2 ICA. (ICA, Independent Component Analysis) (PCA, Principal Compoenent Analysis) x(t) =(x 1 (t),...,x m (t)) T t =0, 1, 2,... PCA 2 ICA.

Σχετικά έγγραφα
Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

Anomaly Detection with Neighborhood Preservation Principle

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

[1] DNA ATM [2] c 2013 Information Processing Society of Japan. Gait motion descriptors. Osaka University 2. Drexel University a)

Algìrijmoi Tufl c EpexergasÐac S matoc

BCI On Feature Extraction from Multi-Channel Brain Waves Used for Brain Computer Interface

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

Εφαρμογή Υπολογιστικών Τεχνικών στην Γεωργία

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA

( ) (Harmonic-Temporal Clustering; HTC) [1], [2] ( ) ( ) [4] HTC. (Non-negative Matrix Factorization; NMF) [3] [5], [6] [7], [8]

SVM. Research on ERPs feature extraction and classification

: Active Learning 2017/11/12

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity

Quick algorithm f or computing core attribute

Τίτλος: Διαχωρισμός Ηχητικών Πηγών σε Περιβάλλον Πραγματικού Δωματίου.

Στοιχεία εισηγητή Ημερομηνία: 10/10/2017

Area Location and Recognition of Video Text Based on Depth Learning Method

Δημήτριος Θ. Τόμτσης, Ph.D. Αναλυτικό Βιογραφικό Σημείωμα

Vol.4-DCC-8 No.8 Vol.4-MUS-5 No.8 4// 3 3 Hanning (T ) 3 Hanning 3T (y(t)w(t)) dt =.5 T y (t)dt. () STRAIGHT F 3 TANDEM-STRAIGHT[] 3 F F 3 [] F []. :

Buried Markov Model Pairwise

Applicatio ns of Indep endent Sub2Band Functio ns and Wavelet Analysis in Single2Channel Noisy Signal B SS :Mo del and Crucial Technique

Έχει ληφθεί την 27 DEC 2009 ένα σεισµικό ηλεκτρικό σήµα (SES) από τον σταθµό LAM του δικτύου ΒΑΝ [ 1 ]

ΣΧΟΛΗ Σχολή Τεχνολογικών Εφαρμογών ΤΜΗΜΑ Ηλεκτρονικών Μηχανικών Τ.Ε. ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ Προπτυχιακό ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 5

Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+

(Υπογραϕή) (Υπογραϕή) (Υπογραϕή)

Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)

Επεξεργασία MEG με ΒSS/ICA και χρήση Predictive model

Stabilization of stock price prediction by cross entropy optimization

JOURNAL OF APPLIED SCIENCES Electronics and Information Engineering. Cyclic MUSIC DOA TN (2012)

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

Σύντομο Βιογραφικό Σημείωμα

40 3 Journal of South China University of Technology Vol. 40 No Natural Science Edition March

ΝΙΚΟΛΑΟΣ ΜΗΤΙΑΝΟΥΔΗΣ

The State of the Art and Difficulties in Automatic Chinese Word Segmentation

Scrub Nurse Robot: SNR. C++ SNR Uppaal TA SNR SNR. Vain SNR. Uppaal TA. TA state Uppaal TA location. Uppaal

Συνδυασμένη Οπτική-Ακουστική Ανάλυση Ομιλίας

Αυτόματη Ανακατασκευή Θραυσμένων Αντικειμένων

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

Ένα µοντέλο Ισοδύναµης Χωρητικότητας για IEEE Ασύρµατα Δίκτυα. Εµµανουήλ Καφετζάκης

ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ

Echo path identification for stereophonic acoustic echo cancellation without pre-processing

{takasu, Conditional Random Field

ΤΕΧΝΙΚΕΣ ΔΙΑΓΝΩΣΗΣ ΤΗΣ ΝΟΣΟΥ ΑΛΤΣΧΑΙΜΕΡ ΜΕ FMRI

Project: 296 File: Title: CMC-E-600 ICD Doc No: Rev 2. Revision Date: 15 September 2010

ER-Tree (Extended R*-Tree)

CorV CVAC. CorV TU317. 1

AΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

Ινστιτούτο Ερευνών Περιβάλλοντος και Βιώσιμης Ανάπτυξης. Following Nafplio, October Δ. Φουντά

Automatic extraction of bibliography with machine learning

ECE 468: Digital Image Processing. Lecture 8


ΤΕΙ ΘΕΣΣΑΛΙΑΣ. Αναγνώριση προσώπου με επιλογή των κατάλληλων κυρίων συνιστωσών. ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε ΚΑΒΒΑΔΙΑ ΑΛΕΞΑΝΔΡΟΥ.

Control Theory & Applications PID (, )

Research on model of early2warning of enterprise crisis based on entropy

Ταξινόμηση και διαχρονική παρακολούθηση των βοσκόμενων δασικών εκτάσεων στη λεκάνη απορροής του χειμάρρου Μπογδάνα Ν. Θεσσαλονίκης

Introduction to Risk Parity and Budgeting

ΓΙΑΝΝΟΥΛΑ Σ. ΦΛΩΡΟΥ Ι ΑΚΤΟΡΑΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕ ΟΝΙΑΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

Κβαντική Επεξεργασία Πληροφορίας

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

ΚΛΙΜΑΤΟΛΟΓΙΑ CLIMATOLOGY

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΠΜΣ «ΠΛΗΡΟΦΟΡΙΚΗ & ΕΠΙΚΟΙΝΩΝΙΕς» OSWINDS RESEARCH GROUP

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

AΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΜΟΝΤΕΛΟΠΟΙΗΣΗΣ

TABLE OF CONTENTS CHAPTER 1- INTRODUCTION: 1. Motivation of the study The crystalline lens and the accommodative system.

BΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ.

HMY 795: Αναγνώριση Προτύπων

TUNING FORK TUNES. exploring new scanning probe applications

Comparison of Discriminant Analysis in Ear Recognition

Based Modeling: Applications of Genetic Programming and Self-Organizing Maps.

1 n-gram n-gram n-gram [11], [15] n-best [16] n-gram. n-gram. 1,a) Graham Neubig 1,b) Sakriani Sakti 1,c) 1,d) 1,e)

Detection and Recognition of Traffic Signal Using Machine Learning

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

[5] F 16.1% MFCC NMF D-CASE 17 [5] NMF NMF 3. [5] 1 NMF Deep Neural Network(DNN) FUSION 3.1 NMF NMF [12] S W H 1 Fig. 1 Our aoustic event detect

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ

Αξιολόγηση µεθόδων σύνθεσης εικόνων. Β. Τσαγκάρης και Β. Αναστασόπουλος

Ανάλυση σχημάτων βασισμένη σε μεθόδους αναζήτησης ομοιότητας υποακολουθιών (C589)

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

Ψηφιακή Επεξεργασία Φωνής

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ Δρ. ΣΩΤΗΡΙΟΣ Α. ΔΑΛΙΑΝΗΣ

. (1) 2c Bahri- Bahri-Coron u = u 4/(N 2) u

Εφαρμογή Υπολογιστικών Τεχνικών στην Γεωργία

Παρουσίαση ιπλωµατικής

Ευφυές Σύστημα Ανάλυσης Εικόνων Μικροσκοπίου για την Ανίχνευση Παθολογικών Κυττάρων σε Εικόνες Τεστ ΠΑΠ

Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων»

1,a) 1,b) 2 3 Sakriani Sakti 1 Graham Neubig 1 1. A Study on HMM-Based Speech Synthesis Using Rich Context Models

Βαζίιεο Βιάρνο Καζεγεηήο Δθαξκνγώλ. Αλδξέαο ηαπξηλίδεο Δπί πηπρίω θνηηεηήο - Τπεύζπλνο ζηνηρεηνζέηεζεο

Speeding up the Detection of Scale-Space Extrema in SIFT Based on the Complex First Order System

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΠΜΣ «ΠΛΗΡΟΦΟΡΙΚΗ & ΕΠΙΚΟΙΝΩΝΙΕΣ» OSWINDS RESEARCH GROUP

ΚΩΝΣΤΑΝΤΙΝΟΣ Σ. ΠΟΛΙΤΗΣ Διπλ. Φυσικός Πανεπιστημίου Πατρών Υποψήφιος Διδάκτωρ Ε.Μ.Π. ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΣΤΥΛΙΑΝΗΣ Κ. ΣΟΦΙΑΝΟΠΟΥΛΟΥ Αναπληρώτρια Καθηγήτρια. Τµήµα Τεχνολογίας & Συστηµάτων Παραγωγής.

Τοποθέτηση τοπωνυµίων και άλλων στοιχείων ονοµατολογίας στους χάρτες

ΚΑΝΟΝΙΣΜΟΣ ΕΚΠΟΝΗΣΗΣ ΕΡΓΑΣΙΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ «ΕΠΕΞΕΡΓΑΣΙΑ ΨΗΦΙΑΚΟΥ ΣΗΜΑΤΟΣ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΥΛΙΚΟΥ»

(clusters) clusters : clusters : clusters : 4. :

DECO DECoration Ontology

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A


Transcript:

s T (ICA, Independent Component Analysis) (PCA, Principal Compoenent Analysis) x =(x,...,x m ) T t =,,,... PCA ICA m m n s x PCA x =As, () ICA ICA ICA Blind Source Separation A m n BSS s A x n n m n m W y =W x, () y WA = I (I n n ) y s ICA y permutation amplitude ICA n>m ICA [] [] x =As+n, (3) ICA ICA ICA Blind Source Separation (BSS) Blind Source Deconvolution BSS Blind Source Deconvolution BSS s =(s,...,s n ) T t =,,,... n () m = n Blind Source Deconvolution x =A s x i = a ik s k, (4) k a ik s k = a ik (τ)s k (t τ), τ=

y W x x..4.6.8..4.6.8..4.6.8..4.6.8 x y =W x (5) x BSS m n A 3 ICA ICA PCA (Principal Component Analysis, ) ICA (3.) BSS (3.) gradient (3.3) Blind Source Deconvolution (3.4) 3. PCA ICA : Observed signals R R R T R = R V V x x = V x x N x x T = V N V V T = I, (7) t= PCA x, x,..4.6.8..4.6.8..4.6.8..4.6.8 x x s..4.6.8..4.6.8 s..4.6.8..4.6.8 : Source signals s s 3: Applying PCA on observed signals PCA 3 ICA ICA 4 PCA s () x ( ) V = N xx T, (6) N t= y..4.6.8..4.6.8 y..4.6.8..4.6.8 y 4: Result of solving ICA problem y ICA ICA PCA ICA Whitening Sphering

ICA 3. s i y p(y) =p(y,,y n ) W x y y i p(y i ) y i p(y) p(y) = n i= p(y i) p(y) n i= p(y i) W p(y) n i= p(y i) Kullback-Leibler divergence ( {Y i } (i =,...,n) ) W K-L divergence p(y) KL(W) = p(y) log n i= p(y i) dy = H(Y ; W )+ n H(Y i ; W ). (8) i= H(Y ; W ) H(Y i ; W ) p(y)dy = p(x)dx p(y) = p(x)/ W ( W W ) (8) H(Y ; W ) H(Y i ; W ) p(x) W H(Y ; W ) = p(y) log p(y)dy = p(x)(log p(x) log W )dx = H(X) + log W, (9) H(Y i ; W ) = p(y) log p(y i )dy = p(x) log p(y i )dx () KL(W) p(y i ) W KL(W) W W KL(W) W = ( (W T ) E x [ϕ(y)x T ] ) = ( I E x [ϕ(y)y T ] ) (W T ) () ( log p(y ) ϕ(y) =,..., log p(y ) T n) y y n () W () (W T ) W T W [5] W ( I E x [ϕ(y)y T ] ) W (3) [4] η (4) W W t+ = W t + η ( I ϕ(y)y T ) W t. (4) ϕ(y) W [3] Cardoso Souloumiac[9] Jutten Herault[8] Bell Sejnowski [7] sigmoid Common [] Edgeworth Gram-Charlier [5] [6] (sub-gaussian) (super-gaussian) Sigmoid 3.3 { Q = n } log E[yi ] log det E[yy T ], (5) i= 3

(E[ ] ) FIR BSS [, 9] K-L divergence Molgedey Schuster [3] (5) [9] [3] ICA [7, 6] (5) x, s, A Fourier ω xx(t + τ) T = A ss(t + τ) T A T ˆx(ω) R s (τ) =Â(ω)ŝ(ω), = A... AT, (6) msec R sn (τ) x R si (τ) s i W y yy(t + τ) T = (WAs) ˆx(ω, t s )=Â(ω)ŝ(ω, t s ), (9) (WAs(t + τ)) T λ R s (τ) =..., (7) λ n R s n (τ),,...,n,,...,n λ i W τ y ((7) ) x τ i W W xx(t + τ i ) T W T = Λ i, i =,...,r, (8) ˆx(ω), ŝ(ω), Â(ω) ˆx(ω, t s ) ŝ(ω, t s ) x, s windowed Fourier BSS BSS perumutation amplitude Blind Source Deconvolution [7] Λ i W 4 [3] τ i 4. [6, 3] [] ICA EEG (Electroencephalogram, ), MEG (Magnetoencephalography, ), MRI (Magnetic Resonance Imaging, ) [7,, 8, 6, 8] optical recording Photo-detector 3.4 Blind Source Deconvolution (Multi-unit Recording) ICA EEG, MEG MRI 3.,3.3 FIR BSS EEG, MEG EEG MEG EEG MEG 4

( ) EEG, MEG BSS ch ch ch 3 ch 4 ch 5 [ft] 6 4 4 5 5 5 3 35 4 45 5 5 5 5 5 5 5 3 35 4 45 5 5 5 5 5 3 35 4 45 5 5 5 5 5 5 5 3 35 4 45 5 5 5 5 3 35 4 45 5 Time(msec) (Source 4) MRI ICA [] MRI x x t (t =,..., ) x x i (i =,..., ) EEG, MEG ICA MRI ICA 5: 4. ICA Source 5 5 5 3 35 4 45 5 Source ICA 5 5 5 3 35 4 45 5 [] MRI Source 3 ICA 5 5 5 3 35 4 45 5 sparce Source 4 coding[5] ICA 5 5 5 3 35 4 45 5 [5] Source 5 5 5 5 3 35 4 45 5 Time(msec) Cocktail Party 6: [4] 3 Blind Source Deconvolution BSS MEG [6] MEG [4] URL 5 999 ICA ICA 99 MEG 9channel 5 3 ICA ICA 6 (Source ) (Source,3) http://www.islab.brain.riken.go.jp/ shiro/ 3 http://www.ele.tue.nl/ica99/ 5

5 ICA [9] ICA 99 MEG ICA Blind Source Deconvolution on-line ICA ICA ICA MATLAB 4 [] S. Amari. ICA of temporally correlated signals learning algorithm. In Proceedings of International Workshop on Independent Component Analysis and Blind Signal Separation (ICA 99), pp. 3 8, Janurary 999. [].. Computer Today ( ), 9 998. 999 4. [3] S. Amari and J.-F. Cardoso. Blind source separation semiparametric statistical approach. IEEE Trans. Signal Processing, 45():69 7, November 997. [4] S. Amari, T. Chen, and A. Cichocki. Stability analysis of learning algorithms for blind source separation. Neural Networks, (8):345 35, August 997. [5] S. Amari, A. Cichocki, and H. H. Yang. A new learning algorightm for blind signal separation. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo eds., Advances in Neural Information Processing Systems, Vol. 8, pp. 757 763. The MIT Press, Cambridge MA, 996. [6] H. Attias. Independent factor analysis. Neural Computation, (4):83 85, May 999. [7] A. J. Bell and T. J. Sejnowski. An information maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6):9 59, 995. [8] J. Cao, N. Murata, S. Amari, A. Cichocki, and T. Takeda. ICA approach with pre & post-processing 4 http://www.bmc.riken.go.jp/sensor/allan/ http://sound.media.mit.edu/ paris/ http://www.cnl.salk.edu/cnl/ http://www.cis.hut.fi/projects/ica/ techniques. In Proceedings of 998 International Symposium on Nonlinear Theory and its Applications (NOLTA 98), Vol., pp. 87 9, September 998. [9] J.-F. Cardoso and A. Souloumiac. Blind beamforming for non Gaussian signals. IEE-Proceedings-F, 4(6):36 37, December 993. [] A. Cichocki, W. Kasprzak, and S. Amari. Multi-layer neural networks with a local adaptive learning rule for blind separation of source signals. In Proceedings of 995 International Symposium on Nonlinear Theory and its Applications (NOLTA 95), pp. 6 65, 995. [] P. Common and O. Grellier. Non-linear inversion of underdetermined mixtures. In Proceedings of International Workshop on Independent Component Analysis and Blind Signal Separation (ICA 99), pp. 46 465, January 999. [] P. Comon. Independent component analysis, a new concept? Signal Processing, 36(3):87 34, April 994. [3] S. C. Douglas and A. Cichocki. Neural networks for blind decorrelation of signals. IEEE Trans. Signal Processing, 45():89 84, November 997. [4] F. Ehlers and H. Schuster. Blind separation of convolutive mixtures and an application in automatic speech recognition in noisy environment. IEEE Transactions on Signal Processing, 45():68 69, 997. [5] A. Hyvärinen, P. Hoyer, and E. Oja. Denoising of nongaussian data by independent component analysis and sparce coding. In Proceedings of International Workshop on Independent Component Analysis and Blind Signal Separation (ICA 99), pp. 485 489, Janurary 999. [6],. Independent component analysis MEG., NC98-8:9 36, June 998. [7] S. Ikeda and N. Murata. An approach to blind source separation of speech signals. In Proceedings of 998 International Conference on Artificial Neural Networks (ICANN 98), pp. 76 766, September 998. [8] C. Jutten and J. Herault. Separation of sources, part i. Signal Processing, 4():, July 99. [9] M. Kawamoto, K. Matsuoka, and N. Ohnishi. A method of blind separation for convolved nonstationary signals. Neurocomputing, (-3):57 7, 998. [] S. Makeig, T.-P. Jung, and T. J. Sejnowski. Using feedforward neural networks to monitor alertness from changes in EEG correlation and coherence. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo eds., Advances in Neural Information Processing Systems, Vol. 8, pp. 93 937. The MIT Press, Cambridge, MA, 996. [] K. Matsuoka, M. Ohya, and M. Kawamoto. A neural net for blind separation of nonstationary signals. Neural Networks, 8(3):4 49, 995. 6

[] M. J. Mckeown, T.-P. Jung, S. Makeig, G. Brown, S. S. Kindermann, T.-W. Lee, and T. J. Sejnowski. Spatially independent activity patterns in functional magnetic resonance imaging data during the Stroop colornaming task. In Proceedings of the National Academy of Sciences, Vol. 95, pp. 83 8, February 998. [3] L. Molgedey and H. G. Schuster. Separation of a mixture of independent signals using time delayed correlations. Phys. Rev. Lett., 7(3):3634 3637, 994. [4] N. Murata, S. Ikeda, and A. Ziehe. An approach to blind source separation based on temporal structure of speech signals. to appear in Neurocomputing. [5] B. A. Olshausen and D. J. Field. Emergence of simplecell receptive field properties by learning a sparce code for natural images. Nature, 38:67 69, 996. [6] P. Smaragdis. Blind separation of convolved mixtures in the frequency domain. Neurocomputing, (-3): 34, 998. [7] R. N. Vigário. Extraction of ocular artifacts from EEG using independent component analysis. Electroenceph. clin. Neurophysiol., 3:395 44, 997. [8] R. Vigário, V. Jousmäki, M. Hämäläinen, R. Hari, and E. Oja. Independent component analysis for identification of artifacts in Magnetoencephalographic recordings. In M. I. Jordan, M. J. Kearns, and S. A. Solla eds., Advances in Neural Information Processing Systems, Vol., pp. 9 35. The MIT Press, Cambridge MA, 998. [9] L. Zhang, S. Amari, and A. Cichocki. Natural gradient approach to blind separation of over- and undercomplete mixtures. In Proceedings of International Workshop on Independent Component Analysis and Blind Signal Separation (ICA 99), pp. 455 46, January 999. [3] A. Ziehe and K.-R. Müller. TDSEP an efficient algorithm for blind separation using time structure. In Proceedings of 998 International Conference on Artificial Neu ral Networks (ICANN 98), pp. 675 68, September 998. ( ) 968 99 996 998 7