Financial Economic Theory and Engineering Formula Sheet

Σχετικά έγγραφα
Financial Economic Theory and Engineering Formula Sheet

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A

Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Homework 8 Model Solution Section

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

ST5224: Advanced Statistical Theory II

(1) P(Ω) = 1. i=1 A i) = i=1 P(A i)


ΤΟ ΜΟΝΤΕΛΟ Οι Υποθέσεις Η Απλή Περίπτωση για λi = μi 25 = Η Γενική Περίπτωση για λi μi..35

Math 6 SL Probability Distributions Practice Test Mark Scheme


Instruction Execution Times

Mean-Variance Analysis

SPECIAL FUNCTIONS and POLYNOMIALS

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Financial Risk Management

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Statistical Inference I Locally most powerful tests

Homework for 1/27 Due 2/5

2 Composition. Invertible Mappings

Το άτομο του Υδρογόνου

The ε-pseudospectrum of a Matrix

Other Test Constructions: Likelihood Ratio & Bayes Tests


Probability and Random Processes (Part II)

Part III - Pricing A Down-And-Out Call Option

FORMULAS FOR STATISTICS 1

6. MAXIMUM LIKELIHOOD ESTIMATION


Every set of first-order formulas is equivalent to an independent set

Uniform Convergence of Fourier Series Michael Taylor

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

Matrices and Determinants

4.6 Autoregressive Moving Average Model ARMA(1,1)

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

TeSys contactors a.c. coils for 3-pole contactors LC1-D

( ) ( ) ( ) ( ) ( ) 槡 槡 槡 ( ) 槡 槡 槡 槡 ( ) ( )

Financial Risk Management

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

(... )..!, ".. (! ) # - $ % % $ & % 2007

Math221: HW# 1 solutions

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

An Inventory of Continuous Distributions

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

D Alembert s Solution to the Wave Equation

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

No General Serial No JOURNAL OF XIAMEN UNIVERSITY Arts & Social Sciences CTD F CTD

Solution Series 9. i=1 x i and i=1 x i.

(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

Approximation of distance between locations on earth given by latitude and longitude

Lecture 34 Bootstrap confidence intervals

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

( y) Partial Differential Equations

Advanced Subsidiary Unit 1: Understanding and Written Response

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

C.S. 430 Assignment 6, Sample Solutions

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Lifting Entry (continued)

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci

Areas and Lengths in Polar Coordinates

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

m i N 1 F i = j i F ij + F x

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

Areas and Lengths in Polar Coordinates

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Geodesic Equations for the Wormhole Metric

Calculating the propagation delay of coaxial cable

Premia 14 Closed Formula Methods

6.3 Forecasting ARMA processes

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Solutions to Exercise Sheet 5

5.4 The Poisson Distribution.

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Homework 3 Solutions

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής

Eulerian Simulation of Large Deformations

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

Galatia SIL Keyboard Information

On the Galois Group of Linear Difference-Differential Equations

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F


!"#$ % &# &%#'()(! $ * +

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns

Transcript:

Financial Economic heory and Engineering Formula Sheet 2010 Morning and afternoon exam booklets will include a formula package identical to the one attached to this study note. he exam committee felt that by providing many key formulas, candidates would be able to focus more of their exam preparation time on the application of the formulas and concepts to demonstrate their understanding of the syllabus material and less time on the memorization of the formulas. he formula sheet was developed sequentially by reviewing the syllabus material for each major syllabus topic. Candidates should be able to follow the flow of the formula package easily. We recommend that candidates use the formula package concurrently with the syllabus material. Not every formula in the syllabus is in the formula package. Candidates are responsible for all formulas on the syllabus, including those not on the formula sheet. Candidates should carefully observe the sometimes subtle differences in formulas and their application to slightly different situations. For example, there are several versions of the Black-Scholes-Merton option pricing formula to differentiate between instruments paying dividends, tied to an index, etc. Candidates will be expected to recognize the correct formula to apply in a specific situation of an exam question. Candidates will note that the formula package does not generally provide names or definitions of the formula or symbols used in the formula. With the wide variety of references and authors of the syllabus, candidates should recognize that the letter conventions and use of symbols may vary from one part of the syllabus to another and thus from one formula to another. We trust that you will find the inclusion of the formula package to be a valuable study aide that will allow for more of your preparation time to be spent on mastering the learning objectives and learning outcomes. 1

General Formulas Lognormal distribution: { 1 fx = xσ 2π exp 1 } lnx µ 2 2 σ 2 EX = e µ+σ2 /2 VX = e 2µ+σ2 e σ2 1 lnx µ PrX x = Φ σ x > 0 Normal distribution: fx = 1 { σ 2π exp 1 } x µ 2 2 σ 2 Capital Asset Pricing Model: ER i = R f + β i ER m R f where β i = CovR i, R m VarR m Weighted Average Cost of Capital: B WACC = 1 τ c k b B + S + k S s B + S where k b =return on debt, k s =return in equity. GARCH1,1 Model Y t = µ + σ t ɛ t σ 2 t = α 0 + α 1 Y t 1 µ 2 + βσ 2 t 1 RSLN-2 Model Y t ρ t N µ ρt, σ 2 ρ t where {ρt }, t = 1, 2,..., is a Markov process with 2-states. p ij = Prρ t+1 = j ρ t = i Conditional ail Expectation For loss L, continuous at V α = F 1 L α: CE α L = E L L > V α L If there is a probability mass at V α, define β = max{β : V α = V β }, then CE α L = 1 β E X X > V α + β αv α 1 α 2

Vasicek Model Bt; rt dr = ab rdt + dz P t; = At; e a t 1 e h Bt; + t a 2 b 2 =2 2 Bt; 2 i Bt; = At; = exp a a 2 4a Cox Ingersoll Ross Model Bt; rt dr = ab rdt + p rdz P t; = At; e 2e t 1 2e a+ t=2 Bt; = At; = + ae t 1 + 2 + ae t 1 + 2 Ho-Lee Model dr = tdt + dz t = F t 0; t + 2 t P t; = At; e rt t ln At; = ln P 0; P 0; t + tf 0; t 1 2 2 t t 2 Hull-White Extended Vasicek Model 2ab= 2 dr = t ardt + dz t = F t 0; t + af 0; t + 2 2a 1 Bt; rt P t; = At; e a t 1 e Bt; = a ln At; = ln P 0; P 0; t + Bt; F 0; t 1 4a 3 2 e a e at 2 e 2at 1 e 2at Itô s Lemma Let X be an Itô process such that dx t = ut; X t dt + vt; X t dw t ; and let gt; x denote a twice di erentiable function. hen, for Y t = gt; X t, dy t = @g @t t; X t dt + @g @x t; X t dx t + 1 2 Geometric Brownian Motion @ 2 g @x t; X t dx 2 t 2 : ds t S t = dt + dz t Black-Scholes Pricing Formulas c t = S t Nd 1 Ke r t Nd 2 3

p t = Ke r t N d 2 S t N d 1 where d 1 = lns t/k + r + σ 2 /2 t σ t and d 2 = d 1 σ t 4

Copeland, Weston, Shastri: Financial heory and Corporate Policy Chapter 2 2.2 Rev t + m t S t = Div t + W &S t + I t 2.5 NI t = Rev t W &S t dep t 2.7 NI t A t S 0 = 1 + k s t t=1 2.13 F CF = EBI 1 τ c + dep I Chapter 6 6.34 R jt = ER jt + β j δ mt + ε jt 6.36 R jt R ft = R mt R ft β j + ε jt 6.36 R pt = γ 0 + γ 1 β p + ε pt 6.37 R it = α i + β i R mt + ε it 6.38 ER i = ER Z + ER m ER Z β i 6.40 ER i R f = b i ER m R f + s i ESMB + h i EHML 6.41 λ i = ER m ER Z 6.46 R it = γ 0t + γ 1t β it + ε it 6.49 ER i = ER z,i + ER I ER z,i β i,i 6.50 Ri = E R i + b i1 F1 +... + b ik Fk + ε i 6.57 E R i = λ 0 + λ 1 b i1 +... + λ k b ik 6.59 ER i R f = δ1 R f bi1 +... + δk R f bik 6.60 b ik = CovR i, δ k /V arδ k Chapter 9 9.1 CS A, S B, = S A Nd 1 S B Nd 2 where d 1 = ln S A /S B + V 2 /V ; d 2 = d 1 V and V 2 = V 2 A 2ρ AB V A V B + V 2 B Chapter 10 10.1 V η m qm max a pe mua, e V η 0 e 5

10.4 pr c 2 + 1 pdr c 2 = p r/d c 1 + 1 pr c 1 10.7 Fair Game: ε j,t+1 = P j,t+1 P jt P jt EP j,t+1 η t P jt P jt = 0 10.9a Submartingale: EP j,t+1 η t P jt P jt = Er j,t+1 η t > 0 10.9b Martingale: EP j,t+1 η t P jt = Er j,t+1 η t = 0 P jt 10.14 ER jt β jt = R jt + ER mt β mt R ft βjt Chapter 11 11.2 R jt = α j + β 1j R mt R ft + β 2j RLE t RSE t + β 3j HB M t LB M t + ε jt 11.3 NI jt = â + ˆb j m t + ε jt 11.4 NI j,t+1 = â + ˆb j m t+1 Chapter 12 12.1 V α = 1 µα λ 1 + r 12.3 W 0 = X + βv M + Y 1 αv α 12.4 W1 = αµ + ε µα + λ + β M 1 + rv M + 1 + rw 0 X + µα λ E U W1 12.5 = E U W1 µ + ε µα + λ + 1 αµ α = 0 α E U W1 12.6 = E U W1 M 1 + rvm = 0 where µ α = µ β α E U W1 ε + λ 12.7 1 αµ α = E U W1 12.15 ED = 1 V D + µ τ p D β 1 + r 12.16 ED = 1 1 + r D X V D + t2 τ pd β D2 2t 12.17 V D = τ p + β D t 12.18 V D t = 1 t r 2 τ pd t β D t 2 2t 6 X DfXdX

12.20 V D t = τ p + βad t 12.21 τp 1 + r τp A = + β 1 + 2r β 12.22 I + D = C + Np e = C + P e L τ p D + 12.24 max D 12.25 τ p = τ p + P D 1 + r 1 + 1 + 2r P + τp D L P + τ p D + I C L + I C P + τ p D + I C X 12.26 DX = 1 τ p maxi C + L, 0 ln X 12.30 V0 old = P E + S + a + b P + E 12.36 W 0 z = αp z + βp m, P 12.37 W s n, z = α P n, z + βp n, p 12.38 W n = α P n t 2 p γ 1 = 0 12.40 P n, z = kn + cz 1/γ X where k = t 2 γ/α 1/γ β1 + 2r τ 2 p 1 + r 2 12.41 Mn, z = P n, z n, P = k1 t 1 n + cz 1/γ t 2 nk 1 γ n + cz 1 γ/γ 12.45 V 0 = 1 tx 0 12.46 EX n = Xn = X 0s 0 + Ŷmns m s 0 + s m 12.47 V 1 n = Xn n C 12.50 V 2, Y = X 0s 0 + Ŷms m + Y F s E s 0 + s m + F s XtX/n, Ŷm, Y C X 0 s 0 +Y ms m s 0 +s m F s X 0 s 0 + Ŷms m + 12.51 EV 2 Y m = C s 0 + s m + F s dα B 12.54 V n Bn, D αd = 0 dd D d 2 α dα B 2 B 12.55 V n Bn, D 2 αd < 0 dd 2 dd D D 2 12.56 α D n V n B n, D n V n I = 0 d 2 α dα B 12.57 V B 2 dd2 dd D α 2 B dd D 2 dn = dα dd 12.58 εα, D = a D 0 2 + D 2 1 α α 2 7 B n dv dn 2 B + α n D

αɛ γ 12.59 D = X 1 1 α1 ɛγ 12.60 max U s cs, p fs, p ads dp 12.61 12.63 cs,p,a V cs, p fs, p ads dp Ga V U s cs, p V cs, p 12.65 max Uk + λ a 12.68 max cs,a 12.70 12.73 max cs,p,a 12.74 12.75 = λ V cs, pfs, p ads dp Ga V Us csfs a ds + λ +µ V cs f a s ads G a U s cs = λ + µ f as a V cs fs a U s cs, p fs, p ads dp+λ +µ U s cs, p V cs, p U s cp V cp V cs, pf a s, p a ds dp G a = λ + µ f as, p a fs, p a V cs fs a ds Ga V f a1 p a = λ + µ 1 fp a + µ f a1 p a 2 fp a +... + µ f a1 p a n fp a 12.81 max cs,p,m,am,mm E s,p,m U s cs, p, m am 12.82 Subject to for all m E s,p m V cs, p, m Gam am V V X X = P X X CX X = 0 12.83 S = 1 βes α λ1 βcovs, R M 1 + r f 12.86 max α,β V cs, pfs, p a ds dp Ga V 1 βes α λ1 βcovs, R M 1 + r f +µ a EW + α + βes b VarW + 2βCovW, s + β 2 Vars V 12.90 β = λacovs, R M CovW, s 2bVars Vars { V + db 12.94 B new B = D P D + dd, 1,, r f, σ V + P 8 } V D, 1,, r f, σ V = D P X +P Y

Chapter 15 15.2 V U = E F CF or V U = EẼBI 1 τ c ρ ρ 15.3 ÑI + k d D = Rev Ṽ C F CC dep 1 τ c + k d Dτ c 15.4 V L = EẼBI 1 τ c ρ 15.6 V L = V U + τ c B 15.9 15.11 V L I = S0 I + Sn + B 0 I 1 τ c EEBI I > ρ + k ddτ c k b = S0 I + 1 1 τ c B I 15.18 k s = NI/ S = ρ + 1 τ c ρ k b B S 15.20 G = V L V U = τ c B 15.21 V U = EEBI 1 τ c1 τ ps ρ 15.23 V L = V U + 1 1 τ c1 τ ps 1 τ pb 15.28 β L = 1 + 1 τ c B S β U B where B = k d D1 τ pb /k b 15.33 R f S L + λ 1 τ c CovEBI, R m λ 1 τ c B CovR bj, R m = EEBI 1 τ c ER bj B1 τ c 15.38 ds = S S dv + V t dt + 1 2 S 2 2 V 2 σ2 V 2 dt 15.40 r s = S V V S r V 15.43 S = V Nd 1 e r f DNd 2 15.46 β S = 1 1 D/V e r f Nd 2 /Nd 1 β V 15.47/8 k s = R f + R m R f Nd 1 V S β V = R f + Nd 1 R v R f V S 15.52 k b = R f + ρ R f N d 1 V B Note: his is a correction to the formula in the reading. 15.55 dv V = µv, tdt + σdw 9

15.57 1 2 σ2 V 2 F V V V + rv F V V rf V + C = 0 15.58 F V = A 0 + A 1 V + A 2 V 2r/σ2 15.59 V = V B BV = 1 αv B V BV C/r 15.61 BV = 1 p B C/r + p B 1 αv B where p B = V/V B 2r/σ2 15.62 V = V B DCV = αv B V DCV 0 15.63 DCV = αv B V/V B 2r/σ2 15.67 V L V = V U V + c BV DCV = V U V + c B p B c B αv B p B { V1 if V 15.68 M = 1 + rγ 0 V 0 + γ 1 D 1 V 1 C if V 1 < D 15.69 { γ0 1 + r V 1a M a = 1+r 1V 1a if D < D V 1a γ 0 1 + r V 1b 1+r 1V 1a if D < D 15.70 { γ0 1 + r V 1a M b = 1+r 1V 1b C if D D V 1a γ 0 1 + r V 1b 1+r 1V 1b if D < D Chapter 16 16.2 V i t = Div it + 1 + n i tp i t + 1 1 + k u t + 1 16.8 Ṽ i t = ẼBI it + 1 Ĩit + 1 + Ṽit + 1 1 + k u t + 1 16.9 Ỹ di = ẼBI rdc 1 τ c rd pi 1 τ pi 16.10 Ỹ gi = ẼBI rd c 1 τ c 1 τ gi rd pi 1 τ pi 16.26 S 1 ES 1 = ε 1 1 + γ = EBI 1 E 0 EBI 1 1 + γ 1 + k 1 + k 16.27 Div it = a i + c i Div it Div i,t 1 + U it 16.33 Div t = β 1 Div t 1 + β 2 NI t + β 3 NI t 1 + Z t 16.35 P it = a + bdiv it + cre it + ε it 16.38 Rj = γ 0 + Rm γ 0 β j + γ 1 DY j DY m /DY m + ε j W PE P 0 P P 0 16.43 = 1 F P + F P N 0 P 0 P 0 P 0 10

Hull: Options Futures and Other Derivatives Chapter 11: Binomial rees 11.1 = f u f d S 0 u S 0 d 11.5/6 f = e r t pf u + 1 pf d where p = er t d u d 11.13/14 u = e σ t d = e σ t Chapter 12: Wiener Processes and Itôs Lemma 12.17 G = ln S dg = µ σ 2 /2 dt + σ dz Chapter 13: he Black-Scholes-Merton model f f 13.9 df = µs + S t + 1 2 f 2 S 2 σ2 S 2 dt + f S σsdz 13.16 f t + rs f S + 1 2 σ2 S 2 2 f S 2 = rf Chapter 17: Greek Letters 17. call = Nd 1 put = Nd 1 1 17.2 Θcall = S 0N d 1 σ 2 17.2 Θput = S 0N d 1 σ 2 17. Γcall = Γput = N d 1 S 0 σ 17.4 Θ + rs + 1 2 σ2 S 2 Γ = rπ rke r Nd 2 17. Vcall = Vput = S 0 N d 1 17. rhocall = K e r Nd 2 17. rhoput = K e r N d 2 + rke r N d 2 Chapter 19: Basic Numerical Procedures 19.8 = f 1,1 f 1,0 S 0 u S 0 d 11

19.9 Γ = f 2,2 f 2,1 /S 0 u 2 S 0 f 2,1 f 2,0 /S 0 S 0 d 2 h 19.10 Θ = f 2,1 f 0,0 2 t 19.12 p = eft gt t d u d 19.27 a j f i,j 1 + b j f i,j + c j f i,j+1 = f i+1,j where a j = 1 2 r qj t 1 2 σ2 j 2 t, b j = 1 + σ 2 j 2 t + r t and c j = 1 2 r qj t 1 2 σ2 j 2 t 19.34 f i,j = a jf i+1,j 1 + b jf i+1,j + c jf i+1,j+1 where a 1 j = 1 1 + r t 2 r qj t + 1 2 σ2 j 2 t, b j = and c 1 1 j = 1 + r t 2 r qj t + 1 2 σ2 j 2 t 1 1 σ 2 j 2 t 1 + r t 19.35 α j f i,j 1 + β j f i,j + γ j f i,j+1 = f i+1,j where α j = t r q σ2 2 Z 2 and γ j = t r q σ2 2 Z 2 t 2 Z 2 σ2 t 2 Z 2 σ2 β j = 1 + t Z 2 σ2 + r t 19.36 αjf i+1,j 1 + βj f i+1,j + γj f i+1,j+1 = f i,j where αj 1 = t r q σ2 1 + r t 2 Z 2 and βj 1 = 1 t 1 + r t Z 2 σ2 and γ j = 1 1 + r t t 2 Z r q σ2 2 + t 2 Z 2 σ2 + t 2 Z 2 σ2 Chapter 21: Estimating Volatilities and Correlations 21.7 σ 2 n = λσ 2 n 1 + 1 λu 2 n 1 21.8 σn 2 = γv L + αu 2 n 1 + βσn 1 2 m 21.12 lnv i u2 i i=1 21.13 E σn+t 2 = VL + α + β t σn 2 V L v i 12

Chapter 24: Exotic Options Call on a call S 0 e q 2 M a 1, b 1 ; 1 / 2 K 2 e r 2 M a 2, b 2 ; 1 / 2 e r 1 K 1 Na 2 where a 1 = lns 0/S + r q + σ 2 /2 1 σ 1 a 2 = a 1 σ 1 b 1 = lns 0/K 2 + r q + σ 2 /2 2 σ 2 b 2 = b 1 σ 2 Put on a call K 2 e r 2 M a 2, b 2 ; 1 / 2 S 0 e q 2 M a 1, b 1 ; 1 / 2 + e r 1 K 1 N a 2 Call on a put K 2 e r 2 M a 2, b 2 ; 1 / 2 S 0 e q 2 M a 1, b 1 ; 1 / 2 e r 1 K 1 N a 2 Put on a put S 0 e q 2 M a 1, b 1 ; 1 / 2 K 2 e r 2 M a 2, b 2 ; 1 / 2 + e r 1 K 1 Na 2 Chooser maxc, p = c + e q 2 1 max 0, Ke r q 2 1 S 1 Barrier Options λ = r q + σ2 /2 σ 2 x 1 = lns 0/H σ If H K y = ln H2 /S 0 K σ + λσ y 1 = lnh/s 0 σ + λσ + λσ c di = S 0 e q H/S 0 2λ Ny Ke r H/S 0 2λ 2 N If H K c do = S 0 Nx 1 e q Ke r N x 1 σ S 0 e q H/S 0 2λ Ny 1 + Ke r H/S 0 2λ 2 N If H > K c ui = S 0 Nx 1 e q Ke r N x 1 σ S 0 e q H/S 0 2λ N y N y 1 +Ke r H/S 0 2λ 2 y + σ N 13 y σ y 1 σ y 1 + σ

If H K p ui = S 0 e q H/S 0 2λ N y + Ke r H/S 0 2λ 2 N If H K p uo = S 0 N x 1 e q + Ke r N x 1 + σ +S 0 e q H/S 0 2λ N y 1 Ke r H/S 0 2λ 2 N y + σ y 1 + σ If H K p di = S 0 N x 1 e q + Ke r N x 1 + σ + S 0 e q H/S 0 2λ Ny Ny 1 Ke r H/S 0 N 2λ 2 y σ N y 1 σ Lookback Options c fl = S 0 e q Na 1 S 0 e q σ 2 where a 1 = lns 0/S min +r q+σ 2 /2 σ a 3 = lns 0/S min + r+q+σ 2 /2 σ Y 1 = 2r q σ2 /2 lns 0 /S min σ 2 p fl = S max e r Nb 1 where b 1 = lnsmax/s 0+ r+q+σ 2 /2 σ b 2 = b 1 σ b 3 = lnsmax/s 0+r q σ 2 /2 σ Y 2 = 2r q σ2 /2 lns max/s 0 σ 2 Exchange Options 24.3 V 0 e qv Nd 1 U 0 e qu Nd 2 2r q N a 1 S min e r a 2 = a 1 σ Na 2 σ2 2r q ey 1 N a 3 σ2 2r q ey 2 N b 3 +S 0 e q σ 2 2r q N b 2 S 0 e q Nb 2 where d 1 = lnv 0/U 0 + q U q V + ˆσ 2 /2 ˆσ and ˆσ = σu 2 + σ2 V 2ρσ Uσ V d 2 = d 1 ˆσ Chapter 26: More on Models and Numerical Procedures 26.2, 3 ds S = r qdt + V dz S dv = av L V dt + ξv α dz V 14

Chapter 27: Martingales and Measures 27.4 Π = σ 2 f 2 f 1 σ 1 f 1 f 2 27.5 Π = µ 1 σ 2 f 1 f 2 µ 2 σ 1 f 1 f 2 t 27.7 df = µdt + σdz f 27.8 µ r = λ σ n 27.13 µ r = λ i σ i 27.14 d i=1 f = σ f σ g f g g dz 27.20 f 0 = P 0, E f 27.23 st = P t, 0 P t, N At f 27.25 f 0 = A0E A A 27.26 c = P 0, E maxs K, 0 V 27.31 f 0 = U 0 E U max 1, 0 U 27.32 f 0 = V 0 Nd 1 U 0 Nd 2 27.35 α v = ρσ v σ w Chapter 28: Interest Rate Derivatives: he Standard Market Models 28.1 c = P 0, F B Nd 1 KNd 2 28.2 p = P 0, KN d 2 F B N d 1 where d 1 = ln F B/K + σ 2 B /2 σ B 28.3 F B = B 0 I P 0, 28.4 σ B = D y0 σ y d 2 = d 1 σ B 28.7, Caplet Lδ k P 0, t k+1 F k Nd 1 R K Nd 2 where d 1 = lnf k/r K + σ 2 k t k/2 σ k tk d 2 = d 1 σ k tk 28.8, Floorlet Lδ k P 0, t k+1 R K N d 2 F k N d 1 15

28.10 LA s 0 Nd 1 s k Nd 2 Chapter 29: Convexity, iming, and Quanto Adjustments 29.1 E y = y 0 1 2 y2 0σ 2 y G y 0 G y 0 29.2 E R = R 0 + R2 0σ 2 R τ 1 + R 0 τ 29.3 α V = ρ V W σ V σ W 29.4 E V = E V exp ρ V Rσ V σ R R 0 1 + R 0 /m Chapter 30: Interest Rate Derivatives: Models of the Short Rate 30.20, 21 c = LP 0, snh KP 0, Nh σ p p = KP 0, N h + σ p LP 0, sn h h = 1 σ p ln σ p = σ a 30.24 P m+1 = n m LP 0, s P 0, K + σ p 2 1 e as 1 e 2a 2a j= n m Q m,j exp g α m + j x t Chapter 32: Swaps Revisited 32.1 F i + F 2 i σ 2 i τ i t i 1 + F i τ i 31.2 y i 1 2 y2 i σ 2 y,it i G i y i G i y i y iτ i F i ρ i σ y,i σ F,i t i 1 + F i τ i 32.3 V i + V i ρ i σ W,i σ V,i t i 16

Hardy: Investment Guarantees Chapter 6 6.5 F t + = F t 1 m = F t 1 1 m S t S t 1 s t 1 m t 1 6.9 M t = F t m c = m c F 0 S 0 6.11 C n = n p τ xg F n + errata sheet 6.13 C t = t p τ xm t + t 1 1 q d xg F t + 6.14 C t = t p τ xf 0 S t 1 m t m d + t 1 1 q d x errata sheet G F0 S t 1 m t + errata sheet Chapter 8 8. F = F 0 S S 0 1 m 8.3 P 0 = Ge r Φ d 2 S 0 1 m Φ d 1 8.8 H0 = where d 1 = log S 0 1 m /G + r + σ 2 /2 σ n 0 Ge rt Φ d 2 tp τ x µ d x,t dt + n 0 d 2 = d 1 σ S0 1 m t Φ d 1 tp τ x µ d x,t dt 8.9 H0, t 3 = P S t 1 + S 0 1 m t 1 { 1 + P t2 t 1 1 + P t 3 t 2 + 1 m t 2 t 1 P t 3 t 2 } 8.15 α = S 0 1 m t 1 where P S t 1 = BSPS 0 1 m t 1, G, t 1 B S 0 ä τ x:n i 8.19 HE t = Ht + t 1 q d x G Ft + Ht 8.22 C t = τ S t Ψ t Ψ t 1 Chapter 9 9.2 100β% Confidence Interval for α-quantile: 1 + β Nα1 L 0Nα A, L 0Nα+A ; A = Φ 1 α 2 log G/S0 nµ + log1 m 9.4 ξ = 1 Φ nσ 17

9.7 V α = G F 0 exp z α nσ + nµ + log1 m e rn { 9.17 CE α L = e rn /2 G enµ+log1 m+σ2 Φ z α nσ } 1 α Chapter 12 12.4 H 0 = B0, ne Q Fn ga 65 n 1 + 12.5 H 0 = F 0 E Q ga d 65 0, n B0, n + 1 12.7 H t = F t {ga 65 tφd 1 t Φd 2 t} where d 1 t = log ga 65t + σ 2 yn t/2 σ y n t, d 2 t = d 1 t σ y n t Chapter 13 13.3 PP: H = = αp S 0 + Sn P 1 + α 1 G S 0 { S n S } + 0 G 1 α α P 13.7 H 0 = αp e dn Φd 1 G P 1 α e rn Φd 2 αp ln + r d + σ2 n G P 1 α 2 where d 1 = σ, d 2 = d 1 σ n n 13.16 CAR: H = P { e r + α e d Φd 1 e r Φd 2 } n FE-108-07 and FE-165-08: Doherty; Integrated Risk Management Chapter 13 p. 465 V E = V F V D = V F D DF + P V F, D = CV F, D p. 481 V F = S + D 1 + m n p. 494 V R E = C + V RF D + P {V r F, D} = C + V R D + P R V N E = V NF D + P {V N F, D} = V N D + P N 18

Chapter 16 16.1 + E + P 1 + r i L 16.2 E = E P RI; S 1 + ER i ELa + hci; S a 16.3 E a = ELa a 1 + h C I I L L a = 0 FE-159-08: Babbel and Fabozzi, Investment Management for Insurers Chapter 13 8 Ct = P t, Bχ 2r 2 ϕ + ψ + G, B, 4c, σ 2 X P t, χ 2r 2 φ + ψ, 4c, 2φ2 re γ t σ 2 φ+ψ 2ϕ 2 reγ t ϕ+ψ+g, B FE-106-07: Ho and Lee, he Oxford Guide to Financial Modeling Chapter 5: Interest Rate Derivatives: Interest Rate Models 5.10 dr = a 1 + b 1 l rdt + rσ 1 dz dl = a 2 + b 2 r + c 2 l dt + lσ 2 dw 5.12 dv = Mt, rdt + Ωt, rdz Mt, r = V t + µt, rv r + 1 2 σt, r2 V rr Ωt, r = σt, rv r Chapter 6: Implied Volatility Surface: Calibrating the Models 6.10 Lk, j + 1 = Lk, j exp k i=j+1 6.13 P, i ; = P + P Li,j Λ 1+Li,j i j 1Λ k j 1 Λ2 k j 1 2 2 + 1 t= 1 t=1 ht ht δ i where ht = 1 1 + δ t + k j 1 Z FE-145-08: he Cost of Capital for Financial Firms p.27 E 0 + F 0 = t=1 D t 1 + COE t 19

= F 0 = t=1 t=1 D t + E t E t 1 COE E t 1 1 + COE t ROE t COE 1 + COE t E t 1 t=1 E t 1 + COE + E t 1 t 1 + COE t 1 p.36 1 + R f {A 0 L 0 + F 0 } = A 0 L 0 + 1 k {A 0 R f + m A k A L 0 R f m L + k L } + F 1 1 + R f F 0 = 1 k {A 0 m A k A + L 0 m L k L } k R f A 0 L 0 + F 1 p.39 1 + R f F 0 = A 0 1 k m A k A + L 0 1 k m L k L + 1 sf 1 R f + sk A 0 L 0 p.40 1 + R f A 0 L 0 + F 0 = A 0 {1 + 1 k R f m A k A } L 0 {1 + 1 k R f m L k L } + 1 sf 1 sk A 0 L 0 p.41 R f + s g + sgf 0 = A 0 1 k m A k A + L 0 1 k m L k L R f + sk A 0 L 0 t=1 FE-146-08: Solvency Measurement for Property-Liability Risk-Based Capital Applications 4a d L = D L c c L = kφ cφ k k d A = D A L = 1 c ca k A φ c A Φ 1 c A k A k A 5a d L = Φa 1 + cφa k 5b d A = Φb Φb k A 1 c A where a = k/2 ln1 + c/k b = k A /2 + ln1 + c A /k A 6 d 1 = 0 zpzdz 7 c 1 = c1 + p + 1 + c1 + p r + pc b g n 1/2 n 8 C = c 2 i + ρ ij c i c j A1 i=1 i j µ µ D = σφ µφ σ σ 20

A2 A3 A4 A5 d = D c c L = k φ c Φ d L = kφ k c c Φ k d A = D A L = 1 1 c A F = SΦa Ee it Φ k c k ca ca c A Φ k A φ k A a σ t where a = lns/e + i + σ2 /2t σ t A6 D L = LΦa 1 + clφa σ L A7 d L = Φa 1 + cφa k A8 D L = AΦa LΦa σ A A9 d A = Φb Φb k A 1 c A where b = k A /2 + ln1 c A /k A k A FE-114-07: Capital Allocation in Financial Firms p.116 NP V = 1 dv {S + } C µ 1 + mv {S } = µ dv {S + } + mv {S } V {S + } V {S } z = σnz+znz 1+r = σnz zn z 1+r = C1 + r/σ FE-151-08: Babbel and Merrill, Real and Illusory Value Creation by Insurance Companies 2 V E = F + V A P V L + O FE-171-10: A Comparative Analysis of U.S. Canadian and Solvency II Capital Adequacy Requirements in Life Insurance, Sharara, Hardy and Saunders p 8 CCM = i ccr SCRt 1e rtt t=1 p 9 SCR = ρi, j SCR i SCR j i j 21

Hardy, Freeland and ill, Valuation of Long-erm Equity Return Models for Equity-Linked Guarantees MARCH Y t F t 1 = { Q1 w.p. q w.p. 1 q Q 2 where Q 1 F t 1 = µ 1 + σ t z t σ 2 t = α 1,0 + α 1,1 Y t 1 µ 1 2 + α 1,2 Y t 2 µ 1 2 Q 2 F t 1 = µ 2 + α 2,0 z t z t N0, 1, i.i.d. RSDD Y t ρ t = κ ρt + ϕ ρt D t 1 + σ ρt z t where D t 1 = min 0, D t 2 + Y t 1 RSGARCH Y t ρ t = µ ρt + σ ρt,tz t where σρ 2 t,t = α ρt,0 + α ρt,1ε 2 t 1 + β ρt σt 1 2 ε t = Y t p 1 tµ 1 + 1 p 1 tµ 2 σt 2 = p 1 tµ 2 1 + σ1,t 2 + 1 p 1 tµ 2 2 + σ2,t 2 p 1 tµ 1 + 1 p 1 tµ 2 2 AAA Model Y t = µ t /12 + σ t / 12z y,t where µ t = A + Bσ t + Cσ 2 t log σ t = ν t = 1 ϕν t 1 + ϕ log τ + σ ν z ν,t 4.1 r t,1 = r t ρ t = 1 = y t µ 1 σ 1 4.2 r t,2 = r t ρ t = 2 = y t µ 2 σ 2 4.3 r t = I {ρt>0.5} r t,1 + 1 I {ρt>0.5} rt,2 Smith: Investor & Management Expectations of the Return on Equity Measure vs. Some Basic ruths of Financial Accounting E t EV t = t ROEx IRRE x 1 1 + IRR t x x=1 22