Πυρηνοσύνθεση Βαρέων Στοιχείων και Πυρηνικές Αντιδράσεις. Nuclear Reactions in Heavy-Element Nucleosynthesis



Σχετικά έγγραφα
Experimental investigation of radiative proton-capture reactions relevant to nucleosynthesis

Εφαρμογές της Πυρηνικής Φυσικής στη μελέτη των αστέρων νετρονίων

Βίαιοι θάνατοι, εκρηκτικές γεννήσεις και πυρηνικές αντιδράσεις στα άστρα. Ανοιχτά ερωτήματα για την προέλευση των βαρέων στοιχείων

Th, Ra, Rn, Po, Pb, Bi, & Tl K x-rays. Rn Kα1. Rn Kα2. 93( 227 Th)/Rn Kβ3. Ra Kα2. Po Kα2 /Bi K α1 79( 227 Th)/Po Kα1. Ra Kα1 /Bi K β1.

2.1

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 3β: Σκέδαση αδρονίων και χρυσός κανόνας του Fermi

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 5: Σκέδαση αδρονίων και χρυσός κανόνας του Fermi. Λέκτορας Κώστας Κορδάς

LIGHT UNFLAVORED MESONS (S = C = B = 0)

Πυρηνικές Αντιδράσεις

Consolidated Drained

In your answer, you should make clear how evidence for the size of the nucleus follows from your description

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

DuPont Suva 95 Refrigerant

Laboratory Studies on the Irradiation of Solid Ethane Analog Ices and Implications to Titan s Chemistry

Aluminum Electrolytic Capacitors (Large Can Type)

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

DuPont Suva 95 Refrigerant

Aluminum Electrolytic Capacitors

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

SMD Transient Voltage Suppressors

Large β 0 corrections to the energy levels and wave function at N 3 LO

10M M 56 II/Ibc AGB 2/3

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Metal Oxide Varistors (MOV) Data Sheet

High Frequency Chip Inductor / CF TYPE

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

Nuclear Physics 5. Name: Date: 8 (1)

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Nuclear Data Section International Atomic Energy Agency P.O.Box 100, A-1400 Vienna, Austria. Memo CP-D/599

Μάθημα 2c Ενεργός διατομή, μέση ελεύθερη διαδρομή και ρυθμός διασπάσεων

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Three coupled amplitudes for the πη, K K and πη channels without data

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Τομέας Θεωρητικής Φυσικής

Ενεργός διατοµή Χρυσός Κανόνας του Fermi

Thin Film Chip Resistors

± 20% ± 5% ± 10% RENCO ELECTRONICS, INC.

ISO Sample Report

Monolithic Crystal Filters (M.C.F.)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

SMD Power Inductor. - SPRH127 Series. Marking. 1 Marking Outline: 1 Appearance and dimensions (mm)

Bayesian modeling of inseparable space-time variation in disease risk

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο, εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευτεί ότι αντιπροσωπεύουν τις

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206


Fermion anticommutation relations

Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r

Energy Levels of Light Nuclei A = 19

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r

The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density

SUPPLEMENTARY INFORMATION

Toward the Quantitative Study of Hydrothermal Systems An Approach to Understand Hydrothermal Systems

Electronic structure and spectroscopy of HBr and HBr +

Applications. 100GΩ or 1000MΩ μf whichever is less. Rated Voltage Rated Voltage Rated Voltage

NTC Thermistor:TSM type

BandPass (4A) Young Won Lim 1/11/14

Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin.

IB PHYSICS HL REVIEW PACKET: NUCLEAR PHYSICS


Supporting Information for Substituent Effects on the Properties of Borafluorenes

レーザ結晶. Altechna 社. Laser Crystals. Ti:Sapphire crystals. High damage threshold Strong Kerr effect

Multilayer Ceramic Chip Capacitors

ALICE/ASH. Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Wissenschaftliche Berichte FZKA 7183

KS Series. Changsung Corp. -CSC-

ST5224: Advanced Statistical Theory II

1 Decay Scheme. 2 Nuclear Data. 2.1 α Transitions

DATA SHEET Surface mount NTC thermistors. BCcomponents

Free Energy and Phase equilibria

CSR series. Thick Film Chip Resistor Current Sensing Type FEATURE PART NUMBERING SYSTEM ELECTRICAL CHARACTERISTICS

Multilayer Ceramic Chip Capacitors

Wolfgang Sandner Director General and CEO ELI Delivery Consortium International Association (AISBL)

Surface Mount Multilayer Inductor

Fused Bis-Benzothiadiazoles as Electron Acceptors

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

Biodiesel quality and EN 14214:2012

Derivation of Optical-Bloch Equations

First Sensor Quad APD Data Sheet Part Description QA TO Order #

Thick Film Chip Resistors

Hydrologic Process in Wetland

C4C-C4H-C4G-C4M MKP Series AXIAL CAPACITORS PCB APPLICATIONS

Math 6 SL Probability Distributions Practice Test Mark Scheme

ΕΚΘΕΣΗ ΟΚΙΜΗΣ ΙΕΙΣ ΥΣΗΣ ΒΡΟΧΗΣ RAIN PENETRATION TEST

レーザ結晶. Altechna 社. Laser Crystals. Ti:Sapphire crystals. High damage threshold Strong Kerr effect

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

Group 30. Contents.

CSK series. Current Sensing Chip Resistor. Features. Applications. Construction FAITHFUL LINK

Assalamu `alaikum wr. wb.

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Thin Film Chip Resistors

Thesis presentation. Turo Brunou

MARKET INTRODUCTION System integration

Cable Systems - Postive/Negative Seq Impedance

Markov chains model reduction

Transcript:

Πυρηνοσύνθεση Βαρέων Στοιχείων και Πυρηνικές Αντιδράσεις Nuclear Reactions in Heavy-Element Nucleosynthesis Παρασκευή ηµητρίου ΙΠΦ, ΕΚΕΦΕ «ηµόκριτος»

Outline διαδικασίες πυρηνοσύνθεσης Βαρέων στοιχείων (>Fe) στοιχεία πυρηνικών αντιδράσεων των διαδικασιών πυρηνοσύνθεσης s-, r-, p-process παραδείγµατα στην p και r process συµπεράσµατα

nucleosynthesis of elements up to Fe

+e-captures, neutrino-interactions s process: slow neutron captures β - (n,γ) τ 10-10 4 yr, T (0.1-0.4)10 9 K, n>10 5 cm -3 p process: photodisintegrations+inverse (p,γ) (α,γ) (γ,n) (n,γ) (γ,α) (γ,p) T 2 10 9 K, n>10 8 cm -3 β + r process: rapid neutron captures β - (γ,n) (n,γ) + fission, + β-delayed fission heavy-element nucleosynthesis: > Fe τ 10-1 s, T (1.8-3.3)10 9 K, n>10 20 cm -3

role of fission end of r process re-cycling

nuclear reaction network reaction: i + j k + l elemental abundances abundance of element i: N i number of particles i per cm 3 N i ( Z A i ) + N j ( Z A j ) N k ( Z A k ) + N l ( Z A l ) rate equation: rate of change of abundance N i dn (α,n) i (α,γ) = N jn i συ + N k N συ N (t) dt (p,n) ij (p,γ) l + kl iλβi (α,p) jkl (γ,n) (n,γ) reaction rate per (p,α) particle pair: (γ,p) (n,p) συ (n,α) ϕ 2 number of reactions/nucleus X/unit time = ( υ) υσ ( υ) d υ σ(cm ) = 2 number of incident particles/cm /unit time υ : relative velocity σ(υ) :cross section for reaction ϕ( υ) : velocity distribution

stellar reaction rates velocity distribution in thermodynamic equilibrium: Maxwellian συ = µ 4π 2πkT 3/2 0 υ 3 σ(υ)exp 2 µυ dυ 2kT stellar temperature charged-particle reactions: Coulomb barrier 2 2πZ e Penetration exp 1Z 2 hυ Maxwellian distr. Gamov peak Gamow window Coulomb penetration relevant energy range hot astrophysical plasma: excited target nucleus i µ + j k + l relative population of levels µ : Maxwellian distribution συ * = 8 πµ 1/2 partition function : 1 3/2 (kt) G(T) G(T) = 0 µ µ µ (2J i + 1) µ E + ε σ (E)Eexp 0 (2J i + 1) kt µ µ 2J + 1 ε i exp i 0 2J i + 1 kt µ i reaction cross section nuclear level scheme de

nuclear reaction cross sections in stellar and/or explosive environments: T ~ 10 8 10 9 K E ~0.1-5 MeV (p,γ) (γ,n) (γ,α) (γ,p) (α,γ) (n,γ) channel a projectile Target A E r compound nucleus B In resonant state channel b Resonant reactions γ σ(e) Γ a,b (E E Γ :decay widths Γ = Γ a + Γ b +... E = E + Q r R Breit-Wigner: Γ a 2 R ) b + ( Γ/2) a,b 2 σ(e) E R width Γ E Non-resonant reactions σ(e) Compound nucleus (Hauser-Feshbach): compound nucleus B In continuum phase space projectile Final nucleus C γ σ ( E) T ( J b π J ) = π ν T (2J + 1) T ν b ( J Direct reactions: π a ) + ( J T π tot ) T ( J ( J b π ε, J, π ) π T ( ε, J b ) π ) ρ( ε, J, π ) dεdjdπ E σ γ B H γ A + x 2 Target A Final compound nucleus B H γ : electromagnetic operator

fission E inc Sn T n E,j,π Tγ T f Z,N+1 Compound nucleus T A T B spontaneous B A B B λ P σ sf X nf P A P B = Penetrabil T n T T k f k ity throug h barrier ; T f = P P A A + P B P B X deformation β decay + β-delayed emission n(p) p(n)+e - ( + )+ν(ν) 0 Z,N Z+1,N-2 Sn -Q T n E,j,π Tγ β - Z+1,N-1 T A T B T f B A B B λ β = 0 Q β S β (E)dE 1 2 2 Sβ (E) = G M (E) (Q E) 3 Ω Ω f Ω β 2π Ω Ω : Fermi,GT, First Forbidden transitions λ λ bdn bdf = = 0 Q 0 β Q β T n T n T n + T γ T f + T γ + T f + T f S β S β (E)dE (E)dE

nuclear data input Q values, S n nuclear masses ground-state properties: charge radii, deformations, shell effects nuclear level schemes : energy, spins, lifetimes of levels hot nucleus properties: nuclear level densities (NLD) particle transmission coefficients T optical potential (OP) γ-ray strength functions: giant dipole resonances fission barriers and level densities β-decay strength functions

p process s process r process

abundances of elements nuclear reaction rates reaction network: 20000 reactions and 2000 nuclei astrophysics models stellar sites neutron densities temperatures Exp. data nuclear models reproduce existing data with good accuracy-test theories global models: large-scale calculations microscopic models: extrapolations to experimentally unknown

nuclear models phenomenological (macroscopic-microscopic) models: Finite Range Droplet Model (FRDM), Fermi Gas Model (FG) etc shell, pairing etc corrections: empirical formulas advantage: simplicity, easy to compute disadvantage: free parameters adjusted on available data microscopic Effective NN interaction: Skyrme, Gogny many-body techniques: Hartree-Fock, Hartree-Fock-BCS, Hartree-Fock-Bogoliubov advantage: shell, pairing, deform. consistently disadvantage: computing power 1. Existing data in known mass regions masses (2135 Z 8): FRDM 1995 (rms=676 kev) ++ HF-BCS 2001 (rms=738 kev) ++ HFB 2002 (rms=660 kev) ++ NLDs (278): Back-Shifted FG 1997 (rms=1.94) ++ HF-BCS 2001 (rms=2.14) ++ 2. Extrapolations to unknown mass regions -- +-

Comparison of masses: M=M HFB -M FRDM

Comparison of state densities ω(u): r=10 [log ( ωhfbcs/ ωbsfg)]

Comparison of radiative capture rates r = συ συ max min (n,γ) ++ (p,γ) +- (α,γ) -- α OP!!!

α-nucleus optical potentials 144 Sm(α,γ) 148 Gd Data by A. Spyrou et al, INP, NCSR Demokritos OP I,II,III : Demetriou, Grama, Goriely NPA 707 142 (2002) OP III

p-process nucleosynthesis possible sites: O-Ne rich layers of massive stars (M>10M ) in pre- and SN phase (Type II) C-rich zones of Chandrasekhar-mass white dwarfs (Type Ia SN) exploding sub-chandrasekhar mass white dwarfs Example: impact of nuclear uncertainties on overproduction factor <F> of p nuclei in site: SN type II for M=25 M

Woosley and Howard, Ap. J. Suppl. 36, 285 (1978), Overproduction factors: σ σ AV mass fraction of produced p nucleus σ = solar mass fraction of the p nucleus σav = 1 35 i σi p-nuclei abundances: still a problem!!! S. Goriely, M. Arnould, I. Borzov, and M. Rayet : A&A 375, 35 (2001) no neutrino interactions

possible sites to date: core-collapse supernova (IIa,Ib) r-process nucleosynthesis 1. prompt explosion of massive stars 8-10M (Wheeler etal. 1998, Sumiyoshi etal. 2001) r-process in innermost layers (n n >10 20 cm -3, T >10 9 K) problems: triggering explosion 2. delayed explosion of very massive star 20M (Woosley&Hoffman 1992, Takahashi etal. 1994, Wanajo etal. 2001, Terasawa etal. 2002)) r-process in neutrino-driven winds from nascent neutron star problems: SN IIa cannot give necessary conditions (entropy) extremely massive neutron stars required (2M ) mergers of neutron stars (Schramm 1982; Meyer 1989; Ruffert & Janka 1998, Argast etal. 2003) extremely neutron-rich nuclear matter r-process during decompression phase (T 10 9 K) problems: low coalescence times too late injection of r-process matter in ISM [r/fe] disagree with observations EOS exotic nuclear physics

Decompression of initially cold neutron star matter - Neutron star mergers or neutron star-black hole mergers: M ejec = 10-3 -10-2 M o or 5 10-5 - 2 10-4 M o 10-2 (corotating) - 10-4 (counter-rotating) M o Galactic NSM rate: f NSM = 10-6 - 3 10-4 yr -1 Coalescence timescales: 100-1000 Myr (total amount of r-process matter in the Galaxy estimated to 10 4 M o ) - Possible site for the r-process nucleosynthesis - Ejection of n-rich material from the neutron star inner crust - No consistent r-process calculations - Lattimer et al (1977), Meyer (1989): decompression of cold matter - Freiburghaus et al. (1999): parametrized-y e and heated matter - Chemical evolution of the Galaxy not in favour R-process matter mixed with ISM leads to [r/fe] too high to be compatible with observation of [r/fe] in ultra-metal-poor stars!?!?!

The r-process of nucleosynthesis Expansion of neutron-rich matter Initial distribution of nuclei with Z 40-70 at the n-drip line Free neutrons: N n 10 34 cm -3 Temperature evolution followed by an adequate EOS (ρ < 10 11 g/cm 3 T < 10 9 K) Nuclear reaction network including (n,γ),(γ,n),β,βdn,βdf,nif,sf Many uncertainties: initial conditions (in part., Z-dist. at the n-drip line) EOS and temperature evolution during the r-process Role of neutrinos (heat, accelerate, change the composition?) neutron-capture rates at the n-drip line β -decay rates and energy generation due to β -decays fission rates and energy generation due to fission distribution of fission fragments

r-abundance distribution in the ejecta After t=0.91 s Relative Abundances 10-1 10-2 10-3 10-4 N n =10 22 cm -3 T 9 =0.05 Solar System t=0.91s 10-5 50 100 150 200 250 A

r-abundance distribution in the ejecta After t=3.23 s Relative Abundances 10-1 10-2 10-3 10-4 N n =10 20 cm -3 T 9 =0.05 Solar System t=3.23s 10-5 50 100 150 200 250 A

One sensitivity calculation Relative Abundances 10-1 10-2 10-3 10-4 Solar System log ft=-2.8; HFB-02 log ft=-5.5; HFB-08 10-5 50 100 150 200 250 A

Συµπεράσµατα Οι θερµοπυρηνικές αντιδράσεις αποτελούν το κύριο καύσιµο υλικό των άστρων και η κύρια αιτία αστρικής εξέλιξης και πυρηνοσύνθεσης η περιγραφή των πυρηνικών αντιδράσεων µε σηµασία στην πυρηνοσύνθεση Βαρέων στοιχείων αποτελεί έργο σύνθετο και απαιτεί γνώσεις πολλών πυρηνικών ιδιοτήτων (πυρηνικής δοµής, ιδιότητες βασικής στάθµης και διεγερµένων καταστάσεων) οι αβεβαιότητες στην περιγραφή των πυρηνικών αντιδράσεων έχουν επιπτώσεις και στον υπολογισµό των τελικών περιεκτικοτήτων των στοιχείων για την βελτίωση των πυρηνικών δεδοµένων απαιτούνται συγχρόνως παιρετέρω µετρήσεις ενεργών διατοµών σε ενέργειες σχετικές και ανάπτυξη γενικευµένων µικροσκοπικών µοντέλων για πιο ακριβείς υπολογισµούς πέρα από τις αβεβαιότητες της πυρηνικής φυσικής, σηµαντικές αβεβαιότητες παραµένουν και στο αστροφυσικό µέρος, ιδιαίτερα όσον αφορά το αστρικό περιβάλλον όπου λαµβάνει χώρα η διαδικασία πυρηνοσύνθεσης (p-, r-process)