Fundamentals of Array Antennas

Σχετικά έγγραφα
Fundamentals of Signal Processing for Communications Systems

14.5mm 14.5mm

JOURNAL OF APPLIED SCIENCES Electronics and Information Engineering. Cyclic MUSIC DOA TN (2012)

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

Στοχαστικά Σήματα και Τηλεπικοινωνιές

ΕΠΛ 476: ΚΙΝΗΤΑ ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΠΛ 476: ΚΙΝΗΤΑ ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM


Applying Markov Decision Processes to Role-playing Game

LAN. On the Dynamic Performance of Indoor Positioning System using Wireless LAN on Smartphone

Vol.4-DCC-8 No.8 Vol.4-MUS-5 No.8 4// 3 3 Hanning (T ) 3 Hanning 3T (y(t)w(t)) dt =.5 T y (t)dt. () STRAIGHT F 3 TANDEM-STRAIGHT[] 3 F F 3 [] F []. :

C F E E E F FF E F B F F A EA C AEC

SNR F0 [2], [3], [4] F0 F0 F0 F0 F0 TUSK F0 TUSK F0 6 TUSK 6 F0 2. F0 F0 [5] [6] [7] p[8] Cepstrum [9], [10] [11] [12] [13] F0 [14] F0 [15] DIO[16] [1

Maximum power dynamic acoustic source direction-of-arrival tracking algorithm based on acoustic vector sensor

Vol. 30 No Journal of Jilin University Information Science Edition Sept. 2012

Interleaving Differential MMSE Multiuser Detection Based on Cyclic-stationary Period

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o


/MAC DoS. A Coding Scheme Using Matched Filter Resistant against DoS Attack to PHY/MAC Layer in Wireless Communications

ΣΧΟΛΗ Σχολή Τεχνολογικών Εφαρμογών ΤΜΗΜΑ Ηλεκτρονικών Μηχανικών Τ.Ε. ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ Προπτυχιακό ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 5

Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques

Contents QR Decomposition: An Annotated Bibliography Introduction to Adaptive Filters

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

Fundamentals of Multiplexing and Multiple Access Technologies

A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems

Simplex Crossover for Real-coded Genetic Algolithms

A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3

A research on the influence of dummy activity on float in an AOA network and its amendments

ΑΣΗΜΑΚΗΣ Κ. ΛΕΡΟΣ. Μόνιµος Επίκουρος Καθηγητής Τµήµα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστηµάτων Πανεπιστήµιο Αιγαίου ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

w o = R 1 p. (1) R = p =. = 1

Error ana lysis of P2wave non2hyperbolic m oveout veloc ity in layered media

ΑΚΑΔΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ

Homework 8 Model Solution Section

ER-Tree (Extended R*-Tree)

JOURNAL OF APPLIED SCIENCES Electronics and Information Engineering . MUSIC MUSIC TN (2010)

FX10 SIMD SIMD. [3] Dekker [4] IEEE754. a.lo. (SpMV Sparse matrix and vector product) IEEE754 IEEE754 [5] Double-Double Knuth FMA FMA FX10 FMA SIMD

Η Διαδραστική Τηλεδιάσκεψη στο Σύγχρονο Σχολείο: Πλαίσιο Διδακτικού Σχεδιασμού

Numerical Analysis FMN011

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity

Buried Markov Model Pairwise

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

Διπλωματική Εργασία. του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

[5] F 16.1% MFCC NMF D-CASE 17 [5] NMF NMF 3. [5] 1 NMF Deep Neural Network(DNN) FUSION 3.1 NMF NMF [12] S W H 1 Fig. 1 Our aoustic event detect

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

Ψηφιακή Επεξεργασία Φωνής

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Probabilistic Approach to Robust Optimization

ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ

Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices

GUI

Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων»

Journal of Beijing University of Posts and Telecommunications. Blind CFR Estimation for SC2FDE Systems

Mean-Variance Analysis

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

, Snowdon. . Frahm.

BCI On Feature Extraction from Multi-Channel Brain Waves Used for Brain Computer Interface

Echo path identification for stereophonic acoustic echo cancellation without pre-processing

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA

ECE 5318/6352 Antenna Engineering. Spring 2006 Dr. Stuart Long. Chapter 6. Part 1 Array Basics

Ένα µοντέλο Ισοδύναµης Χωρητικότητας για IEEE Ασύρµατα Δίκτυα. Εµµανουήλ Καφετζάκης

ΠΕΡΙΛΗΠΤΙΚΟ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

X g 1990 g PSRB

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

ST5224: Advanced Statistical Theory II

Journal of the Institute of Science and Engineering. Chuo University

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1


6.3 Forecasting ARMA processes

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο

Topic 4. Linear Wire and Small Circular Loop Antennas. Tamer Abuelfadl

ΘΕΜΑΤΙΚΗ ΕΥΡΕΤΗΡΙΑΣΗ ΚΑΙ ΚΑΘΙΕΡΩΣΗ ΟΡΟΛΟΓΙΑΣ ΣΤΙΣ ΤΕΧΝΙΚΕΣ ΒΙΒΛΙΟΘΗΚΕΣ: Η ΕΜΠΕΙΡΙΑ ΣΤΟ ΤΕΕ

ΣΤΟΙΧΕΙΑ ΠΡΟΤΕΙΝΟΜΕΝΟΥ ΕΞΩΤΕΡΙΚΟΥ ΕΜΠΕΙΡΟΓΝΩΜΟΝΟΣ Προσωπικά Στοιχεία:

Μειέηε θαη αλάιπζε επίδνζεο πξσηνθόιισλ δξνκνιόγεζεο ζε θηλεηά ad hoc δίθηπα κε βάζε ελεξγεηαθά θξηηήξηα ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Development and Verification of Multi-Level Sub- Meshing Techniques of PEEC to Model High- Speed Power and Ground Plane-Pairs of PFBS

Stabilization of stock price prediction by cross entropy optimization

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f

ΗΜΟΣΙΕΥΣΕΣ ΣΕ ΙΕΘΝΗ ΠΕΡΙΟ ΙΚΑ [1] C. Bouras, A. Gkamas, G. Kioumourtzis, Adaptive smooth multicast protocol for multimedia transmission:

PLATEAU METEOROLOGY. X 6 min. 6 min Vol. 34 No. 4 August doi /j. issn X X / cosθcosφ P412.

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

Quick algorithm f or computing core attribute

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Πειραματική εφαρμογή του αλγόριθμου εκτίμησης DoA MUSIC σε σύστημα εικονικού πολλαπλού δέκτη

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής

ΨΗΦΙΑΚΕΣ ΤΕΧΝΙΚΕΣ ΧΩΡΙΚΗΣ ΔΙΑΜΟΡΦΩΣΗΣ ΤΟΥ ΔΙΑΓΡΑΜΜΑΤΟΣ ΑΚΤΙΝΟΒΟΛΙΑΣ ΣΕ ΑΣΥΡΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ ΕΠΟΜΕΝΗΣ ΓΕΝΙΑΣ

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

[2] T.S.G. Peiris and R.O. Thattil, An Alternative Model to Estimate Solar Radiation

Classification and Comparison of Energy-Efficient Routing Algorithms in Wireless Networks

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ

Algorithms to solve Unit Commitment Problem

Transcript:

Fundamentals of Array Antennas Nobuyoshi Kikuma 466-8555 Dept. of Computer Science and Engineering, Nagoya Institute of Technology Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan Abstract Array antenna technologies have contributed to development and progress of recent wireless systems. This lecture summarizes fundamentals of those array antenna technologies and also explains the mechanism and basic performances of array antennas. In addition, relating technologies, such as adaptive array antennas and direction-of-arrival estimation methods, are presented. 1. [1] LAN MUSIC [2] [7] [2], [8], [9] 2. 2. 1 1 K θ 1 E 0 g(θ) k ( E k = E 0 g(θ)exp j 2π ) λ d k sin θ (1) (k =1, 2,...,K) 1

λ d k k 1 E sum E sum = E 0 g(θ)d(θ) (2) K { D(θ) = A k exp j ( 2πλ )} d k sin θ + δ k (3) k=1 A k δ k k D(θ) (2) g(θ) D(θ) (pattern multiplication) 2π λ d k sin θ gm + δ k =2mπ (m = ±1, ±2,...) (5) θ gm grating lobe 2 (2) E sum θ 2 null -30 0 30-30 30-60 } 0 60-60 60-90 90-30 -30-20 -20-10 -10-40 0 0-30 -30-20 -20 0-10 -10-40 0 [db] [db] -90 90 d k ( c ) sinθ = cτ k θ (a) 6 (b) 6 2: d K d k d 1 #K #k #1 A K A k A 1 K k 1 Σ 1: K θ 0 δ k δ k = 2π λ d k sin θ 0 (4) (3) A k Dolph-Chebyshev array [10] 2. 2 2

3 K #1 #2 θ #K x 1 (t) x 2 (t) w 1 w 2 + x K (t) w K y(t) x(t) w y(t) 3: K x k (t) k w k k y(t) x(t) = Δ [x 1 (t),x 2 (t),...,x K (t)] T (6) w = Δ [w 1,w 2,...,w K ] T (7) y(t) y(t) =w H x(t) =x T (t)w (8) T H w k x k (t) 1 A k δ k wk = A k exp(jδ k ) (9) () (k, l) k l R xx Δ = E[x(t)x H (t)] (10) E[ ] P out = 1 2 E[ y(t) 2 ]= 1 2 wh R xx w (11) [1] SINR(Signal-to-Interference-plus-Noise Ratio) SINR = Δ + (12) db θ 0 x(t) =s(t)a(θ 0 )+n(t) (13) [ a(θ 0 )= g 1 (θ 0 )exp ( j 2πλ ) d 1 sin θ 0 ( g K (θ 0 )exp j 2π )] T λ d K sin θ 0 (14) s(t) a(θ 0 ) n(t) 3

g k (θ 0 ) k θ 0 g k (θ) =1(k =1, 2,...,K) y(t) SINR y(t) =s(t)w H a(θ 0 )+w H n(t) (15) SINR = E[ s(t)wh a(θ 0 ) 2 ] E[ w H n(t) 2 ] = E[ s(t) 2 ] w H a(θ 0 ) 2 w H E[n(t)n H (t)]w = P s w H a(θ 0 ) 2 P n w H w (16) (17) (18) P s = E[ s(t) 2 ] P n E[n(t)n H (t)] = P n I I SINR w H w = (18) w = a(θ 0 ) (19) (phased array) [10] 3. 3. 1 adaptive beamforming adaptive null steering [1] 1) (Minimum Mean Square Error: MMSE) 2) SNR (Maximum Signal-to-Noise ratio: MSN) 3) (Directionally Constrained Minimization of Power: DCMP) 4) (Power Inversion: PI) 5) (Constant Modulus Algorithm: CMA) 1) 4) 3. 2 MMSE MMSE 1960 Widrow [11] Widrow LMS Compton [12], [13] LMS LMS MMSE MMSE LMS MMSE 4

e(t) r(t) y(t) e(t) =r(t) y(t) =r(t) w H x(t) (20) E [ e(t) 2] = E [ r(t) y(t) 2] (21) = E [ r(t) w H x(t) 2] (22) = E [ r(t) 2] w T rxr w H r xr + w H R xx w (23) r xr r xr = E[x(t)r (t)] (24) w (23) (23) w R xx w (23) w opt w opt = R 1 xx r xr (25) MMSE [14] MMSE [15] 3. 3 MSN SNR MSN 1950 Howells IF [1] Applebaum SNR Howells-Applebaum loop MSN [16] Howells-Applebaum(HA) MSN SNR x(t) s(t) u(t) n(t) x(t) =s(t)+u(t)+n(t) (26) y s (t) y u (t) y n (t) y s (t) =w H s(t) =s T (t)w (27) y u (t) =w H u(t) =u T (t)w (28) y n (t) =w H n(t) =n T (t)w (29) P Sout = 1 2 E [ y s (t) 2] = 1 2 wh R ss w (30) P Uout = 1 2 E [ y u (t) 2] = 1 2 wh R uu w (31) P Nout = 1 2 E [ y n (t) 2] = 1 2 P nw H w (32) R ss R uu P n s(t) s(t) =s(t)v s = s(t)a(θ s ) (33) s(t) θ s v s R ss R ss = E [ s(t)s H (t) ] = P s v s v H s (34) P s SNR SINR SNR = P Sout = wh R ss w P Uout + P Nout w H R nn w (35) 5

R nn R nn = R uu + P n I (36) SNR w (35) SNR SNR w (35) (34) R xx = P s v s v H s + R nn (37) w opt = R 1 xx v s (38) [1] MSN v s = a(θ s ) MSN 3. 4 DCMP Frost MMSE fidelity constraint CMP [17] Frost fidelity constraint ( w 1 + w 2 + + w K =1 ) Frost prefilter (DCMP) [18] [19] 3 K DCMP : Directionally Constrained Minimization of Power N C T w = h (39) C =[c 1 c 2 c N ] (40) h =[h 1 h 2 h N ] T (41) c n (n =1,..., N) C h n (n =1,..., N) c n h h w H a(θ s )=h (42) y s (t) =w H {s(t)a(θ s )} = s(t)w H a(θ s )=hs(t) (43) c = a(θ s ) (39) DCMP DCMP ( min P out = 1 ) w 2 wh R xx w subject to C T w = h Lagrange [1] w opt = Rxx 1 C(C H Rxx 1 C) 1 h (44) N =1: c T w = h (44) w opt = γr 1 xx c, γ Δ = h c H R 1 xx c 3. 5 (45) PIAA : Power Inversion Adaptive Array (K 1) 6

[20] MMSE MSN DCMP PIAA PIAA PIAA CMPPIAA PIAA [1] 4. w opt = Rxx 1 t (46) t =[1, 0,, 0] T (47) 4. 1 LAN ( ) [4] Capon (LP:Linear Prediction) [2] MUSIC ESPRIT [4], [5] [2], [8], [9] Capon DCMP LP [9] 4. 2 3 K L s l (t) θ l (l =1, 2,...,L) a(θ l ) L x(t) = s l (t)a(θ l )+n(t) (48) l=1 = As(t)+n(t) (49) A =[a(θ 1 ), a(θ 2 ),, a(θ L )] (50) s(t) =[s 1 (t),s 2 (t),,s L (t)] T (51) A n(t) 0 ( ) σ 2 (= P n ) R xx R xx = E[x(t)x H (t)] = AE[s(t)s H (t)]a H + E[n(t)n H (t)] = ASA H + σ 2 I (52) S = Δ E[s(t)s H (t)] (53) (53) S S = diag{p 1,P 2,,P L } (54) Δ [ P l = E sl (t) 2] (l =1, 2,...,L) (55) P l 7

4. 2. 1 (beamformer) (uniform) () θ 2.2 ( ) w = a(θ) (56) θ 90 90 θ a(θ) θ (mode vector) P out = 1 2 ah (θ)r xx a(θ) (57) ( ) P BF (θ) = P out a H (θ)a(θ)/2 = ah (θ)r xx a(θ) a H (θ)a(θ) (58) R xx a(θ) P BF (θ) θ P BF (θ) [1] 4. 2. 2 Capon Capon (DCMP) (45) c = a(θ) h =1 P out = 1 2 wh CPR xx w CP (60) = 1 2a H (θ)r 1 xx a(θ) (61) Capon P CP (θ) =2P out = 1 a H (θ)r 1 xx a(θ) (62) R xx a(θ) P CP (θ) θ 4. 2. 3 Capon (Linear Prediction) 2 K 1 ˆx 1 (t) = K wkx k (t) (63) k=2 ˆx 1 (t) 1 ε(t) ε(t) Δ = x 1 (t) ˆx 1 (t) = K wkx k (t) (64) k=1 = w H x(t) (w 1 1) (65) w 2 w CP = R 1 xx a(θ) a H (θ)r 1 xx a(θ) (59) E[ ε(t) 2 ]=w H R xx w =2P out (66) 8

w 1 =1 (PIAA) w LP (46), (47) w LP K 1 > = L P LP (θ) = 1 w H LP a(θ) 2 (67) Capon R xx a(θ) P LP Capon R xx = ASA H + σ 2 I R xx e i =(ASA H + σ 2 I)e i (71) = ASA H e i + σ 2 e i (72) = μ i e i + σ 2 e i (73) =(μ i + σ 2 )e i (i =1, 2,...,K) (74) Δ λ i = μi + σ 2 (i =1, 2,...,K) (75) R xx λ 1 > = λ 2 > = > = λ L >λ L+1 = = λ K = σ 2 (76) σ 2 L λ L+1,...,λ K R xx e i =(ASA H + σ 2 I)e i = ASA H e i + σ 2 e i 4. 2. 4 MUSIC MUSIC(MUltiple SIgnal Classification) S L A L R xx = ASA H L [1] μ i (i =1, 2,...,K) e i (i =1, 2,...,K) ASA H e i = μ i e i (i =1, 2,...,K) (68) μ 1 > = μ 2 > = μ L >μ L+1 = = μ K = 0 (69) e H i e k = δ ik (i, k =1, 2,...,K) (70) δ ik = λ i e i = σ 2 e i (77) (i = L +1,,K) ASA H e i = 0 (i = L +1,,K) (78) A S A H e i = 0 (i = L +1,,K) (79) a H (θ l )e i =0 (l =1, 2,...,L; i = L +1,...,K) (80) e L+1,...,e K L {e 1,, e L } (signal subspace) 9

{e L+1,, e K } (noise subspace) MUSIC (K L) P MU (θ) Δ = a H (θ)a(θ) (81) K e H i a(θ) 2 i=l+1 a H (θ)a(θ) = a H (θ)e N EN Ha(θ) (82) Δ E N = [el+1,, e K ] (83) MUSIC θ L {θ 1,,θ L } (76) K > = L +1 5. [1] :, (2003). [2] S.U.Pillai : Array Signal Processing, Springer- Verlag New York Inc. (1989). [3] H.Krim and M.Viberg : Two Decades of Array Signal Processing Research The Parametric Approach, IEEE Signal Processing Magazine, vol.13, No.4, pp.67 94 (July 1996). [4] R.O.Schmidt : Multiple Emitter Location and Signal Parameter Estimation, IEEE Trans., vol.ap-34, No.3, pp.276 280 (Mar. 1986). [5] R.Roy and T.Kailath : ESPRIT Estimation of Signal Parameters via Rotational Invariance Techniques, IEEE Trans., vol.assp-37, pp.984 995 (July 1989). [6], 33, pp.77 84 2006. [7] P.J.Chung and J.F.Bohme DOA estimation using fast EM and SAGE algorithms, Signal Processing, vol.82, pp.1753 1762, Nov. 2002. [8] Y.Ogawa and N.Kikuma : High-Resolution Techniques in Signal Processing Antennas, IEICE Trans. Commun., vol.e78-b, No.11, pp.1435 1442 (Nov. 1995). [9] W.F.Gabriel : Spectral Analysis and Adaptive Array Supperresolution Techniques, Proc. IEEE, vol.68, No.6, pp.654 666 (June 1980). [10] C.A.Balanis, Antenna Theory: Analysis and Design, Wiley-Interscience, 3rd Ed., 2005. [11] B.Widrow, et al. : Adaptive Antenna Systems, Proc. IEEE, vol.55, No.12, pp.2143 2159 (Dec. 1967). [12] R.L.Riegler and R.T.Compton,Jr. : An Adaptive Array for Interference Rejection, Proc. IEEE, vol.61, No.6, pp.748 758 (June 1973). [13] R.T.Compton, Jr. : An Adaptive Array in a Spread-Spectrum Communication System, Proc, IEEE, vol.66, No.3, pp.289 298 (Mar. 1978). [14] Y.Ogawa, et al. : Fading Equalization Using an Adaptive Antenna for High-Speed Digital Mobile Communications, Proc. ISAP, vol.4, 4A2-3, pp.857 860 (Aug. 1989). [15] Y.Ogawa, et al. : An LMS Adaptive Array for Multipath Fading Reduction, IEEE Trans. Aerosp. & Electron. Syst., vol.aes-23, No.1, pp.17 23 (Jan. 1987). [16] S.P.Applebaum : Adaptive Arrays, IEEE Trans. Antennas & Propag., vol.ap-24, No.5, pp.585 598 (Sept. 1976). [17] O.L.Frost,III : An algorithm for linearly constrained adaptive array processing, Proc. IEEE, 60, 8, pp.926 935 (Aug. 1972). [18] K.Takao, et al. : An Adaptive Antenna Array under Directional Constraint, IEEE Trans. Antennas & Propag. vol.ap-24, No.5, pp.662 669 (Sept. 1976). [19] K.Takao and N.Kikuma : Tamed Adaptive Antenna Array, IEEE Trans. Antennas & Propag. vol.ap-34, No.3, pp.388 394 (Mar. 1986). [20] R.T.Compton, Jr. : The Power Inversion Adaptive Array : Concept and Performance, IEEE Trans. Aerosp. & Electron. Syst., vol.aes-15, No.6, pp.803 814 (Nov. 1979). 10