,..., Xn. (Value-at-Risk) ( ) Jarque-Bera (Extreme Value Theory) ARCH/GARCH [1][2] Mcneil (Tail Index) [8][9] [10] ISE-100 ARCH/ GARCH , ; 2

Σχετικά έγγραφα
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

46 2. Coula Coula Coula [7], Coula. Coula C(u, v) = φ [ ] {φ(u) + φ(v)}, u, v [, ]. (2.) φ( ) (generator), : [, ], ; φ() = ;, φ ( ). φ [ ] ( ) φ( ) []

Research on Economics and Management

Supplementary Appendix

The Impact of Stopping IPO in Shenzhen A Stock Market on Guiding Pattern of Information in China s Stock Markets

ΠΩΣ ΕΠΗΡΕΑΖΕΙ Η ΜΕΡΑ ΤΗΣ ΕΒΔΟΜΑΔΑΣ ΤΙΣ ΑΠΟΔΟΣΕΙΣ ΤΩΝ ΜΕΤΟΧΩΝ ΠΡΙΝ ΚΑΙ ΜΕΤΑ ΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΚΡΙΣΗ

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΠΡΟΣΩΠΙΚΑ ΣΤΟΙΧΕΙΑ ΣΠΟΥΔΕΣ

Other Test Constructions: Likelihood Ratio & Bayes Tests

Arbitrage Analysis of Futures Market with Frictions

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

High order interpolation function for surface contact problem

ST5224: Advanced Statistical Theory II

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistical Inference I Locally most powerful tests

Statistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data

Research on the Correlation of Portfolio Value at Risk in Financial Markets

172,,,,. P,. Box (1980)P, Guttman (1967)Rubin (1984)P, Meng (1994), Gelman(1996)De la HorraRodriguez-Bernal (2003). BayarriBerger (2000)P P.. : Casell

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

Οικονοµετρική ιερεύνηση των Ελλειµµάτων της Ελληνικής Οικονοµίας

Stabilization of stock price prediction by cross entropy optimization

BUSINESS PLAN (Επιχειρηματικό σχέδιο)

DNB W o r k i n g P a p e r. Forecasting Financial Stress. No. 292 / April Jan Willem Slingenberg and Jakob de Haan

OLS. University of New South Wales, Australia

FORMULAS FOR STATISTICS 1

: , : (1) 1993, , ; (2) , (Solow,1957), ( ) (04AJ Y006)

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Markov chains model reduction

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ (ΣΔΟ) ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΠΡΟΣΩΠΙΚΑ ΣΤΟΙΧΕΙΑ ΣΠΟΥΔΕΣ

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

ΑΓΓΛΙΚΑ Ι. Ενότητα 7α: Impact of the Internet on Economic Education. Ζωή Κανταρίδου Τμήμα Εφαρμοσμένης Πληροφορικής

ΧΩΡΙΚΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΤΩΝ ΤΙΜΩΝ ΤΩΝ ΑΚΙΝΗΤΩΝ SPATIAL ECONOMETRIC MODELS FOR VALUATION OF THE PROPERTY PRICES

Module 5. February 14, h 0min

:,,,, ,,, ;,,,,,, ,, (Barro,1990), (Barro and Sala2I2Martin,1992), (Arrow and Kurz,1970),, ( Glomm and Ravikumar,1994), (Solow,1957)

ΣΤΥΛΙΑΝΟΥ ΣΟΦΙΑ

Mean-Variance Analysis

90 [, ] p Panel nested error structure) : Lagrange-multiple LM) Honda [3] LM ; King Wu, Baltagi, Chang Li [4] Moulton Randolph ANOVA) F p Panel,, p Z

Ελαφρές κυψελωτές πλάκες - ένα νέο προϊόν για την επιπλοποιία και ξυλουργική. ΒΑΣΙΛΕΙΟΥ ΒΑΣΙΛΕΙΟΣ και ΜΠΑΡΜΠΟΥΤΗΣ ΙΩΑΝΝΗΣ

RCA models with correlated errors

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

ΣΥΓΧΡΟΝΕΣ ΤΑΣΕΙΣ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΚΑΙ ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΩΝ ΚΙΝΔΥΝΩΝ

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment

QBER DISCUSSION PAPER No. 8/2013. On Assortative and Disassortative Mixing in Scale-Free Networks: The Case of Interbank Credit Networks

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

The Construction of Investor Sentiment Index for China's Stock Market Based on the Panel Data of Shanghai A Share Companies

Δθαξκνζκέλα καζεκαηηθά δίθηπα: ε πεξίπησζε ηνπ ζπζηεκηθνύ θηλδύλνπ ζε κηθξνεπίπεδν.

ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ ΣΖ ΓΗΟΗΚΖΖ ΔΠΗΥΔΗΡΖΔΩΝ. Γηπισκαηηθή Δξγαζία ΑΠΟΣΙΜΗΗ ΑΞΙΑ ΣΗ ΔΣΑΙΡΙΑ JUMBO ΒΑΔΙ ΣΑΜΔΙΑΚΧΝ ΡΟΧΝ.

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ 1. ΠΡΟΣΩΠΙΚΑ ΣΤΟΙΧΕΙΑ 2. ΣΠΟΥΔΕΣ

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

STR. Consumption Price Index CPI CPI CPI CPI CPI. No General Serial No JOURNAL OF XIAMEN UNIVERSITY Arts & Social Sciences CPI

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Global energy use: Decoupling or convergence?

UMI Number: All rights reserved

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206

Β Ι Ο Γ Ρ Α Φ Ι Κ Ο Σ Η Μ Ε Ι Ω Μ Α ΑΘΑΝΑΣΙΟΣ ΚΑΖΑΝΑΣ

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΘΕΜΕΛΙΩΔΗΣ ΚΛΑΔΙΚΗ ΑΝΑΛΥΣΗ ΤΩΝ ΕΙΣΗΓΜΕΝΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΑΓΟΡΑΣ

, Ilmanen 2003 ADCC VAR. NO.2, 2011 Serial NO.315 CONTEMPORARY FINANCE & ECONOMICS JA [1] Cappiello et al.

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

ER-Tree (Extended R*-Tree)

ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ

Σεμινάριο Κατάρτισης Financial Econometric Modelling with R Οικονομικό Πανεπιστήμιο Αθηνών, Μαΐου 2017

ISIC E24, F31, L6, C23

Metal thin film chip resistor networks

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Αλγοριθµική και νοηµατική µάθηση της χηµείας: η περίπτωση των πανελλαδικών εξετάσεων γενικής παιδείας 1999

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

6.3 Forecasting ARMA processes

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems

Τo ελληνικό τραπεζικό σύστημα σε περιόδους οικονομικής κρίσης και τα προσφερόμενα προϊόντα του στην κοινωνία.

1, +,*+* + +-,, -*, * : Key words: global warming, snowfall, snowmelt, snow water equivalent. Ohmura,,**0,**

Διερεύνηση ακουστικών ιδιοτήτων Νεκρομαντείου Αχέροντα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΝΑΥΤΙΛΙΑ ΑΤΥΧΗΜΑΤΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΣΤΗ ΝΑΥΤΙΛΙΑ.

Financial Risk Management

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ

Second Order RLC Filters

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

Quick algorithm f or computing core attribute

Τ.Ε.Ι. ΗΠΕΙΡΟΥ ΣΧΟΛΗ: ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ: ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΕΛΕΓΚΤΙΚΗΣ

IMES DISCUSSION PAPER SERIES

ΔΘΝΙΚΗ ΥΟΛΗ ΓΗΜΟΙΑ ΓΙΟΙΚΗΗ ΚΑ ΔΚΠΑΙΓΔΤΣΙΚΗ ΔΙΡΑ ΣΔΛΙΚΗ ΔΡΓΑΙΑ

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

MIA MONTE CARLO ΜΕΛΕΤΗ ΤΩΝ ΕΚΤΙΜΗΤΩΝ RIDGE ΚΑΙ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ

Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων»

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ. Πτυχιακή εργασία


Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

Research on vehicle routing problem with stochastic demand and PSO2DP algorithm with Inver2over operator

Numerical Methods for Civil Engineers. Lecture 10 Ordinary Differential Equations. Ordinary Differential Equations. d x dx.

Transcript:

,2, 60074; 2, 40075 Pareto ARCH/GARCH Pareto GARCH F224.0 A (Vale-at-Risk) ( ) Jarqe-Bera (Extreme Vale Theory) ARCH/GARCH [][2] Mcneil (Tail Index) [8][9] [0] ISE-00, ARCH/ GARCH 2 X, X 2,..., Xn F( x) a n > 0 b n R Gx ( ) lim P(max{ X, i n} a x+ b ) = G( x) n i n n

( Gx ) ξ G ( ) exp( ( x) ), x 0, 0; ξ x = + ξ + ξ > ξ exp( e x ), x R, ξ = 0 ξ F( x) Gξ ( x) Gξ ( x) [2] G ( x) 0 F( x) Gξ ( x),( ξ > 0) F( x) = x ξ L( x) ( Lx) t- skewed-t Gξ ( x), ξ > 0 ξ ξ > 0 ξ ARCH/GARCH 3 ξ Hill ξ > 0 Pickands ξ R ξ R ξ > 0 ( Hmn, ) ξ 2 (threshold) GPD (General Pareto Distribtion GPD) F ( + y) F ( ) F ( y) = P( X y X > ) =, y > 0 F ( ) 0 > y ξ y ( + ξ ),+ ξ > 0, ξ 0; F ( ) ( ;, ) y G y σ σ σ ξ = y σ e, ξ = 0 Gyσ (,, ξ ) GPD N x F( x) = ( + ξ ) n σ ξ 2

N, ξ σ (sample mean exceedance) {( e, n( )), X, n < < Xn, n} ( en ) (sample mean excess fnction SME) en ( ) n + ( Xi ) i= + n ( ), :( ) n { X> } X X > X > e = X = I = 0 X 0 X I { Xi > } i= M ( ) = E( X X > ) F ( x),( x= y+ ) GPD( y, ξ, σ ) M ( ) = ( σ + ξ)/( ξ), σ + ξ> 0 Hill SME SME ξ ξ GPD (a) F ˆ ( x ) Gxξ (, ˆ, ˆ σ ) (b) N ˆ ( ) ( ˆ x ξ F x = + ξ ) Gxξ (, ˆ, ˆ σ ) n ˆ σ Gxξ (, ˆ, ˆ σ ) QQ ˆ ξ xi (c) : { log( + ), xi > } GPD ˆ ξ ˆ σ QQ 4 (normal market) { r t } α 3 r t t 3

4 VAR ( α) t Pr ( VAR( α) Ψ ) = α t t t -α GPD GPD N ˆ x ˆ ξ F( x) ( + ξ ) n ˆ σ ( F x) N n α ˆ σ nα ˆ ξ VAR( α) = + [( ) ] ˆ ξ N ARCH/GARCH J.P. GPD GARCH GPD 5 (volatile-ratio) T I{ ri> VARi( α )} i= n+ 0, if ri < VARi( α) v ratio=, I{ ri> VARi( α )} = T n, if ri VARi( α) α GARCH r = ε h, h = ω + α r + β h 2 t t t t t t ε t i.i.d. (GED) t GARCH VAR ( α) =Ψ ( α)* h, t = n+, n+ 2, L, T ( Ψ x) ε t t t GPD ˆ σ N ˆ VARm + ξ ( α) = + [( ) ], m n, n,, T ˆ ξ mα = + K N, m = n, n +, L, T ˆ σ ˆ ξ m 4

5 5. 996 7 2002 5 0 408 (percentage of log-retrn series) shr96t = 00 {log( Pt) log( Pt )} P t t ADF/PP (size and power) 6 shr96 ADF ADF ˆ ρ shr96t = ρshr96t + α shr96t + εt z t = ˆ σ 500 shr96 (α =0.0) 96 shr 5.2 ˆ ρ (0) I shr96 Hill shr96 0.4 ( 2 ) GPD shr96 2 GPD.4.45.5 2. shr96.45 0.2604 3-3-2 3-3 5.3 4 α = 0.00 GPD GPD GPD GARCH GARCH-normal GARCH-t GARCH- GED 000 GPD shr96 ˆ ξ = 0.267, ˆ σ =.0679 N / m,( m = 000,000 +, L,407) 0.05 0.0 0.00 0.05 0.0 0.005 shr96 2 GPD GARCH-normal GARCH-GED GARCH-t GARCH GARCH-t GARCH-GED GARCH-normal 5

5-5-2 GARCH GPD shr96 GPD 2 ξ lower σ lower.4 204 0.282(0.0967).067(0.98) 0.8550.45 92 0.2604(0.0975).0692(0.98) 0.8635.5 84 0.2670(0.00).0697(0.32) 0.8692 α 0.05 0.0 0.00 GARCH-normal 0.0883 0.0762 0.056 GARCH-t 0.0835 0.048 0.047 GARCH-GED 0.0983 0.073 0.0369 GPD 0.054 0.027 0.0074 2. 0 0.274(0.457).248(0.2092) 0.928 GPD GARCH-normal GARCH-t GARCH-GED shr96 ADF 2 Hill SME 6

3-3-2 3 shr96 GPD () 3-, =.45, ˆ ) ξ = 0.2642, σ =.0692, F ( x ) ; (2) 3-2 F( x) ; (3) 3-3 QQ 3-3 4 ( α = 0.00, 0.95, ξ = 0.2604, σ = ) GPD shr96 7

5- (shr96) ( 000 0.0, ) 5-2 (shr96) GARCH(,)-GED GPD 000 0.0 [] Embrechts, P., Klppelberg, C. & Mikosch, T. Modeling Extreme Events for insrance and finance [M]. Springer, New York, 997. [2] Reiss, R.D. & Thomas, M. Statistical analysis of extreme vales from insrance, finance, hydrology and other fields[m]. \ Springer, Berlin,997. [3] McNeil, A.J. Estimating the tails of loss severity distribtions sing extreme vale theory [J]. ASTIN Blletin, Vol. 27, 997: 7-37 [4] McNeil, A.J. Calclating qantile risk measres for financial time series sing extreme vale theory[r]. manscript, Department of Mathematics, ETH, Swiss Federal Technical University,998. [5] McNeil, A.J. Extreme vale theory for risk managers[c]. in Internal Modeling and CAD II, Risk Books, 999: 93-3. [6] McNeil, A.J. & Frey, R. Estimation of tail-related risk measres for heteroscedastic financial time series: an Extreme vale approach[j]. Jornal of Empirical Finance, 2000(Vol. 7): 27-300. 8

[7] McNeil, A.J. & Saladin, T. The peak over thresholds method for estimating high qantiles of loss distribtions[r]. discssion paper, Department of Mathematics, ETH, Swiss Federal Technical University, 997. [8] Silva, A. C. & B. V. Mendes. Vale-at-risk and Extreme Retrns in Asian Stock Markets[J]. International Jornal of Bsiness, Vol. 8, No., 2003. [9] Terence D. Agbeyegbe and Gene Leon. The tail behavior of stock index retrn on the Jamaican Stock Exchange[Z]. http://www.centralbank.org.bb/ Pblications/ WP2002pp03_0.pdf. [0] R. Gençay, F. Selçk & A. Ulg lya gci. High volatility, thick tails and extreme vale theory in vale-at-risk estimation [J]. Insrance: Mathematics and Economics 33 (2003): 337-356 [] Leadbetter, M. R., Lindgren, G., & Rootzen, H. Extremes and related properties of random seqences and processes[m]. Springer, New York, 983. [2] Resnick, S. I. Extreme vale, reglar variation, and point processes [M]. Springer, New York,987. [3] Hill, B. M. A sample general approach to inference abot the tail of a distribtion [J]. Ann Statist. Vol. 3, 975:63-74 [4] J. Pickands. Statistical inference sing order statistics [J]. Ann Statist., Vol. 3, 975:9-3. [5] Dekkers, A. L. M., Einmahl, J. H. J., & Haan, L. de. A moment estimator for the index of an extreme- vale distribtion[j]. Ann Statist., Vol. 7, 989:833-855 [6] Mills, T.C. The econometric modeling of financial time series (2 nd edition)[j]. Cambridge University Press, 999,Cambridge [7] Dekkers, A. L. M., Haan, L. On the estimation of the extreme vale index and large qantile estimation, Ann Statist, 7:795-832 [8] Loretan, M. and Phillips, P. C. B. Testing the covariance stationarity of heavy-tailed time series: An overview of the theory with applications to several financial datasets [J]. Jornal of Empirical Finance, Vol., 994:2-248 [9] Balkema, A. A., and Haan, L. de. Residal lifetime at great age [J]. Ann. Prob., Vol. 2, 974:792-804. [20] Gencay, R. & Selck, F. Extreme vale theory and vale-at-risk: Relative performance in emerging markets [J]. International Jornal of Forecasting Vol. 20, 2004:287-303. [2] Gencay, R., Selck, F. and Ulglyagci, A. EVIM: A software package for extreme vale analysis in MATLAB[J]. Stdies in Nonlinear Dynamics and Econometrics, Vol. 5 (3), 200:23-239. [22] Gencay, R. and Selck, F. Software Review: Matlab Neral Networks Toolbox[J]. International Jornal of Forecasting, Vol. 7, 200:305-37. [23]. [D].,,2003 7,. Fat-tails measrement and Vale-at-Risk estimation and prediction of Composite Index of Shanghai Stock Exchange Peng Zo-xiang,2, Li Shi, Pang Hao 9

( School of Statistics, Sothwestern University of Finance and Economics, Chengd, 60074; 2 School of Mathematics and Finance, Sothwestern Normal University, Chongqing, 40075) Abstract: Based on extreme vale theory and General Pareto Distribtion (GPD), this paper analyzes and describes the performance of the thick-tail of the high freqency financial time series data with tail index which fitted by local fitness on tail distribtion of the data. Both process, one is procedres of estimating and testing of the tail index, another is estimating and forecasting methods of Vale-at-Risk, are given systematically. The one-step forward forecasting reslts of the Composite Index of Shanghai Stock Exchange by extreme vale theory and other well-known modeling techniqes, sch as ARCH/GARCH models, are empirically compared and contrasted. The empirical reslts arge that GPD method is sperior to GARCH models on estimating and forecasting of Vale-at-Risk. Key Words: Vale-at-Risk; Tail Index; Forecasting; Extreme Vale Theory; Empirical Analysis. 2005-2-5 703706 03JB7900 2 (967-) ( []) 2 ξ Hill H m, n = log X + log X m m ( ) ( n k, n) ( n m, n) k = X X... X, n 2, n n, n X, X2,..., Xn [7] H( m, n) m Hmn (, ) m= m( n) Hmn (, ) [8] m 0. n 3 α 0.95 0.99 0.999 4 rt = 00*log( pt / pt ) { } 5 T n 500 000 GARCH GPD sliding window 6 r t 0