Financial Risk Management

Σχετικά έγγραφα
Financial Risk Management

Part III - Pricing A Down-And-Out Call Option

- 1+x 2 - x 3 + 7x x x x x x 2 - x 3 - -

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009

MOTORCAR INSURANCE I

ΜΕΤΡΑ ΚΙΝΔΥΝΟΥ ΣΤΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ

Mean-Variance Analysis

Premia 14 Closed Formula Methods

Fundamentals of Finance

ΘΕΩΡΙΑ ΟΜΟΛΟΓΙΩΝ. ΤΙΜΟΛΟΓΗΣΗ,ΔΙΑΧΕΙΡΗΣΗ, ΕΙΔΙΚΑ ΘΕΜΑΤΑ.

A.M. Kimiagari & E. Afarideh Sani

ΠΜΣ στην Αναλογιστική Επιστήμη και Διοικητική Κινδύνου. Πιστωτικός Κίνδυνος. Διάλεξη 4: Υποδείγματα πιστωτικού κινδύνου. The Merton's Structural Model

Photometric Data of Lamp

Metal thin film chip resistor networks

Single Stock Analysis Stock Pair Analysis Portfolio Dates Portfolio Dates Correl Maturity VolRatio Ref Stock Correl Ref Stock

QBER DISCUSSION PAPER No. 8/2013. On Assortative and Disassortative Mixing in Scale-Free Networks: The Case of Interbank Credit Networks

Math 6 SL Probability Distributions Practice Test Mark Scheme

Credit Risk Διάλεξη 1

All models have faults - that doesn t mean you can t use them as tools for making decisions. Myron Scholes

ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Numerical Methods for Civil Engineers. Lecture 10 Ordinary Differential Equations. Ordinary Differential Equations. d x dx.

LS series ALUMINUM ELECTROLYTIC CAPACITORS CAT.8100D. Specifications. Drawing. Type numbering system ( Example : 200V 390µF)

Probability and Random Processes (Part II)

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.

ΧΡΗΜΑΤΙΣΤΗΡΙΟ ΑΘΗΝΩΝ

ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ

DOI /J. 1SSN

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

A life-table metamodel to support management of data deficient species, exemplified in sturgeons and shads. Electronic Supplementary Material

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

The martingale pricing method for pricing fluctuation concerning stock models of callable bonds with random parameters

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΠΡΟΣΩΠΙΚΑ ΣΤΟΙΧΕΙΑ ΣΠΟΥΔΕΣ

Εφαρμογή της μεθόδου πεπερασμένων διαφορών στην εξίσωση θερμότητας

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΠΩΣ ΕΠΗΡΕΑΖΕΙ Η ΜΕΡΑ ΤΗΣ ΕΒΔΟΜΑΔΑΣ ΤΙΣ ΑΠΟΔΟΣΕΙΣ ΤΩΝ ΜΕΤΟΧΩΝ ΠΡΙΝ ΚΑΙ ΜΕΤΑ ΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΚΡΙΣΗ

ΟΙ ΠΑΡΑΓΟΝΤΕΣ που ΕΠΗΡΕΑΖΟΥΝ την ΤΙΜΗ των ΙΚΑΙΩΜΑΤΩΝ ΠΡΟΑΙΡΕΣΗΣ

Introduction to Risk Parity and Budgeting

SMD Power Inductor. - SPRH127 Series. Marking. 1 Marking Outline: 1 Appearance and dimensions (mm)

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

: Forward index level derived from put-call parity. : First strike price below the forward index level, F

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206

ΧΡΗΣΙΜΟΙ ΟΡΟΙ TΙΤΛΩΝ ΠΑΡΑΣΤΑΤΙΚΩΝ ΙΚΑΙΩΜΑΤΩΝ ΠΡΟΣ ΚΤΗΣΗ ΚΙΝΗΤΩΝ ΑΞΙΩΝ Ή WARRANTS

Transient Voltage Suppression Diodes: 1.5KE Series Axial Leaded Type 1500 W


❷ s é 2s é í t é Pr 3

OPTIMAL STRATEGIES FOR A LONG-TERM STATIC INVESTOR

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

5.4 The Poisson Distribution.

Arbitrage Analysis of Futures Market with Frictions

Quick algorithm f or computing core attribute

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

519.22(07.07) 78 : ( ) /.. ; c (07.07) , , 2008

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

No General Serial No JOURNAL OF XIAMEN UNIVERSITY Arts & Social Sciences CTD F CTD

THICK FILM LEAD FREE CHIP RESISTORS

Valuing contingent exotic options: a discounted density approach

UMI Number: All rights reserved

d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i

Stationary Stochastic Processes Table of Formulas, 2017

GAUSS-LAGUERRE AND GAUSS-HERMITE QUADRATURE ON 64, 96 AND 128 NODES

Stationary Stochastic Processes Table of Formulas, 2016

NMBTC.COM /

ΕΡΓΑΣΤΗΡΙΟ 5 ΣΗΜΕΙΩΣΕΙΣ

Reflecting Brownian motion in two dimensions: Exact asymptotics for the stationary distribution

ΠΜΣ στην Αναλογιστική Επιστήμη και Διοικητική Κινδύνου. Πιστωτικός Κίνδυνος. Διάλεξη 1: Εκτιμώντας τις πιθανότητες αθέτησης από τις τιμές της αγοράς

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ

Aluminum Electrolytic Capacitors

ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ - ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ

MEM 253. Αριθμητική Λύση ΜΔΕ * * *

Slides 4. Matthieu Gomez Fall 2017

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ξενόγλωσση Τεχνική Ορολογία

Manuscript submitted to the Journal of the American Society for Mass Spectrometry, September 2011.

+85 C Snap-Mount Aluminum Electrolytic Capacitors. High Voltage Lead free Leads Rugged Design. -40 C to +85 C

ΑΝΑΛΥΣΗ ΚΟΣΤΟΥΣ ΟΦΕΛΟΥΣ ΣΤΟΝ ΚΛΑΔΟ ΤΗΣ ΕΝΕΡΓΕΙΑΣ

Aluminum Electrolytic Capacitors (Large Can Type)

m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx

Strasbourg & ISC Paris Εξέλιξη επιτοκίων (term structure)

Περιεχόμενα 9. Περιεχόμενα

ΕΤΑΙΡΕΙΑ ΕΚΚΑΘΑΡΙΣΗΣ ΣΥΝΑΛΛΑΓΩΝ ΧΡΗΜΑΤΙΣΤΗΡΙΟΥ ΑΘΗΝΩΝ Α.Ε

Ειδικά Θέματα Διαχείρισης Κινδύνου. Μεταβλητότητα (Volatility)

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Metal Oxide Varistors (MOV) Data Sheet

MATHACHij = γ00 + u0j + rij

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Lifting Entry (continued)

An Asymptotic Expansion Approach to Computing Greeks

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 2

1991 US Social Survey.sav

Medium Data on Big Data

NTC thermistors for temperature measurement

Bayesian modeling of inseparable space-time variation in disease risk

ΕΤΑΙΡΕΙΑ ΕΚΚΑΘΑΡΙΣΗΣ ΣΥΝΑΛΛΑΓΩΝ ΧΡΗΜΑΤΙΣΤΗΡΙΟΥ ΑΘΗΝΩΝ Α.Ε

Section 8.3 Trigonometric Equations

ΠΜΣ στην Αναλογιστική Επιστήμη και Διοικητική Κινδύνου. Πιστωτικός Κίνδυνος. Διάλεξη 2: Pricing Defaultable Assets. Μιχάλης Ανθρωπέλος

Transcript:

Pricing of American options University of Oulu - Department of Finance Spring 2018

Volatility-based binomial price process uuuus 0 = 26.51 uuus 0 = 24.71 uus 0 = us 0 = S 0 = ds 0 = dds 0 = ddds 0 = 16.19 dddds 0 = 15.09

Binomial price process with risk-neutral probabilities = er t d = 0.525 = 1 = 0.475 24.71 16.19 26.51 15.09 uuuu 1 p 4 u p0 d = 0.0760 uuud, uudu uduu, duuu 4 p 3 u p1 d = 0.2749 uudd, udud, uddu duud, dudu, dduu 6 p 2 u p2 d = 0.3731 uddd, dudd ddud, dddu 4 p 1 u p3 d = 0.2251 dddd 1 p 0 u p4 d = 0.0509

Expected price and variance in a binomial tree Upward movement multiplicator : u = e σ t Downward movement multiplicator: d = e σ t Price after an upward movement: us Price after a downward movement: ds Probability of an upward movement: = er t d Probability of a downward movement: = 1 Geometric Brownian motion: S = rs t + σsɛ t E( S) = rs t Std( S) = σs t Var( S) = σ 2 S 2 t Taylor series approximations: (1) e r t = 1 + r t + (r t)2 2! + (r t)3 3! + (r t)4 4! +... 1 + r t (2) u = e σ t (3) d = e σ t = 1 + σ t + (σ t) 2 2! + (σ t) 3 3! = 1 σ t + (σ t) 2 (σ t) 3 2! 3! + (σ t) 4 4! + (σ t) 4 4! +... 1 + σ t + σ2 t... 1 σ t + σ2 t 2 2

Expected price and variance in a binomial tree Ê( S) = Ê(S) S = puus + ds S = [ u + (1 )d 1 ] S = [ () + d 1 ] S [ e r t d ] = () + d 1 S = ( ) e r t 1 S = (1 + r t 1)S = rs t (1) Var( S) = E( S 2 ) E( S) 2 = (us) 2 + (ds) 2 [ us + ds ] 2 = (us) 2 + (1 )(ds) 2 [ us + (1 )ds ] 2 = [ () 2 p 2 u ()2] S 2 = [ e r t d ()2 (e ] r t d) 2 () 2 () 2 S 2 [ = e r t (u + d) 1 e 2r t ] S 2 (1) (2) (3) (1) [ ( = (1 + r t) 1 + σ t + σ2 t + 1 σ ) ] t + σ2 t 1 (1 + r t) 2 S 2 2 2 = = [ ( (1 + r t) 2 + σ 2 ) t 1 (1 + r t) 2] S 2 [ 2 + σ 2 t + 2r t + rσ 2 ( t) 2 1 1 2r t r 2 ( t) 2] S 2 = σ 2 S 2 t

Pricing of a European put option n P S T p T P p T 1 0.0760 26.51 0.00 0.00 4 0.2749 0.00 0.00 6 0.3731 1.00 0.37 4 0.2251 3.63 0.82 1 0.0509 15.09 5.91 0.30 S 0 = σ = 0.20 T = 0.5 X = 21 1.0000 1.49 p 0 = Xe rt N( d 2 ) S 0 N( d 1 ) = 1.41 Ê[max(0, X S T )] = 1.49 p 0 = e 0.048 0.5 1.49 = 1.45 24.71 16.19 26.51 15.09 uuuu 1 p 4 u p0 d = 0.0760 uuud, uudu uduu, duuu 4 p 3 u p1 d = 0.2749 uudd, udud, uddu duud, dudu, dduu 6 p 2 u p2 d = 0.3731 uddd, dudd ddud, dddu 4 p 1 u p3 d = 0.2251 dddd 1 p 0 u p4 d = 0.0509

Binomial price with twenty-five time-steps σ = 0.20 T = 0.5 n = 25 t = 0.02 u = e σ t = 1.029 d = 1 u = e σ t = 0.972 = er t d = 0.510 = 1 = 0.490

Pricing of the option with twenty-five time-steps n P S T p T P p T 1 0.0000 40.87 0.00 0.00 25 0.0000 38.61 0.00 0.00 300 0.0000 36.47 0.00 0.00 2300 0.0001 34.45 0.00 0.00 12650 0.0005 32.54 0.00 0.00 53130 0.0021 30.74 0.00 0.00 177100 0.0068 29.03 0.00 0.00 480700 0.0178 27.43 0.00 0.00 1081575 0.0384 25.91 0.00 0.00 2042975 0.0697 24.47 0.00 0.00 3268760 0.1071 23.12 0.00 0.00 4457400 0.1404 21.84 0.00 0.00 5200300 0.1573 20.63 0.37 0.06 5200300 0.1512 19.48 1.52 0.23 4457400 0.1245 18.40 2.60 0.32 3268760 0.0877 17.39 3.61 0.32 2042975 0.0527 16.42 4.58 0.24 1081575 0.0268 15.51 5.49 0.15 480700 0.0114 14.65 6.35 0.07 177100 0.0040 13.84 7.16 0.03 53130 0.0012 13.07 7.93 0.01 12650 0.0003 12.35 8.65 0.00 2300 0.0000 11.67 9.33 0.00 300 0.0000 11.02 9.98 0.00 25 0.0000 10.41 10.59 0.00 1 0.0000 9.83 11.17 0.00 Binomial tree with 4 time steps: p 0 = e 0.048 0.5 1.49 = 1.45 Binomial tree with 25 time steps: p 0 = e 0.048 0.5 1.43 = 1.40 Binomial tree with 125 time steps: p 0 = 1.41 Black-Scholes: p 0 = Xe rt N( d 2 ) S 0 N( d 1 ) = 1.41 1.0000 1.43

50-step binomial tree

100-step binomial tree

European put option Step 1 24.71 26.51 X = 21 0.00 = max(0, 21 26.51) 0.00 = max(0, 21 ) 1.00 = max(0, 21 ) = er t d = 0.525 = 1 = 0.475 16.19 3.63 = max(0, 21 ) 15.09 5.91 = max(0, 21 15.09)

European put option Step 2 = er t d = 0.525 = 1 = 0.475 24.71 0.00 0.47 2.24 16.19 4.68 0.00 e 0.048 0.125 ( 0.00 + 0.00) = 0.00 0.00 e 0.048 0.125 ( 0.00 + 1.00) = 0.47 1.00 e 0.048 0.125 ( 1.00 + 3.63) = 2.24 3.63 e 0.048 0.125 ( 3.63 + 5.91) = 4.68 5.91 X = 21

European put option Step 3 X = 21 = er t d = 0.525 = 1 = 0.475 0.22 1.30 3.38 0.00 e 0.048 0.125 ( 0.00 + 0.47) = 0.22 0.47 e 0.048 0.125 ( 0.47 + 2.24) = 1.30 2.24 e 0.048 0.125 ( 2.24 + 4.68) = 3.38 4.68

European put option Step 4 X = 21 = er t d = 0.525 = 1 = 0.475 0.73 2.27 0.22 e 0.048 0.125 ( 0.22 + 1.30) = 0.73 1.30 e 0.048 0.125 ( 1.30 + 3.38) = 2.27 3.38

European put option Step 5 X = 21 1.45 0.73 e 0.048 0.125 ( 0.73 + 2.27) = 1.45 2.27 = er t d = 0.525 = 1 = 0.475

American put option Step 1 24.71 26.51 X = 21 0.00 = max(0, 21 26.51) 0.00 = max(0, 21 ) 1.00 = max(0, 21 ) = er t d = 0.525 = 1 = 0.475 16.19 3.63 = max(0, 21 ) 15.09 5.91 = max(0, 21 15.09)

American put option Step 2 X = 21 = er t d = 0.525 = 1 = 0.475 24.71 0.00 0.47 2.36 16.19 4.81 0.00 e 0.048 0.125 ( 0.00 + 0.00) = 0.00 max(0, 21 24.71) = 0.00 0.00 e 0.048 0.125 ( 0.00 + 1.00) = 0.47 max(0, 21 21.64) = 0.00 1.00 e 0.048 0.125 ( 1.00 + 3.63) = 2.24 max(0, 21 ) = 2.36 3.63 e 0.048 0.125 ( 3.63 + 5.91) = 4.68 max(0, 21 16.19) = 4.81 5.91

American put option Step 3 X = 21 = er t d = 0.525 = 1 = 0.475 0.22 1.36 3.63 0.00 e 0.048 0.125 ( 0.00 + 0.47) = 0.22 max(0, 21 ) = 0.00 0.47 e 0.048 0.125 ( 0.47 + 2.36) = 1.36 max(0, 21 ) = 1.00 2.36 e 0.048 0.125 ( 2.36 + 4.81) = 3.50 max(0, 21 ) = 3.63 4.81

American put option Step 4 X = 21 = er t d = 0.525 = 1 = 0.475 0.76 2.42 0.22 e 0.048 0.125 ( 0.22 + 1.36) = 0.76 max(0, 21 ) = 0.00 1.36 e 0.048 0.125 ( 1.36 + 3.63) = 2.42 max(0, 21 ) = 2.36 3.63

American put option Step 5 X = 21 1.54 0.76 e 0.048 0.125 ( 0.76 + 2.42) = 1.54 2.42 max(0, 21 ) = 1.00 Binomial tree with 4 time steps: p 0 = 1.54 Binomial tree with 25 time steps: p 0 = 1.50 Binomial tree with 125 time steps: p 0 = 1.50 = er t d = 0.525 = 1 = 0.475

SAS-code Pricing of American options data binomial; N = 5; S0 = ; SIGMA = 0.20; T = 0.50; X = 21.00; R = 0.048; DT = T/(N-1); U = exp(+sigma*sqrt(dt)); D = exp(-sigma*sqrt(dt)); PU = (exp(r*dt)-d)/(u-d); PD = 1 - PU; Initialization of the dataset. Number of horizontal nodes. Initial stock price. Volatility of the stock price. Time-to-maturity. Strike price. Risk-free rate. Time-interval. Upward price movement coefficient. Downward price movement coefficient. Probability of an upward price movement. Probability of a downward price movement.

SAS-code Pricing of American options array S[251,251]; array P[251,251]; S[1,1] = S0; do I = 2 to N; do J = 1 to I; if J = 1 then S[I] = U*S[I-1,J]; if J > 1 then S[I] = D*S[I-1,J-1]; end; end; do J = 1 to N; P[N,J] = max(0,x-s[n,j]); end; do K = 1 to N-1; I = N-K; do J = 1 to I; P[I,J] = max(x-s[i,j], exp(-r*dt)*(pu*p[i+1,j]+pd*p[i+1,j+1])); end; end; PRICE = P[1,1]; Initialization of the stock price matrix. Initialization of the option price matrix. Initial price. Evaluation of horizontal levels. Evaluation of vertical levels. Stock price at upper nodes. Stock price at other nodes. End of vertical loop. End of horizontal loop. Evaluation of vertical levels (at the maturity). Put option payoff at the maturity End of vertical loop. Backward evaluation of horizontal levels. Calculation of the horizontal index value. Evaluation of vertical levels. Value of early exercise. Expected value of a future exercise. End of vertical loop. End of horizontal loop. Current price of the put option.