοχής στην αγορά εργασίας πληθυσμού 15-64 χρονών υπολογίζεται με τη διαίρεση του αριθμού του οικονομικά ενεργού
Γενικό ποσοστό απασχόλησης ισοδύναμου πλήρως απασχολούμενου πληθυσμού - σύνολο
απασχολούμενου πληθυσμού - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το γενικό ποσοστό απασχόλησης ισοδύναμου πλήρως απασχολούμενου πληθυσμού υπολογίζεται με τη διαίρεση του αριθμού του ισοδύναμου πλήρως
pi r p p c i i c i (0) i c i (x) i c i, av i c i i C i i C i P i C i W i d d D i i D i p i D in D out e e F F = I c j i i J V k i k b k b = K ic i K id i n P m P Pe i i r si i r p R R = R T V W i x x X
Curs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
Γενικός ρυθμός μεταβολής οικονομικά ενεργού πληθυσμού χρονών - σύνολο
15-64 χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Ο γενικός ρυθμός μεταβολής οικονομικά ενεργού πληθυσμού 15-64 χρονών υπολογίζεται με τη διαίρεση της ετήσιας αύξησης του οικονομικά ενεργού πληθυσμού
Ποσοστό απασχόλησης στον τριτογενή τομέα του πληθυσμού χρονών - σύνολο
Ποσοστό απασχόλησης στον τριτογενή τομέα του πληθυσμού 15-64 χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το ποσοστό απασχόλησης στον τριτογενή τομέα του πληθυσμού 15-64 χρονών υπολογίζεται με
Ποσοστό μακροχρόνιας ανεργίας (διάρκεια 12+ μήνες) οικονομικά ενεργού πληθυσμού 15+ χρονών - σύνολο
οικονομικά ενεργού πληθυσμού 15+ χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το ποσοστό μακροχρόνιας ανεργίας (διάρκεια 12+ μήνες) οικονομικά ενεργού πληθυσμού 15+ χρονών υπολογίζεται με τη διαίρεση
T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ
Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α g r i l l b a r t a s o s Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 1 : 0 π μ Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ T ortiyas Σ ο υ
υ η µ η. υ η µ υµ η υ υ υ µ υ η µ η υ. µ υ υ υ η ω µ ω µ υ η ω υ µ υ ω ω ω η ω ω., ω ω,, % #" ".µ, & ". 0, # #'
- 1 - µ µ 1 µ µ" # 2 µ %& µ "' (µ 2 µ %& µ "' ( &% ) 3 µ %µ,, υ η µ η. υµ υ υµ ηµ υµ υ υ η µ υµ η υ υ υ µ υ η µ η υ. µ υ υ υ η ω µ ω µ υ η ω υ ω η υµ ω η υ., µ υµ µ υ ω ω ω η ω ω., ω ω ω, µω µ η µ η η
a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
METODE AVANSATE DE MASURARE COMANDA SI AUTOMATIZARE
Elea Chirilă METODE AVANSATE DE MASURARE COMANDA SI AUTOMATIZARE NOTE DE CURS . NOTIUNI DE TEORIA AUTOMATIZARII.. Elemee ip ale sisemelor de reglare auomaa Relaţiile maemaice care exprimă feomeele fizice
Μερίδιο εργοδοτουμένων με μερική ή / και προσωρινή απασχόληση στον εργοδοτούμενο πληθυσμό 15+ χρονών - σύνολο
Μερίδιο εργοδοτουμένων με μερική ή / και προσωρινή απασχόληση στον εργοδοτούμενο πληθυσμό 15+ χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το μερίδιο εργοδοτουμένων με μερική ή/και προσωρινή απασχόληση
MULTIMEA NUMERELOR REALE
www.webmteinfo.com cu noi totul pre mi usor MULTIMEA NUMERELOR REALE office@ webmteinfo.com 1.1 Rdcin ptrt unui numr nturl ptrt perfect Ptrtul unui numr rtionl este totdeun pozitiv su zero (dic nenegtiv).
Συμβούλιο της Ευρωπαϊκής Ένωσης Βρυξέλλες, 7 Μαρτίου 2017 (OR. en)
Συμβούλιο της Ευρωπαϊκής Ένωσης Βρυξέλλες, 7 Μαρτίου 2017 (OR. en) 7057/17 ADD 1 TRANS 97 ΔΙΑΒΙΒΑΣΤΙΚΟ ΣΗΜΕΙΩΜΑ Αποστολέας: Ημερομηνία Παραλαβής: Αποδέκτης: Για τον Γενικό Γραμματέα της Ευρωπαϊκής Επιτροπής,
Lucrarea Nr. 6 Reacţia negativă paralel-paralel
Lucrre Nr. 6 ecţ netă prlel-prlel Crcutul electrc pentru studul AN pp: Schem de semnl mc AN pp: Fur. Schem electrcă pentru studul AN pp Fur 2. Schem de semnl mc crcutulu pentru studul AN pp Intern cudrpl:
π } R 4. ctg:r\{kπ} R FuncŃii trigonometrice 1. DefiniŃii în triunghiul dreptunghic 2. ProprietãŃile funcńiilor trigonometrice 1.
Trigonometrie FuncŃii trigonometrice. DefiniŃii în triunghiul dreptunghic b c b sin B, cos B, tgb c C c ctgb, sin B cosc, tgb ctgc b b. ProprietãŃile funcńiilor trigonometrice. sin:r [-,] A c B sin(-x)
Συστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές
Συστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές x h γραµµική εξίσωση διαφορών µε σταθερούς συντελεστές της µορφής x µπορεί να θεωρηθεί ως ένας αλγόριθµος υπολογισµού
Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice
Educţi Mtemtică Vol. 1, Nr. (5), 59 68 Asupr unei metode pentru clculul unor integrle definite din functii trigonometrice Ion Alemn Astrct In this pper is presented one method of clcultion for the trigonometricl
ANEXA., unde a ij K, i = 1, m, j = 1, n,
ANEXA ANEXĂ MATRICE ŞI DETERMINANŢI Fie K u corp şi m N* = N \ {} Tbloul dreptughiulr A = ude ij K i = m j = m m m se umeşte mtrice de tip (m ) cu elemete di corpul K Mulţime mtricelor cu m liii şi coloe
Συστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές
Συστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές x h γραµµική εξίσωση διαφορών µε σταθερούς συντελεστές της µορφής x µπορεί να θεωρηθεί ως ένας αλγόριθµος υπολογισµού
Συστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές
Συστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές x h γραµµική εξίσωση διαφορών µε σταθερούς συντελεστές της µορφής x µπορεί να θεωρηθεί ως ένας αλγόριθµος υπολογισµού
ΖΕΡΔΑΛΗΣ ΣΩΤΗΡΙΟΣ ΤΟ ΟΥΤΙ ΣΤΗ ΒΕΡΟΙΑ (1922-ΣΗΜΕΡΑ) ΘΕΣΣΑΛΟΝΙΚΗ 2005 1
(1922- ) 2005 1 2 .1.2 1.1.2-3 1.2.3-4 1.3.4-5 1.4.5-6 1.5.6-10.11 2.1 2.2 2.3 2.4.11-12.12-13.13.14 2.5 (CD).15-20.21.22 3 4 20.,,.,,.,.,,.,.. 1922., (= )., (25/10/2004), (16/5/2005), (26/1/2005) (7/2/2005),,,,.,..
Sisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
SEMINAR TRANSFORMAREA LAPLACE. 1. Probleme. ω2 s s 2, Re s > 0; (4) sin ωt σ(t) ω. (s λ) 2, Re s > Re λ. (6)
SEMINAR TRANSFORMAREA LAPLACE. Probleme. Foloind proprieaea de liniariae, ă e demonreze urmăoarele: in σ(, Re > ; ( + penru orice C. co σ( h σ( ch σ(, Re > ; ( +, Re > ; (3, Re > ; (4. Să e arae că penru
ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:
III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.
III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar
SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0
SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................
Curs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
Integrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
COLEGIUL NAȚIONAL MIHAI VITEAZUL SF. GHEORGHE, COVASNA SĂ ȘTII MAI MULTE, SĂ FII MAI BUN LA MATEMATICĂ
COLEGIUL NAȚIONAL MIHAI VITEAZUL SF. GHEORGHE, COVASNA SĂ ȘTII MAI MULTE, SĂ FII MAI BUN LA MATEMATICĂ LUCRARE CONCEPUTĂ ȘI REALIZATĂ DE COLECTIVUL CLASEI a XI-a A, PROFIL REAL, SPECIALIZAREA MATEMATICĂ-INFORMATICĂ.
Cuprins. Prefaţă Metoda eliminării complete (Gauss Jordan) Spaţii vectoriale Noţiunea de spaţiu vectorial...
Cuprs Preţă Meod elmăr complee Guss Jord Spţ vecorle Noţue de spţu vecorl Depedeţ ş depedeţ lră ssemelor de vecor 8 Ssem de geeror Bă uu spţu vecorl Coordoele uu vecor îr-o bă dă Subspţul vecorl geer de
MECANICĂ*N* NC. CINEMATICĂ NC. CINEMATICĂ 1
MEANIĂ*N* N. INEMATIĂ N. INEMATIĂ MEANIĂ*N* N. INEMATIĂ UPRIN Inroducere... piolul N.0. inemic mișcării bsolue puncului meril... 5 N.0.. Triecori, iez și ccelerți puncului... 5 N.0.. udiul mișcării puncului
I S L A M I N O M I C J U R N A L J u r n a l E k o n o m i d a n P e r b a n k a n S y a r i a h
A n a l i s a M a n a j e m e n B P I H d i B a n k S y a r i a h I S S N : 2 0 8 7-9 2 0 2 I S L A M I N O M I C P e n e r b i t S T E S I S L A M I C V I L L A G E P e n a n g g u n g J a w a b H. M
Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare
Miisterul Educaţiei Națioale Cetrul Naţioal de Evaluare şi Eamiare Eameul de bacalaureat aţioal 08 Proba E c) Matematică M_mate-ifo Clasa a XI-a Toate subiectele sut obligatorii Se acordă 0 pucte di oficiu
Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1
Calea 13 Septembrie, r 09, Sector 5, 0507, București Tel: +40 (0)1 317 36 50 Fax: +40 (0)1 317 36 54 Olimpiada Naţioală de Matematică Etapa locală -00016 Clasa a IX-a M 1 Fie 1 abc,,, 6 şi ab c 1 Să se
!"###$ "%&' ()() ($"& *)!""+"$"& #)*!"%",""*) # "*) #&-*&*$-# *&(&."# *)/0.1 *!(-%"$2 -*&*$-#%- *&&%"#"-!*&#* $ # "3#*,$&-*&*$-#
!"###$ "%&' ()() ($"& *)!""+"$"& #)*!"%",""*) # "*) #&-*&*$-# *&(&."# *)/0.1 *!(-%"$2 -*&*$-#%- *&&%"#"-!*&#* $ # "3#*,$&-*&*$-# 4556 ''*."% 777777777777777777777777777777777777777777777777777 #8. (&9%,*.#:"%*)!"
Μάθημα: Θεωρία Δικτύων
Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος 7-8, 5ο Εξάμηνο Μάθημα: Θεωρία Δικτύων Ανάλυση Ευσταθείας Κων/νος Τζαφέστας Τομέας Σημάτων, Ελέγχου & Ρομποτικής Σχολή Ηλεκτρ.
Curs 2 Şiruri de numere reale
Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un
CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii
Clasa a IX-a 1 x 1 a) Demonstrați inegalitatea 1, x (0, 1) x x b) Demonstrați că, dacă a 1, a,, a n (0, 1) astfel încât a 1 +a + +a n = 1, atunci: a +a 3 + +a n a1 +a 3 + +a n a1 +a + +a n 1 + + + < 1
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio
ΕΠΙΤΡΟΠΗ ΤΩΝ ΕΥΡΩΠΑΪΚΩΝ ΚΟΙΝΟΤΗΤΩΝ
ΕΠΙΤΡΟΠΗ ΤΩΝ ΕΥΡΩΠΑΪΚΩΝ ΚΟΙΝΟΤΗΤΩΝ Βρυξέλλες, 5.9.2005 COM(2005) 405 τελικό ΑΝΑΚΟΙΝΩΣΗ ΤΗΣ ΕΠΙΤΡΟΠΉΣ στο Συµβούλιο, το Ευρωπαϊκό Κοινοβούλιο, την Ευρωπαϊκή Οικονοµική και Κοινωνική Επιτροπή και την Επιτροπή
Modele dinamice de conducere optimală a activităţii firmei 9. Modelul Jorgenson
Modele dinmice de conducere opimlă civiăţii firmei 9 Modelul Jorgenson Ese un model în cre ese urmăriă sregi firmei în cee ce priveşe efecure invesiţiilor şi efecele deprecierii cpilului supr evoluţiei
Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.
II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
Jeux d inondation dans les graphes
Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488
INTRODUCERE IN TEORIA SISTEMELOR
INTRODUCERE IN TEORIA SISTEMELOR Teoria sisemelor repreziă u asamblu de cocepe cuoşiţe meode şi pricipii idepedee de aplicaţii ecesare şi uile sudiului srucurii proprieăţilor şi caracerisicilor diamice
ELEMENTE DE STABILITATE A SISTEMELOR LINIARE
6 ELEMENTE DE STABILITATE A SISTEMELOR LINIARE In sudiul sabiliăţii sisemelor se uilizează două concepe: concepul de sabiliae inernă (a sării) şi concepul de sabiliae exernă (a ieşirii) 6 STABILITATEA
Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage
Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage José Marconi Rodrigues To cite this version: José Marconi Rodrigues. Transfert sécurisé d Images par combinaison
Stabilitatea sistemelor liniare si invariante in timp
Sbili imlo lii i ivi i im I coiu vom fi l im lii i ivi i im cuzl liz biliii i domiul im IMEM u () i() τ dτ ; C : i() τ () τ mgii u() () τ dτ, ml mgii C C Simul u bil Dc ci cu ml mgii d du limi uul Fi u
COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi
OMBINATORIĂ Mulţimile ordoate care se formează cu elemete di elemete date se umesc permutări. P =! Proprietăţi 0! = ( ) ( ) ( ) ( ) ( ) ( )! =!! =!! =! +... Submulţimile ordoate care se formează cu elemete
Poularikas A. D. Distributions, Delta Function The Handbook of Formulas and Tables for Signal Processing. Ed. Alexander D. Poularikas Boca Raton: CRC
Pulrik A. D. Diribui, Del Fuci The Hbk f Frmul Tble fr Sigl Prceig. E. Aleer D. Pulrik Bc R: CRC Pre LLC, 999 5 Diribui, Del Fuci 5. Te Fuci 5. Diribui 5.3 Oe-Dimeil Del Fuci 5.4 Emple 5.5 Tw-Dimeil Del
Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes
Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes Jérôme Baril To cite this version: Jérôme Baril. Modèles de représentation multi-résolution pour le rendu
R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
Sisteme de ecuatii liniare
Sisteme e eutii liire Sisteme e ou eutii u ou euosute Def.U sistem e ou eutii u ou euosute re form ( S : ue,,, se umes oefiietii euosutelor, ir, termeii lieri. Def.Se umeste solutie sistemului orie ulu
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
2) Numim matrice elementara o matrice:
I TRANSFORMARI ELEMENTARE ) Cre di urmtorele opertii efectute supr uei mtrice este trsformre elemetr: ) dure uei liii l o colo; b) imultire uei liii cu sclrul α = c) schimbre dou liii itre ele; d) dure
IV.3. Factorul de condiţionare al unei matrice
IV.3. Fctorul de codiţiore l uei mtrice defieşte pri Defiiţie. Fctorul de codiţiore l uei mtrice pătrte A M, (R) se cod(a) = A A - ude este o orm opertorilă mtricei A (de exemplu, su ). Pri coveţie cod(a)
ΠΑΓΚΟΣΜΙΑ ΗΜΕΡΑ ΑΣΟΠΟΝΙΑΣ. ασοπονία και αγορά προϊόντων ξύλου
LOGO ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΟΥ ΜΑΡΚΕΤΙΝΓΚ ΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΠΑΓΚΟΣΜΙΑ ΗΜΕΡΑ ΑΣΟΠΟΝΙΑΣ ασοπονία και αγορά προϊόντων ξύλου ρ. ΠΑΠΑ ΟΠΟΥΛΟΣ ΙΩΑΝΝΗΣ Αναπληρωτής Καθηγητής ΤΕΙ Λάρισας E-mail: papad@teilar.gr
December 18, M + hv = M + + e + E kin (1) P ki = σ ki n L (2)
Φασματοσκοπία Doppler Limited 3 Χειμερινό εξάμηνο 2016 December 18, 2016 1 Ιονισμός Μια άντίδραση ιονισμού λέιζερ μπορεί να περιγραφεί ως εξής: M + hv = M + + e + E kin (1) Ας εξετάσουμε την ευαισθησία
ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s
P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t
Lucrarea nr.1b - TSA SISTEM. MODEL. CONSTRUCTIA MODELULUI MATEMATIC
1 SISTEM. MODEL. CONSTRUCTIA MODELULUI MATEMATIC 1. Scopul lucrǎrii Lucrarea are drep scop însuşirea noţiunilor de sysem, model şi analiza posibiliăţilor de consruire a modelului mahemaic penru un sysem
CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity
CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution
Errata (Includes critical corrections only for the 1 st & 2 nd reprint)
Wedesday, May 5, 3 Erraa (Icludes criical correcios oly for he s & d repri) Advaced Egieerig Mahemaics, 7e Peer V O eil ISB: 978474 Page # Descripio 38 ie 4: chage "w v a v " "w v a v " 46 ie : chage "y
ΕΥΡΩΒΑΡΟΜΕΤΡΟ 72 ΚΟΙΝΗ ΓΝΩΜΗ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ
Standard Eurobarometer European Commission ΕΥΡΩΒΑΡΟΜΕΤΡΟ 72 ΚΟΙΝΗ ΓΝΩΜΗ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ ΦΘΙΝΟΠΩΡΟ 2009 Standard Eurobarometer 72 / Φθινόπωρο 2009 TNS Opinion & Social ΕΘΝΙΚΗ ΑΝΑΛΥΣΗ GREECE Η έρευνα
Analiza matematică, clasa a XI-a probleme rezolvate Rolul derivatei întâi
Anliz mtemtică, cls XI- proleme rezolvte Rolul derivtei întâi Virgil-Mihil Zhri DefiniŃie: Punctele critice le unei funcńii derivile sunt rădăcinile (zerourile) derivtei întâi DefiniŃie: Fie f:i R, cu
(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont
w. ww lua so ab me lar m.co t me la sit po dis ion du c, bli pu via lar ca do w. ww me.co m, de la ion nta t do cu me on t ed hn iqu tec les en ce s, rι fιr ma rq ue se t lo go s, so nt la pr op riι tι
Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor
Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.
Α. Η ΜΕΛΙΣΣΟΚΟΜΙΑ ΣΤΗΝ ΕΛΛΑΔΑ
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΗΡΟΤΡΟΦΙΑΣ ΚΑΙ ΜΕΛΙΣΣΟΚΟΜΙΑΣ Πασχάλης Χαριζάνης Α. Η ΜΕΛΙΣΣΟΚΟΜΙΑ ΣΤΗΝ ΕΛΛΑΔΑ 1. Κερί Σύμφωνα με την Εθνική Στατιστική Υπηρεσία της Ελλάδος η παραγωγή κεριού για
!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).
1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3
COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care